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Abstract The theta bodies of a polynomial ideal are a series of semidefinite pro-
gramming relaxations of the convex hull of the real variety of the ideal. In this paper we
construct the theta bodies of the vanishing ideal of cycles in a binary matroid. Applied
to cuts in graphs, this yields a new hierarchy of semidefinite programming relaxations
of the cut polytope of the graph. If the binary matroid avoids certain minors we can
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characterize when the first theta body in the hierarchy equals the cycle polytope of the
matroid. Specialized to cuts in graphs, this result solves a problem posed by Lovász.

Keywords Theta bodies · Binary matroid · Cycle ideal · Cuts · Cut polytope ·
Combinatorial moment matrices · Semidefinite relaxations · TH1-exact

Mathematics Subject Classification (2000) 12 · 52 · 90

1 Introduction

A central question in combinatorial optimization is to understand the polyhedral struc-
ture of the convex hull, conv(S), of a finite set S ⊆ R

n . A typical instance is when
S is the set of incidence vectors of a finite set of objects over which one is interested
to optimize; think for instance of the problem of finding a shortest tour, a maximum
independent set, or a maximum cut in a graph. As for hard combinatorial optimi-
zation problems one cannot hope in general to be able to find the complete linear
description of the polytope conv(S), the objective is then to find good and efficient
approximations of this polytope. Such approximations could be polyhedra, obtained
by considering classes of valid linear inequalities. In recent years more general convex
semidefinite programming (SDP) relaxations have been considered, which sometimes
yield much tighter approximations than those from LP methods. This was the case
for instance for the approximation of stable sets and coloring in graphs via the theta
number introduced by Lovász [18], and for the approximation of the max-cut problem
by Goemans and Williamson [8]. See e.g. [17] for an overview. These results spurred
intense research activity on constructing stronger SDP relaxations for combinatorial
optimization problems (cf. [12,13,17,20,22,23]). In this paper we revisit the hierarchy
of SDP relaxations proposed by Gouveia et al. [9] which was inspired by a question
of Lovász [19]. To present it we need some definitions.

Let I ⊆ R[x] be an ideal and VR(I ) = {x ∈ R
n | f (x) = 0 ∀ f ∈ I } be its real

variety. Throughout R[x] denotes the ring of multivariate polynomials in n variables
x = (x1, . . . , xn) over R and R[x]d its subspace of polynomials of degree at most
d ∈ N. As the convex hull of VR(I ) is completely described by the (linear) polyno-
mials f ∈ R[x]1 that are non-negative on VR(I ), relaxations of conv(VR(I )) can be
obtained by considering sufficient conditions for the non-negativity of linear polyno-
mials on VR(I ).

A polynomial f ∈ R[x] is said to be a sum of squares (sos, for short) if f = ∑t
i=1 g2

i
for some polynomials gi ∈ R[x]. Moreover, f is said to be sos modulo the ideal I if
f = ∑t

i=1 g2
i + h for some polynomials gi ∈ R[x] and h ∈ I . In addition, if each gi

has degree at most k, then we say that f is k-sos modulo I . Obviously any polynomial
which is k-sos modulo I is non-negative over VR(I ). Following [9], for each k ∈ N,
define the set

THk(I ) := {x ∈ R
n | f (x) ≥ 0 for all f ∈ R[x]1 k-sos modulo I }, (1)

called the k-th theta body of the ideal I . Note that THk(I ) is a (convex) relaxation of
conv(VR(I )), with
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A new semidefinite programming hierarchy for cycles in binary matroids and cuts in graphs 205

conv(VR(I )) ⊆ THk+1(I ) ⊆ THk(I ).

The ideal I is said to be THk-exact if the equality conv(VR(I )) = THk(I ) holds. The
theta bodies THk(I ) were introduced in [9], inspired by a question of Lovász [19,
Problem 8.3] asking to characterize THk-exact ideals, in particular when k = 1.

This question of Lovász was motivated by the following result about stable sets in
graphs: The stable set ideal of a graph G = (V, E) is TH1-exact if and only if the
graph G is perfect. Recall that a subset of V is stable in G if it contains no edge. The
stable set ideal of G is the vanishing ideal of the 0/1 characteristic vectors of the stable
sets in G and is generated by the binomials x2

i − xi (i ∈ V ) and xi x j ({i, j} ∈ E)
(cf. [19] for details).

For a graph G, let I G be the vanishing ideal of the incidence vectors of cuts in G,
and the cut polytope, CUT(G), be the convex hull of the incidence vectors of cuts in
G. Following Problem 8.3, Problem 8.4 in [19] asks for a characterization of “cut-
perfect” graphs which are precisely those graphs G for which I G is TH1-exact. We
answer this question (Corollary 4.12) by studying theta bodies in the more general
setting of cycles in binary matroids. As an intermediate step we derive the theta bodies
of I G which give rise to a new hierarchy of semidefinite programming relaxations of
CUT(G).

Some notation

Let E be a finite set. For a subset F ⊆ E , let 1F ∈ {0, 1}E denote its 0/1-incidence
vector and χ F ∈ {±1}E its ±1-incidence vector, defined by 1F

e = 1, χ F
e = −1 if

e ∈ F and 1F
e = 0, χ F

e = 1 otherwise. Throughout RE := R[xe | e ∈ E] denotes
the polynomial ring with variables indexed by E . If F ⊆ E , we set xF := ∏

e∈F xe.
For a symmetric matrix X ∈ R

n×n, X � 0 means that X is positive semidefinite, or
equivalently, uT Xu ≥ 0 for all u ∈ R

n .

Contents of the paper

Section 2 contains various preliminaries and some results of [9] needed in this
paper. In Sect. 3 we introduce binary matroids, which provide the natural setting
to present our results for cuts in graphs. A binary matroid is a pair M = (E, C)

where E is a finite set and C is a collection of subsets of E (the cycles of M)
closed under taking symmetric differences; for instance, cuts (resp., cycles) in a
graph form binary matroids. In Sect. 3.1 we present a generating set for the cycle
ideal IM (i.e. the vanishing ideal of the incidence vectors of the cycles C ∈ C)
and a linear basis B of its quotient space RE/IM (cf. Theorem 3.4). Using
this, we can explicitly describe the series of theta bodies THk(IM) that approx-
imate the cycle polytope CYC(M) (i.e. the convex hull of the incidence vectors
of the cycles in C). In Sect. 3.2, we specialize these results to cuts in a graph
G and show that B can then be indexed by T -joins of G. This enables a com-
binatorial description of the theta bodies THk(I G) that converge to the cut poly-
tope CUT(G) of G. Section 3.3 compares the semidefinite relaxations THk(I G)
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to some known semidefinite relaxations of the cut polytope. In Sect. 3.4 the
results from Sect. 3.1 are specialized to cycles in a graph. Section 3.5 contains a
discussion about the complexity of constructing theta bodies. Section 4 studies the
binary matroidsMwhose cycle ideal IM is TH1-exact (i.e., TH1(IM) = CYC(M)).
Theorem 4.6 characterizes the TH1-exact cycle ideals IM when M does not have the
three special minors F∗

7 , R10 and M∗
K5

. As an application, we obtain characterizations
of TH1-exact graphic and cographic matroids, and the latter answers Problem 8.4 in
[19]. The paper contains several examples of binary matroids for which we exhibit
the least k for which IM is THk-exact. In Sect. 5 we do this computation for an infi-
nite family of graphs; if Cn is the circuit with n edges, then the smallest k for which
THk(I Cn) = CUT(Cn) is k = �n/4	.

2 Preliminaries

2.1 Ideals and combinatorial moment matrices

Let R[x] be the polynomial ring over R in the variables x = (x1, . . . , xn). A non-empty
subset I ⊆ R[x] is an ideal if I is closed under addition, and multiplication by ele-
ments of R[x]. The ideal generated by { f1, . . . , fs} ⊆ R[x] is the set I = {∑s

i=1 hi fi :
hi ∈ R[x]}, denoted as I = ( f1, . . . , fs). For S ⊆ R

n , the vanishing ideal of S is
I(S) := { f ∈ R[x] | f (x) = 0 ∀x ∈ S}. For W ⊆ [n], IW := I ∩ R[xi | i ∈ W ] is
the elimination ideal of I with respect to W .

An ideal I ⊆ R[x] is said to be zero-dimensional if its (complex) variety:

VC(I ) := {x ∈ C
n | f (x) = 0 ∀ f ∈ I },

is finite, I is radical if f m ∈ I implies f ∈ I for any f ∈ R[x], and I is
real radical if f 2m + ∑t

i=1 g2
i ∈ I implies f ∈ I for all f, gi ∈ R[x]. By the

Real Nullstellensatz (cf. [3]), I is real radical if and only if I = I(VR(I )). There-
fore, I is zero-dimensional and real radical if and only if I = I(S) for a finite set
S ⊆ R

n . If I is real radical, and πW denotes the projection from R
[n] to R

W , then
the elimination ideal IW is the vanishing ideal of πW (VR(I )), and there is a sim-
ple relationship between the k-th theta body of I and that of its elimination ideal
IW :

πW (THk(I )) ⊆ THk(IW ). (2)

The quotient space R[x]/I is a R-vector space whose elements, called the cosets
of I , are denoted as f + I ( f ∈ R[x]). For f, g ∈ R[x], f + I = g + I if and only if
f − g ∈ I . The degree of f + I is defined as the smallest possible degree of g ∈ R[x]
such that f − g ∈ I . The vector space R[x]/I has finite dimension if and only if I is
zero-dimensional; moreover, |VC(I )| ≤ dim R[x]/I , with equality if and only if I is
radical.

Gouveia et al. [9] give a geometric characterization of zero-dimensional real radical
ideals that are TH1-exact.
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Definition 2.1 For k ∈ N, a finite set S ⊆ R
n is said to be k-level if |{ f (x) | x ∈

S}| ≤ k for all f ∈ R[x]1 for which the linear inequality f (x) ≥ 0 induces a facet of
the polytope conv(S).

Theorem 2.2 [9] Let S ⊆ R
n be a finite set. The ideal I(S) is TH1-exact (i.e.,

conv(S) = TH1(I(S))) if and only if S is a 2-level set.

More generally, Gouveia et al. [9, Sect. 4] show the implication:

S is (k + 1)-level �⇒ I(S) is THk-exact; (3)

the reverse implication however does not hold for k ≥ 2 (see e.g. Remark 5.8 for a
counterexample).

We now mention an alternative more explicit formulation for the theta body THk(I )
of an ideal I in terms of positive semidefinite combinatorial moment matrices. We first
recall this class of matrices (introduced in [16]) which amounts to using the equations
defining I to reduce the number of variables. Let B = {b0 + I, b1 + I, . . .} be a basis
of R[x]/I and, for k ∈ N, let Bk := {b + I ∈ B | deg(b + I ) ≤ k}. Then any
polynomial f ∈ R[x] has a unique decomposition f = ∑

l≥0 λ
( f )
l bl modulo I ; we

let λ( f ) = (λ
( f )
l )l denote the vector of coordinates of the coset f + I in the basis B

(which has only finitely many non-zero coordinates).

Definition 2.3 Let y ∈ R
B. The combinatorial moment matrix MB(y) is the (possibly

infinite) matrix indexed by B whose (i, j)-th entry is

∑

l≥0

λ
(bi b j )

l yl .

The kth truncated combinatorial moment matrix MBk (y) is the principal submatrix of
MB(y) indexed by Bk .

In other words, the matrix MB(y) is obtained as follows. The coordinates yl ’s cor-
respond to the elements bl + I of B; expand the product bi b j in terms of the basis B as

bi b j = ∑
l λ

(bi b j )

l bl modulo I ; then the (bi , b j )-th entry of MB(y) is its ‘linearization’:
∑

l λ
(bi b j )

l yl .
To control which entries of y are involved in the truncated matrix MBk (y), it is

useful to suitably choose the basis B. Namely, we choose B satisfying the following
property:

deg( f + I ) ≤ k �⇒ f + I ∈ span(Bk). (4)

This is true, for instance, when B is the set of standard monomials of a term order
that respects degree. (See [4, Chapter 2] for these notions that come from Gröbner
basis theory.) If B satisfies (4), then the entries of MBk (y) depend only on the entries
of y indexed by B2k . Moreover, Gouveia et al. [9] show that THk(I ) can then be
defined using the matrices MBk (y), up to closure and a technical condition on B. This
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technical condition, which states that {1 + I, x1 + I, . . . , xn + I } is linearly indepen-
dent in R[x]/I , is however quite mild since if there is a linear dependency then it can
be used to eliminate variables.

Example 2.4 Consider the ideal I = (x2
1 x2 − 1) ⊂ R[x1, x2]. Note that B =

⋃
k∈N

{xk
1 + I, xk

2 + I, x1xk
2 + I } is a monomial basis for R[x1, x2]/I satisfying (4)

for which

B4 = {1, x1, x2, x2
1 , x1x2, x2

2 , x3
1 , x1x2

2 , x3
2 , x4

1 , x1x3
2 , x4

2 } + I.

The combinatorial moment matrix MB2(y) for y = (y0, y1, . . . , y11) ∈ R
B4 is

1 x1 x2 x2
1 x1x2 x2

2

1 y0 y1 y2 y3 y4 y5

x1 y1 y3 y4 y6 1 y7

x2 y2 y4 y5 1 y7 y8

x2
1 y3 y6 1 y9 y1 y2

x1x2 y4 1 y7 y1 y2 y10

x2
2 y5 y7 y8 y2 y10 y11

.

Theorem 2.5 [9] Assume B satisfies (4) and B1 = {1 + I, x1 + I, . . . , xn + I }, and
let the coordinates of y ∈ R

B2k indexed by B1 be y0, y1, . . . , yn. Then THk(I ) is equal
to the closure of the set

{(y1, . . . , yn) | y ∈ R
B2k with MBk (y) � 0 and y0 = 1}. (5)

When I = I(S) where S ⊆ {0, 1}n, the closure is not needed and THk(I ) equals the
set (5).

Theorem 2.5 implies that optimizing a linear objective function over THk(I ) can be
reformulated as a semidefinite program with the constraints MBk (y) � 0 and y0 = 1
which, for fixed k, can thus be solved in polynomial time (to any precision).

2.2 Graphs, cuts and cycles

Let G = (V, E) be a graph. Throughout, the vertex set is V = [n], the edge set of
the complete graph Kn is denoted by En , so that E is a subset of En , and the edges
of En correspond to pairs {i, j} of distinct vertices i, j ∈ V . For F ⊆ E, degF (v)

denotes the number of edges of F incident to v ∈ V . A circuit is a set of edges
{{i1, i2}, {i2, i3}, . . . , {it−1, it }, {it , i1}} where i1, . . . , it ∈ V are pairwise distinct
vertices. A set C ⊆ E is a cycle (or Eulerian subgraph) if degC (v) is even for all
v ∈ V ; every non-empty cycle is an edge-disjoint union of circuits. For S ⊆ V , the
cut D corresponding to the partition (S, V \ S) of V is the set of edges {i, j} ∈ E
with |{i, j} ∩ S| = 1. A basic property is that each cut intersects each cycle in an even
number of edges; this is in fact a property of binary matroids which is why we will
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A new semidefinite programming hierarchy for cycles in binary matroids and cuts in graphs 209

present some of our results later in the more general setting of binary matroids (cf.
Sect. 3).

Each cut D can be encoded by its ±1-incidence vector χ D ∈ {±1}E , called the cut
vector of D. The cut ideal of G, denoted as I G, is the vanishing ideal of the set of cut
vectors of G. The cut polytope of G is

CUT(G) := conv{χ D | D is a cut in G} = πE (CUT(Kn)) ⊆ R
E , (6)

where πE is the projection from R
En onto R

E . (Cf. e.g. [5] for an overview on the
cut polytope.) The cuts of Kn can also be encoded by the cut matrices X := xxT for
x ∈ {±1}n indexing the partitions of [n] corresponding to the cuts. Thus the set

{y ∈ R
E | ∃X ∈ R

V ×V , X � 0, Xii = 1 (i ∈ V ), Xi j = y{i, j} ({i, j} ∈ E)} (7)

is a relaxation of the cut polytope CUT(G), over which one can optimize any linear
objective function in polynomial time (to any precision), using semidefinite optimi-
zation.

Given edge weights w ∈ R
E , the max-cut problem asks for a cut D in G of maxi-

mum total weight
∑

e∈D we; thus it can be formulated as

max

{
1

2

∑

e∈E

we(1 − ye) | y ∈ CUT(G)

}

, (8)

where the variable can alternatively be assumed to lie in CUT(Kn). This is a well-
known NP-hard problem [7]. Thus one is interested in finding tight efficient relaxations
of the cut polytope, potentially leading to good approximations for the max-cut prob-
lem. It turns out that the simple semidefinite programming relaxation (7) has led to the
celebrated 0.878-approximation algorithm of Goemans and Williamson [8] which, as
of today, still gives the best known performance guarantee for max-cut.

3 Theta bodies for cuts and matroids

In this section we study in detail the hierarchy of SDP relaxations for the cut polytope
arising from the theta bodies of the cut ideal. As is well-known, cuts in graphs form a
special class of binary matroids. It is thus natural to consider the theta bodies in the
more general setting of binary matroids, where the results become more transparent.
Then we will apply the results to cuts in graphs (the case of cographic matroids) and
also to cycles in graphs (the case of graphic matroids).

3.1 The cycle ideal of a binary matroid and its theta bodies

Let M = (E, C) be a binary matroid; that is, E is a finite set and C is a collection
of subsets of E that is closed under taking symmetric differences. Members of C are
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210 J. Gouveia et al.

called the cycles of M, and members of the set

C∗ := {D ⊆ E : |D ∩ C | even ∀C ∈ C}

are called the cocycles of M. Then, M∗ = (E, C∗) is again a binary matroid, known
as the dual matroid of M, and (M∗)∗ = M. The (inclusion-wise) minimal non-empty
cycles (cocycles) of M are called the circuits (cocircuits) of M. An element e ∈ E is a
loop (coloop) of M if {e} is a circuit (cocircuit) of M. Two distinct elements e, f ∈ E
are parallel (coparallel) if {e, f } is a circuit (cocircuit) of M. Every non-empty cycle
is a disjoint union of circuits. Given C ∈ C, an element e ∈ E\C is called a chord of
C if there exist C1, C2 ∈ C such that C1 ∩ C2 = {e} and C = C1�C2 (if C is a circuit
then C1, C2 are in fact circuits); C is said to be chordless if it has no chord. Here is a
property of chords that we will use later.

Lemma 3.1 Let C be a circuit of M, let e ∈ E\C be a chord of C and C1, C2 be
circuits with C = C1�C2 and C1 ∩ C2 = {e}. Then each Ci has strictly fewer chords
than C.

Proof It suffices to show that each chord e′ of C1 is also a chord of C . For this let
C ′

1, C ′′
1 be two circuits with C ′

1 ∩ C ′′
1 = {e′} and C1 = C ′

1�C ′′
1 . Say, e ∈ C ′

1, and thus
e �∈ C ′′

1 . Suppose first that e′ ∈ C2. Then we have C ′′
1 ∩ C2 = {e′} and C ′′

1 �C2 ⊆ C .
As C is a circuit and C ′′

1 �= C2, we deduce that C = C ′′
1 �C2, which shows that e′ is a

chord of C .
Suppose now that e′ �∈ C2. Then, C = C1�C2 = (C ′

1�C2)�C ′′
1 with (C ′

1�C2) ∩
C ′′

1 = {e′}, which shows again that e′ is a chord of C . ��
The binary matroids on E correspond to the GF(2)-vector subspaces of GF(2)E ,

where GF(2) is the two-element field {0, 1} with addition modulo 2. Namely, iden-
tifying a set F ⊆ E with its 0/1-incidence vector 1F ∈ GF(2)E , the set of cycles C
is a vector subspace of GF(2)E and the set of cocycles C∗ is its orthogonal comple-
ment. Thus the cycles of a binary matroid also arise as the solutions in GF(2)E of a
linear system Mx = 0, where M is a matrix with columns indexed by E , called a
representation matrix of the matroid. In what follows we will use C (and C∗) both as
a collection of subsets of E and as a G F(2)-vector space.

As before let RE := R[xe | e ∈ E] and, for C ∈ C, let χC ∈ {±1}E denote its
±1-incidence vector, called its cycle vector. Then,

CYC(M) := conv(χC | C ∈ C)

is the cycle polytope of M and

IM := I(χC | C ∈ C)

is the vanishing ideal of the cycle vectors of M, called the cycle ideal of M. Thus
IM is a real radical zero-dimensional ideal in RE .

We first study the quotient space RE/IM. For this consider the set

H := {x2
e − 1 (e ∈ E), 1 − xD (D chordless cocircuit of M)}. (9)
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A new semidefinite programming hierarchy for cycles in binary matroids and cuts in graphs 211

Obviously, H ⊆ IM; Theorem 3.4 below shows that H in fact generates the ideal
IM. First we observe that H also generates all binomials xA − xB where A ∪ B
partitions any cocycle of M.

Lemma 3.2 Let D ∈ C∗ be partitioned as D = A ∪ B. Then, xA − xB ∈ (H).

Proof First we note that it suffices to show that 1 − xD ∈ (H) for all D ∈ C∗. Indeed,
for any partition A ∪ B = D, xA(1 − xD) = xA − (xA)2xB ≡ xA − xB modulo (H).
Thus 1 − xD ∈ (H) implies xA − xB ∈ (H).

Next, we show the lemma for the case when D is a cocircuit, using induction on
the number p of its chords. If p = 0 then 1 − xD ∈ H by definition. So let p ≥ 1, let
e be a chord of D and let D1, D2 be cocircuits with D = D1�D2 and D1 ∩ D2 = {e}.
Then, 1 − xD1 , 1 − xD2 ∈ (H), using the induction assumption, since each Di has
at most p − 1 chords by Lemma 3.1. We have: 1 − xD ≡ 1 − (xe)

2xD1\{e}xD2\{e} =
1 − xD1 xD2 = xD1(1 − xD2) + 1 − xD1 , where the first equality is modulo (H). This
shows that 1 − xD ∈ (H).

Finally we show the lemma for D ∈ C∗, using induction on the number p of cocir-
cuits in a partition of D. For this, let D = D1 ∪ D2, where D1 is a cocircuit and D2 is
a cocycle partitioned into p −1 cocircuits. Then, by the previous case, 1−xD1 ∈ (H),
and 1−xD2 ∈ (H) by the induction assumption. Then, 1−xD ≡ (xD2)2 −xD1 xD2 =
xD2(1 − xD1) − xD2(1 − xD2), where the first equality is modulo (H). This implies
1 − xD ∈ (H). ��

Define the relation ‘∼’ on P(E), the collection of all subsets of E , by

F ∼ F ′ if F�F ′ ∈ C∗; (10)

this is an equivalence relation, since C∗ is closed under taking symmetric differences.
The next lemma characterizes the equivalence classes.

Lemma 3.3 For F, F ′ ⊆ E, we have:

F�F ′ ∈ C∗ ⇐⇒ xF − xF ′ ∈ (H) ⇐⇒ xF − xF ′ ∈ IM.

Proof If F�F ′ ∈ C∗, then xF − xF ′ = xF∩F ′
(xF\F ′ − xF ′\F ) ∈ (H), using

Lemma 3.2; xF − xF ′ ∈ (H) �⇒ xF − xF ′ ∈ IM follows from H ⊆ IM. Con-
versely, if xF − xF ′ ∈ IM then, for any C ∈ C, xF − xF ′

vanishes at χC and thus
|C ∩ F | and |C ∩ F ′| have the same parity, which implies that |C ∩ (F�F ′)| is even
and thus F�F ′ ∈ C∗. ��

Let

F := {F1, . . . , FN } (11)

be a set of distinct representatives of the equivalence classes of P(E)/ ∼ and set

B := {xF + IM | F ∈ F}. (12)
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Theorem 3.4 The set B is a basis of the vector space RE/IM and the set H generates
the ideal IM.

Proof First, we show that B spans the space RE/(H). As x2
e − 1 ∈ H (∀e ∈ E),

it suffices to show that B spans all cosets of square-free monomials. For this, let
F ⊆ E and, say, F ∼ F1; then, xF − xF1 ∈ IM by Lemma 3.3, which shows that
xF + IM ∈ span(B). Therefore, we obtain:

|C| = dim RE/IM ≤ dim RE/(H) ≤ |B| = N .

To conclude the proof it now suffices to show that |C| = N . For this, fix a basis
{C1, . . . , Cm} of the GF(2)-vector space C, so that |C| = 2m . Let M be the m × |E |
matrix whose rows are the 0/1-incidence vectors of C1, . . . , Cm . Then Mx takes 2m

distinct values for all x ∈ GF(2)E . As, for F, F ′ ⊆ E, F ∼ F ′ if and only if
M1F = M1F ′

, we deduce that the equivalence relation (10) has N = 2m equivalence
classes. ��

We now consider the combinatorial moment matrices for the cycle ideal IM. For
any integer k define the set

Fk := {F ∈ F | ∃D ∈ C∗ with |F�D| ≤ k} (13)

corresponding to the equivalence classes of ∼ having a representative of cardinality at
most k. Then Bk = {xF + IM | F ∈ Fk} can be identified with the set Fk . Moreover
relation (4) holds, so that the entries of the truncated moment matrix MBk (y) depend
only on the entries of y indexed by B2k . For instance, F1 can be any maximal subset
of E containing no coloops or coparallel elements of M, along with ∅. Indeed, e ∈ E
is a coloop precisely if {e} ∼ ∅, and two elements e �= f ∈ E are coparallel precisely
if e ∼ f . Thus, F0 = {∅} and F1\F0 = E if M has no coloops and no coparallel
elements.

When M has no coloops and no coparallel elements, its k-th theta body THk(IM)

consists of the vectors y ∈ R
E for which there exists a positive semidefinite |Fk |×|Fk |

matrix X satisfying X∅,e = ye for all e ∈ E and

(i) X∅,∅ = 1,

(ii) X F1,F2 = X F3,F4 if F1�F2�F3�F4 ∈ C∗. (14)

Remark 3.5 The constraints (14)(ii) contain in particular the constraints

X F1,F2 = X F3,F4 if F1�F2 = F3�F4. (15)

Note that the above constraints are the basic ‘moment constraints’, which are satisfied
by all ±1 vectors. Indeed, if y = χ F ∈ {−1, 1}E , define the |Fk | × |Fk | matrix X
by X F1,F2 := (−1)|F∩F1|(−1)|F∩F2)|, so that ye = X∅,e (e ∈ E). Then X � 0 since
X = uuT where u = ((−1)|F∩Fi |)Fi ∈Fk , and X satisfies (14) (i) and (15). There-
fore the constraints (15) do not cut off any point of the cube [−1, 1]E . Non-trivial
constraints that cut off points of [−1, 1]E that do not lie in CYC(M) come from those
constraints (14)(ii) where F1�F2�F3�F4 is a non-empty cocycle.
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3.2 Application to cuts in graphs

Binary matroids arise naturally from graphs in the following way. Let G = ([n], E)

be a graph, let CG denote its collection of cycles, and DG its collection of cuts. Since
CG and DG are closed under symmetric difference, both MG := (E, CG) and M∗

G :=
(E,DG) are binary matroids, and since each cut has an even intersection with each
cycle, they are duals of each other. The matroid MG is known as the graphic matroid
of G and M∗

G as its cographic matroid.
We consider here the case when M = M∗

G is the cographic matroid of G =
([n], E). Then, CYC(M) = CUT(G) is the cut polytope of G and IM is the cut
ideal of G (denoted earlier by I G), thus defined as the vanishing ideal of all cut
vectors in G.

So I G is an ideal in RE , while I Kn is an ideal in REn . One can easily verify that
I G is the elimination ideal, I Kn ∩ RE , of I Kn with respect to E . By Theorem 3.4,
we know that the (edge) binomials x2

e − 1 (e ∈ E) together with the binomials 1 − xC

(C chordless circuit of G) generate the cut ideal I G. When G = Kn is a complete
graph, the only chordless circuits are the triangles so that, beside the edge binomials,
it suffices to consider the binomials 1 − x{i, j}x{i,k}x{ j,k} (or x{i, j} − x{i,k}x{ j,k}) for
distinct i, j, k ∈ [n].

When G is connected, there are 2n−1 distinct cuts in G (corresponding to the par-
titions of [n] into two classes) and, when G has p connected components, there are
2n−p cuts in G and thus dim RE/I G = 2n−p.

The following notion of T -joins arises naturally when considering the equivalence
relation (10). Given a set T ⊆ [n], a set F ⊆ E is called a T -join if T = {v ∈ [n] |
degF (v) is odd}. For instance, the ∅-joins are the cycles of G and, for T = {s, t}, the
minimum T -joins correspond to the shortest s − t paths in G. If F is a T -join and
F ′ is T ′-join, then F�F ′ is a (T �T ′)-join. In particular, F ∼ F ′, i.e. F�F ′ ∈ CG ,
precisely when F, F ′ are both T -joins for the same T ⊆ [n].

Thus the equivalence classes of ∼ correspond to the members of the set TG := {T ⊆
[n] | ∃T -join in G} (which consists of the sets T1 ∪ . . .∪ Tp, where each Ti is an even
subset of Vi and V1, . . . , Vp are the connected components of G). The set F (in (11))
consists of one T -join FT for each T ∈ TG , and Fk = {FT | T ∈ Tk}, after defining Tk

as the set of all T ∈ TG for which there exists a T -join of size at most k. Then the cor-
responding basis of RE/I G is B = {xFT + I G | T ∈ TG},Bk = {xFT + I G | T ∈ Tk}
and (4) holds.

For instance, F1 consists of all edges e ∈ E together with the empty set. Hence the
first order theta body TH1(I G) consists of the vectors y ∈ R

E for which there exists a
positive semidefinite matrix X indexed by E ∪ {∅} satisfying ye = X∅,e (e ∈ E) and

(i) X∅,∅ = Xe,e = 1 for all e ∈ E,

(ii) Xe, f = X∅,g if {e, f, g} is a triangle in G, (16)

(iii) Xe, f = Xg,h if {e, f, g, h} is a circuit in G.

Remark 3.6 When G = Kn is the complete graph, for any even T ⊆ [n], the mini-
mum cardinality of a T -join is |T |/2; just choose for FT a set of |T |/2 disjoint edges
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(i.e. a perfect matching) on T . Hence the set Tk consists of all even T ⊆ [n] with
|T | ≤ 2k. As an illustration, if we index the combinatorial moment matrices by Tk ,
then the condition (14) (ii) reads:

XT1,T2 = XT3,T4 if T1�T2 = T3�T4. (17)

This observation will enable us to relate the theta body hierarchy to the semidefinite
relaxations of the cut polytope considered in [15], cf. Sect. 3.3.

Example 3.7 If G has no circuit of length 3 or 4, then TH1(I G) = [−1, 1]E , since
the conditions (16)(ii)–(iii) are void. For instance, if G is a forest, then TH1(I G) =
[−1, 1]E = CUT(G) and thus I G is TH1-exact. On the other hand, if G = Cn is
a circuit of length n ≥ 5, then TH1(I G) = [−1, 1]E strictly contains the polytope
CUT(Cn) (as |E | = n and CUT(Cn) has only 2n−1 vertices). Thus I Cn is not TH1-
exact for n ≥ 5.

Example 3.8 For G = K5, I K5 is not TH1-exact. Indeed, the inequality
∑

e∈E5
xe +

2 ≥ 0 induces a facet of CUT(K5) (cf. e.g. [5, Chap. 28.2]) and the linear form∑
e∈E5

xe +2 takes three distinct values on the vertices of CUT(K5) (namely, 0 on the
facet, 12 on the trivial empty cut and 4 on the cut obtained by separating a vertex from
all the others). Applying Theorem 2.2, we can conclude that I K5 is not TH1-exact.

In Sect. 3.3 below we will characterize the graphs whose cut ideals are TH1-exact
and we will determine the precise order k at which the cut ideal of a circuit is THk-exact
in Sect. 5.

3.3 Comparison with other SDP relaxations of the cut polytope

We mention here the link between the theta bodies of the cut ideal I G and some other
semidefinite relaxations of the cut polytope CUT(G). First note that the relaxation
TH1(I G) coincides with the edge-relaxation considered by Rendl and Wiegele (see
[25]) and numerical experiments there indicates that it is often tighter than the basic
semidefinite relaxation (7) of CUT(G).

Next we compare the theta bodies of I G with the relaxations Qt (G) of CUT(G)

considered in [15].1 For t ∈ N, set Ot (n) := {T ⊆ [n] | |T | ≤ t and |T | ≡ t
mod 2}. Then Qt (G) consists of the vectors y ∈ R

E for which there exists a positive
semidefinite matrix X indexed by Ot (n) satisfying (17), XT,T = 1 (T ∈ Ot (n)), and
y{i, j} = X∅,{i, j} for t even (resp., y{i, j} = X{i},{ j} for t odd) for all edges {i, j} ∈ E .
Therefore, for t = 1, Q1(G) coincides with the Goemans-Williamson SDP relaxation
(7). Moreover, for even t = 2k, Q2k(Kn) coincides with the theta body THk(I Kn).
(To see it use Remark 3.6.) The following chain of inclusions shows the link to the
theta bodies:

CUT(G) ⊆ Q2k(G) = πE (Q2k(Kn)) = πE (THk(I Kn)) ⊆ THk(I G) (18)

1 For simplicity in the notation we shift the indices by 1 with respect to [15].
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(where the last inclusion follows using (2)). Therefore, the k-th theta body THk(I G) is
in general a weaker relaxation than Q2k(G). For instance, for the 5-circuit, CUT(C5) =
Q2(C5) (see [15]) but CUT(C5) is strictly contained in TH1(I C5) = [−1, 1]5 (see
Example 3.7).

On the other hand, the SDP relaxation THk(I G) can be much simpler and less costly
to compute than Q2k(G), since its definition exploits the structure of G and thus often
uses smaller matrices. Indeed, Q2k(G) is defined as the projection of Q2k(Kn), whose
definition involves matrices indexed by all even sets T ⊆ [n] of size at most 2k,
thus not depending on the structure of G. On the other hand, the matrices needed to
define THk(I G) are indexed by the even sets T ⊆ [n] of size at most 2k for which
G has a T -join of size at most k. This can be checked efficiently since the minimum
weight T -join problem has a polynomial time algorithm (cf. [6]). For instance, for
k = 1, TH1(I G) uses matrices of size 1 + |E |, while Q2(G) needs matrices of size

1 +
(

n
2

)

. We refer to Sect. 3.5 for more details on the complexity of constructing the

above theta bodies.

Example 3.9 It was shown in [14] that CUT(Kn) is strictly contained in Qk(Kn) for
k < � n

2 	 − 1. Therefore, CUT(Kn) ⊂ THk(I Kn) = Q2k(Kn) for all 2k < � n
2 	 − 1.

This implies that I Kn is not THk-exact for k ≤ � n−1
4 �. However, it is known that

CUT(Kn) = Q� n
2 	(Kn) when n ≤ 7. Therefore, I K5, I K6 and I K7 are all TH2-

exact.

For some graphs there is a special inclusion relationship between the theta bodies
and the Qt -hierarchy. We consider first graphs with bounded diameter.

Lemma 3.10 Let G be a graph with diameter at most k, i.e., such that any two vertices
can be joined by a path traversing at most k edges. Then THk(I G) ⊆ Q2(G).

Proof It suffices to observe that the set Tk indexing the matrices in the definition of
THk(I G) (which consists of the even sets T ⊆ V for which there is a T -join of size
at most k) contains all pairs of vertices. Thus Tk contains the set O2(n) indexing the
matrices in the definition of Q2(G). ��

Next we observe that THk(I G) refines the Goemans-Williamson relaxation (7) for
graphs with radius k.

Lemma 3.11 Let G be a graph with radius at most k, i.e., there exists a vertex that can
be joined to any other vertex by a path traversing at most k edges. Then THk(I G) ⊆
Q1(G).

Proof Say vertex 1 can be joined to all other vertices i ∈ [n]\{1} by a path of length
at most k. Then the set Tk contains ∅, {i, j} for all edges i j ∈ E , and all pairs {1, i}
for i ∈ [n]\{1}. Let y ∈ THk(I G), i.e. there exists a positive semidefinite matrix X
indexed by Tk satisfying (17) and ye = X∅,e for e ∈ E . Consider the n × n matrix
Y defined by Yii = 1 (i ∈ [n]), Y1i = X∅,{1,i} (i ∈ [n]\{1}), and Yi j = X{1,i},{1, j}
(i �= j ∈ [n]\{1}). Then Y � 0 (since Y coincides with the principal submatrix of
X indexed by ∅, {1, 2}, . . . , {1, n}), y{i, j} = Yi j for all {i, j} ∈ E (using (17)). This
shows y ∈ Q1(G), concluding the proof. ��
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In particular, as already noted in [25], TH1(I G) ⊆ Q1(G) if G contains a vertex
adjacent to all other vertices. For an arbitrary graph G, let G∗ be the graph obtained
by adding edges to G so that one of its vertices is adjacent to all other vertices. Thus,
TH1(I G∗) ⊆ Q1(G∗) by Lemma 3.11. Taking projections onto the edge set of G, the
relaxation πE (TH1(I G∗)) is contained in πE (Q1(G∗)) = Q1(G) (and in TH1(I G)).

3.4 Application to circuits in graphs

Let us consider briefly the case when M = MG is the graphic matroid of a graph
G = (V, E), i.e. C = CG is the collection of cycles of G and C∗ = DG is its collection
of cuts.

One can find a set F of representatives for the equivalence classes of (10) as fol-
lows. Namely, assume for simplicity that G is connected and let E0 ⊆ E be the edge
set of a spanning tree in G. Then the collection F := P(E\E0) is a set of distinct
representatives for the classes of (10). Indeed, note first that no two distinct subsets
F, F ′ of E\E0 are in relation by ∼, since each non-empty cut meets the tree E0.
Next, any subset X ⊆ E0 determines a unique cut DX for which DX ∩ E0 = X , so
that X ∼ X�DX . Hence, for any set Z ⊆ E , write Z = X ∪ Y with X ⊆ E0 and
Y ⊆ E\E0; then Z ∼ X�DX�Y is thus in the same equivalence class as a subset of
E\E0.

Note however that the above set F may not consist of the minimum cardinality
representatives. In fact, as we observe in the next section, finding a minimum cardi-
nality representative in each equivalence class amounts to solving a maximum weight
cut problem, thus a hard problem. Nevertheless this collection F can be used to index
truncated moment matrices (simply index the k-th order matrix by all F ∈ F with
|F | ≤ k). However, studying this SDP hierarchy is less relevant for optimization
purposes since the linear inequality description of CYC(MG) is completely known
(see Theorem 4.4 below), and one can find a maximum weight cycle in a graph in
polynomial time (cf. [6]).

3.5 Computational complexity of theta bodies

We group here some observations about the computational complexity of building the
matrices MBk (y) needed to define the theta body THk(IM) of a binary matroid M.

The computation of the matrix MBk (y) is done in two steps:

– First compute the sets Fk and F2k .
– Then compute the entries of MBk (y), i.e., for all F, F ′ ∈ Fk , find F ′′ ∈ F2k such

that F�F ′ ∼ F ′′, i.e., F�F ′�F ′′ ∈ C∗.

As we see below both steps involve making repeated calls to a membership oracle for
C∗. Such a membership oracle gives a yes/no answer to any query of the form:

Given X ⊆ E, does X belong to C∗?
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If the binary matroid M is given by a representation matrix M , then it is easy to answer
such a query. Indeed, first bring M into the form M = (Ir A), where A ∈ {0, 1}r×s

(using Gaussian elimination). Then M∗ := (
AT Is

)
is a representing matrix for M∗

and thus X ∈ C∗ if and only if M∗1X = 0 modulo 2.
In the case when M is the cographic matroid of a graph G = (V, E), checking

membership in C∗ is easy: X ∈ C∗ (i.e., X is a cycle of G) if and only if each node
v ∈ V is adjacent to an even number of edges of X .

We first indicate how to construct the set Fk . Say M = (E, C) is a binary matroid
on E, m := |E |, and Pk(E) denotes the collection of all subsets of E with cardinality
at most k. As in (11), F denotes a set of distinct representatives for the equivalence
classes of the relation ∼ in (10), and Fk is (as in (13)) a set of distinct representatives
for those classes that contain at least one set of cardinality at most k. For any F ⊆ E ,
check that the subsets of E that are equivalent to F are precisely those of the form
F�D, D ∈ C∗, and that for two distinct elements D1 and D2 in C∗, F�D1 �= F�D2.
Therefore, |F | = 2m/|C∗| and

|Fk | ≤ |Pk(E)| =
k∑

i=0

(
m

i

)

= O(mk).

Such a set Fk can be constructed using the following simple procedure: Order the ele-
ments of E as e1, . . . , em and order the elements of Pk(E) by increasing cardinalities as
∅, {e1}, . . . , {em}, {e1, e2}, . . . , {em−1, em}, . . . , {e1, . . . , ek}, . . . , {em−k+1, . . . , em},
denoted as X1 = ∅, X2, X3, . . . . We successively scan the elements X1, X2, . . . and
decide which ones should be selected in Fk in the following way: First select F1 := X1.
Then, say X1, . . . , Xi have been scanned and we have selected {F1, . . . , Fr } ⊆
{X1, . . . , Xi }; if Xi+1�Fs �∈ C∗ ∀s = 1, . . . , r , then Fr+1 := Xi+1 is selected;
otherwise we do not select it; go on with next set Xi+2.

Let F1, . . . , Fp be the sets which have been selected by this procedure. Then,
Fr �∼ Fr ′ for 1 ≤ r < r ′ ≤ p, and any X ∈ Pk(E) is equal or equivalent to one of
F1, . . . , Fp. Therefore, the set {F1, . . . , Fp} constitutes a set of distinct representatives
for the classes of ∼ containing some set of size at most k and thus it can be chosen for
Fk . Moreover it has the property that any member of Fk has the smallest cardinality
in its equivalence class.

The above procedure makes a number of calls to a membership oracle in C∗ which
is of order O(mk), thus polynomial in m = |E |, when k is fixed.

Next we see how to construct the entries of MBk (y). For this we need to build the
multiplication table: for any F, F ′ ∈ Fk , we must find the element F ′′ ∈ F for which
xF xF ′ = xF ′′

modulo IM or, equivalently, F�F ′ ∼ F ′′. As |F�F ′| ≤ 2k, F ′′ ∈
F2k . Therefore, in order to build MBk (y) it suffices to build the set F2k which, for
fixed k, can be done with a polynomial number of calls to a membership oracle for C∗.

Remark 3.12 On the other hand, let us point out that, given F ⊆ E , the problem of
finding a representative F ′ of minimum cardinality in the equivalence class of F is
hard in general. (Of course, if we fix the cardinality of F the problem becomes easy
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as we just observed.) Indeed this is the problem:

min |D�F | such that D ∈ C∗ (19)

or equivalently

max wT x such that x ∈ CYC(M∗), (20)

after defining w ∈ R
E by we = −1 for e ∈ F and we = 1 for e ∈ E\F (and noting

that wT χ D = |E | − 2|F�D|).
When M is a cographic matroid, the above problem (19) asks to find a minimum

cardinality T -join (where T is the set of odd degree nodes in F) which can be solved
in polynomial time (see [6]).

When M is a graphic matroid, the above problem (20) is an instance of the maxi-
mum cut problem, which is an NP-hard problem for general graphs. However (20) is
polynomial time solvable if M has no M(K5)-minor (see [1]).

The problem (20) is also polynomial time solvable when M or M∗ does not have
F7 or M(K5)

∗ as a minor; see [11] for details and for other classes of matroids for
which (20) is polynomial time solvable.

4 Matroids whose cycle ideals are TH1-exact

4.1 Matroid minors

Let M = (E, C) be a binary matroid and e ∈ E . Set

C\e := {C ∈ C | e �∈ C}, C/e := {C\{e} | C ∈ C}.

Then, M\e := (E\{e}, C\e) and M/e := (E\{e}, C/e) are again binary matroids;
one says that M\e is obtained by deleting e and M/e by contracting e. A minor of
M is obtained by a sequence of deletions and contractions, thus of the form M\X/Y
for disjoint X, Y ⊆ E . In the language of binary spaces, C\e arises from C by taking
the intersection with the hyperplane xe = 0, while C/e arises by projecting C onto
R

E\{e}.

Example 4.1 Let Mr denote the r × (2r − 1) matrix whose columns are all non-
zero 0/1 vectors of length r , and let Pr denote the binary matroid represented by
Mr , called the binary projective space of dimension r − 1. One can verify that Pr

has 2r cocycles; the non-empty cocycles have size 2r−1 and thus are cocircuits.
Hence, CYC(P∗

r ) is a simplex and IP∗
r is TH1-exact. When n = 3,P3 =: F7

is called the Fano matroid. It will follow from Theorem 4.6 that I F7 is also TH1-
exact.
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Example 4.2 R10 is the binary matroid on 10 elements, represented by the matrix

⎛

⎜
⎜
⎜
⎜
⎝

34 35 45 23 24 25 13 14 15 12

1 1 1 1 1 1 0 0 0 0
1 1 1 0 0 0 1 1 1 0
1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 1 1 0 1 1
0 0 1 0 1 1 0 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

,

where it is convenient to index the columns by the edge set E5 of K5. Then the cycles of
R10 correspond to the even cycles of K5, and the cocycles of R10 to the cuts of K5 and
their complements. Note that R10 is isomorphic to its dual. Consider the inequality:

∑

e∈F

xe −
∑

e∈E5\F

xe ≥ −4, (21)

where F consists of three edges adjacent to a common vertex (e.g. F = {12, 13, 14}).
(Thus (21) is of the form (22), but with a shifted right hand side.) One can verify that
(21) defines a facet of CYC(R10) and that the linear function in (21) takes three distinct
values on the cycles of R10 (namely, 0, 4, and -4). Therefore, in view of Theorem 2.2,
we can conclude that R10 is not TH1-exact.

4.2 The cycle polytope

As each cycle and cocycle have an even intersection, the following inequalities are
valid for the cycle polytope CYC(M):

∑

e∈F

xe −
∑

e∈D\F

xe ≥ 2 − |D| for D ∈ C∗, F ⊆ D, |F | odd. (22)

Let MET(M) be the polyhedron in R
E defined by the inequalities (22) together with

−1 ≤ xe ≤ 1 (e ∈ E). We have CYC(M) ⊆ MET(M). In particular, CYC(M)

is contained in the hyperplane xe = 1 if e is a coloop of M, and it is contained in
the hyperplane xe − x f = 0 if e, f are coparallel. Thus we may assume without
loss of generality that M has no coloops and no coparallel elements. We will use the
following known results.

Lemma 4.3 [2, Corollary 4.21] Let M be a binary matroid with no F∗
7 minor. The

inequality (22) defines a facet of CYC(M) if and only if D is a chordless cocircuit of
M.

Theorem 4.4 [2, Theorem 4.22] For a binary matroid M, CYC(M) = MET(M) if
and only if M has no F∗

7 , R10 or M∗
K5

minors.

Recall that IM is TH1-exact if CYC(M) = TH1(IM).
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Lemma 4.5 Assume M has no F∗
7 minor. If IM is TH1-exact then M does not have

any chordless cocircuit of length at least five.

Proof Suppose D = {e1, . . . , ek} is a chordless cocircuit of M with k = |D| ≥ 5.
By Lemma 4.3, the inequality

xe1 − xe2 − · · · − xek ≥ 2 − k

defines a facet of CYC(M). We now use the following claim [2, Lemma 4.17]: For
each even subset F ⊆ D, there exists a cycle C ∈ C for which C ∩ D = F . Thus
we can find three cycles whose intersections with D are respectively ∅, {e2, e3} and
{e2, e3, e4, e5}. Then the linear form xe1 − xe2 − · · · − xek evaluated at each of these
three cycles takes the values 2 − k, 6 − k, 10 − k. In view of Theorem 2.2 we can thus
conclude that IM is not TH1-exact. ��
Theorem 4.6 Assume M has no F∗

7 , R10 or M∗
K5

minors. Then IM is TH1-exact if
and only if M does not have any chordless cocircuit of length at least 5.

Proof Lemma 4.5 gives the ‘only if’ part. For the ‘if’ part, it suffices to verify that, if
D is a cocircuit of length at most 4 and F is an odd subset of D, then the linear form∑

e∈F xe − ∑
e∈D\F xe takes two values when evaluated at cycles of M, and then to

apply Theorems 4.4 and 2.2. ��
Corollary 4.7 The cycle ideal of a graphic matroid MG is TH1-exact if and only if
G has no chordless cut of size at least 5.

Proof Directly from Theorem 4.6 since graphic matroids do not have F∗
7 , R10 or M∗

K5
minors. ��
Lemma 4.8 If IM is THk-exact, then the cycle ideal of any deletion minor of M is
also THk-exact.

Proof Say M′ = M\e1 is a deletion minor of M, where E = {e1, . . . , em} and
E ′ = E\{e1}. Take x′ ∈ THk(IM′); we show that x′ ∈ CYC(M′). For this extend x′
to x ∈ R

E by setting xe1 := 1. We verify that x ∈ THk(IM).
For this consider a linear polynomial f ∈ RE of the form f = s + q where s is

a sos of degree at most 2k and q ∈ IM. Define the polynomials f ′, s′, q ′ ∈ RE ′ by
f ′(xe2 , . . . , xem ) = f (1, xe2 , . . . , xem ); similarly for q ′, s′. Obviously s′ is sos with
degree at most 2k. Since q vanishes on {χC : C ∈ C}, it vanishes on all χC , C ∈ C,
with xe1 = 1. This last fact is equivalent to saying that q ′ vanishes on {χC : C ∈ C′}.
Therefore, f ′ is k-sos modulo IM′ and so f ′(x′) ≥ 0 as x′ ∈ THk(IM′). In particular,
f (x) = f ′(x′) ≥ 0 and x ∈ THk(IM) = CYC(M).

Thus x is a convex combination of ±1-incidence vectors of cycles of M; as xe1 = 1
no cycle in the combination uses e1, which thus gives a decomposition of x′ as a convex
combination of cycles of M′. ��
Remark 4.9 On the other hand, the property of being TH1-exact is not preserved under
taking contraction minors. Indeed, every binary matroid can be realized as a contrac-
tion minor of some dual binary projective space P∗

r (see [10]). Now we observed
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in Example 4.1 that the cycle ideal of P∗
r is TH1-exact, while IM is not always

TH1-exact.

See Sect. 5 for examples of cographic matroids whose cycle ideal is TH2-exact
while they have a contraction minor whose cycle ideal is not THk-exact for large k
(this is the case for wheels, cf. Corollary 5.10).

We now characterize the TH1-exact cographic matroids. We begin with a lemma
relating graph and matroid minors involving K5.

Lemma 4.10 The cographic matroid M∗
G of a graph G has a M∗

K5
minor if and only

if K5 is a contraction minor of G.

Proof The ‘if part’ is obvious since if K5 is a contraction minor of G, then M∗
K5

is a
deletion minor of M∗

G . Conversely assume that M∗
K5

is a minor of M∗
G . By Whitney’s

2-isomorphism theorem (cf. [21]), K5 is 2-isomorphic to a minor H of G; but then
H must be isomorphic to K5 as the the only graph 2-isomorphic to K5 is K5 itself.
Hence K5 is a minor of G, which implies that K5 is also a contraction minor of G. ��
Corollary 4.11 The cycle ideal of a cographic matroid M∗

G is TH1-exact if and only
if M∗

G has no M∗
K5

minor and no chordless cocircuit of length at least 5.

Proof Note that M∗
G contains no F∗

7 or R10 minor. Hence in view of Theorem 4.6, it
suffices to show that if M∗

G is TH1-exact then M∗
G has no M∗

K5
minor. So assume that

M∗
G is TH1-exact. As M∗

K5
is not TH1-exact (cf. Example 3.8), Lemma 4.8 implies

that M∗
K5

is not a deletion minor of M∗
G . Hence K5 is not a contraction minor of G

which, by Lemma 4.10, implies that M∗
K5

is not a minor of M∗
G . ��

Reformulating this last result we arrive at a characterization of ‘cut-perfect’ graphs,
answering Problem 8.4 in [18].

Corollary 4.12 The cut ideal of a graph G is TH1-exact if and only if G has no K5
minor and no chordless circuit of length at least 5.

In [24, Theorem 3.2], Sullivant obtains the same characterization for compressed
cut polytopes; namely he proves that CUT(G) is compressed if and only if G has no
K5 minor and no chordless cycles of length at least 5. See [9, Sect. 4] for comments
on the connection between compressed polytopes and TH1-exactness.

5 The theta bodies for cut ideals of circuits

In this section we determine the exact order k for which the cut ideal I Cn of a circuit
Cn with n edges is THk-exact. We also obtain some results on graphs whose cut ideal
is TH2-exact. We begin with a result determining when the inequalities (22) associated
to circuits of G are valid for THk(I G).

Theorem 5.1 Let C be a circuit of a graph G, let e ∈ C, and let k be an integer such
that 4k ≥ |C |. Then the inequality
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xe −
∑

f ∈C\{e}
x f ≥ 2 − |C | (23)

is valid for THk(I G).

The proof uses the following preliminary results. For convenience, for a graph
G = (V, E), let Sk denote the set of polynomials f ∈ RE that are k-sos modulo the
cut ideal I G.

Lemma 5.2 For a graph G, let F1, F2, F3, F4 ⊆ E with |Fi | ≤ k and such that
F1�F2�F3�F4 is a cycle of G. Then 2 + xF1 − xF2 − xF3 − xF4 ∈ Sk .

Proof We use the following fact: As C := F1�F2�F3�F4 is a cycle, 1 − xC ∈
I G by Theorem 3.4, and thus 1 ≡ xC ≡ xF1 xF2 xF3 xF4 modulo I G. This implies
that xFi xFj ≡ xFk xFl for {i, j, k, l} = {1, 2, 3, 4}. Now, one can easily verify that
(2 + xF1 − xF2 − xF3 − xF4)2 ≡ 4(2 + xF1 − xF2 − xF3 − xF4) modulo I G, which
gives the result. ��
Lemma 5.3 For a graph G, let A, B ⊆ E with |A|, |B|, |A�B| ≤ k. Then 1 + xA −
xB − xA�B ∈ Sk .

Proof We have (1 + xA − xB − xA�B)2 ≡ 4 + 2(xA − xB − xA�B) + 2(−xAxB −
xAxA�B + xBxA�B) ≡ 4(1 + xA − xB − xA�B) modulo I G. ��
Lemma 5.4 For a graph G, let F ⊆ E, e ∈ F, and k ≥ |F |. Then:

(i) k − 1 + xe −
∑

f ∈F\{e}
x f − xF ∈ Sk,

(ii) k − 1 −
∑

f ∈F

x f + xF ∈ Sk .
(24)

Proof It suffices to show the result for k = |F |. We show (i) using induction on k ≥ 2.
(The proof for (ii) is analogous.) For k = 2, F = {e, f }, we have 1+xe −x f −xex f ∈
S2 by Lemma 5.3. Consider now |F | = k ≥ 3 and let g ∈ F\{e}. By the induction
assumption applied to the set F\{g}, we have:

k − 2 + xe −
∑

f ∈F\{e,g}
x f − xF\{g} ∈ Sk−1 ⊆ Sk .

Applying Lemma 5.3 to the sets F\{g}, {g} and F , we obtain

1 + xF\{g} − xg − xF ∈ Sk .

Summing up the above two relations yield the desired relation (24) (i). ��
Proof (of Theorem 5.1) Let C be a circuit in G with |C | ≤ 4k, i.e. k ≥ m := �|C |/4	.
Let F denote the edge set of C and let e ∈ F . We show that the linear polynomial
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fC := xe − ∑
f ∈F\{e} x f + |C | − 2 is k-sos modulo I G. For this we consider a par-

tition of F into four sets F1, . . . , F4 with |Fi | ≤ m ≤ k for i = 1, . . . , 4; say e ∈ F1.
Applying Lemma 5.2, we obtain that

2 + xF1 − xF2 − xF3 − xF4 ∈ Sk .

Next, applying the condition (24) (i) to F1 we obtain

|F1| − 1 + xe −
∑

f ∈F1\{e}
x f − xF1 ∈ Sk,

and applying the condition (24) (ii) to Fi yields

|Fi | − 1 −
∑

f ∈Fi

x f + xFi ∈ Sk ∀i = 2, 3, 4.

Summing up the above relations yields the desired result, namely fC is k-sos modulo
I G and thus fC ≥ 0 is valid for THk(I G). ��
Corollary 5.5 For the circuit Cn of length n, the equality THk(I Cn) = CUT(Cn)

holds for n ≤ 4k.

Proof Consider the circuit Cn = ([n], E) with n ≤ 4k. By Theorem 4.4, the com-
plete linear description of CUT(Cn) is provided by the inequalities (i)

∑
e∈F xe −∑

e∈E\F xe ≥ 2 − n where F is any odd subset of E , and (ii) −1 ≤ xe ≤ 1 for
all e ∈ E . Thus in order to show THk(I Cn) = CUT(Cn), it suffices to show that
the inequalities (i),(ii) are all valid for THk(I Cn). This is obvious for (ii). Using the
well-known switching symmetries of the cut polytope (cf. [2,5]), it suffices to show
the desired property for the inequalities (i) with |F | = 1. But this result has just been
shown in Theorem 5.1. ��
Lemma 5.6 If n ≥ 4k + 1, then THk(I Cn) = [−1, 1]E .

Proof In view of Remark 3.5, it suffices to observe that the constraints (14) defining
the theta body THk(I Cn) reduce to the constraints (14) (i) and (15). Let Fk be the set
indexing the combinatorial moment matrices in the definition of THk(I Cn), where we
can assume that each Fi ∈ Fk has cardinality at most k. Now consider a constraint
of type (14) (ii). Since F1, . . . , F4 ∈ Fk have size at most k and �i Fi is a cycle of
Cn , this cycle must be the empty set since |�i Fi | ≤ 4k < n. Therefore we have a
constraint of type (15). ��
Corollary 5.7 The smallest order k at which I Cn is THk-exact is k = �n/4	.

Proof Directly from Theorem 5.1 and Lemma 5.6. ��
Remark 5.8 One can verify that the linear form xe − ∑

f ∈Cn\{e} x f takes �(n + 1)/2�
distinct values at the cut vectors of the circuit Cn . By (3), this permits to conclude that
I Cn is THk-exact for k = �(n +1)/2�−1. This value is however larger than the order
�n/4	 shown in Corollary 5.7 (for n ≥ 6). Thus the reverse implication of (3) does
not hold.
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Corollary 5.9 If the graph G has no K5 minor and no chordless circuit of length at
least 9, then its cut ideal I G is TH2-exact.

Proof Direct application of Theorems 4.4 and 5.1. ��
Note that the reverse implication in Corollary 5.9 does not hold. We will see below

(in Corollary 5.10) that the cut ideal of a wheel is TH2-exact, but a wheel can contain
a chordless circuit of arbitrary length.

While we could characterize the graphs whose cut ideal is TH1-exact, it is an open
problem to characterize the graphs whose cut ideal is TH2-exact. We conclude this
section with several observations about these graphs.

Corollary 5.10 If the graph G has no K5 minor and has diameter at most 2 then its
cut ideal I G is TH2-exact.

Proof As G has diameter at most 2, Lemma 3.10 gives the inclusion TH2(I G) ⊆
Q2(G). It was shown in [15] that if G has no K5 minor then Q2(G) = CUT(G). ��

A wheel of length n is a graph consisting of a circuit of length n with an additional
vertex adjacent to all vertices on the circuit. As wheels have no K5 minor and their
diameter is 2, their cut ideal is TH2-exact. Hence, within graphs with no K5 minors,
the cut ideal is TH2-exact for the following two classes: graphs with diameter at most 2
and graphs with no chordless circuit of size at least 9. Note that there is no containment
between these two classes; e.g. wheels of length n ≥ 9 have diameter 2 but contain a
circuit of length n, and C8 has diameter larger than 2.

The following further graphs have a TH2-exact cut ideal: K5, K6, K7 (and probably
K8 too, as conjectured in [15]). Finally, if the cut ideal of a graph G is TH2-exact,
then the same holds for the cut ideal of any contraction minor H of G; in particular,
C9 is not a contraction minor of G.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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