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Abstract In this paper we study optimization problems with second-order stochastic
dominance constraints. This class of problems allows for the modeling of optimiza-
tion problems where a risk-averse decision maker wants to ensure that the solution
produced by the model dominates certain benchmarks. Here we deal with the case
of multi-variate stochastic dominance under general distributions and nonlinear func-
tions. We introduce the concept of C-dominance, which generalizes some notions of
multi-variate dominance found in the literature. We apply the Sample Average Approx-
imation (SAA) method to this problem, which results in a semi-infinite program, and
study asymptotic convergence of optimal values and optimal solutions, as well as
the rate of convergence of the feasibility set of the resulting semi-infinite program as
the sample size goes to infinity. We develop a finitely convergent method to find an
ε-optimal solution of the SAA problem. An important aspect of our contribution is
the construction of practical statistical lower and upper bounds for the true optimal
objective value. We also show that the bounds are asymptotically tight as the sample
size goes to infinity.
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1 Introduction

Stochastic dominance is used to compare the distributions of two random variables
(e.g., see [19,26]), thus providing a way to measure risk. The concept of stochas-
tic dominance is also related to utility theory [30], which hypothesizes that for each
rational decision maker there exists a utility function u such that the (random) outcome
X is preferred to the (random) outcome Y if E[u(X)] ≥ E[u(Y )]. Often the decision
maker’s utility function is not known; in such cases one would say that X is preferred
to Y if E[u(X)] ≥ E[u(Y )] for all u belonging to a certain set of functions. If we have
more information on the decision maker then we can restrict the set from which u is
taken. In our case, we consider the situation where the decision maker is risk-averse;
thus, X is preferred to Y if E[u(X)] ≥ E[u(Y )] for all nondecreasing and concave
utility functions u. When X and Y are unidimensional random variables, such notion
is called second order stochastic dominance in the literature and is written X �(2) Y .
This is the notion of dominance we deal with in this paper.

Dentcheva and Ruszczyński [4,5] first introduced optimization problems with sto-
chastic dominance constraints. This is an attractive approach for managing risks in an
optimization setting. While pursuing expected profits, one avoids high risks by choos-
ing options that are preferable to a random benchmark. Recently, optimization models
using stochastic dominance have increasingly been the subject of theoretical consid-
erations and practical applications in areas such as finance, energy and transportation
[6,8–10,15,17,21,25].

Much of the work on optimization with stochastic dominance has focused on the
case where the underlying random quantities being compared are unidimensional.
This is in great part due to the fact that, in that situation, it is well known that testing
whether E[u(X)] ≥ E[u(Y )] for all nondecreasing and concave utility functions u
is equivalent to testing whether E[(η − X)+] ≤ E[(η − Y )+] for all η ∈ R (where
(a)+ := max{a, 0}), a property that greatly simplifies the analysis and allows for the
development of algorithms. In a recent paper, Dentcheva and Ruszczyński [7] study a
random vector space where stochastic dominance is defined using a concept of positive
linear second order. For two random vectors in Lm

1 (Lm
1 is the space of integrable map-

pings from the underlying probability space to R
m), X is said to dominate Y in positive

linear second order, written X �Plin
(2) Y , if1

vT X �(2) v
T Y for all v ∈ R

m+.

1 Dentcheva and Ruszczyński [7] define this notion as linear second order stochastic dominance; the con-
cept is also related to the definition of positive linear convex order found in the literature, see for instance
[19].
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Homem-de-Mello and Mehrotra [12] further expand the definition of positive linear
second order dominance to polyhedral second order dominance, written X �

(P) Y
and called P-dominance in short, as

vT X �(2) v
T Y for all v ∈ P,

where P ⊆ R
m+ is a polyhedron. Obviously, we have that X �

(P) Y ≡ X �Plin
(2) Y

when P = R
m+.

A more general definition of stochastic dominance over random vectors is a natural
extension of the concept of P-dominance:

Definition 1.1 Given a non-empty convex set C ⊆ R
m+, a random vector X ∈ Lm

1
dominates Y ∈ Lm

1 in linear convex second order (written X �
(C) Y and called C-dom-

inance in short) with respect to C if

vT X �(2) v
T Y for all v ∈ C. (1.1)

The three definitions of random-vector stochastic dominance presented above
impose (unidimensional) second order dominance between certain weighted com-
binations of components of the two random vectors. One can think of such weights
as a way to combine multiple criteria involved in a decision process. In many deci-
sion situations, however, it is difficult to specify exactly what the appropriate weights
are, as the weights typically represent some subjective evaluation of the importance
of each criteria. A robust optimization approach to the problem is to impose that
the preference hold over a set of weights. For example, we can allow decision mak-
ers to suggest different weights, and then use the convex hull of those points for
P-dominance.

The specification of the set P as a convex hull of given weights is practical when
the number of suggested weights is relatively small. However, such an approach may
not be effective when the number of weights is large. This is the case, for example,
in problems where the weights are obtained by questionnaire surveys (see [1,23] for
examples of such problems in ecological and project management). The reasons for
that are two-fold: first, some outliers are overemphasized in the construction of the con-
vex hull, which is not desirable. Second, a great number of intermediate variables will
be introduced in the formulation of the convex hull. To see that, let v1, . . . , vq ∈ R

m+ be
q weights recommended by a survey. One approach to formulate the convex hull is to
write {v ∈ R

m : v = [v1, . . . , vq ]λ, ‖λ‖1 = 1, λ ≥ 0} and treat λ as a q-dimensional
decision vector. Clearly, if q is a large number this increases significantly the size of
the program in comparison with the original dimension m.

One way to overcome the issue of a large number of weights is to view v1, . . . , vq

as independent and identically distributed samples from an unknown distribution of
weights. Then, we can use a multivariate statistical method to build a 100(1 − α)%
confident region {v ∈ R

m+ : q(v − v̄)T S−1(v − v̄) ≤ χ2
α,m} for the expected weight,

where v̄ is the mean of v1, . . . , vq , S is the covariance matrix of those vectors and
χ2
α,m is the (1 − α)% critical value of the chi-square distribution with m degrees of

freedom [32]. Note that such an approach addresses the issue of outliers and does not
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increase the dimensionality of the problem. In such cases it is necessary to apply the
concept of C-dominance in Definition 1.1, using the ellipsoid corresponding to the
confidence region as the set C.

We now introduce a characterization from Homem-de-Mello and Mehrotra [12]
which will be convenient for our analysis.

Proposition 1.1 Let C ⊆ R
m+ be a convex set. Then (1.1) holds if and only if vT X �(2)

vT Y for all v ∈ ˜C := cl(cone(C)) ∩ �, where cl denotes the closure of a set, cone
denotes the conical hull, and � := {v ∈ R

m+ : ‖v‖1 ≤ 1}.

Using this concept, we build an optimization model with stochastic dominance
constraints as follows:

min f (z) (SD)

s.t. H(z, X) �
(˜C) Y, (1.2)

z ∈ Z .

where Z ⊆ R
n represents a deterministic feasible region, f : R

n → R represents the
objective to be minimized. We denote by � ⊆ R

d+m the support of the probability
distribution of joint random vector (X,Y ). Further, let �X be the projection of � on
the space R

d for random vector X and �Y be the projection of � on the space R
m for

random vector Y . The function H : R
n × �X → R

m is a given constraint mapping.
We also assume that H(z, X) ∈ Lm

1 for all z ∈ Z . Using the properties of second order
dominance and the definition of C-dominance, we translate (1.2) into the equivalent
representation

E[(η − vT H(z, X))+] ≤ E[(η − vT Y )+] for all (η, v) ∈ R × ˜C. (1.3)

For some of the results in the paper we shall need the following assumption:

(A0) The random vector Y has bounded support (i.e., the set �Y is bounded).

From the compactness of ˜C and boundedness of �Y , it follows that vT Y is uniformly
bounded for all v ∈ ˜C. In other words, there exists a closed interval A ⊂ R such that
vT Y ∈ A for all v ∈ ˜C a.e.. The proposition below shows that, in such case, it is not
necessary to check inequality (1.3) for all η ∈ R.

Proposition 1.2 Suppose that Assumption (A0) holds, and let A = [a, b] be an inter-
val such that vT Y ∈ A for all v ∈ ˜C a.e.. Then, (1.3) is equivalent to

E[(η − vT H(z, X))+] ≤ E[(η − vT Y )+] for all (η, v) ∈ A × ˜C. (1.4)

Proof If (1.3) holds, trivially (1.4) must be satisfied. Suppose now that (1.4) holds for
some z ∈ Z . Since E[(a − vT H(z, X))+] ≤ E[(a − vT Y )+] = 0, z ∈ Z satisfies
vT H(z, X))+ ≥ a for all v ∈ ˜C a.e. and thus E[(η − vT H(z, X))+] = 0 for all
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η ≤ a. On the other hand, we have that E[(b − vT H(z, X))+] ≤ E[(b − vT Y )+] =
E[b − vT Y ]. Therefore, for any η ≥ b we have

E[(η−vT H(z, X))+] ≤ E[η − b+(b−vT H(z, X))+] ≤ E[η − b+(b−vT Y )+]
= E[(η − vT Y )+].

Altogether, we can conclude that (1.3) holds if and only if (1.4) does. ��
We can see that problem (SD) can be formulated as a stochastic program with

uncountably many expected-value constraints. Dentcheva and Ruszczyński [7] study
models of the form (SD) where the constraints correspond to the notion of positive
second order linear dominance. Many useful theoretical results are derived, but no
algorithms are proposed. Homem-de-Mello and Mehrotra [12] investigate the case of
P-dominance constraints for a linear function, H(z, X) = Xz, where X is a m × n
random coefficient matrix with finite support. A key result in that paper is the proof
that the set of constraints in (1.3) can be represented by finitely many deterministic
linear inequalities, i.e., the feasible set is a polyhedron. Using that property, the authors
develop a cutting surface algorithm where the constraints are generated one at a time.
That approach, however, assumes that one can enumerate all possible scenarios of the
problem and therefore evaluate expectations exactly.

In the literature, stochastic programming problems with a finite number of expected-
value constraints have been widely investigated [2,22,29,31]. These papers demon-
strate the difficulty in evaluating exactly an expected-value constraint, which results
from the need to compute the mean of a random function by multi-dimensional inte-
gration. One way to circumvent the problem is to use the Sample Average Approx-
imation (SAA) method (see e.g. [16] and references therein) which substitutes the
mean with the average of Monte Carlo samples to formulate an approximation
of the original program. Vogel [29] and Shapiro [27] study in detail the stability
and consistency of the SAA optimal value and solutions. Under some mild con-
ditions, Wang and Ahmed [31] prove that the feasible region of the approxima-
tion model converges exponentially fast to true counterpart in probability as the
sample size N increases. With a suitable sample size, good approximations can be
obtained for the true optimal solution and objective value with high confidence.
However, in our case the sample approximation of (1.3) is a semi-infinite program,
so solving the problem—both theoretically and algorithmically—requires additional
results.

In this paper, we study an approach to solve (SD) based on the SAA method. First,
we show the asymptotic convergence of the approach by adjusting the right-hand-side
of (1.3) with ±ε. The resulting restriction or relaxation of the original feasible region
provides a convenient way to probabilistically measure the quality of the approx-
imation. As in the case of finitely many expected value constraints [31], by using
large deviations analysis we show that the probability that the feasible region of the
semi-infinite SAA problem is close to the original feasible region converges to one
exponentially fast with the sample size. Next, we consider how to solve the SAA prob-
lem with infinitely many constraints. In the case of P-dominance requirement, we can
adapt the cutting surface algorithm in [12] that terminates after generating a finite

123



176 J. Hu et al.

number of cuts, although we need to overcome certain technical difficulties arising
due to the fact that in a cutting surface method the expected value constraints are not
available in an explicit formulation. We extend this algorithm to solve general mod-
els with C-dominance constraints using an outer approximation approach. Finally, we
propose and analyze methods for computing statistical bounds for the optimal value
of the original problem. Such bounds are crucial for a practical use of the algorithm,
as they provide concrete optimality gaps that can be used to determine whether the
sample size is large enough. In related work we present computational results for
the algorithms and methods developed in this paper for a homeland security problem
[14].

2 Notions, assumptions and basic propositions

We start by introducing a reformulation of the problem and some notions and assump-
tions that will be used in the sequel. As in [4], to overcome some technical difficulties
associated with the dominance constraint (more specifically, satisfaction of the Slater
condition assumed later in the paper), we consider a relaxed version of (1.3). In [4]
such a relaxation is imposed by restricting the set of η’s in (1.3) to a specific set satis-
fying a certain assumption; in our case, we relax that inequality by a constant ι > 0.
The optimization model is changed to

min f (z) (RSD)

s.t. E[(η − vT H(z, X))+ − (η − vT Y )+] ≤ ι for all (η, v) ∈ A × ˜C (2.1)

z ∈ Z ,

where A is a compact interval. As shown in Proposition 1.2, when Assumption (A0)
holds there is no loss of generality in restricting η to an interval A that covers the
support of vT Y for all v ∈ ˜C. Still, the results in this section and the next are valid for
an arbitrary compact interval A and do not require boundedness of Y .

We write the expected-value function in (2.1) as

g(z, η, v) := E[G(z, η, v, X,Y )]

where the integrand is

G(z, η, v, X,Y ) := (η − vT H(z, X))+ − (η − vT Y )+ − ι.

We use Monte Carlo sampling to generate N sample pairs {(X1,Y 1), (X2,Y 2), . . . ,

(X N ,Y N )}. The sample average function is denoted as

gN (z, η, v) := 1

N

N
∑

j=1

G(z, η, v, X j ,Y j ). (2.2)

123



Sample average approximation of stochastic dominance constrained programs 177

The sample average approximation of (RSD) is then stated as

min f (z) (SASD)

s.t. gN (z, η, v) ≤ 0, (η, v) ∈ A × ˜C (2.3)

z ∈ Z .

In order to analyze the convergence of problem (SASD) to its true counterpart, it will
be convenient to consider perturbed versions of (2.1) and (2.3). For a given ε ∈ R, we
define the following ε-approximation of the feasible regions of (RSD) and (SASD):

Sε := {z ∈ Z : g(z, η, v) ≤ ε, (η, v) ∈ A × ˜C}, (2.4)

SεN := {z ∈ Z : gN (z, η, v) ≤ ε, (η, v) ∈ A × ˜C}. (2.5)

Note that S0 and S0
N are the feasible regions of (RSD) and (SASD) respectively. Let

θε := min
z∈Sε

f (z), (ε-RSD)

θεN := min
z∈SεN

f (z) (ε-SASD)

be the optimal values of (ε-RSD) and (ε-SASD) respectively. Let ϒε and ϒεN be the
sets of optimal solutions of (ε-RSD) and (ε-SASD) respectively. In addition, define

�(z, X,Y ) := ‖H(z, X)‖ + ‖Y‖ + ι, (2.6)

and its expected value and sample average approximation as

φ(z) := E[�(z, X,Y )], (2.7)

φN (z) := 1

N

N
∑

j=1

�(z, X j ,Y j ). (2.8)

Note that ‖.‖ defaults to the standard Euclidean norm in this paper unless otherwise
specified. As we shall see later, the function�(·) plays an important role in the analy-
sis, since for all given (z, X,Y ) ∈ Z ×�,�(z, X,Y ) dominates G(z, η, v, X,Y ) for
any (η, v) ∈ A × ˜C. Thus, we can identify some good behavior of G(·) by verifying
the behavior of �(·).

Define the diameter of a nonempty compact set K as

D(K ) := max
y,y′∈K

‖y − y′‖, (2.9)

and the distance between a point x and K as

d(x, K ) :=
{

inf y∈K ‖x − y‖ if K is nonempty,
∞ o.w.

(2.10)
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The following assumptions are made:

(A1) Z ⊂ R
n is a nonempty compact set.

(A2) H(·, X) is Lipschitz continuous on Z a.e. with respect to X , i.e., there exists a
function� : �X → R+ such that ‖H(z1, X)− H(z2, X)‖ ≤ �(X)‖z1 − z2‖
a.e. for all z1, z2 ∈ Z . Assume that�(X) is an integrable random variable, and
define π := E[�(X)].

(A3) For all z ∈ Z , the Moment Generation Function (MGF)2 Mz
�(·) of�(z, X,Y )

is finite in a neighborhood of zero.
(A4) The MGF M�(·) of �(X) is finite in a neighborhood of zero.

Assumptions (A1) and (A2) impose some regularity conditions on the structure of the
problem constraints. Assumptions (A3) and (A4) ensure that the random variables in
the problem are reasonably well behaved, and hold in particular when Y has bounded
support and the partial derivatives of H(z, x) with respect to z have a uniform bound
for all (z, x) ∈ Z ×�X . Assumptions of the form (A1)–(A4), which are required for
the analysis, are common in the literature [28].

We now study some features of the integrand G(·) and its expected value function
g(·), as well as the sample average function gN (·). Under Assumptions (A1)-(A4), the
analysis that follows shows boundedness, continuity and convergence of these func-
tions. The following two basic propositions, which discuss these properties, provide
the foundation for the remaining results in the paper.

Proposition 2.1 (1) For all (η, v) ∈ A × ˜C,G(z, η, v, X,Y )≤�(z, X,Y ) a.e.. If
Assumptions (A1) and (A2) hold, there is an integrable random variable greater
than or equal to �(z, X,Y ) for all z ∈ Z a.e., and hence φ(·) is bounded on Z
and φN (·) is bounded on Z a.e..

(2) G(z, η, v, X,Y ) is Lipschitz continuous in (η, v) ∈ R
m+1 a.e. for all z ∈ Z.

If Assumptions (A1) and (A2) hold, G(z, η, v, X,Y ) is Lipschitz continuous in
Z × A × ˜C a.e..

(3) If Assumption (A3) holds, the MGF of G(z, η, v, X,Y ) is finite in a neighborhood
of zero for all (z, η, v) ∈ Z × A × ˜C.

Proof (1) It is easy to see that

sup
(η,v)∈A×˜C

|G(z, η, v, X,Y )| ≤ sup
(η,v)∈A×˜C

|vT H(z, X)− vT Y − ι|

≤ sup
(η,v)∈A×˜C

‖v‖(‖H(z, X)‖ + ‖Y‖)+ ι

≤ �(z, X,Y ).

Here, the last inequality uses ‖v‖ ≤ 1, which follows from the fact that ‖v‖1 ≤ 1 for
all v ∈ ˜C.

Next, fix z0 ∈ Z . Assumption (A2) implies that, for all z ∈ Z ,

‖H(z, X)‖ ≤ ‖H(z0, X)‖ +�(X)‖z − z0‖ ≤ ‖H(z0, X)‖ +�(X)D(Z).

2 The MGF of a random variable W is defined as M(s) = E[esW ].
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Note that D(Z) is finite by Assumption (A1). Thus,

�(z, X,Y )≤‖H(z0, X)‖+�(X)D(Z)+ ‖Y‖ + ι=�(z0, X,Y )+�(X)D(Z).

(2.11)

The random variable �(z0, X,Y ) is integrable since we have assumed that H(z, X)
is integrable for all z ∈ Z , and also that Y and�(X) are integrable as well. It follows
from (2.11) that, for any z ∈ Z ,

φ(z) ≤ E[�(z0, X,Y )] + E[�(X)]D(Z) < ∞

and similarly for φN (z).
(2) Given z ∈ Z , for any s = (η, v), s′ = (η′, v′) ∈ R

m+1, we have

|G(z, s, X,Y )− G(z, s′, X,Y )| ≤ |G(z, η, v, X,Y )− G(z, η′, v, X,Y )|
+|G(z, η′, v, X,Y )− G(z, η′, v′, X,Y )|.

Further,

|G(z, η, v, X,Y )− G(z, η′, v, X,Y )| ≤ |(η−vT H(z, X))+ − (η′−vT H(z, X))+|
+|(η − vT Y )+ − (η′ − vT Y )+|

≤ 2|η − η′|, (2.12)

and

|G(z, η′, v, X,Y )− G(z, η′, v′, X,Y )| ≤ |(v − v′)T H(z, X)| + |(v − v′)T Y |
≤ ‖v − v′‖�(z, X,Y ). (2.13)

Thus, it follows that

|G(z, s, X,Y )− G(z, s′, X,Y )| ≤ (�(z, X,Y )+ 2)‖s − s′‖. (2.14)

Moveover, for all t = (z, η, v), t ′ = (z′, η′, v′) ∈ Z × A × ˜C, we have

|G(t, X,Y )− G(t ′, X,Y )| ≤ |G(z, s, X,Y )− G(z, s′, X,Y )|
+|G(z, s′, X,Y )− G(z′, s′, X,Y )|

≤ (�(z, X,Y )+2)‖s − s′‖+|vT (H(z, X)−H(z′, X))|
≤ (�(z, X,Y )+�(X)+ 2)‖t − t ′‖. (2.15)

As shown in part (1), under Assumptions (A1) and (A2) �(z, X,Y ) is uniformly
dominated by an integrable random variable for all z ∈ Z a.e..
(3) It follows that

E
[

esG(z,η,v,X,Y )
]

≤ E
[

e|sG(z,η,v,X,Y )|] ≤ E
[

e|s|�(z,X,Y )] ≤ Mz
�(|s|).

123



180 J. Hu et al.

The proof is complete because Mz
�(·) is finite in a neighborhood of zero for all z ∈ Z

by Assumption (A3). ��
Proposition 2.2 Suppose that Assumptions (A1) and (A2) hold. Then,

(1) The function g(·) is bounded and gN (·) is bounded a.e..
(2) The function g(·) is Lipschitz continuous on Z × A × ˜C and gN (·) is Lipschitz

continuous on Z × A × ˜C a.e..
(3) gN (·) converges to g(·) a.e. uniformly on Z × A × ˜C.

Proof (1) Proposition 2.1 (1) implies that |g(z, η, v)| ≤ φ(z) for all (z, η, v) ∈
Z × A × ˜C. Moreover, the same proposition shows that φ(·) is bounded. Simi-
larly, we have that |gN (z, η, v)| ≤ φN (z) and φN (·) is bounded a.e..

(2) Let

� := 2 + max
z∈Z

φ(z) < ∞. (2.16)

From the proof of Proposition 2.1 (2), we know that given any z ∈ Z , we have
|g(z, s)−g(z, s′)| ≤ �‖s − s′‖ for any s, s′ ∈ R

m+1. Analogously, ‖gN (z, s)−
gN (z, s′)‖ ≤ (2+maxz∈Z φN (z))‖s − s′‖. Moreover, that proof also shows that
|g(t)− g(t ′)| ≤ (� + π)‖t − t ′‖ for all t, t ′ ∈ R

m+n+1. Let

πN := 1

N

N
∑

j=1

�(X j ). (2.17)

Then |gN (t) − gN (t ′)| ≤ (2 + πN + maxz∈Z φN (z))‖t − t ′‖ for all t, t ′ ∈
R

m+n+1.
(3) Proposition 2.1 shows that G(z, η, v, X,Y ) is dominated by an integrable func-

tion and is continuous on Z × A × ˜C a.e.. Assumption (A1) ensures the com-
pactness of Z × A × ˜C. Under these conditions, the uniform convergence a.e.
immediately follows Proposition 7 in [27]. ��

3 Rate of convergence analysis of sample average approximation

In this section we discuss the application of the SAA method to (RSD) and study
conditions for convergence. As we shall see below, it is possible to show that (i) the
optimal value and the set of optimal solutions of the SAA problem converge to the
true values, and (ii) the feasible set of the SAA problem becomes arbitrarily close to
the original feasible set with a probability that goes to one exponentially fast with the
sample size.

Based on the distance function (2.10) of a point to a set, we denote the deviation
of set K1 from K2 as

D(K1, K2) :=
{

supy∈K1
d(y, K2) if K1 is nonempty,

0 o.w.
(3.1)
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and the Hausdorff distance between these sets as

H(K1, K2) := max{D(K1, K2), D(K2, K1)}. (3.2)

Let us first discuss the consistency of the estimator θεN of θε , which are respectively
the optimal value of (ε-SASD) and the optimal value of (ε-RSD) for a given ε ∈ R.
Vogel [29] studies the stability of the feasible set of the SAA problem and consis-
tency of the SAA optimal value and solutions for stochastic programming problems
for countably many constraints. We now show that the same conclusions apply to
(ε-SASD) and (ε-RSD), which have uncountably many constraints, in Theorem 3.1
below. Note that the theorem does not make any assumptions about convexity. Let us
first denote

ψ(z) := sup
(η,v)∈A×˜C

g(z, η, v), (DCP)

ψN (z) := sup
(η,v)∈A×˜C

gN (z, η, v). (SDCP)

Thus, we have Sε ≡ {z ∈ Z : ψ(z) ≤ ε} and SεN ≡ {z ∈ Z : ψN (z) ≤ ε}. Lemma 3.1
shows Lipschitz continuity and uniform convergence of ψN (·) and ψ(·).
Lemma 3.1 (1) If Assumption (A2) hold, ψ(·) is Lipschitz continuous on Z and

ψN (·) is Lipschitz continuous on Z a.e..
(2) If Assumptions (A1) and (A2) hold,ψN (·) uniformly converges toψ(·) on Z a.e..

Proof If Assumption (A2) holds, for any z, z′ ∈ Z , we have

|ψ(z)− ψ(z′)| ≤ sup
(η,v)∈A×˜C

|g(z, η, v)− g(z′, η, v)|

≤ E‖H(z, X)− H(z′, X)‖
≤ π‖z − z′‖,

so ψ(·) is Lipschitz continuous on Z . A similar argument shows the Lipschitz conti-
nuity of ψN (·). If Assumptions (A1) and (A2) hold, it follows from Proposition 2.2
(3) that ψN (·) converges uniformly to ψ(·) on Z a.e.. ��
Theorem 3.1 Suppose Assumptions (A1) and (A2) hold. Fix ε ∈ R and suppose also
that D(Sε, Sε−γ ) → 0 as γ ↓ 0. Then,

(1) H(SεN , Sε) → 0 a.e as N → ∞;
(2) If the objective function f (·) is continuous in a neighborhood of Sε , then θεN →

θε and D(ϒεN , ϒ
ε) → 0 as N → ∞ a.e..

Proof 1. Lemma 3.1 (1) shows the continuity of ψ(·) and ψN (·) a.e. on Z . By
Lemma 3.1 (2), we know that ψN (·) converges uniformly to ψ(·) on Z a.e.. It
follows from Proposition 7.15 in [24] that ψN (·) both epi-converges and hypo-
converges to ψN (·) on Z a.e.. By Theorem 3.1 in [29], we have that SεN is upper
semiconvergent to Sε a.e.. Obviously, D(SεN , Sε) → 0 as N → ∞ a.e..
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We now show that D(Sε, SεN ) → 0 a.e.. Denote (Sε)o := {z ∈ Z : ψ(z) < ε}. It is
trivial to prove that D(Sε, Sε−γ ) → 0 a.e. as γ ↓ 0 if and only if Sε ⊆ cl((Sε)o).
It follows from Theorem 3.5 in [29] that SεN is lower semiconvergent to Sε a.e..
Thus D(Sε, SεN , ) → 0 as N → ∞ a.e..

2. Suppose that Sε is a nonempty set. ϒε is also nonempty because of the continuity
of f (·). Since ‖H(SεN , Sε)‖ → 0. a.e., it follows that SεN is semiconvergent to Sε

a.e. By Theorem 4.1 in [29], we have that θεN → θε a.e. and D(ϒεN , ϒ
ε) → 0 a.e.

as N → ∞.
If Sε is empty, SεN must be empty for large enough N a.e.. Otherwise, D(SεN , Sε) =
∞ for all N ≥ 1 a.e. so that limN→∞ D(SεN , Sε) = ∞ a.e., which contradicts the
conclusion from part (1). Therefore, ϒε and ϒεN are empty as well and thus both
θε and the limit of θεN are ∞. ��

The condition D(Sε, Sε−γ ) → 0 as γ ↓ 0 ensures the stability of (ε-RSD). An arbi-
trary small perturbation of the function g(·) cannot result in a big change in the optimal
solutions. Consider the case, for example, where ε = −ι, Z = R, H(z, X) = −z2

and Y is a Bernoulli random variable which takes values ±1 with probability 1/2, so
we can take A = [−1, 1]. Thus, g(z, η) = (η+ z2)+ − 1/2[(η− 1)+ + (η+ 1)+]− ι.
It is easily verified that S−ι = {z ∈ R : z2 ≤ 0} = {0}. Then, S−ι−γ is empty for all
γ > 0 so that D(S−ι, S−ι−γ ) → ∞. Suppose that we sample 2k + 1 (k ∈ N) points
consisting of k (−1)’s and k + 1 (1)’s. Clearly, S−ι

N = {z ∈ R : z2 ≤ −1/(2k + 1)} is
empty under the perturbation.

Proposition 3.1 below shows that the condition D(Sε, Sε−γ ) → 0 is automatically
satisfied when (ε-RSD) is a convex problem and the Slater condition holds.

Proposition 3.1 Suppose that (i) Z is convex, (ii) for all (η, v) ∈ A×˜C the integrand
G(·, η, v, X,Y ) is convex a.e. with respect to (X,Y ), and (iii) the Slater condition
holds for (ε-RSD). Then D(Sε, Sε−γ ) → 0 as γ ↓ 0.

Proof Assumption (iii) ensures that (Sε)o is non-empty; the convexity property in
assumptions (i)–(ii) guarantees that Sε ⊆ cl((Sε)o). ��

Theorem 3.1 shows that the feasible set of (ε-SASD) approaches that of (ε-RSD)
as the sample size goes to infinity. Next, for ε > 0, let us consider

P(S−ε ⊆ S0
N ⊆ Sε). (3.3)

Wang and Ahmed [31] study the same question as (3.3) for problems with finitely
many expected value constraints. They show that this probability converges to 1 expo-
nentially fast as the sample size N increases. We now extend their theorem to our
setting of infinitely many constraints in Theorem 3.2 below. The proof follows similar
steps to the proof in [31] and is given in Appendix A for completeness.

Theorem 3.2 Suppose (A1)–(A4) hold. Define

σ 2 := max

{

Var[�(X)], max
z∈Z

Var[�(z, X,Y )], max
t∈Z×A×˜C

Var[G(t, X,Y )]
}

.
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Then, given ε > 0, there exists τ ∈ (0, 2ε) such that the following holds for all N ≥ 1:

P(S−ε ⊆ S0
N ⊆ Sε) ≥ 1

−
(

3 + (τ + 4π)n D(Z)n

τ n
+ 2D(Z × A × ˜C)m+n+1

γm+n+1

)

e

(

− Nτ2

12σ2

)

,

where γ := 2ε−τ
4�+4π+5τ . In particular, given β ∈ [0, 1], if

N ≥ 12σ 2

τ 2 log

[

1

β

(

3 + (τ + 4π)n D(Z)n

τ n
+ 2D(Z × A × ˜C)m+n+1

γm+n+1

)]

,

then P(S−ε ⊆ S0
N ⊆ Sε) ≥ 1 − β.

Theorem 3.2 shows the exponential convergence (in probability) of feasible regions
of (SASD) to that of the true problem. This provides a theoretical foundation to control
the probability of constraint violation by properly choosing N . Alternatively, N can
be determined by fixing a probability β.

4 Reformulation of sample average approximation

Problem (SASD) has infinitely many constraints (2.3), defined on the uncountable
set A × ˜C. Similarly to the proof of Theorem 3.2, we can shrink A × ˜C to a finite
subset K with D(A × ˜C, K ) ≤ γ . For a given ε > 0, we could in principle use the
set {z ∈ Z : gN (z, η, v) ≤ ε (η, v) ∈ K } to approximately represent SεN . However,
this is impractical since the subset K is hard to build. Hence it is necessary to work
out an efficient way to find a particular finite support of A × ˜C to reformulate the
constraints. In what follows we describe such an approach. Throughout this section
and the next, the samples (X j ,Y j ), j = 1, . . . , N are fixed, so the results refer to the
corresponding sample path. We also assume that Assumption (A0) holds and that the
set A is defined as in Proposition 1.2.

Proposition 4.1 For all ε ∈ R, we can rewrite the set SεN as

SεN = {z ∈ Z : gN (z, v
T Y i , v) ≤ ε, i = 1, . . . , N , v ∈ ˜C}. (4.1)

Proof In fact, given any v ∈ ˜C, we can regard the samples, {vT Y j : j = 1, . . . , N }, as
the equally likely outcomes of a discrete random variable. Then the proof immediately
follows Proposition 3.2 in [4]. ��

Consider now the problems

min
v∈˜C

−gN (ẑ, v
T Y i , v), (SDCPi )
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for i = 1, . . . , N . By Proposition 4.1, we can rewrite (SDCP) as a combination of
(SDCPi ):

ψN (z) = − min
(i,v)∈{1,...,N }×˜C

−gN (ẑ, v
T Y i , v). (4.2)

Let us first consider a special case, (SASD) with the P-dominance constraints, i.e., ˜C is
a polytope. Homem-de-Mello and Mehrotra [12] provide an equivalent representation
of (4.1) with a finite number of v’s. They prove that all the needed v’s are components
of the vertices of certain polyhedra. For reference, we state that result below, adapted
to our context.

Theorem 4.1 Suppose ˜C is a polytope. Let

Pi := {(v, y) ∈ R
m+N : y j ≥ vT (Y i − Y j ), y j ≥ 0,

v ∈ ˜C, j = 1, . . . , N }, i = 1, . . . , N . (4.3)

Then the set SεN in (4.1) satisfies

SεN = {z ∈ Z : gN (z, v
ik T

Y i , vik) ≤ ε, i = 1, . . . , N , k = 1, . . . , νi }, (4.4)

where vik, k = 1, . . . , νi are the v-components of the vertex solutions of Pi .

Theorem 4.1 writes SεN as a set consisting of a finite number of constraints. Recall
that S0

N is the feasible region of (SASD). Then, by replacing (2.3) with (4.4) (for
ε = 0) we obtain the problem

min f (z) (FSASD)

s.t. gN (z, v
ik T

Y i , vik) ≤ 0, i = 1, . . . , N , k = 1, . . . , νi (4.5)

z ∈ Z .

(FSASD) can be reformulated by introducing the intermediate variable r i jk as in [12].

min f (z) (FullNLp)

s.t.
N
∑

j=1

r i jk ≤
N
∑

j=1

(vik T
Y i − vik T

Y j )+ + ι, i = 1, . . . , N , k = 1, . . . , νi

r i jk ≥ (vik T
Y i − vik T

H(z, X j )), i, j = 1, . . . , N , k = 1, . . . , νi (4.6)

r i jk ≥ 0, i, j = 1, . . . , N , k = 1, . . . , νi .

When H(·, X) is a linear function a.e. with respect to X , (FullNLp) is a linearly
constrained program.

(FullNLp) is still impractical when the underlying random vectors are high dimen-
sional since the number of vertices in Pi grows exponentially fast with that dimension.
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Furthermore, it is not clear, in principle, whether (2.3) can be reduced to finitely many
constraints when ˜C is not polyhedral. Homem-de-Mello and Mehrotra [12] suggest
a cut-generation approach which solves a sequence of relaxations of (FSASD), over
a subset of constraints (4.5). Here, we extend that algorithm to the broader class of
C-dominance constrained problems. This is described in the next section.

5 A cut-generation algorithm with sample average approximation

Recall from Proposition 4.1 that the feasible region of (SASD), S0
N written in (4.1),

contains infinitely many constraints because of ˜C. In the cut-generation approach, we
consider (HSASDk), a sequence of relaxed (SASD) over some finite subsets of ˜C.
(HSASDk) are solved by using the formulations given in (FullNLp). At a solution of ẑ
of a relaxed problem we study subproblems (SDCPi ) for i = 1, . . . , N . Given ε > 0,
we choose a δ such that 0 < δ < ε. Then, let σ = ε − δ. If the σ -optimal values3 of
all the (SDCPi ), are bigger than or equal to −δ, we stop and declare ẑ ∈ SεN , i.e., ẑ is a
feasible solution of (ε-SASD) at which the objective value is in [θεN , θ0

N ]. Otherwise,
there exists a σ -optimal solution vσ of (SDCPi ) with an objective value less than −δ.
Using this solution, we generate a valid cut gN (z, vσ

T Y i , vσ ) ≤ 0 for ẑ. Algorithm 1
summarizes the procedure.

Algorithm 1 A Cut-Generation Algorithm for (SASD)
0. Given ε > 0, choose δ ∈ (0, ε). Let σ = ε − δ.

Let k = 0 and choose an arbitrary finite set V0 ⊂ A × ˜C.

1. Find an optimal solution ẑ of

min f (z) (HSASDk)

s.t. gN (z, η, v) ≤ 0, (η, v) ∈ Vk ,

z ∈ Z ,

which can be done by solving (FullNLp).

2. Let Vk+1 = Vk .
For i = 1, . . . , N ,

solve the problems (SDCPi ), let vσi and ψσi be a σ -optimal solution and objective value;

if ψσi < −δ, Vk+1 = Vk+1 ∪ {(vσi T Y i , vσi )}.

3. If Vk+1 �= Vk , let k = k + 1, go to Step 1; otherwise, exit.

Note that step 2 of Algorithm 1 involves solving (SDCPi ), which is a DC program-
ming problem—i.e., it minimizes difference of two convex polyhedral functions over
a closed convex set. As we shall see soon, a σ -optimal solution of (SDCPi ) can be
found in a finite number of steps.

3 A σ -optimal solution is a feasible solution whose objective function value—called a σ -optimal value—is
within σ of the true optimal value.
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We discuss the convergence of Algorithm 1 in Theorem 5.1 below. Let (HSASD)
be the last (HSASDk) after Algorithm 1 terminates.

Theorem 5.1 Suppose that Assumptions (A0) and (A1) hold. Suppose also that there
exist z0 ∈ Z and a constant M > 0 such that ‖H(z0, X)‖ ≤ M a.e.. Then, Algorithm 1
converges after generating a finite number of cuts. Let˜θN be the optimal value of the
main problem (HSASD), upon termination of Algorithm 1. Then θεN ≤ ˜θN ≤ θ0

N .

Proof By Proposition 2.2 (2), we know that gN (z, vT Y i , v) is uniformly Lipschitz
continuous with respect to v for all z ∈ Z and i = 1, . . . , N a.e., so that for any
v, v′ ∈ Rm we have

|gN (z, v
T Y i , v)− gN (z, (v

′)T Y i , v′)|
≤ 2|vT Y i − (v′)T Y i | + ‖v − v′‖φN (z, X,Y ) (from (2.12) and (2.13))

≤ C‖v − v′‖, (5.1)

where

C := max
i∈{1,...,N } 2‖Y i‖ + max

z∈Z
φN (z, X,Y ). (5.2)

Assumption (A0) ensures that Y is bounded. Moreover, by Proposition 2.1,�(z, X,Y )
is uniformly dominated by the random variable�(z0, X,Y ) for all z ∈ Z . Thus, (A0)
and the assumption that ‖H(z0, X)‖ is bounded together imply that �(z0, X,Y ) is
bounded and hence so is C , i.e., there exists a constant c > 0 such that C ≤ c a.e..

In the worst case, each iteration of Algorithm 1 generates N cuts by (SDCPi ) for
all i = 1, . . . , N . It suffices to prove that each (SDCPi ) generates a finite number of
cuts. Without loss of generality, we assume that a new (η, v), where η = vT Y i , is
added into Vk by (SDCPi ) in each iteration. Let Vk−1 = {(η0, v0), . . . , (ηk−1, vk−1)}.
For each v j , we denote its neighborhood as N (v j ) := {

v ∈ ˜C : ‖v − v j‖ ≤ δ/c
}

.
If Algorithm 1 fails to stop at iteration k, we get a σ -optimal solution vk of
(SDCPi ) at which the objective function value is less than −δ. We claim that
vk /∈ ⋃

j=0,...,k−1 N (v j ). Suppose by contradiction that vk ∈ ⋃

j=0,...,k−1 N (v j ).

Then, there exists some v j , j ∈ {0, . . . , k − 1}, such that ‖vk − v j‖ ≤ δ/c. It follows
that |gN (ẑ, vk T

Y i , vk)− gN (ẑ, v j T
Y i , v j )| ≤ δ. Since gN (ẑ, v j T

Y i , v j ) ≤ 0, it fol-
lows that gN (ẑ, vk T

Y i , vk) ≤ δ, which contradicts the fact that the objective function
value of (SDCPi ) at vk is less than −δ. Considering each i = 1, . . . , N , Algorithm 1

will generate at most N
⌈

cD(˜C)
δ

⌉m
cuts.

Obviously, ˜θN ≤ θ0
N since the feasible set of (HSASD) contains that of (SASD).

Now, we show that θεN ≤ ˜θN . Letψσi be the σ -optimal value of (SDCPi ). When Algo-
rithm 1 terminates, we have that ψ0

i ≥ ψσi −σ ≥ −δ−σ = −ε for all i = 1, . . . , N .
By Proposition 4.1, the optimal solution ẑ of (HSASD) belongs to SεN . ��

Homem-de-Mello and Mehrotra [12] propose a branch-and-cut algorithm for min-
imizing (SDCPi ). Although the method is designed for a polyhedral feasible region,
we can adapt it to a general convex set. Horst et al. [13] present an outer approximation
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method for a compact convex set. Using their idea, we construct a polytope ˜P
containing ˜C and consider the minimization of (SDCPi ) over ˜P to obtain a optimal
solution v̂. Consider a neighborhood of ˜C defined as N

˜C := {v ∈ R
m : d(v, ˜C) ≤ σ/c}.

If v̂ /∈ N
˜C , we cut that point away from ˜P and repeat the procedure. As ˜C is compact,

there exists a unique û ∈ ˜C such that

û = arg min
u∈˜C

‖v̂ − u‖. (5.3)

Thus

(v̂ − û)T (v − û) ≤ 0 (5.4)

is a valid cut for v̂. In case v̂ ∈ N
˜C , (5.1) assures that there exists a feasible solution

of (SDCPi ) whose objective value is within σ of the value of (SDCPi ) at v̂.
In what follows we use an outer approximation method to extend the branch-

and-cut algorithm in [12] in order to minimize polyhedral concave functions over
general convex sets. We first construct an initial outer simplex containing ˜C, ˜P =
{v ∈ R

m+ : ‖v‖1 ≤ 1}.
The branch-and-cut algorithm yields a global optimal solution of (SDCPi ) over ˜P .

If it is not a feasible solution of (SDCPi ) over N
˜C , the cut (5.4) is generated. The

procedure is repeated until a feasible global optimal solution v̂σi of (SDCPi ) over N
˜C

is found. If this solution is infeasible for ˜C, i.e., v̂σi ∈ N
˜C \ ˜C, we project v̂σi onto ˜C,

obtaining

vσi := arg min
u∈˜C

‖v̂σi − u‖. (5.5)

Let ψ̂σi be the σ -optimal value of (SDCPi ) at v̂σi and ψσi be the objective value at vσi .
By construction, we have ‖vσi − v̂σi ‖ ≤ σ/c. It follows from (5.1) that

0 ≤ ψσi − ψ̂σi = gN (ẑ, v
σ
i

T Y i , vσi )− gN (ẑ, v̂σi
T

Y i , v̂σi ) ≤ c‖vσi − v̂σi ‖ ≤ σ.

Then, ψσi is also a σ -optimal value. Note that ψ̂σi ∈ [ψ0
i − σ,ψ0

i ] since it is obtained
over a feasible region that contains ˜C, whereasψσi ∈ [ψ0

i , ψ
0
i +σ ] since it corresponds

to a feasible point in ˜C. The algorithm, called Algorithm 2, is summarized below.
Recall the proof of Theorem 5.1 depends on the finite convergence of Algorithm 2.

We show now that the algorithm stops after finitely many iterations.

Theorem 5.2 Algorithm 2 terminates after a finite number of iterations.

Proof Homem-de-Mello and Mehrotra [12] show that the branch-and-cut algorithm
solving (SDCPi ) over ˜P stops after a finite number of iterations. Furthermore, step 2
makes no effect on the convergence of the branch-and-cut algorithm. Hence, in order
to show that the extension keeps a finite convergence, we only need to discuss step 2.

Now suppose that Algorithm 2 fails to exit from step 2 in finitely many iterations.
It follows that we repeat the iteration from step 1 to 2 and obtain an infinite sequence
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Algorithm 2 A Branch-and-Cut Algorithm for (SDCPi )
0. Construct an initial simplex ˜P ⊇ ˜C.

1. Run the branch-and-cut algorithm in [12] and obtain a global optimal solution v̂ of

min
v∈˜P

−gN (ẑ, v
T Y i , v).

2. Compute û in (5.3). If ‖v̂ − û‖ > σ/c, let

˜P = ˜P ∩ {v ∈ R
m : (v̂ − û)T (v − û) ≤ 0},

and go to Step 1; otherwise, exit with a σ -optimal solution vσi = û.

{vk : k = 1, 2, . . . } ⊂ ˜P , such that vk /∈ N
˜C . Note that ˜P is compact in the initial

construction. From the above discussion on the cuts we see that for any vi , v j in the
sequence with j > i we have v j ∈ ˜P ∩ {v ∈ R

m : (vi − ui )T (v − ui ) ≤ 0}, where
ui is the closest point in ˜C to vi . It follows that ‖vi − v j‖ ≥ ‖vi − ui‖ ≥ σ/c. As
a result, it is impossible to find a Cauchy subsequence in {vk}, which contradicts the
compactness of ˜P . Therefore, Algorithm 2 must exit from step 2 after a finite number
of iterations. ��

6 Lower and upper bounds

The analysis in the previous sections shows that the optimal value and solution of
(SASD) are good approximations of their true counterparts of (RSD) with sufficiently
large N . In this section, we discuss how to build statistical lower and upper bounds
for the true optimal value. First, we use the optimal values of the relaxed and stringent
sample problems (±ε-SASD) for the upper and lower bounds. However, this approach
requires calculations of difficult quantities. Next, we consider a practical lower bound
by constructing a Lagrangian function for the problem. We solve a technical difficulty
that the Lagrangian multiplier of (RSD) is a function on the uncountable set A × ˜C as
(RSD) is a semi-infinite problem. Finally, we propose a practical upper bound. Given
a feasible solution of (−ε-SASD), we statistically test its feasibility to (RSD). If the
solution is satisfied, the corresponding objective value is a reasonable upper bound.
Also, to get a tighter bound, we develop a bisection algorithm.

6.1 Theoretical lower and upper bounds

We generate M independent sample groups, (X1
j ,Y 1

j ), . . . , (X
N
j ,Y N

j ), j = 1, . . . ,M ,
each of which consists of N independent and identically distributed (i.i.d.) sample
pairs. Let SεN ( j) be set (2.5) composed by the j th group of sample pairs. Correspond-
ingly, θεN ( j) is the optimal value of the j th (ε-SASD), obtained from sample pairs of
size N . Recall that θ0 is the optimal value of the true problem (RSD). Given ε > 0, we
have that pl := P(θεN ( j) ≤ θ0) ≥ P(S0 ⊆ SεN ( j)). Under Assumptions (A1)–(A4),
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Theorem 3.2 yields

P(S0 ⊆ SεN ( j)) ≥ pN := 1

−
(

3 + (τ + 4π)n D(Z)n

τ n
+ D(Z × A × ˜C)m+n+1

γm+n+1

)

e

(

− Nτ2

12σ2

)

. (6.1)

Next, we rearrange θεN ( j) in nondecreasing order, so θεN (1) ≤ · · · ≤ θεN (M). For a
positive integer L ≤ M , we use the quantity θεN (L) as a statistical lower bound for θ0,
as done by [20] for chance constrained problems. We have

P(θεN (L) > θ0) =
L−1
∑

j=0

(

M
j

)

(pl) j (1 − pl)M− j

=: b(L − 1; pl ,M)

≤ b(L − 1; pN ,M). (6.2)

The last inequality follows from the fact that P(θεN (L) > θ0) is decreasing in pl .

Similarly, we have that ph := P(θ−ε
N ( j) ≥ θ0) ≥ P(S−ε

N ( j) ⊆ S0). For H ≤ M , it
follows that

P(θ−ε
N (H) < θ0) = b(M − H ; ph,M) ≤ b(M − H ; pN ,M). (6.3)

Hence, we use θ−ε
N (H) as a statistical upper bound. The results are summarized in the

following theorem.

Theorem 6.3 Suppose (A1)–(A4) hold. Given ε > 0, β ∈ (0, 1) and N ≥ 1, we can
choose positive integers M, H, and L in such a way that

b(max{L − 1,M − H}; pN ,M) ≤ β, (6.4)

where pN = 1 −
(

3 + (τ+4π)n D(Z)n

τ n + D(Z×A×˜C)m+n+1

γm+n+1

)

e

(

− Nτ2

12σ2

)

by Theorem 3.2.

Then with probability at least 1−β, the random quantities θεN (L) and θ−ε
N (H) respec-

tively give a lower and upper bound for the optimal value θ0.

Proof We fix L = 1 and H = M . It is easy to see that b(L − 1; pN ,M) = b(M −
H ; pN ,M) = (1 − pN )

M → 0 as M → ∞. Thus, we can always find M, H, and L
such that (6.4) holds.

Note that the complexity of the sample average approximation problem may grow
fast with N . For this reason, we fix N first and then allow the values L , H , and M to
change. To get tighter bounds, a larger L and smaller H should be chosen for a small
M . Obviously, the answer is the largest L and smallest H satisfying (6.4). On the other
hand, if none of L and H satisfying (6.4) exists, we increase M , which makes the left
hand side of (6.4) go to 0 by growing to infinity.
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6.2 Practical lower bound

The quantity pN defined in (6.1) is very difficult to compute. Thus, in general
Theorem 6.3 only gives theoretical bounds. In actual use, we need more efficient
bounds, easily obtained but well approximating the true optimal value. [28] propose
a method to use the Lagrangian of the expected value constrained problem to obtain
the lower bound. Here, we extend the idea to (RSD). As shown in [7], the Lagrangian
of (RSD) is

L(z, μ) := f (z)+
∫

A×˜C
g(z, η, v)dμ, (6.5)

where μ belongs to the space rca(A × ˜C) of a regular countably additive measures on
A × ˜C having finite variation. Given any μ̃ ∈ rca(A × ˜C), we have that

θ0 ≥ inf
z∈Z

L(z, μ̃). (6.6)

It follows that the sample average of (6.6) can be used to construct a statistical lower
bound. The key in such an approach is to determine μ̃ for a tighter lower bound. In
principle, we could use the SAA method with an independent sample group to solve

μ̃ = arg max
μ∈rca(A×˜C)

min
z∈Z

LN (z, μ), (6.7)

where LN (z, μ) := f (z) + ∫A×˜C gN (z, η, v)dμ is the sample average of L(z, μ).
Clearly, (6.7) is a difficult problem to solve. Here, we will discuss a particular but
practical way to choose μ̃ and then show the quality of this approach.

By running Algorithm 1 with an initial i.i.d sample group, (X1
0,Y 1

0 ), . . . , (X
Nl
0 ,

Y Nl
0 ), we obtain a finite set, VNl := {(ηk, vk)} ∈ A × ˜C, to generate the constraints

of the main problem (HSASD). The corresponding optimal Lagrangian multipliers of
that problem are˜λNl (η

k, vk). We can view˜λNl (·) as a measure on A × ˜C with mass
function on VNl since˜λNl (η, v) ≡ 0 for all (η, v) ∈ (A × ˜C) \ VNl .

Clearly,˜λNl ∈ rca(A × ˜C) a.e.. We construct

ϕ0
Nl

:= inf
z∈Z

L0
Nl
(z,˜λNl ), (6.8)

where L0
Nl
(·) is the sample average function of L(·) with the initial group of Nl sam-

ples. Let

ϕ
j
N := inf

z∈Z
L j

N (z,˜λNl ), j = 1, . . . ,M, (6.9)

be formulated by using the measure˜λNl with M independently generated groups of
samples of size N each.
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Proposition 6.1 Let F0 denote the σ -algebra generated by the initial sample
(X1

0,Y 1
0 ), . . . , (X

Nl
0 ,Y Nl

0 ). Then, E[ϕ j
N |F0] ≤ θ0 a.e. for j = 1, . . . ,M.

Proof Since ˜λNl ∈ rca(A × ˜C) a.e., the proof directly follows (6.6) and the fact
that for any ũ ∈ rca(A × ˜C), inf z∈Z L(z, ũ) ≥ E[inf z∈Z LN (z, ũ)]. Therefore, θ0 ≥
inf z∈Z L(z,˜λNl ) ≥ E[ϕ j

N |F0] a.e.. ��
Using Proposition 6.1, we now build a statistical lower bound by substituting the

sample average of ϕ j
N for the conditional expectation E[ϕ j

N |F0]. Using a similar
method to that described in [18], we compute

θNl ,N ,M := 1

M

M
∑

j=1

ϕ
j
N (6.10)

to estimate the lower bound for θ0. The variance of θNl ,N ,M is estimated by

σ 2
Nl ,N ,M := 1

M

⎡

⎣

1

M − 1

M
∑

j=1

(ϕ
j
N − θNl ,N ,M )

2

⎤

⎦ . (6.11)

In general, the random variables ϕ j
N are not normally distributed. However, since the

ϕ
j
N , j = 1, . . . ,M are i.i.d., by taking M sufficiently large we can apply the Central

Limit Theorem. This fact supports that

L Nl ,N ,M = θNl ,N ,M − να σ Nl ,N ,M (6.12)

be used as an approximate 100(1 − α)% confidence lower bound for the conditional
expectation of ϕ j

N (
˜λNl ). In (6.12), να denotes the α-critical value of the normal dis-

tribution.
We now show the convergence of L Nl ,N ,M as Nl , N → ∞. One difficulty is that the

cardinality of VNl may go to infinity. In each iteration, step 2 of Algorithm 1 processes
Nl separation problems (SDCPi ) in parallel. In the worst case, with a same v ∈ ˜C, Nl

new constraints are added in the main problem (HSASDk). As a result, the number of
nonzero˜λNl ’s may go to infinity, which complicates the analysis. We make a modifi-
cation to prevent this case from happening. As illustrated in Fig. 1, the set �Y × ˜C is
divided into cubes of diameter γ ≤ δ

c+2 , where c is a constant bounding the (random)
Lipschitz constant C in (5.2)—we assume here that the conditions of Theorem 5.1
hold. Now in step 2 of Algorithm 1, only one point from each γ -cube is allowed to
construct a new constraint. Given two arbitrary points, (Y 1, v1) and (Y 2, v2), in a
γ -cube, it follows that

|gN (z, v
1T

Y 1, v1)− gN (z, v
2T

Y 2, v2)| ≤ c‖v1 − v2‖ + 2‖Y 1 − Y 2‖
≤ (c + 2)‖(Y 1, v1)− (Y 2, v2)‖
≤ δ.
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Fig. 1 Set �Y × ˜C covered by γ -cubes

Then the condition gN (z, v1T
Y 1, v1) ≤ 0, implies gN (z, v2T

Y 2, v2) ≤ δ, so v2 is

not cut by step 2 of Algorithm 1. By the new policy, |VNl | ≤
⌈

D(�Y ×˜C)
γ

⌉2m
for all

Nl > 0. Furthermore, it is easy to verify that θεNl
≤ ˜θNl ≤ θ0

Nl
in Theorem 5.1 still

holds.
We discuss next the efficiency of the statistical lower bound L Nl ,N ,M as the sample

sizes Nl and N both increase. The following theorem states the limit behavior.

Theorem 6.2 Suppose that (i) Assumptions (A1) and (A2) hold, (ii) f (·) is finite and
convex in a neighborhood of Z, (iii) G(·, η, v, X,Y ) is convex a.e. (with respect to
X,Y ) for all (η, v) ∈ A × ˜C, (iv) the Slater condition holds for problem (RSD), and
(v) the assumptions of Theorem 5.1 hold. Then

θε ≤ lim inf
Nl→∞ lim

N→∞ L Nl ,N ,M ≤ lim sup
Nl→∞

lim
N→∞ L Nl ,N ,M ≤ θ0 a.e..

Proof As N → ∞, we have

ϕ
j
N → inf

z∈Z
L(z,˜λNl ) a.e.

for j = 0, . . . ,M by Proposition 2.2 (3). Note that the assumption that f (·) is convex
and G(·, η, v, X,Y ) is convex for all (η, v, X,Y ) ∈ A×˜C ×� implies that problems
(RSD) and (HSASD) are convex. Moreover, if the Slater condition holds for (RSD)
then it must hold for (HSASD) for sufficiently large Nl a.e.. By the strong duality
of (HSASD), the optimal value of the dual problem is that of (HSASD), ˜θNl , when
Algorithm 1 terminates. By Proposition 3.1, Theorem 3.1, and 5.1, it follows that
θε ≤ lim inf Nl→∞˜θNl ≤ lim supNl→∞˜θNl ≤ θ0 a.e..

Let (̃zNl ,
˜λNl ) be a saddle point of the Lagrangian of (HSASD) (for brevity, we use

˜λNl to denote the vector whose components are {˜λNl (η, v) : (η, v) ∈ VNl }). We now
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show that˜λNl is uniformly bounded for large enough Nl a.e.. For a given (η, v), let
g′(z; d, η, v) be the directional derivative of g(·) along vector d at point z. By Prop-
osition VII.2.2.4 in [11], the Slater condition implies that, for all z ∈ Z , there exists
d ∈ R

n such that g′(z; d, η, v) ≤ −α1 for some α1 > 0 and all (η, v) ∈ A × ˜C. Fur-
thermore, convexity of G(·, η, v, X,Y ) a.e. implies that limNl→∞ g′

Nl
(z; d, η, v) =

g′(z; d, η, v) a.e. for all (z, η, v) ∈ Z ×A×˜C. It follows that there exists ˜Nl (possibly
dependent on the sample path) such that, for all Nl ≥ ˜Nl , g′

Nl
(z; d, η, v) ≤ −α2 for

some α2 ∈ (0, α1] a.e. Since ( z̃Nl ,
˜λNl ) is a saddle point, we have

f ′(̃zNl ; d)+
∑

(η,v)∈VNl

˜λNl (η, v)g
′
Nl
(̃zNl ; d, η, v) ≥ 0.

As each˜λNl (η, v) is nonnegative, we obtain

∑

(η,v)∈VNl

|˜λNl (η, v)| =
∑

(η,v)∈VNl

˜λNl (η, v) ≤ f ′(̃zNl ; d)

α2
.

Without loss of generality, assume that ‖d‖ = 1. By assumption (ii), it follows from
Theorem IV.3.1.2 in [11] that there exists M ≥ 0 such that | f (z+td)− f (z)| ≤ Mt for
all z ∈ Z when t is sufficiently small. We now let K = M/α2 so that˜λNl (η, v) ≤ K
for all (η, v) ∈ VNl . Thus, we have

lim
Nl→∞ lim

N→∞

∣

∣

∣ϕ
0
Nl

− ϕ
j
N

∣

∣

∣

= lim
Nl→∞

∣

∣

∣

∣

∣

∣

inf
z∈Z

⎧

⎨

⎩

f (z)+
∑

(η,v)∈VNl

˜λNl (η, v)gNl (z, η, v)

⎫

⎬

⎭

− inf
z∈Z

⎧

⎨

⎩

f (z)+
∑

(η,v)∈VNl

˜λNl (η, v)g(z, η, v)

⎫

⎬

⎭

∣

∣

∣

∣

∣

∣

≤ lim
Nl→∞ sup

z∈Z

∣

∣

∣

∣

∣

∣

∑

(η,v)∈VNl

˜λNl (η, v)[gNl (z, η, v)− g(z, η, v)]
∣

∣

∣

∣

∣

∣

≤ lim
Nl→∞ K

⌈

D(�Y × ˜C)
γ

⌉2m

sup
(z,η,v)∈Z×A×˜C

|gNl (z, η, v)− g(z, η, v)| = 0.

It follows that

θε ≤ lim inf
Nl→∞ lim

N→∞ θNl ,N ,M ≤ lim sup
Nl→∞

lim
N→∞ θNl ,N ,M ≤ θ0 a.e.

and σ Nl ,N ,M → 0 as N → ∞ a.e.. ��
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6.3 Practical upper bound

Consider again the perturbed SAA approximation (ε-SASD) defined in Sect. 2. For
a given τ ≤ 0, we can statistically test the feasibility of a solution of (τ -SASD) to
(RSD). If the solution is satisfied, the corresponding objective value of (τ -SASD) is
an upper bound to the true optimal value. We now choose a statistical test method.

Recall thatψ(.) andψN (.) are the optimal values of (DCP) and (SDCP) respectively.
By using M independent sample groups, the method in [18] gives an approximate
100(1 − α)% confidence upper bound for ψ(ẑ) where ẑ is a solution to (τ -SASD):

UN ,M (ẑ) := ψN ,M (ẑ)+ να σ̃N ,M (ẑ), (6.13)

where

ψN ,M (ẑ) := 1

M

M
∑

j=1

ψ
j
N (ẑ),

σ̃ 2
N ,M (ẑ) := 1

M

⎡

⎣

1

M − 1

M
∑

j=1

(ψ
j
N (ẑ)− ψN ,M (ẑ))

2

⎤

⎦ ,

and να denotes the α-critical value of the normal distribution. Note that ψ j
N (·) corre-

sponds to the optimal value of (SDCP) with the j th sample group ( j = 1, . . . ,M).
Again, the Central Limit Theorem can be applied if M is sufficiently large, since the
random variablesψ j

N (ẑ) are i.i.d.. If UN ,M (ẑ) ≤ 0, we claim that f (ẑ) is a 100(1−α)%
confidence upper bound for (RSD). However, if UN ,M (ẑ) > 0 we cannot make any
claims. Therefore, we would like to have a feasible solution of (SASD) which is also
most likely feasible to (RSD). We compute a solution of (τ -SASD), called ẑN , when
τ is the smallest (negative) number that keeps (τ -SASD) feasible. Obviously, ẑN is
a minimizer of the function ψN (·) in (SDCP) over Z , defined with the same sample
for (τ -SASD). We first show that ẑN increasingly approaches a minimizer of ψ(·)
in (DCP) as the sample size increases. Clearly, the minimizers of ψ(·) are the “most
likely” feasible solutions of (RSD). We say “most” since (RSD) is an infeasible prob-
lem if the minimizers of ψ(·) are not feasible to (RSD). Theorem 6.3 states the result.

Theorem 6.3 Suppose Assumptions (A1) and (A2) hold. Let˜ζ and ˜Z be, respectively,
the optimal value and the set of the optimal solutions of

min
z∈Z

ψ(z). (minDCP)

Correspondingly, denote˜ζN and ˜Z N be the optimal value and the set of the optimal
solutions of

min
z∈Z

ψN (z). (minSDCP)
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If ˜Z is nonempty and ˜Z N is nonempty for N large enough a.e., then ˜ζN → ˜ζ and
D(˜Z N ,˜Z) → 0 a.e. as N → ∞.

Proof By Lemma 3.1, we know that ψ(·) is continuous on Z and ψN (·) uniformly
converges to ψ(·) on Z a.e. Then we can complete the proof by Theorem 5.3 in [28].

��
It is clear that problem (minSDCP) has a very a similar structure to problem (SASD).

Thus, we can adapt Algorithm 1 to this case. Algorithm 3 below describes the proce-
dure.

Algorithm 3 A Cut-Generation Algorithm for (minSDCP)
0. Given ε > 0, choose δ ∈ (0, ε). Let σ = ε − δ.

Let k = 0 and choose an arbitrary finite set V0 ⊂ {(v, j) : v ∈ ̂C j , j ∈ {1, . . . , N }}.

1. Find an optimal solution z̃k and optimal value tk of

min t

s.t. t ≥ gN (z, v
T Y i , v), (v, i) ∈ Vk ,

z ∈ Z ,

which can be done by solving (FullNLp).

2. Let Vk+1 = Vk .
For i = 1, . . . , N ,

solve the problems (SDCPi ), let vσik and ψσik be respectively a σ -optimal solution and
σ -optimal value;
if ψσik < tk − δ, Vk+1 = Vk+1 ∪ {(vσik , i)}.

3. If Vk+1 �= Vk , let k = k + 1, go to Step 1; otherwise, exit.

Note that if S0 has an interior point, we have˜ζ < 0. Thus, when N is sufficiently
large, at least a feasible solution of (RSD) can be found with high probability from The-
orem 6.3. This idea suggests an algorithm to build a tighter upper bound at 100(1−α)%
confidence level. Starting from a small sample size Nu , we solve (minSDCP), using
Algorithm 3. The optimal solution z̃Nu is tested in (6.13). If UN ,M (̃zNu ) ≤ 0, f (̃zNu )

is the desired upper bound. Otherwise, we increase Nu by a constant� and repeat the
procedure until z̃Nu is verified to be a feasible solution of (RSD) in probability or Nu

reaches a set bound. Afterwards, we may want a tighter bound if z̃Nu is statistically fea-

sible to (RSD). An observation is that z̃Nu is an optimal solution of (˜ζNu -SASD) too. We
can relax (˜ζNu -SASD) by solving (τ -SASD) with the same sample for˜ζNu < τ ≤ 0.
Let z̃τ be an optimal solution of (τ -SASD). Then we test the feasibility of z̃τ to (RSD).
This idea suggests a bisection search method for τ ∈ [ζNu , 0]; for each τ , we solve
(τ -SASD); if the statistical test UN ,M ( z̃τ ) ≤ 0, then we increase τ ; otherwise, we
decrease τ .

Algorithm 4 summarizes the procedure. Note that if Z is convex and G(·, η, v, X,Y )
is convex a.e. for all (η, v) ∈ A×˜C, the feasible region of (RSD) is also convex. Con-
sequently, the bisection search method can be simplified without solving (τk-SASD) in
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step 4. Recall that (̃zNl ,
˜λNl ) is a saddle point of Lagrangian of (HSASD) which is used

to construct the lower bound for the true optimal value. We can improve Algorithm 4
by searching along the line connecting z̃Nu and z̃Nl . This change is summarized in
Algorithm 5, which updates step 3 and 4 of Algorithm 4 while keeping the same for
the other steps.

Algorithm 4 A Line Search Algorithm for Upper Bound
0. Set starting point Nu , bound B > Nu , and step size �.

1. Solve (minSDCP) to obtain the optimal solution z̃Nu and optimal value˜ζNu .
Evaluate UN ,M (̃zNu ).
Stop or go to step 3 for a tighter upper bound if UN ,M (̃zNu ) ≤ 0.

2. Nu := Nu +�.
Stop if Nu > B; otherwise go to step 1.

3. Let k := 1, a1 :=˜ζNu , b1 := 0.
Choose ε > 0 and let n be the smallest positive integer such that (1/2)n ≤ ε/|˜ζNu |.

4. Let τk := (ak + bk )/2 and compute an optimal solution ẑk of (τk -SASD), defined with the
same sample used in (minSDCP).
Evaluate UN ,M (ẑk ).
Go to step 6 if UN ,M (ẑk ) > 0; otherwise, f (ẑk ) is a wanted upper bound.
Stop or go to step 5 for a tighter upper bound.

5. Let ak+1 := τk and bk+1 := bk ; go to step 7.

6. Let ak+1 := ak and bk+1 := τk ; go to step 7.

7. If k = n, stop; otherwise, replace k by k + 1 and go back to step 3.

Algorithm 5 A Line Search Algorithm for Upper Bound as (RSD) has a Convex
Feasible Region

3. Let k = 1, a1 = z̃Nu , b1 = z̃Nl .
Choose ε > 0 and let n be the smallest positive integer such that (1/2)n ≤ ε/‖̃zNu − z̃Nl ‖.

4. Let τk = (ak + bk )/2 and evaluate UN ,M (τk ).
Go to step 6 if UN ,M (τk ) > 0; otherwise, f (τk ) is a wanted upper bound.
Stop or go to step 5 for a tighter upper bound.

7 Conclusions

We have studied optimization problems with multivariate stochastic dominance
constraints. The multivariate aspect of the problem is dealt with by using weighted
combinations of the random vectors over a convex set of weights. This concept of sto-
chastic dominance requires that all weighted combinations of multiple random gains
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depending our decisions be preferable to those of random benchmarks. We can also
apply this concept to compare random losses with corresponding benchmarks. If X
and Y represent random losses, X is preferred to Y if and only if −vT X dominates
−vT Y in the second order for all v in a convex subset of R

m+. The difficulty with
the resulting problem is that not only does it have uncountably many expected-value
constraints but also calculating the expectations exactly is typically impossible in case
of very large or infinite number of scenarios. We have addressed these issues by using
the Sample Average Approximation (SAA) method. In the analyses of the approxi-
mation, we have discussed four crucial issues: (1) convergence of the approach as the
sample size goes to infinity; (2) quality of solutions of the sample problems obtained
with finite many samples; (3) derivation of an algorithm to solve the problem; and
(4) construction of lower and upper bounds for the true optimal values. Our results
provide a practical way to solve the problem that has solid mathematical foundation.
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Appendix A: The Proof of Theorem 3.2

Before proving the theorem, we state some auxiliary lemmas that will be used in the
proof.

Lemma A.1 Let W and V be two random variables, and let b ∈ R. Then,

P(W > b − V ) ≤ P(W > b − a)+ P(V > a) for all a ∈ R.

Proof

P(W > b − V ) = P(W > b − V, V > a)+ P(W > b − V, V ≤ a)

≤ P(W > b − V, V > a)+ P(W > b − a)

(since a + W ≥ V + W > b when W > b − V andV ≤ a)

≤ P(V > a)+ P(W > b − a).

��
Lemma A.2 Let W be a random variable such that the MGF of W (denoted MW (·))
is finite in a neighborhood of zero. Let W1,W2, . . . be i.i.d. samples of W , and define
W N := (1/N )

∑N
i=1 Wi . Then, for any N ≥ 1,

P(W N − E[W ] > δ) ≤ e−N IW (E[W ]+δ)

and

P(E[W ] − W N > δ) ≤ e−N IW (E[W ]−δ),

where IW (·) is the rate function of W , defined as IW (z) = supλ∈R{λz − log MW (λ)}.
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Moreover, when δ is sufficiently small we have

IW (E[W ] ± δ) ≥ δ2

3Var[W ] .

Proof The first assertion is a well-known result, called Chernoff bound; for a proof
see, e.g., [3]. The second assertion follows from the Taylor expansion of the function
IW (·), see [16]. ��

We now prove Theorem 3.2. Let ε > 0 be given. For arbitrary τ ∈ (0, ε), define
the following three quantities:

Pτ1 := P

(

S−ε
� S0

N , sup
z∈Z

φN (z) ≤ � − 2 + τ

)

,

Pτ2 := P

(

S0
N � Sε, sup

z∈Z
φN (z) ≤ � − 2 + τ

)

,

Pτ3 := P (∃z ∈ Z , φN (z) > � − 2 + τ),

where φN (·) and � are defined in (2.8) and (2.16) respectively. Note that

P(S−ε ⊆ S0
N ⊆ Sε) = 1 − P

(

S−ε
� S0

N or S0
N � Sε

)

≥ 1 − P

(

S−ε
� S0

N or S0
N � Sε, sup

z∈Z
φN (z) ≤ � − 2 + τ

)

−P

(

sup
z∈Z

φN (z) > � − 2 + τ

)

≥ 1 − Pτ1 − Pτ2 − Pτ3 . (A.1)

We first work with the probability Pτ1 . Compactness of Z × A × ˜C implies that,
given any γ > 0, there exists a finite set K ⊆ Z × A × ˜C with |K | ≤ D(Z × A ×
˜C)m+n+1/γm+n+1 such that, for all t = (z, η, v) ∈ Z × A × ˜C, we have t ′ ∈ K
satisfying ‖t − t ′‖ ≤ γ . Let t and t ′ be two such points. From Proposition 2.2 (2), we
conclude that

|g(t)− g(t ′)| ≤ (� + π + τ)γ

and

|gN (t)− gN (t
′)| ≤ (2 + sup

z∈Z
φN (z)+ πN )γ.

Moreover, on the event {gN (t)− g(t) > ε, supz∈Z φN (z) ≤ � − 2 + τ } we have

gN (t
′)− g(t ′) = gN (t

′)− gN (t)+ gN (t)− g(t)+ g(t)− g(t ′)
> ε − (� + π + τ)γ − (2 + sup

z∈Z
φN (z)+ πN )γ
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≥ ε − (� + π + τ)γ − (� + τ + πN )γ

= ε − (2� + 2τ + π + πN )γ. (A.2)

It follows that

Pτ1 = P(∃t ∈ Z × A × ˜C s.t. g(t) ≤ −ε and gN (t) > 0, sup
z∈Z

φN (z) ≤ � − 2 + τ)

≤ P(∃t ∈ Z × A × ˜C s.t. gN (t)− g(t) > ε, sup
z∈Z

φN (z) ≤ � − 2 + τ)

≤ P(∃t ′ ∈ K s.t. gN (t
′)− g(t ′) > ε − (2� + 2τ + π + πN )γ ) (from (A.2)).

By applying Lemma A.1 to the above expression (with V = (2� + 2τ + π + πN )γ

and a = ε − τ/2), this is

≤ P((2�+2τ+2π+πN − π)γ > ε−τ/2)+P(∃t ′ ∈ K s.t. gN (t
′)− g(t ′)>τ/2)

= P(πN − π >
2ε − τ

2γ
− 2� − 2τ − 2π)+ P(∃t ′ ∈ K s.t. gN (t

′)− g(t ′) > τ/2)

≤ P(πN − π > τ/2)+ P(∃t ′ ∈ K s.t. gN (t
′)− g(t ′) > τ/2),

where the latter inequality holds since γ = 2ε−τ
4�+4π+5τ , which implies that 2ε−τ

2γ −
2� − 2τ − 2π = τ/2. Now, using Lemma A.2, this is

≤ e−N I�(π+τ/2) +
∑

t∈K

e−N It (g(t)+τ/2), (A.3)

where I�(·) is the rate function of �(X) and It (·) is that of G(t, X,Y ) at a given
t ∈ K . Lemma A.2 also implies, via Assumption (A3), that

It (g(t)+ τ/2) ≥ τ 2

12Var[G(t, X,Y )] ≥ τ 2

12σ 2

for all t ∈ K if τ is sufficiently small. Also, by Assumption (A4) and the same lemma,
we have I�(π + τ/2) ≥ τ 2/(12σ 2). As the result, we obtain

Pτ1 ≤
(

1 + D(Z × A × ˜C)m+n+1

γm+n+1

)

e

(

− Nτ2

12σ2

)

. (A.4)

A similar calculation yields

Pτ2 ≤
(

1 + D(Z × A × ˜C)m+n+1

γm+n+1

)

e

(

− Nτ2

12σ2

)

. (A.5)

We now use a similar method to build an upper bound for Pτ3 . Construct a finite set
U ⊆ Z with |U | ≤ [(τ + 4π)D(Z)]n/τ n such that, for all z ∈ Z , there exists z′ ∈ U
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satisfying ‖z − z′‖ ≤ τ/(τ + 4π). Let z and z′ be two such points. Then we have, by
Assumption (A2),

∣

∣φ(z)− φ(z′)
∣

∣ ≤ E[‖H(z, X)− H(z′, X)‖] ≤ τπ

τ + 4π

and

∣

∣φN (z)− φN (z
′)
∣

∣ ≤ τπN

τ + 4π
,

which in turn imply that

Pτ3 ≤ P(∃z ∈ Z s.t. φN (z)− φ(z) ≥ τ)

≤ P

(

∃z′ ∈ U s.t. φN (z
′)− φ(z′) ≥ τ − τ(π + πN )

τ + 4π

)

≤ P

(

τ(π + πN )

τ + 4π
≥ τ/2

)

+ P
(∃z′ ∈ U s.t. φN (z

′)− φ(z′) ≥ τ/2
)

(from Lemma A.1)

≤ P(πN − π ≥ τ/2)+
∑

z′∈U

P
(

φN (z
′)− φ(z′) ≥ τ/2

)

≤
(

1 + (τ + 4π)n D(Z)n

τ n

)

e

(

− Nτ2

12σ2

)

, (A.6)

where the last inequality follows from applying Lemma A.2. Combining (A.1), (A.4),
(A.5), and (A.6), we complete the proof for the first part. Also, the second part follows

by imposing that
(

3 + (τ+4π)n D(Z)n

τ n + 2D(Z×A×˜C)m+n+1

γm+n+1

)

e

(

− Nτ2

12σ2

)

≤ β.
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7. Dentcheva, D., Ruszczyński, A.: Optimization with multivariate stochastic dominance constraints.
Math. Program. 117, 111–127 (2009)
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