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Abstract It is known that the Clarke generalized directional derivative is nonnega-
tive along the limit directions generated by directional direct-search methods at a limit
point of certain subsequences of unsuccessful iterates, if the function being minimized
is Lipschitz continuous near the limit point. In this paper we generalize this result for
discontinuous functions using Rockafellar generalized directional derivatives (upper
subderivatives). We show that Rockafellar derivatives are also nonnegative along the
limit directions of those subsequences of unsuccessful iterates when the function val-
ues converge to the function value at the limit point. This result is obtained assuming
that the function is directionally Lipschitz with respect to the limit direction. It is also
possible under appropriate conditions to establish more insightful results by showing
that the sequence of points generated by these methods eventually approaches the
limit point along the locally best branch or step function (when the number of steps
is equal to two). The results of this paper are presented for constrained optimization
and illustrated numerically.
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1 Introduction

In this paper we consider a constrained minimization problem posed as

min f (x),

s.t. x ∈ �, (1)

where f : R
n → R∪{+∞} represents a nonsmooth, possibly discontinuous, extended-

real-valued objective function and � ⊆ R
n denotes a nonempty constrained or feasible

region. Our interest relies on the solution of Problem (1) by derivative-free methods,
i.e., by methods which make no use of derivatives of the objective function (or of
the functions defining the feasible region), and in particular by direct-search methods
(DSM).

We are particularly interested in the situation where the objective function is discon-
tinuous at a limit point of the sequence of iterates generated by a direct-search method.
Problems where the objective function is discontinuous (and no access to derivatives is
available) appear in several applications. One example is the Omega function [7] which
measures the performance of an asset, or of a portfolio of assets, by the ratio of the
weighted gains (above a given threshold) over the weighted losses (below the thresh-
old). Such function exhibits numerous discontinuities and recent studies involving its
derivative-free optimization are reported in [14,17]. Another example arises in the
tuning of algorithmic parameters for a given method/code (see [5] for instances where
DSM have been applied to solve such problems)—the resulting objective functions are
likely to exhibit all sorts of discontinuities given the way that typically a method/code
responds to changes in its parameters. DSM have also been used for automatic error
analysis [11,12], a process in which the computer is used to analyze the accuracy or
stability of a numerical computation (and examples have been provided where the
objective function is discontinuous). Many engineering design problems (which are
likely to form the core of the mainstream applications of derivative-free optimiza-
tion) lead to objective functions involving discontinuities and limited or no access to
derivatives (one such application in aircraft design which was recently drawn to our
attention is reported in [2]).

DSM can be classified as either directional or simplicial [9, Chaps. 7 and 8]. In this
paper we are interested in directional DSM and will consider their iterations organized
around a search step (optional) and a poll step. We will essentially concentrate on the
poll step since it is responsible for the global convergence properties of the resulting
algorithm. A poll step consists of evaluating the objective function at a set of points
defined by a positive spanning set or, in some methods different from the ones studied
in our paper, defined by a set of positive generators of a cone related to the constraints.
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Analysis of direct searches for discontinuous functions 301

A successful poll step occurs when at least one poll point exhibits a function value
lower (or sufficiently lower) than the current one (infeasible points are considered to
have an infinite objective function value).

A number of directional DSM consider a finite number of such sets of directions
and are referred to as pattern search or generalized pattern search. Although some of
our basic results apply to these methods, we will focus on those directional DSM, like
mesh adaptive direct search (MADS) [4] and generating set search (GSS) [15] (under
sufficient decrease), which are entitled to use an infinite number of poll directions. A
byproduct of our investigation will actually extend the analysis of GSS type methods
to the nonsmooth case (which, to the best of our knowledge, cannot be found in the
literature even for the continuous case, although there exist results once a specific form
of nondifferentiability is assumed like those in [6]).

It is possible to prove for these classes of methods the existence of a subse-
quence of unsuccessful iterates (i.e., unsuccessful poll steps) converging to a limit
point and driving the step size parameter to zero (this parameter is also called the
mesh size parameter and it basically controls the displacement along a direction).
At these refining subsequences one can consider limits of normalized poll direc-
tions which are then called refining directions. Audet and Dennis [4] proved that
if the objective function is Lipschitz continuous near the limit point x∗, then the
Clarke-Jahn directional derivative is nonnegative along an appropriate refining direc-
tion v:

f ◦
C (x∗; v) = lim sup

x ′→x∗,x ′ ∈ �
t↓0,x ′+tv ∈ �

f (x ′ + tv) − f (x ′)
t

≥ 0. (2)

This derivative is essentially the Clarke generalized directional derivative [8] extended
by Jahn [13] to the constrained setting. The refining direction must belong to the
hypertangent cone to � at x∗, represented by H�(x∗). If the corresponding set of
refining directions for x∗ is dense in the unit sphere, then these derivatives are proved
to be nonnegative for all directions in the tangent cone to � at x∗ (this cone is rep-
resented by T�(x∗) and is the closure of the hypertangent cone H�(x∗)). A similar
result had already been proved for unconstrained optimization and generalized pattern
search [3].

To our knowledge, not too much is known about the behavior of DSM when applied
to discontinuous functions, besides the fact that any limit of a refining subsequence
is the limit of unsuccessful iterations (poll centers) on meshes or lattices that get
infinitely fine (see [4]).

In this paper we will show that the nonnegativity of generalized derivatives along
refining directions can be extended to the Rockafellar upper subderivative [20] (gen-
eralized by us to the constrained case),

f ↑(x∗; v) = lim sup
x ′→ f x∗,x ′ ∈�

t↓0

inf
v′→v

x ′+tv′ ∈�

f (x ′ + tv′) − f (x ′)
t

≥ 0, (3)
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whenever, at the point x∗, the function f is lower semicontinuous and directionally
Lipschitz in � with respect to a direction v belonging to the hypertangent cone H�(x∗).
Such a result applies to functions discontinuous at x∗. The notation x ′ → f x repre-
sents x ′ → x and f (x ′) → f (x). The function f is said to be directionally Lipschitz
at x with respect to v ∈ H�(x) if

f +(x; v) = lim sup
x ′→ f x,x ′∈�

t↓0

sup
v′→v

x ′+tv′ ∈�

f (x ′ + tv′) − f (x ′)
t

< +∞.

Examples of directionally Lipschitz functions are given in [20, Sect. 6]. In Sect. 5 we
describe several functions discontinuous at a point that are directionally Lipschitz at
that point with respect to certain directions.

In this paper we will also show that when f is lower semicontinuous at a point
x (but not necessarily continuous) and directionally Lipschitz in � at the point with
respect to v ∈ H�(x), one has f ↑(x; v) = f +(x; v) = f ◦

R(x; v), where

f ◦
R(x; v) = lim sup

x ′→ f x,x ′∈�

t↓0,x ′+tv ∈�

f (x ′ + tv) − f (x ′)
t

. (4)

This result was originally established by Rockafellar [20] for the case � = R
n . Also

by extending the results of Rockafellar [20] for the constrained setting � = R
n , we

will show, under appropriate conditions, that the upper subderivative f ↑(x; v), when
v is in the tangent cone T�(x), is the limit inferior of derivatives f ◦

R(x;w) where
w ∈ H�(x). This analysis will allow us then to state a result for directions in the
tangent cone T�(x∗) but not necessarily in the hypertangent cone H�(x∗).

These results apply to discontinuous functions but they do not provide information
about the ability of the algorithms to locally identify the best branch or step function.
It is possible, however, to prove that the algorithms have the capability to generate an
infinite number of iterates in such a step, provided the number of steps is two around
the limit point and the function has some continuity properties in each step (essentially
the step domains must have nonempty interiors and one must be able to extend the
function, in a certain Lipschitz continuous way, from a step domain to a neighborhood
of the limit point).

This paper follows the line of others where nonsmooth calculus (in particular Clarke
calculus) has been used to analyze the asymptotic properties of the sequence of iterates
generated by DSM of directional type (besides the above cited papers [3,4], see also
[1,10]).

We organize the material of this paper in the following way. In Sect. 2 we describe
the algorithmic setting for direct-search methods, and gather the necessary material
about the globalization strategies that we consider and about the notions of refining
subsequences and directions. The main asymptotic results of this paper are contained
in Sect. 3 for (possibly discontinuous) functions directionally Lipschitz with respect to
certain directions. We leave to an appendix all the auxiliary nonsmooth calculus back-
ground needed for these results. In Sect. 4 we study the behavior of the algorithm for
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step discontinuities. We illustrate a number of our results and assumptions in Sect. 5,
numerically and for problems in two dimensions. The paper is concluded in Sect. 6
with some final remarks.

2 Algorithmic framework and behavior of the step size

2.1 Algorithmic description

Our algorithmic description follows the one in [9, Chap. 7] for the unconstrained
case. This framework will encompass both the MADS methodology (based on inte-
ger lattices and where a simple decrease on the function value suffices to identify a
new iterate) and general directional DSM based on randomly generated normalized
directions and sufficient decrease for acceptance of new iterates. Each iteration of the
algorithm is organized around a search step (optional) and a poll step. The evaluation
process of the poll step is opportunistic moving to a poll point once simple or sufficient
decrease is found, depending on the variant being used.

As we will see later in the convergence theory, the set of directions used for polling
is not required to positively span R

n (although for coherence with the smooth case
we will write it so in the algorithm below) and not necessarily drawn from a finite
set of directions. The algorithm requires an initial feasible point with finite objective
function value.

To make the algorithmic description shorter we will make use of the extreme barrier
function

f�(x) =
{

f (x) if x ∈ �,

+∞ otherwise.

Following the terminology in [15], ρ : (0,+∞) → (0,+∞) will represent a forcing
function, i.e., a continuous and non decreasing function satisfying ρ(t)/t → 0 when
t ↓ 0. Typical examples of forcing functions are ρ(t) = t1+a , for a > 0. To write
the algorithm in general terms we will use ρ̄(·) to either represent a forcing function
ρ(·) or the constant, zero function. A relatively minor difference from the presentation
below to what is in [9, Chap. 7] is the use of ρ̄(αk‖dk‖) instead of ρ̄(αk)—this will
be discussed in Sect. 2.3.

Algorithm 2.1 (Directional direct-search method)

Initialization
Choose x0 ∈ � with f (x0) < +∞, α0 > 0, 0 < β1 ≤ β2 < 1, and γ ≥ 1. Let
D be a (possibly infinite) set of positive spanning sets.

For k = 0, 1, 2, . . .

1. Search step: Try to compute a point with f�(x) < f (xk)− ρ̄(αk) by eval-
uating the function f at a finite number of points (in an integer lattice or
mesh if ρ̄(·) = 0, see Sect. 2.2). If such a point is found then set xk+1 = x ,
declare the iteration and the search step successful, and skip the poll step.
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2. Poll step: Choose a positive spanning set Dk from the set D. Order the
set of poll points Pk ={xk + αkd : d ∈ Dk}. Start evaluating f� at the poll
points following the chosen order. If a poll point xk + αkdk is found such
that f�(xk + αkdk)< f (xk) − ρ̄(αk‖dk‖) then stop polling, set xk+1 =
xk +αkdk , and declare the iteration and the poll step successful. Otherwise
declare the iteration (and the poll step) unsuccessful and set xk+1 = xk .

3. Step size parameter update: If the iteration was successful then maintain
or increase the step size parameter: αk+1 ∈ [αk, γ αk]. Otherwise decrease
the step size parameter: αk+1 ∈ [β1αk, β2αk].

The global convergence of directional DSM is heavily based on the analysis of the
behavior of the step size parameter αk which must approach zero as an indication
of some form of stationarity. There are essentially two known ways of enforcing the
existence of a subsequence of step size parameters converging to zero in DSM of
directional type. One way is by ensuring that all new iterates lie on an integer lattice
(rigorously speaking only when the step size is bounded away from zero). The other
form consists of imposing a sufficient decrease on the acceptance of new iterates. In
the former case we need the iterates to lie in a bounded set and in the latter situation
the objective function must be bounded below.

Assumption 2.1 The level set L(x0) = {x ∈ � : f (x) ≤ f (x0)} is bounded. The
function f is bounded below in L(x0).

2.2 Integer lattices (MADS)

Generalized pattern search makes use of a finite set of directions D = D which satisfy
appropriate integrality requirements for globalization by integer lattices.

Assumption 2.2 The set D of positive spanning sets is finite and the elements of D
are of the form Gz̄ j , j = 1, . . . , |D|, where G ∈ R

n×n is a nonsingular matrix and
each z̄ j is a vector in Z

n .

Given the type of non-smoothness and discontinuity of the objective function which
we would like to consider in this paper, we need to make use of an infinite set of direc-
tions D dense (after normalization) in the unit sphere. MADS makes use of such a set
of directions but, since it is also based on globalization by integer lattices, the set D
must then be generated from a finite set D satisfying Assumption 2.2 (which will be
guaranteed by the first requirement of the next assumption).

Assumption 2.3 Let D represent a finite set of positive spanning sets satisfying
Assumption 2.2.

The set D is so that the elements dk ∈ Dk ⊆ D satisfy the following conditions:

1. dk is a nonnegative integer combination of the columns of D.
2. The distance between xk and the point xk + αkdk tends to zero if and only if αk

does:
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lim
k∈K

αk‖dk‖ = 0 ⇐⇒ lim
k∈K

αk = 0,

for any infinite subsequence K .
3. The limits of all convergent subsequences of D̄k = {dk/‖dk‖ : dk ∈ Dk} are

positive spanning sets for R
n .

We remark that the third requirement in the above definition is not used in the
convergence theory of DSM of directional type for nonsmooth objective functions,
but is nonetheless included for consistency with the smooth case and because it is part
of the MADS original presentation [4].

In addition to Assumptions 2.2 and 2.3, the update of the step size parameter must
conform to some form of integrality.

Assumption 2.4 The step size parameter is updated as follows: Choose a rational
number τ > 1, a nonnegative integer m+ ≥ 0, and a negative integer m− ≤ −1.
If the iteration is successful, the step size parameter is maintained or increased by
taking αk+1 = τm+

k αk , with m+
k ∈ {0, . . . , m+}. Otherwise, the step size parameter is

decreased by setting αk+1 = τm−
k αk , with m−

k ∈ {m−, . . . ,−1}.
Note that these rules respect those of Algorithm 2.1 by setting β1 = τm−

, β2 = τ−1,
and γ = τm+

.
Finally, the search step is restricted to points in a previously (implicitly defined)

mesh or grid. Note that poll points must also lie on the mesh, but this requirement is
trivially satisfied from the definition of the mesh Mk given below (i.e., one trivially
has Pk ⊂ Mk).

Assumption 2.5 The search step in Algorithm 2.1 only evaluates points in

Mk =
⋃

x∈Sk

{x + αk Dz : z ∈ N
|D|
0 },

where Sk is the set of all the points evaluated by the algorithm previously to
iteration k.

The following result was originally proved by Torczon [21] for pattern search and
extended later to generalized pattern search [3] and MADS [4].

Theorem 2.1 Let Assumption 2.1 hold. Algorithm 2.1 under Assumptions 2.3–2.5 and
ρ̄(·) = 0 (MADS) generates a sequence of iterates satisfying

lim inf
k→+∞ αk = 0.

2.3 Sufficient decrease

An alternative to the use of integer lattices is to impose sufficient rather than sim-
ple decrease as a criterion for accepting new iterates. This can be simply achieved
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by selecting ρ̄(·) as a forcing function in Algorithm 2.1. We will need the following
assumption (which, note, was already part of Assumption 2.3).

Assumption 2.6 The distance between xk and the point xk + αkdk tends to zero if
and only if αk does:

lim
k∈K

αk‖dk‖ = 0 ⇐⇒ lim
k∈K

αk = 0,

for any infinite subsequence K .

The result below (Theorem 2.2) is relatively classic in nonlinear optimization when
using some form of sufficient decrease. It is proved in [15] and in [9, Section 7.7]
in the context of directional DSM for unconstrained optimization when using ρ̄(αk)

instead of ρ̄(αk‖dk‖). However, Assumption 2.6 allows the proof to easily go through
for the latter case.

Theorem 2.2 Let Assumption 2.1 hold. Algorithm 2.1, when ρ̄(·) is a forcing function
and Assumption 2.6 holds, generates a sequence of iterates satisfying

lim inf
k→+∞ αk = 0.

Note that such a result is derived under a very weak assumption on the set of direc-
tions D. We are free to use, for instance, a normalized set of directions D dense in the
unit sphere.

2.4 Refining subsequences and directions

The type of stationarity results which can be derived for DSM of directional type are
established at limit points of the so-called refining subsequences (a concept formalized
in [3]).

Definition 2.1 A subsequence {xk}k∈K of iterates corresponding to unsuccessful poll
steps is said to be a refining subsequence if {αk}k∈K converges to zero.

One can ensure for the two algorithmic settings of this paper (Sects. 2.2 and 2.3) the
existence of a convergent refining subsequence. Such a result is a simple and known
consequence of Assumption 2.1, Theorems 2.1 or 2.2, and the scheme that updates
the step size parameter (see, e.g., [9, Section 7.3]).

Theorem 2.3 Let Assumption 2.1 hold. Consider a sequence of iterates generated by
Algorithm 2.1 under the scenarios of either Sect. 2.2 (MADS) or Sect. 2.3 (sufficient
decrease). Then there is at least a convergent refining subsequence {xk}k∈K .

The type of directions along which appropriate directional derivatives will be
proved nonnegative are the so-called refining directions (a notion formalized in [4]).
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Definition 2.2 Let x∗ be the limit point of a convergent refining subsequence. If the
limit limk∈L dk/‖dk‖ exists, where L ⊆ K and dk ∈ Dk , and if xk + αkdk ∈ �, for
sufficiently large k ∈ L , then this limit is said to be a refining direction for x∗.

Some of the results of this paper will require for the refining subsequence under
consideration that the associated set of refining directions for x∗ is dense in the unit
sphere (an assumption stronger than just saying that the normalized set of directions
D is dense in the unit sphere).

3 Results for discontinuous functions using the directionally Lipschitz property

A reader not familiar with nonsmooth calculus, in particular with the paper of
Rockafellar [20], might find difficulties in grasping the essentials of the upper subderiv-
ative f ↑(x; v) and the notion of directionally Lipschitz with respect to a vector. Read-
ing the Sects. 2.4 and 2.9 of the book [8] will definitely help. However, these concepts
have an immediate geometrical insight. Let us consider the unconstrained case � = R

n

for the purposes of the discussion in the current paragraph and the next two ones. In
fact, one has that the epigraph epi( f ↑(x; ·)) of the upper subderivative (for a fixed point
x and as a function of the directions) coincides with the tangent cone Tepi f (x, f (x))

of the epigraph (epi f ) of f at (x, f (x)), i.e., epi( f ↑(x; ·)) = Tepi f (x, f (x)). It is
known that this result remains true when f is not lower semicontinuous, for a def-
inition of upper subderivative (see the Appendix) which reduces to (3) under lower
semicontinuity. Also, such a result has been generalized by us, in the Appendix, to the
case � = R

n .
The above characterization of the tangent cone of the epigraph of a function allows

us to immediately see, for n = 1 or n = 2, when the upper subderivative is finite or
equal to +∞ (the definition of tangent cone is given later, but a geometrical intuition
of a tangent cone suffices for the moment). In fact, this geometric characterization is
precisely the reason why this directional derivative is called upper subderivative (it
allows us to look up and determine the vectors in the tangent cone of the epigraph of
a function).

Now, let D f,�(x) denote the set of vectors with respect to which f is directionally
Lipschitz. It is also known that D f,�(x) = int({w : f ↑(x;w) < +∞}) (a result also
generalized by us to the case � = R

n and also valid without lower semicontinuity).
Thus, from the characterization epi( f ↑(x; ·)) = Tepi f (x, f (x)), one can also easily
compute D f,�(x) for examples in one or two dimensions, gaining insight for the n-
dimensional case. In Sect. 5 we report what is D f,�(x) at x = (0, 0) for all the four
examples listed there.

Our first convergence result addresses the case where a refining direction is in the
hypertangent cone to � at the limit point (see [8, p. 57]).

Definition 3.1 A vector v is said to be hypertangent to � at x if there exists an ε > 0
such that

x ′ + tv′ ∈ � for all x ′ ∈ � ∩ B(x; ε), v′ ∈ B(v; ε), and t ∈ (0, ε).
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The set of all hypertangent vectors to � at x is called the hypertangent cone to � at x
and is represented by H�(x).

It is easy to see that the hypertangent cone is convex. Note that the definition of
hypertangency used by Rockafellar [20] is different from the one used by Clarke [8]
which later became the standard (and was used for the analysis of MADS [4]).

As we have seen before, the existence of a convergent refining subsequence {xk}k∈K

is guaranteed by Theorem 2.3. It is then possible to state this condition as an assumption
for deriving asymptotic results at limit points.

Theorem 3.1 Consider a refining subsequence {xk}k∈K converging to x∗ ∈ � and a
refining direction v for x∗ in H�(x∗). Assume that f is lower semicontinuous at x∗ and
directionally Lipschitz at x∗ with respect to v. Assume further that limk∈K f (xk) =
f (x∗). Then f ↑(x∗; v) = f +(x∗; v) = f ◦

R(x∗; v) ≥ 0.

Proof Since f is directionally Lipschitz at x∗ with respect to v, we have that
f +(x∗; v) < +∞. Now let v = limk∈L dk/‖dk‖, with L ⊆ K . Thus,

f +(x∗; v) = lim sup
x ′→ f x∗,x ′∈�

t↓0

sup
v′→v

x ′+tv′∈�

f (x ′ + tv′) − f (x ′)
t

≥ lim sup
k∈L

f (xk + αk‖dk‖(dk/‖dk‖)) − f (xk)

αk‖dk‖
= lim sup

k∈L

f (xk + αkdk) − f (xk) + ρ̄(αk‖dk‖)
αk‖dk‖ − ρ̄(αk‖dk‖)

αk‖dk‖ ≥ 0.

The first inequality follows from {xk}k∈L being a feasible refining subsequence with
limk∈L f (xk) = f (x∗) and the fact that xk + αkdk is feasible for k ∈ L sufficiently
large. The limit limk∈L ρ̄(αk‖dk‖)/(αk‖dk‖) is 0 for both globalization strategies
(Sects. 2.2 and 2.3). In the case of MADS (Sect. 2.2)1, one uses ρ̄(·) = 0. When
imposing sufficient decrease (Sect. 2.3), it follows directly from the properties of a
forcing function and from Assumption 2.6.

The fact that f ↑(x∗; v) = f +(x∗; v) = f ◦
R(x∗; v) is showed in the Appendix

(Theorem A.2). ��
Now we need to address the case where the directions are in the tangent cone to �

at the limit point but not necessarily in the hypertangent cone.

Definition 3.2 A vector v is said to be tangent to � at x if for all sequences {yk} ⊂ �

converging to x and for all sequences {tk} with tk ↓ 0, there exists a sequence of
vectors {wk} converging to v such that yk + tkwk ∈ � for all k.

The set of all tangent vectors to � at x is called the tangent cone to � at x and is
represented by T�(x).

1 Note that MADS and the imposition of sufficient decrease are compatible. In fact, this is true because we
are using ρ̄(αk‖dk‖) in the statement of Algorithm 2.1 (instead of ρ̄(αk )).
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The tangent cone T�(x) is the closure of the hypertangent cone H�(x). It can be
also defined by the limit inferior of a multifunction (see the Appendix for details).

Let D f,�(x) denote the set of vectors in H�(x) with respect to which f is direc-
tionally Lipschitz. Note that in the presence of constraints (� = R

n) the definition of
D f,�(x) makes only sense for vectors in H�(x).

Theorem 3.2 Consider a refining subsequence {xk}k∈K converging to x∗ ∈ �. Let v

be in T�(x∗) but not necessarily in H�(x∗) (which, in turn, is assumed nonempty).
Assume that f is lower semicontinuous at x∗ and f ↑(x∗; v) < +∞. Assume further
that limk∈K f (xk) = f (x∗).

If f is directionally Lipschitz with respect to all directions in the intersection of a
ball centered at v with H�(x∗) and the set of refining directions for x∗ is dense in this
intersection, then f ↑(x∗; v) ≥ 0.

Proof First we apply Theorem 3.1 to obtain that f ◦
R(x∗;w) ≥ 0 for all the refining

directions w in the intersection of the ball centered at v with D f,�(x∗). Then, from
the result proved in the Appendix (Theorem A.2),

f ↑(x∗; v) = lim inf
w→v

w∈D f,�(x∗)
f ◦
R(x∗;w) ≥ 0.

��

4 Identification of the best branch for discontinuous functions

We are now interested in studying the behavior of directional DSM when the objective
function is defined by several branches or steps, in particular to know if the algorithm
can identify the locally best step. We will give an affirmative answer provided the num-
ber of steps is two, the step domains have nonempty interiors, and their borders exhibit
a minimum of regularity (the exterior cone property stated below in Definition 4.1).

The condition given next covers a wide range of discontinuities.

Assumption 4.1 The function f is such that there exists a neighborhood B of x∗ (a
limit point of a refining subsequence) which admits a finite partition

B =
nB⋃
i=1

Bi ,

such that, for all i ∈ {1, . . . , nB},
1. int(Bi ) = ∅,
2. cl(Bi ) has the exterior cone property (see Definition 4.1),
3. f is Lipschitz continuous in int(Bi ) and can be continuously extended from int(Bi )

to ∂ Bi .

We will refer to the Bi ’s as either step domains or partition sets. It can be easily seen
that if we extend a Lipschitz continuous function in the interior of a set to the boundary,
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in a continuous way, the extension is also Lipschitz continuous on the closure of the
set.

Proposition 4.1 Let f be a locally Lipschitz function in int(S), with Lipschitz con-
stant L. The continuous extension of f from S to cl(S) is locally Lipschitz continuous
with Lipschitz constant 3L + 2.

Proof Let x ∈ ∂S and consider a neighborhood N of x . The value of the extended
function in any point y ∈ ∂S ∩ N can be given as the limit of { f (y j )} for any sequence
of points {y j } ⊆ int(S) ∩ N converging to y.

Let us consider two points z and w in ∂S ∩ N . Let ε ≤ ‖z − w‖. Then, there exist
zε, wε ∈ int(S) ∩ N , with ‖z − zε‖ ≤ ε and ‖w − wε‖ ≤ ε, such that:

| f (z) − f (w)| ≤ | f (z) − f (zε)| + | f (zε) − f (wε)| + | f (wε) − f (w)|
≤ ε + L‖zε − wε‖ + ε ≤ ε + 3L‖z − w‖ + ε

≤ (2 + 3L)‖z − w‖.

The case where one point is in int(S) ∩ N and the other in ∂S ∩ N can be proved
analogously (the result is trivial when both points are in int(S) ∩ N ). ��

The precise form of the exterior cone property which we will use is stated below.
Note that the border of a set exhibiting this property cannot contain singularities like
cusps, in other words, points like the origin when the set is of the form R

2\{(x, y) ∈
R

2 : −x2 ≤ y ≤ x2, x ≥ 0}. The exterior cone property holds for a set when it is
possible to ‘stick’ a cone with nonempty interior to the complementary of the set at
any point of its boundary.

Definition 4.1 A set S has the exterior cone property if at any point z ∈ ∂S there
exists a cone Cz with nonempty interior, an angle θz > 0, and a neighborhood Nz of
z such that Ez = Nz ∩ {z′ = z + c, c ∈ Cz, c = 0} ⊂ R

n\S and any angle between
all the vectors in Ez − {z} and all the vectors in Sz − {z}, with Sz = S ∩ Nz , is larger
than θz .

We will also need the following auxiliary result. Essentially we extend a Lipschitz
continuous function from a set to R

n by first extending it (at a given point on the
boundary of the set) to an ‘exterior cone’ of nonempty interior along which the func-
tion is strictly decreasing. In this way, our extension to R

n is guaranteed to decrease
strictly for a set of directions of nonempty interior.

Proposition 4.2 Let S be a set with the exterior cone property and g a Lipschitz
continuous function in S. Let also z ∈ ∂S ∩ S.

Then there exists an extension g̃ of g from S to R
n which is Lipschitz continuous in

R
n and locally strictly decreasing along all directions emanating from z and belonging

to a cone with nonempty interior.

Proof Consider the sets Cz, Nz, Ez , and Sz as in Definition 4.1. Define an auxiliary
function g̃ which coincides with g in Sz and is linear and strictly decreasing from z
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to the interior of Ez . We will show first that this function is Lipschitz continuous in
Sz ∪ Ez . Let L1 be the Lipschitz constant of g = g̃ in Sz and L2 the Lipschitz constant
of g̃ in Ez . Now consider a point y ∈ Sz and a point w ∈ Ez . One can derive that

|g̃(y) − g̃(w)| ≤ |g(y) − g(z)| + |g̃(w) − g̃(z)|
≤ max{L1, L2} (‖y − z‖ + ‖w − z‖)
≤ max{L1, L2}M‖y − w‖,

where the last equality follows from ‖y − z‖ + ‖w − z‖ ≤ M‖y − w‖, with M =√
2π/θz . The cases where both points lie in Sz or Ez are straightforward to analyze.

We then obtain that |g̃(y) − g̃(w)| ≤ max{L1, L2} max{1, M}‖y − w‖, for all y and
w in Sz ∪ Ez .

It is known that any Lipschitz function in a set can be extended to the whole space
with the same Lipschitz constant (see [16, Theorem 1]). Thus, one can now extend g̃
from Sz ∪ Ez to R

n , and in particular to Nz , with the same Lipschitz constant. ��
We are now ready for the main result of this section. Recall that the existence of

a convergent refining subsequence {xk}k∈K is guaranteed by Theorem 2.3. The tech-
nique of Proposition 4.2 is used to reach a contradiction in the proof of Theorem 4.1
below, thus guaranteeing (at a limit point where the function is discontinuous) an
infinite number of poll points (corresponding to unsuccessful iterations) in the com-
plementary of the step domain where those unsuccessful iterates belong to.

Theorem 4.1 Consider a refining subsequence {xk}k∈K converging to x∗ ∈ � (and
note that Assumption 2.1 is required for the existence of such a subsequence). Assume
that f is lower semicontinuous at x∗ and satisfies Assumption 4.1. Let the sets of
refining directions for x∗ corresponding to any infinite subsequence of K be dense in
the unit sphere.

If x∗ belongs to the interior of a partition set in {B1, . . . , BnB }, then f ◦
C (x∗; v) ≥ 0

for all refining directions v ∈ T�(x∗) (assuming here also that H�(x∗) is nonempty).
Otherwise, there exists a subsequence K ′ ⊂ K and a partition set B ′ ∈ {B1, . . . ,

BnB } such that (i) {xk}k∈K ′ ⊂ cl(B ′), (ii) there is an infinite number of poll points,
corresponding to iterates in K ′, in int(B ′), and (iii) there is an infinite number of poll
points, corresponding to iterates in K ′, in R

n\ cl(B ′).

Proof The proof is done for the case of MADS (Sect. 2.2) but the case of sufficient
decrease (Sect. 2.3) is obtained from this one with minor modifications.

Consider first the neighborhood B guaranteed by Assumption 4.1. If x∗ belongs to
int(Bl), for some l ∈ {1, . . . , nB}, the Lipschitz continuity of f near x∗ would allow
to apply the known results from [4].

So, let us assume that x∗ belongs to the boundary of Bl , for some l ∈ {1, . . . , nB}.
If all the iterates after a certain order lie in borders of the step domains, then note that
the theorem can be easily established, since the partition is finite and we assume den-
sity of the sets of refining directions for x∗ corresponding to any infinite subsequence
of K . Otherwise, since the partition is finite, by passing to a subsequence K1 ⊂ K if
necessary, one can state the existence of an i ∈ {1, . . . , nB} such that x∗ ∈ ∂ Bi and
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{xk}k∈K1 ⊂ int(Bi ) with K1 ⊂ K . Also, given that Bi has a nonempty interior and that
the set of refining directions for x∗ corresponding to K1 is dense in the unit sphere, there
must exist an infinite number of poll points associated with a subsequence K2 ⊂ K1
belonging to int(Bi ).

By using Assumption 4.1 and Proposition 4.1, we can extend f from Bi to cl(Bi )

in a continuous way and ensuring that the extended function f̄ is Lipschitz continuous
in cl(Bi ).

Let us assume that all poll points associated with the refining subsequence belong
to cl(Bi ). We will see that this leads us to a contradiction. So, let us assume that there
exists a k̄ ∈ K1 such that xk + αkd ∈ cl(Bi ) for all k ∈ K1 with k ≥ k̄ and for all
d ∈ Dk . We now apply Proposition 4.2 using S = cl(Bi ), g = f̄ , and z = x∗. Let f̃
be the extended function (and L its Lipschitz constant). We then obtain that

f̃ ◦
C (x∗; v)

≥ lim sup
k∈K1

f̃ (xk + αkdk) − f̃ (xk)

αk‖dk‖ + f̃ (xk + αk‖dk‖v) − f̃ (xk + αkdk)

αk‖dk‖
≥ lim sup

k∈K2

f (xk + αk dk) − f (xk)

αk‖dk‖ − Lαk‖dk‖‖v − (dk/‖dk‖)‖
αk‖dk‖

≥ 0,

for all refining directions v, which is a contradiction since these directions are dense
in the unit sphere and f̃ is locally strictly decreasing from x∗ along all directions in a
cone of nonempty interior.

So, one can build a sequence of points K3 ⊂ K1 for which there exists dk ∈ Dk such
that

f�(xk + αkdk) ≥ f (xk), xk + αkdk /∈ cl(Bi ), (5)

for all k ∈ K3.
The proof is completed by setting B ′ = Bi and K ′ = K1. ��
When the number of steps is equal to two (nB = 2) it is possible to prove a stronger

result. Such a result is an obvious consequence of the existence of an infinite number
of poll points (corresponding to unsuccessful iterations) in the other step domain, i.e.,
in the step domain complementary to the one where those unsuccessful iterates belong
to.

Corollary 4.1 Under Assumption 2.1 and the assumptions of Theorem 4.1 and when
nB = 2, there exists a subsequence K∗ ⊂ K and a partition set B∗ ∈ {B1, B2} such
that, when x∗ is in the border of the two partition sets,

1. B∗ satisfies the properties stated for B ′ in Theorem 4.1,
2. limk∈K∗ f (xk) = f (x∗).

Proof The proof of the corollary is a continuation of the proof of the Theorem 4.1.
First we note that { f (xk)} is decreasing and bounded below and thus it converges,

say to f∗. Since f is lower semicontinuous, f (x∗) ≤ f∗.

123



Analysis of direct searches for discontinuous functions 313

Fig. 1 Plot of function f1

We can now show that it is along B ′ (see the proof of Theorem 4.1) that the value
of f is attained, i.e., that f∗ = limk∈K ′ f (xk) = f (x∗). If this was not true, then there
would exist an ε > 0 and a bordering B ′′ (since nB = 2, the remaining one) and
a neighborhood N of x∗ for which f (y) > f (z) + ε, for all y ∈ B ′ ∩ N ∩ � and
z ∈ B ′′ ∩ N ∩ �. But this contradicts (5). ��

5 Numerical illustrations

To illustrate the ability of Algorithm 2.1 in finding local minimizers for lower semicon-
tinuous functions we ran some examples in MATLAB. We included examples which
violate some of the assumptions required to ensure convergence. Four problems of
the form (1) were considered, where � = [−1, 1] × [−1, 1] was partitioned into a
finite number of disjoint subsets � = ⋃nB

i=1 �i , with nB = 2 in three of the cases and
nB = 4 in the last problem. The minimizer is unique and corresponds to x∗ = (0, 0).
Figures 1, 2, 3, 4 depict plots of each one of the functions considered. Functions f1, f3,
and f4 are discontinuous at x∗ = (0, 0). Function f2 is continuous at x∗ = (0, 0) but
not Lipschitz continuous near this point. We call the attention of the reader to the first
three paragraphs of Sect. 3 for instructions on how to determine whether a function is
directionally Lipschitz with respect to a given direction at a given point.
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Fig. 2 Plot of function f2

Problem 1 A lower semicontinuous function of the form

f1(x) =
{

x2
1 + x2

2 if x1
2 ≤ x2 ≤ 2x1,

10 + x2
1 + x2

2 otherwise,

and steps �1 and �2 with nonempty interior. Near x∗, the distance between function
values in the two steps remains constant.

The upper subderivative f ↑(x∗; v) is finite for all directions v ∈ R
2 such that

v1/2 ≤ v2 ≤ 2v1 and coincides there with traditional directional derivatives. Thus,
the function is directionally Lipschitz at x∗ with respect to all directions w ∈ R

2 such
that w1/2 < w2 < 2w1.

Problem 2 A lower semicontinuous function of the form

f2(x) =
{

10x2
1 + 10x2

2 if x1 < 0,

10x2
1 + x2

2 otherwise,

and steps �1 and �2 with nonempty interior. Near x∗, the distance between function
values in the steps converges to zero.

The upper subderivative f ↑(x∗; v) is finite for all directions v ∈ R
2 such that

v1 ≥ 0 and coincides there with traditional directional derivatives. The function is
directionally Lipschitz at x∗ with respect to all directions w ∈ R

2 such that w1 > 0.
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Fig. 3 Plot of function f3

Problem 3 A lower semicontinuous function of the form

f3(x) =
{

x2
1 + x2

2 if x2 = 2x1,

10 + x2
1 + x2

2 otherwise,

where one of the steps has empty interior.
The upper subderivative f ↑(x∗; v) is finite only along the directions v ∈ R

2 such
that v2 = 2v1 and coincides there with traditional directional derivatives. Thus, the
function is not directionally Lipschitz at x∗ since there is no direction with respect to
which it is directionally Lipschitz.

Problem 4 A lower semicontinuous function of the form

f4(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x2
1 + x2

2 if x1
2 ≤ x2 ≤ 2x1,

5 + x2
1 + x2

2 if x1 ≤ 0 ∧ x2 ≤ 0 ∧ (x1, x2) = (0, 0),

10 + x2
1 + x2

2 if x2 < x1
2 ∧ x1 > 0,

15 + x2
1 + x2

2 otherwise,

and steps �i , i ∈ {1, 2, 3, 4}, with nonempty interior. Near x∗, the distance between
function values in any of the steps remains constant. The number of steps considered
exceeds two, which violates one of the conditions required in Sect. 4 to establish the
asymptotic results.
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Fig. 4 Plot of function f4

The upper subderivative f ↑(x∗; v) is finite for all directions v ∈ R
2 such that v1/2 ≤

v2 ≤ 2v1 and coincides there with traditional directional derivatives. Thus, the func-
tion is directionally Lipschitz at x∗ with respect to all directions w ∈ R

2 such that
w1/2 < w2 < 2w1.

We testedNOMADm [18], version 4.6, a MATLAB implementation of MADS (which
fits into Algorithm 2.1, see Sect. 2.2) and a very simple implementation of Algo-
rithm 2.1 with a globalization strategy based on sufficient decrease (as in Sect. 2.3).
In both algorithms, the search step was empty, the initial step size parameter was
set to one, and the run stopped once the step size reached the threshold 10−7. In
the implementation of the variant which requires sufficient decrease, the poll set Dk

was set equal to [Qk − Qk], where Qk is an orthogonal matrix computed by ran-
domly generating the first column. In MADS, the positive spanning set considered
corresponds to the implementation LTMADS, with a total of 2n directions. Since
our main concern is (proper) convergence rather than efficiency, the poll points were
evaluated following the consecutive order of storage. As a forcing function, in the
case of the sufficient decrease variant, we considered ρ(t) = t2 (other variants were
tested, but with worse results in what concerns the total number of function evaluations
required).

Given the random behavior of both algorithms, a sequence of 10 runs was consid-
ered for each problem. The initial point was set to x0 = (−0.4,−0.5). A summary of
the computational experiments is reported in Table 1.
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Table 1 Number of failures in
identifying a local minimizer
and corresponding average
number of function evaluations
required

Function Algorithm 2.1

MADS Suff. decrease

#failures #fevals #failures #fevals

f1 0 233 0 175.6
f2 0 193.9 0 494.6
f3 10 173.7 10 144.4
f4 2 220.6 1 177.7

Table 2 Number of failures of algorithm 2.1 (sufficient decrease variant, see Sect. 2.3), for a sequence
of 1,000 runs, starting from different initial points, and for two different stopping tolerances (10−7 and
10−10)

Function #failures—for 10−7 #failures—for 10−10

f1 2 0
f2 0 0
f3 1,000 1,000
f4 61 44

When any of the algorithms failed to converge to the function minimizer, the final
iterate corresponded generally to a point near the minimizer of the function when
restricted to a higher step. The exception occurred with f3 where there were cases of
convergence to points lying on the line of discontinuity.

In order to access the dependency of the results from the initial point provided
to the methods, we considered a grid of 100 equally spaced points in [−1,−0.1] ×
[−1,−0.1], and ran Algorithm 2.1 with a globalization strategy based on sufficient
decrease. For each of the four problems and for each of the initial points, we ran
the algorithm 10 times, yielding a total of 1,000 runs for each problem. The num-
ber of failures in detecting the minimizer is reported in Table 2. The nature of the
results remains the same if we consider a grid of equally spaced starting points in
� = [−1, 1] × [−1, 1].

The numerical results support the theoretical analysis developed in the previous sec-
tions. Failures in locating the minimizer occur only when at least one of the assump-
tions required for establishing convergence is violated. Note that the failures in f1
when the stopping tolerance is 10−7 are due to the fact that not enough directions
were generated. There is no discrepancy between these results and the theory because
the latter assumes a set of refining directions dense in the unit sphere. In fact, by letting
the algorithm run longer (stopping tolerance of 10−10) these failures disappear while
the ones for f4 do not.

6 Final remarks

In this paper we tried to shed some light on the convergence properties of direct-
search methods (DSM) of directional type for lower semicontinuous functions not
necessarily continuous. We divided our analysis into two main parts. In the first part,
we derive results for refining directions with respect to which the function is direc-
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tionally Lipschitz (but not necessarily continuous) at the limit point of the underly-
ing refining subsequence. These results were derived for the constrained case which
forced us to redo the analysis in [20] for upper subderivatives in the presence of
constraints.

In the second part of the analysis, we considered a class of discontinuous functions
and showed that when the number of branches or steps is two and the function has
some continuity properties in each step, these DSM identify the best local step around
the limit point. The problem in extending this result to more than two local steps or
branches lies on the fact that the speed at which the poll points approach the border of
a step domain can be slower than the speed at which these points approach the iterates.
We were able to prove, by extending continuously the function and taking limits, that
an infinite number of poll points jump out of the step domain. However, they could
only visit a neighbor step and thus one can only infer results when the number of steps
is equal to two.
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and Rui Loja Fernandes (Technical University of Lisbon) for interesting discussions on related topics.
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Appendix

In this section we provide the rigorous definitions of the various generalized directional
derivatives used throughout this paper.

Definition of upper subderivative

The upper subderivative (3) was defined by Rockafellar [20] for the case � = R
n .

To extend it to the constrained case � = R
n , let g(s, y) be an extended-real-valued

function defined on (Rn ×R×[0,+∞))×R
n . Let also s ∈ S ⊂ R

n ×R×[0,+∞).
Define

h(s, y) = lim sup
s′→s
s′∈S

inf
y′→y

y′∈��(p(s′))

g(s′, y′)

as

sup
Y∈N (y)

inf
U∈N (s)

sup
s′∈S∩U

inf
y′∈��(p(s′))∩Y

g(s′, y′),

where N (y) and N (s) denote, respectively, a family of sufficiently small neighbor-
hoods around y and s, p(·) denotes the projection from R

n × R × [0,+∞) onto
R

n × [0,+∞), and
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��(x, t) =
{

t−1 (� − x) if t > 0,

R
n if t = 0.

To define the upper subderivative f ↑(x; v) one proceeds similarly as in [20] and
chooses

g(x ′, α′, t, v′) =
{

f (x ′+tv′)−α′
t if t > 0,

−∞ if t = 0,
(6)

s = (x, f (x), 0), s′ = (x ′, α′, t), y = v, and y′ = v′. In the constrained case, how-
ever, one has now S = epi( f )(�) × [0,+∞), where epi( f )(�) is the epigraph
of f restricted to �. These choices result then in the definition f ↑(x; v) =
h((x, f (x), 0), v). We use the following expression to more easily grasp the essential
of the definition of the upper subderivative f ↑(x; v):

f ↑(x; v) = lim sup
(x ′,α′)↓ f x,x ′∈�

t↓0

inf
v′→v

x ′+tv′∈�

f (x ′ + tv′) − α′

t
.

The notation (x ′, α′) ↓ f x represents (x ′, α′) → (x, f (x)) with α′ ≥ f (x ′).
When f is lower semicontinuous at x , the derivative f ↑(x; v) can be equivalently

defined by

f ↑(x; v) = lim sup
x ′→ f x,x ′∈�

t↓0

inf
v′→v

x ′+tv′∈�

f (x ′ + tv′) − f (x ′)
t

,

where, recall, x ′ → f x represents x ′ → x and f (x ′) → f (x).

A characterization of the epigraph of the upper subderivative

The following proposition extends [20, Proposition 1] to the constrained case � = R
n .

Proposition A.1 For each s′ ∈ S ⊂ R
n × R × [0,+∞), let �(s′) denote the set in

R
n × R which is the epigraph of y → g(s′, y) restricted to ��(p(s′)):

�(s′) = epi(g(s′, ·))(��(p(s′))).

Let also

(s) = lim inf
s′→s
s′∈S

�(s′).

Then (s) is the epigraph of y → h(s, y) restricted to T�(s):

epi(h(s, ·))(T�(s)) = (s).
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Proof From its definition, the point (y, β) is in (s) if and only if

∀Y ∈ N (y),∀ε > 0, ∃U ∈ N (s) : ∀s′ ∈ S ∩ U, ∃(y′, β ′) :
y′ ∈ ��(p(s′)) ∩ Y, β ′ ∈ (β − ε, β + ε), g(s′, y′) ≤ β ′.

which is equivalent to

∀Y ∈ N (y),∀ε > 0, ∃U ∈ N (s) : ∀s′ ∈ S ∩ U, ∃y′ :
y′ ∈ ��(p(s′)) ∩ Y, g(s′, y′) ≤ β + ε.

Thus, (y, β) is in (s) if and only if y ∈ T�(s) and

∀Y ∈ N (y),∀ε > 0, ∃U ∈ N (s) : sup
s′∈S∩U

inf
y′∈��(p(s′))∩Y

g(s′, y′) ≤ β + ε.

This last condition is the same as saying that h(s, y) ≤ β. ��

Note that the epigraph of y → g(s′, y) restricted to ��(p(s′)) in the case (6)
considered for the upper subderivatives is:

�(x ′, α′, t) =
{

t−1
(
epi( f )(�) − (x ′, α′)

)
if t > 0,

R
n × R if t = 0.

Thus, from Proposition A.1,

lim inf
(x ′,α′)↓ f x,x ′∈�

t↓0

�(x ′, α′, t) = epi( f ↑(x; ·))(T�(x)).

On the other hand, from the definition of tangent cone

lim inf
(x ′,α′)↓ f x,x ′∈�

t↓0

�(x ′, α′, t) = Tepi( f )(�)(x, f (x)).

Thus,

epi( f ↑(x; ·))(T�(x)) = Tepi( f )(�)(x, f (x)). (7)

The relation (7) extends, to the constrained case, the part of [20, Theorem 2] which
we need for what comes in Theorem A.2 below.
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Definitions of other generalized directional derivatives

To define the generalized directional derivative f ◦
R(x; v) introduced in (4), in the

constrained case, one first considers

h(s, y) = lim sup
s′→s

s′∈S:y∈��(p(s′))

g(s′, y)

as

inf
U∈N (s)

sup
s′∈S∩U :y∈��(p(s′))

g(s′, y).

The derivative is then defined as f ◦
R(x; v) = h((x, f (x), 0), v) by setting g as in

(6), s = (x, f (x), 0), s′ = (x ′, α′, t), and y = v and, given the constrained case,
S = epi( f )(�) × [0,+∞). We will also use a more friendly description for this
definition:

f ◦
R(x; v) = lim sup

(x ′,α′)↓ f x,x ′∈�

t↓0,x ′+tv ∈�

f (x ′ + tv) − α′

t
.

When f is lower semicontinuous at x , the derivative f ◦
R(x; v) can be equivalently

defined by

f ◦
R(x; v) = lim sup

x ′→ f x,x ′∈�

t↓0,x ′+tv ∈�

f (x ′ + tv) − f (x ′)
t

.

Finally, if f is Lipschitz continuous near x , this derivative coincides with the Clarke-
Jahn generalized directional derivative (2):

f ◦
R(x; v) = f ◦

C (x; v) = lim sup
x ′→x,x ′∈�

t↓0,x ′+tv ∈�

f (x ′ + tv) − f (x ′)
t

.

A characterization for the upper subderivatives

We reproduce below, in the space R
m , the result in [8, Theorem 2.4.8] (originally

proved in [20, Corollary 2, p. 268]). Recall, from Definition 3.1, the notion of a
vector hypertangent to a set at a point of the set.

Proposition A.2 Let C ⊂ R
m and y ∈ C. Suppose there is at least one w ∈ HC (y).

Then, TC (y) = cl(HC (y)).

Theorem A.1 The function f is directionally Lipschitz at x with respect to v ∈ H�(x)

if and only if, for some β ∈ R, (v, β) ∈ Hepi( f )(�)(x, f (x)).
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Proof The proof follows the one in [8, Proposition 2.9.3]. Among other changes one
has to replace epi f by epi( f )(�), the epigraph of f restricted to �.

First we assume that (v, β) ∈ Hepi( f )(�)(x, f (x)). From the definition of hyper-
tangency, there exists an ε > 0 such that

x ′ + tv′ ∈ � for all x ′ ∈ � ∩ B(x; ε), v′ ∈ B(v; ε), and t ∈ (0, ε)

and

α + tβ ′ ≥ f (x ′ + tv′)

for all α ≥ f (x ′), α ∈ ( f (x) − ε, f (x) + ε), β ′ ∈ (β − ε, β + ε), and, again,
t ∈ (0, ε). From the latter condition we immediately infer that f +(x; v) is bounded
by β + ε and thus finite.

Now let us prove the other implication and assume that the function f is direc-
tionally Lipschitz at x with respect to v ∈ H�(x). Let β be any number such that
β − ε′ ≥ f +(x; v) for some ε′ > 0. Then, there exists ε ∈ (0, ε′) such that, for
all x ′ ∈ � ∩ B(x; ε), v′ ∈ B(v; ε), α ≥ f (x ′), α ∈ ( f (x) − ε, f (x) + ε), β ′ ∈
(β − ε, β + ε), and t ∈ (0, ε), one has (note that β − ε′ < β − ε < β ′)

x ′ + tv′ ∈ �,
f (x ′ + tv′) − α

t
≤ β ′,

which proves that (v, β) ∈ Hepi( f )(�)(x, f (x)). ��
Let us recall that, following the notation in [8, Sect. 2.9], D f,�(x) denotes the set

of vectors in H�(x) with respect to which f is directionally Lipschitz. Finally, we
prove the results needed for Theorems 3.1 and 3.2.

Theorem A.2 Let f be an extended-real-valued function and x a point in � with
f (x) < +∞. Suppose D f,�(x) = ∅. Then,

D f,�(x) = int
({

w ∈ H�(x) : f ↑(x;w) < +∞
})

(8)

and f ↑(x; ·) is continuous and coincides with f +(x; ·) and f ◦
R(x; ·) in D f,�(x).

Furthermore, if v ∈ T�(x) and f ↑(x; v) < +∞, then

f ↑(x; v) = lim inf
w→v

w∈D f,�(x)

f +(x;w) = lim inf
w→v

w∈D f,�(x)

f ◦
R(x;w). (9)

Proof Part of the proof follows the lines of [8, Theorem 2.9.5]. Again, one has to
replace epi f by epi( f )(�), among other quantities.

From the assumptions of the theorem and from Theorem A.1, one knows
that Hepi( f )(�)(x, f (x)) = ∅. We also know that D f,�(x) is the projection of
Hepi( f )(�)(x, f (x)) on the set of directions R

n , i.e.,

D f,�(x) = PRn [Hepi( f )(�)(x, f (x))].
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Thus, let us apply Proposition A.2 with C = epi( f )(�) and y = (x, f (x)). As a
result, we can say that

D f,�(x) = PRn [int(Tepi( f )(�)(x, f (x)))].

Let us assume first that w is in PRn [int(Tepi( f )(�)(x, f (x)))], which implies the
existence of a β ∈ R such that (w, β) ∈ int(Tepi( f )(�)(x, f (x))). From (7), (w, β) ∈
int(epi( f ↑(x; ·))(T�(x))), from which we can infer that f ↑(x;w′) < +∞ for w′ ∈
H�(x) sufficiently close to w. We have thus proved that w ∈ int{w ∈ H�(x) :
f ↑(x; v) < +∞}.

Now let us assume that w is in int{w ∈ H�(x) : f ↑(x;w) < +∞}. This means
that there exists an ε > 0 and a β ∈ R such that for all w′ ∈ B(w; ε) ∩ H�(x)

one has f ↑(x;w′) < β − ε. Thus, for all such w′ ∈ B(w; ε) ∩ H�(x) and
β ′ ∈ (β − ε, β + ε), one has (w′, β ′) ∈ epi( f ↑(x; ·))(T�(x)). As a result,
(w, β) ∈ int(epi( f ↑(x; ·))(T�(x))) = int(Tepi( f )(�)(x, f (x))).

At this point of the proof, we have proved (8). Now, a convex function defined on a
convex set, such as f ↑(x; ·) defined on H�(x), is always continuous in the interior of
{w ∈ H�(x) : f ↑(x;w) < +∞} as long as it is bounded above in a neighborhood of
one point (for such a result see, e.g., [19, Theorem 10.1]). However, this is precisely
the case because D f,� = ∅.

Now we will show that f ↑(x; ·) = f +(x; ·) = f ◦
R(x; ·) in D f,�(x). This fact

results from the following expressions for w ∈ D f,�(x):

f +(x;w) = inf
{
β : (w, β) ∈ Hepi( f )(�)(x, f (x))

}
,

which is a corollary of Theorem A.1, and

f ↑(x;w) = inf
{
β : (w, β) ∈ Tepi( f )(�)(x, f (x))

}
,

which in turn comes from (7) and the fact that f ↑(x;w) < +∞ in D f,�(x).
Since, again, int(Tepi( f )(�)(x, f (x))) = Hepi( f )(�)(x, f (x)), we obtain f ↑(x; ·) =
f +(x; ·) in D f,�(x). It results then trivially that f ↑(x; ·) = f +(x; ·) = f ◦

R(x; ·) in
D f,�(x).

Finally, (9) is also a consequence of the above expression for f +(x; ·) in D f,�(x)

as well as

f ↑(x; v) = inf
{
β : (v, β) ∈ Tepi( f )(�)(x, f (x))

}
,

for the vector v ∈ T�(x) of the statement of theorem (which in turn holds from (7)
and the fact that f ↑(x; v) < +∞). To prove it, let us define

r(x; v) = lim inf
w→v

w∈D f,�(x)

f +(x;w).

First we will show that f ↑(x; v) ≤ r(x; v). For each w ∈ D f,�(x) sufficiently close
to v, consider βε

w such that (βε
w,w) ∈ Hepi( f )(�)(x, f (x)) and | f +(x;w)−βε

w| goes
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to zero with ε → 0. Let βv denote the limit of βε
w when ε → 0 and w → v. Since

(βv, v) ∈ Tepi( f )(�)(x, f (x)), one has

f ↑(x; v) ≤ βv ≤ (βv − βε
w) + (βε

w − f +(x;w)) + f +(x;w).

We arrive at the conclusion f ↑(x; v) ≤ r(x; v) by taking limits in the above
derived inequality. Now let us prove that f ↑(x; v)= r(x; v). Let βδ1 be such that
(βδ1 , v)∈ Tepi( f )(�)(x, f (x)) and | f ↑(x; v) − βδ1 | goes to zero as δ1 → 0. Since
Hepi( f )(�)(x, f (x)) is dense in Tepi( f )(�)(x, f (x)), there exists (βδ1,δ2 , vδ2) ∈
Hepi( f )(�)(x, f (x)) such that ‖(βδ1,δ2 , vδ2) − (βδ1, v)‖ goes to zero when δ2 → 0.
Thus,

f +(x; vδ2) ≤ βδ1,δ2 = (βδ1,δ2 − βδ1) + (βδ1 − f ↑(x; v)) + f ↑(x; v),

which shows that f +(x; vδ2) can get arbitrarily close to f ↑(x; v). The proof is con-
cluded since f +(x; ·) and f ◦

R(x; ·) coincide in D f,�(x). ��
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