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Abstract We discuss necessary and sufficient conditions for a sensing matrix to
be “s-good”—to allow for exact �1-recovery of sparse signals with s nonzero entries
when no measurement noise is present. Then we express the error bounds for imperfect
�1-recovery (nonzero measurement noise, nearly s-sparse signal, near-optimal solution
of the optimization problem yielding the �1-recovery) in terms of the characteristics
underlying these conditions. Further, we demonstrate (and this is the principal result
of the paper) that these characteristics, although difficult to evaluate, lead to verifi-
able sufficient conditions for exact sparse �1-recovery and to efficiently computable
upper bounds on those s for which a given sensing matrix is s-good. We establish
also instructive links between our approach and the basic concepts of the Compressed
Sensing theory, like Restricted Isometry or Restricted Eigenvalue properties.

Keywords Compressed sensing · �1-recovery · Sparse recovery

Mathematics Subject Classification (2000) 90C90 · 90C05 · 65K02

Research of Arkadi Nemirovski was supported by the Office of Naval Research grant # N000140811104.

A. Juditsky (B)
LJK, Université J. Fourier, B.P. 53, 38041 Grenoble Cedex 9, France
e-mail: Anatoli.Juditsky@imag.fr

A. Nemirovski
Georgia Institute of Technology, Atlanta, GA 30332, USA
e-mail: nemirovs@isye.gatech.edu

123



58 A. Juditsky, A. Nemirovski

1 Introduction

In the existing literature on sparse signal recovery and Compressed Sensing (see [4–
10,18–22] and references therein) the emphasis is on assessing sparse signal w ∈ R

n

from an observation y ∈ R
k (in this context k � n):

y = Aw + ξ, ‖ξ‖ ≤ ε, (1.1)

where ‖ · ‖ is a given norm on R
k, ξ is the observation error and ε ≥ 0 is a given

upper bound on the error magnitude, measured in the norm ‖ · ‖. One of the most pop-
ular (computationally tractable) estimators which is well suited for recovering sparse
signals is the �1-recovery given by

ŵ ∈ argmin z {‖z‖1 : ‖Az − y‖ ≤ ε}. (1.2)

The existing Compressed Sensing theory focuses on this estimator and since our main
motivation comes from the Compressed Sensing, we will also concentrate on this par-
ticular recovery. It is worth to mention that other closely related estimation techniques
are used in statistical community, Selector” (cf. [5]), provided by

ŵ′ ∈ argmin z

{

‖z‖1 : ‖AT (Az − y)‖∞ ≤ ε
}

, (1.3)

and Lasso estimator, see [4,21], which under sparsity scenario exhibits similar
behavior.

The theory offers strong results which state, in particular, that if w is s-sparse
(i.e., has at most s nonzero entries) and A possesses a certain well-defined property,
then the �1-recovery of w is close to w, provided the observation error ε is small. For
instance, necessary and sufficient conditions of exactness of �1-recovery in the case of
noiseless observation (when ε = 0) has been established in [15,16,23]. Specifically,
in [23] it is shown that w is the unique solution of the noiseless �1-recovery problem

min
z

{‖z‖1 : Az = Aw}. (1.4)

if and only if the kernel Ker A of the sensing matrix is strict s-balanced, the latter
meaning that for any set I ⊂ {1, . . . , n} of cardinality ≤ s it holds

∑

i∈I

|zi | <
∑

i 
∈I

|zi | for any z ∈ Ker A (1.5)

(what the above condition is sufficient for the �1-recovery to be exact in the noiseless
case was stated in [14]).

Some particularly impressive results make use of the Restricted Isometry prop-
erty which is as follows: a k × n matrix A is said to possess the Restricted Isometry
(RI(δ, m)) property with parameters δ ∈ (0, 1) and m, where m is a positive integer, if
√

1 − δ‖x‖2 ≤ ‖Ax‖2 ≤ √
1 + δ‖x‖2 for all x ∈ R

n with at most m nonzero entries. (1.6)
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On verifiable sufficient conditions for sparse signal recovery via �1 minimization 59

For instance, the following result is well known ([10, Theorem 1.2] or [9, Theorem
4.1]): let ‖ · ‖ in (1.1) be the Euclidean norm ‖ · ‖2, and let the sensing matrix A satisfy
RI(δ, 2s)-property with δ <

√
2 − 1. Then

‖ŵ − w‖1 ≤ 2(1 − ρ)−1[αε
√

s + (1 + ρ)‖w − ws‖1] (1.7)

where α = 2
√

1+δ
1−δ

, ρ =
√

2δ
1−δ

and ws is obtained from w by zeroing all but the
s largest in absolute values entries. The conclusion is that when A is RI(δ, 2s) with
δ <

√
2−1, �1-recovery reproduces well signals with small s-tails (small ‖w−ws‖1),

provided that the observation error is small. Even more impressive is the fact that there
are k ×n sensing matrices A which possess, say, the RIP(1/4, 2s)-property for “large”
s – as large as O (k/ ln(n/k)). For instance, this is the case, with overwhelming proba-
bility, for matrices obtained by normalization (dividing columns by their ‖ ·‖2-norms)
of random matrices with i.i.d. standard Gaussian or ±1 entries, as well as for normal-
izations of random submatrices of the Fourier transform or other orthogonal matrices.

On the negative side, random matrices are the only known matrices which possess
the RI(δ, 2s)- property for such large values of s. For all known deterministic families
of k ×n matrices provably possessing the RI(δ, 2s)-property, one has s = O(

√
k) (see

[13]), which is essentially worse than the bound s = O(1) (k/ ln(n/k)) promised by
the RI-based theory. Moreover, RI-property itself is “intractable” – the only currently
available technique to verify the RI(δ, m) property for a k × n matrix amounts to test
all its k × m submatrices. In other words, given a large sensing matrix A, one can
never be sure that it possesses the RI(δ, m)-property with a given m � 1.

Certainly, the RI-property is not the only property of a sensing matrix A which
allows to obtain good error bounds for �1-recovery of sparse signals. Two related
characteristics are the Restricted Eigenvalue assumption introduced in [4] and the
Restricted Correlation assumption of [3], among others. However, they share with the
RI-property not only the nice consequences as in (1.7), but also the drawback of being
computationally intractable. To summarize our very restricted and sloppy description
of the existing results on �1-recovery, neither strict s-balancedness, nor Restricted
Isometry, or Restricted Correlation assumption and the like, do allow to answer affir-
matively the question whether for a given sensing matrix A, an accurate �1-recovery
of sparse signals with a given number s of nonzero entries is possible.

Now, suppose we face the following problem: given a sensing matrix A, which
we are allowed to modify in certain ways to obtain a new matrix A, our objective is,
depending on problem’s specifications, either the maximal improvement, or the min-
imal deterioration of the sensing properties of A with respect to sparse �1-recovery.
As a simple example, one can think, e.g., of a 2- or 3-dimensional n-point grid E of
possible locations of signal sources and an N -element grid R of possible locations
of sensors. A sensor at a given location measures a known linear form of the signals
emitted at the nodes of E which depends on location, and the goal is to place a given
number k < N of sensors at the nodes of R in order to be able to recover, via the
�1-recovery, all s-sparse signals. Formally speaking, we are given an N × n matrix
A, and our goal is to extract from it a k × n submatrix A which is s-good – such
that whenever the true signal w in (1.1) is s-sparse and there is no observation error
(ξ = 0), the �1-recovery (1.2) recovers w exactly. To the best of our knowledge, the
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60 A. Juditsky, A. Nemirovski

only existing computationally tractable techniques which allow to approach such a
synthesis problem are those based on mutual incoherence

μ(A) = max
i 
= j

|AT
i A j |

AT
i Ai

(1.8)

of a k × n sensing matrix A with columns Ai (assumed to be nonzero). Clearly, the
mutual incoherence can be easily computed even for large matrices. Moreover, bounds
of the same type as in (1.7) can be obtained for matrices with small mutual incoher-
ence: a matrix A with mutual incoherence μ(A) and columns A j of unit ‖ · ‖2-norm
satisfies RI(δ, m) Assumption (1.6) with δ = (m − 1)μ(A). Unfortunately, the lat-
ter relation implies that μ should be very small to certify the possibility of accurate
�1-recovery of non-trivial sparse signals, so that the estimates of a “goodness” of
sensing for �1-recovery based on mutual incoherence are very conservative.

The goal of this paper is to provide new computationally tractable sufficient con-
ditions for sparse recovery.

The overview of our main results is as follows.

1. Let for x ∈ R
n

‖x‖s,1 = max
Card(I )≤s

∑

i∈I

|xi |

stand for the sum of s maximal magnitudes of components of x . Set

γ̂s(A) = max
x

{‖x‖s,1 : ‖x‖1 ≤ 1, Ax = 0
}

.

Starting from optimality conditions for the problem (1.4) of noiseless �1-recovery,
we show that A is s-good if and only if γ̂s(A) < 1/2, thus recovering some of the
results of [23]. While γ̂s(A) is fully responsible for ideal �1-recovery of s-sparse
signals under ideal circumstances, when there is no observation error in (1.1) and
(1.2) is solved to precise optimality, in order to cope with the case of imperfect
�1-recovery (nonzero observation error, nearly s-sparse true signal, (1.2) is not
solved to exact optimality), we embed the characteristic γ̂s(A) into a single-para-
metric family of characteristics γ̂s(A, β), 0 ≤ β ≤ ∞. Here

γ̂s(A, β) = max
x

{‖x‖s,1 − β‖Ax‖ : ‖x‖1 ≤ 1
}

(note that γ̂s(A, β) is nonincreasing in β and is equal to γ̂s(A) for all large enough
values of β). We then demonstrate (Sect. 3) that whenever β < ∞ is such that
γ̂s(A, β) < 1/2, the error of imperfect �1-recovery ω̂ admits an explicit upper
bound, similar in structure the RI-based bound (1.7):

‖ω̂ − ω‖1 ≤ (1 − 2γ̂ (A, β))−1[2β(ε) + 2‖w − ws‖1 + ν]
where ε is the measurement error and ν is the inaccuracy in solving (1.2).
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On verifiable sufficient conditions for sparse signal recovery via �1 minimization 61

2. The characteristics γ̂s(A, β) is still difficult to compute. In Sect. 4, we develop
efficiently computable lower and upper bounds on γ̂s(A, β). In particular, we show
that the quantity αs(A, β),

αs(A, β) := min
Y=[y1,...,yn ]∈Rk×n

{

max
1≤ j≤n

‖(I − Y T A)e j‖s,1 : ‖yi‖∗ ≤ β, 1 ≤ i ≤ n

}

(here ‖ · ‖∗ is the norm conjugate to ‖ · ‖) is an upper bound on γ̂s(A, sβ).
This bound provides us with an efficiently verifiable (although perhaps conserva-
tive) sufficient condition for s-goodness of A, namely, αs(A, β) < 1/2. We dem-
onstrate that our verifiable sufficient conditions for s-goodness are less restrictive
than those based on mutual incoherence. On the other hand, the proposed lower
bounds on γ̂s(A, β) allow to bound from above the values of s for which A is
s-good.
We also study limitations of our sufficient conditions for s-goodness: unfortu-
nately, it turns out that these conditions, as applied to a k × n matrix A, can-
not justify its s-goodness when s > 2

√
2k, unless A is “nearly square”. While

being much worse than the theoretically achievable, for appropriate A’s, level
O(k/ ln(n/k)) of s for which A may be s-good, this “limit of performance” of our
machinery nearly coincides with the best known values of s for which explicitly
given individual s-good k × n sensing matrices are known.

3. In Sect. 5, we investigate the implications of the RI property in our context. While
these implications do not contribute to the “constructive” part of our results (since
the RI property is difficult to verify), they certainly contribute to better under-
standing of our approach and integrating it into the existing Compressed Sensing
theory. The most instructive result of this Section is as follows: whenever A is,
say, RI(1/4, m) (so that the A is s-good for s = O(1)m), our verifiable sufficient
conditions do certify that A is O(1)

√
m-good – they guarantee “at least the square

root of the true level s of goodness”.
4. Section 6 presents some very preliminary numerical illustrations of our machin-

ery. These illustrations, in particular, present experimental evidence of how sig-
nificantly this machinery can outperform the mutual-incoherence-based one – the
only known to us existing computationally tractable way to certify goodness.

When this paper was finished, we become aware of the preprint [12] which con-
tain results closely related to some of those in our paper. The authors of [12] have
“extracted” from [11] the sufficient condition γ̂s(A) < 1/2 for s-goodness of A and
proposed an efficiently computable upper bound on γ̂s(A) based on semidefinite relax-
ation. This bound is essentially different from our, and it could be interesting to find
out if one of these bounds is “stronger” than the other.

2 Characterizing s-goodness

2.1 Characteristics γs(·) and γ̂s(·): definition and basic properties

The “minimal” requirement on a sensing matrix A to be suitable for recovering
s-sparse signals (that is, those with at most s nonzero entries) via �1-minimization is as
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follows: whenever the observation y in (1.2) is noiseless and comes from an s-sparse
signal w : y = Aw,w should be the unique optimal solution of the optimization
problem in (1.2) where ε is set to 0. This observation motivates the following.

Definition 1 Let A be a k × n matrix and s be an integer, 0 ≤ s ≤ n. We say that A
is s-good, if for every s-sparse vector w ∈ R

n, w is the unique optimal solution to the
optimization problem

min
x∈Rn

{‖x‖1 : Ax = Aw} . (2.9)

Let s∗(A) be the largest s for which A is s-good; this is a well defined integer, since by
trivial reasons every matrix is 0-good. It is immediately seen that s∗(A) ≤ min[k, n]
for every k × n matrix A.

From now on, ‖ · ‖ is the norm on R
k and ‖ · ‖∗ is its conjugate norm:

‖y‖∗ = max
v

{

vT y : ‖v‖ ≤ 1
}

.

We are about to introduce two quantities which are “responsible” for s-goodness.

Definition 2 Let A be a k ×n matrix, β ∈ [0,∞] and s ≤ n be a nonnegative integer.
We define the quantities γs(A, β), γ̂s(A, β) as follows:

(i) γs(A, β) is the infinum of γ ≥ 0 such that for every vector z ∈ R
n with s

nonzero entries, equal to ±1, there exists a vector y ∈ R
k such that

‖y‖∗ ≤ β & (AT y)i

{= zi , zi 
= 0
∈ [−γ, γ ], zi = 0

; (2.10)

If for some z as above there does not exist y with ‖y‖∗ ≤ β such that AT y
coincides with z on the support of z, we set γs(A, β) = ∞.

(ii) γ̂s(A, β) is the infinum of γ ≥ 0 such that for every vector z ∈ R
n with s

nonzero entries, equal to ±1, there exists a vector y ∈ R
k such that

‖y‖∗ ≤ β & ‖AT y − z‖∞ ≤ γ. (2.11)

To save notation, we will skip indicating β when β = ∞, thus writing γs(A) instead
of γs(A,∞), and similarly for γ̂s .

Several immediate observations are in order:

A. It is easily seen that the set of the values of γ participating in (i–ii) are closed, so
that when γs(A, β) < ∞, then for every vector z ∈ R

n with s nonzero entries,
equal to ±1, there exists y such that

‖y‖∗ ≤ β & (AT y)i

{= zi , zi 
= 0
∈ [−γs(A, β), γs(A, β)], zi = 0

; (2.12)
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On verifiable sufficient conditions for sparse signal recovery via �1 minimization 63

Similarly, for every z as above there exists ŷ such that

‖ŷ‖∗ ≤ β & ‖AT ŷ − z‖∞ ≤ γ̂s(A, β). (2.13)

B. The quantities γs(A, β) and γ̂s(A, β) are convex nonincreasing functions of
β, 0 ≤ β < ∞. Moreover, from A it follows that for a given A, s and all large
enough values of β one has γs(A, β) = γs(A) and γ̂s(A, β) = γ̂s(A).

C. Taking into account that the set {AT y : ‖y‖∗ ≤ β} is convex, it follows that if
γs(A, β) < ∞, then the vectors y satisfying (2.12) exist for every s-sparse vector
z with ‖z‖∞ ≤ 1, not only for vectors with exactly s nonzero entries equal to
±1. Similarly, vectors ŷ satisfying (2.13) exist for all s-sparse z with ‖z‖∞ ≤ 1.
As a byproduct of these observations, we see that γs(A, β) and γ̂s(A, β) are
nondecreasing in s.

Our interest in the quantities γs(·, ·) and γ̂s(·, ·) stems from the following

Theorem 1 Let A be a k × n matrix and s ≤ n be a nonnegative integer.

(i) A is s-good if and only if γs(A) < 1.
(ii) For every β ∈ [0,∞] one has

(a) γ := γs(A, β) < 1 ⇒ γ̂s

(

A, 1
1+γ

β
)

= γ
1+γ

< 1/2;
(b) γ̂ := γ̂s(A, β) < 1/2 ⇒ γs

(

A, 1
1−γ̂

β
)

= γ̂
1−γ̂

< 1.
(2.14)

The proof of Theorem 1 is given in Appendix A.
Theorem 1 explains the importance of the characteristic γs(·) in the context of �1-

recovery. However, it is technically more convenient to deal with the quantity γ̂s(·).

2.2 Equivalent representation of γ̂s(A)

According to Theorem 1 (ii), the quantities γs(·) and γ̂ (·) are tightly related. In partic-
ular, the equivalent characterization of s-goodness in terms of γ̂s(A) reads as follows:

A is s-good ⇔ γ̂s(A) < 1/2.

In the sequel, we shall heavily utilize an equivalent representation γ̂s(A, β) which, as
we shall see in Sect. 4, has important algorithmic consequences. The representation
is as follows:

Theorem 2 Consider the polytope

Ps = {u ∈ R
n : ‖u‖1 ≤ s, ‖u‖∞ ≤ 1}.

One has

γ̂s(A, β) = max
u,x

{

uT x − β‖Ax‖ : u ∈ Ps, ‖x‖1 ≤ 1
}

. (2.15)
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In particular,

γ̂s(A) = max
u,x

{

uT x : u ∈ Ps, ‖x‖1 ≤ 1, Ax = 0
}

. (2.16)

Proof By definition, γ̂s(A, β) is the smallest γ such that the closed convex set Cγ,β :=
AT Bβ + γ B, where Bβ = {w ∈ R

k : ‖w‖∗ ≤ β} and B = {v ∈ R
n : ‖v‖∞ ≤ 1},

contains all vectors with s nonzero entries, equal to ±1. This is exactly the same as to
say that Cγ,β contains the convex hull of these vectors; the latter is exactly Ps . Now,
γ satisfies the inclusion Ps ⊂ Cγ,β if and only if for every x the support function of
Ps is majorized by that of Cγ,β , namely, for every x one has

max
u∈Ps

uT x ≤ max
y∈C(γ,β)

yT x = max
w,v

{

xT AT w + γ xT v : ‖w‖∗ ≤ β, ‖v‖∞ ≤ 1
}

= β‖Ax‖ + γ ‖x‖1. (2.17)

with the convention that when β = ∞, β‖Ax‖ is ∞ or 0 depending on whether
‖Ax‖ > 0 or ‖Ax‖ = 0. That is, Ps ⊂ Cγ,β if and only if

max
u∈Ps

(uT x − β‖Ax‖) ≤ γ ‖x‖1.

By homogeneity w.r.t. x , it is equivalent to

max
u,x

{

uT x − β‖Ax‖ : u ∈ Ps, ‖x‖1 ≤ 1
}

≤ γ.

Thus, γ̂s(A) is the smallest γ for which the concluding inequality takes place, and we
arrive at (2.15), (2.16). ��

Recall that for x ∈ R
n, ‖x‖s,1 is the sum of the s largest magnitudes of entries in

x , or, equivalently,

‖x‖s,1 = max
u∈Ps

uT x .

Combining Theorem 1, and Theorem 2, we get the following

Corollary 1 For a matrix A ∈ R
k×n one has γ̂s(A) = max

x
{‖x‖s,1 : Ax = 0, ‖x‖1 ≤

1}, 1 ≤ s ≤ n. As a result, matrix A is s-good if and only if the maximum of ‖ · ‖s,1-
norms of vectors x ∈ Ker(A) with ‖x‖1 = 1 is < 1/2.

Note that (2.15) and (2.16) can be seen as an equivalent definition of γ̂s(A, β), and one
can easily prove Corollary 1 without any reference to Theorem 1, and thus without
a necessity even to introduce the characteristic γs(A, β). However, we believe that
from the methodological point of view the result of Theorem 1 is important, since it
reveals the “true origin” of the quantities γs(·) and γ̂s(·) as the entities coming from
the optimality conditions for the problem (2.9).
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3 Error bounds for imperfect �1-recovery via γ̂

We have seen that the quantity γs(A) (or, equivalently, γ̂s(A)) is responsible for
s-goodness of a sensing matrix A, that is, for the precise �1-recovery of an s-sparse
signal w in the “ideal case” when there is no measurement error and the optimization
problem (2.9) is solved to exact optimality. It appears that the same quantities control
the error of �1-recovery in the case when the vector w ∈ R

n is not s-sparse and the
problem (2.9) is not solved to exact optimality. To see this, let ws, s ≤ n, stand for the
best, in terms of �1-norm, s-sparse approximation of w. In other words, ws is the vector
obtained from w by zeroing all coordinates except for the s largest in magnitude.

Proposition 1 Let A be a k × n matrix, 1 ≤ s ≤ n and let γ̂s(A) < 1/2 (or, which is
the same, γs(A) < 1). Let also x be a ν-optimal approximate solution to the problem
(2.9), meaning that

Ax = Aw and ‖x‖1 ≤ Opt(Aw) + ν,

where Opt(Aw) is the optimal value of (2.9). Then

‖x − w‖1 ≤ ν + 2‖w − ws‖1

1 − 2γ̂s(A)
= 1 + γs(A)

1 − γs(A)
[ν + 2‖w − ws‖1].

Proof Let z = x −w and let I be the set of indices of s largest elements of w (i.e., the
support of ws). Denote by x (s) (z(s)) the vector, obtained from x(z) by replacing by
zero all coordinates of x(z) with the indices outside of I . As Az = 0, by Corollary 1,

‖z(s)‖1 ≤ ‖z‖s,1 ≤ γ̂s(A)‖z‖1.

On the other hand, w is a feasible solution to (2.9), so Opt(Aw) ≤ ‖w‖1, whence

‖w‖1 + ν ≥ ‖w + z‖1 = ‖ws + z(s)‖1 + ‖(w − ws) + (z − z(s))‖1

≥ ‖ws‖1 − ‖z(s)‖1 + ‖z − z(s)‖1 − ‖w − ws‖1,

or, equivalently,

‖z − z(s)‖1 ≤ ‖z(s)‖1 + 2‖w − ws‖1 + ν.

Thus,

‖z‖1 = ‖z(s)‖1 + ‖z − z(s)‖1 ≤ 2‖z(s)‖1 + 2‖w − ws‖1 + ν

≤ 2γ̂s(A)‖z‖1 + 2‖w − ws‖1 + ν,

and, as γ̂s(A) < 1/2,

‖z‖1 ≤ 2‖w − ws‖1 + ν

1 − 2γ̂s(A)
.

��
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We switch now to the properties of approximate solutions x to the problem

Opt(y) = min
x∈Rn

{‖x‖1 : ‖Ax − y‖ ≤ ε} (3.18)

where ε ≥ 0 and

y = Aw + ξ, ξ ∈ R
k,

with ‖ξ‖ ≤ ε. We are about to show that in the “non-ideal case”, when w is “nearly
s-sparse” and (3.18) is solved to near-optimality, the error of the �1-recovery remains
“under control” – it admits an explicit upper bound governed by γs(A, β) with a
finite β. The corresponding result is as follows:

Theorem 3 Let A be a k × n matrix, s ≤ n be a nonnegative integer, let ε ≥ 0,
and let β ∈ [0,∞) be such that γ̂ := γ̂s(A, β) < 1/2. Let also w ∈ R

n, let y in
(3.18) be such that ‖Aw − y‖ ≤ ε, and let ws be the vector obtained from w by
zeroing all coordinates except for the s largest in magnitude. Assume, further, that x
is a (υ, ν)-optimal solution to (3.18), meaning that

‖Ax − y‖ ≤ υ and ‖x‖1 ≤ Opt(y) + ν. (3.19)

Then

‖x − w‖1 ≤ (1 − 2γ̂ )−1[2β(υ + ε) + 2‖w − ws‖1 + ν]. (3.20)

Proof Since ‖Aw − y‖ ≤ ε,w is a feasible solution to (3.18) and therefore Opt(y) ≤
‖w‖1, whence, by (3.19),

‖x‖1 ≤ ν + ‖w‖1. (3.21)

Let I be the set of indices of entries in ws . As in the proof of Proposition 1 we denote
by z = x − w the error of the recovery, and by x (s)(z(s)) the vector obtained from x
(z) by replacing by zero all coordinates of x(z) with the indices outside of I . By (2.15)
we have

‖z(s)‖1 ≤ ‖z‖s,1 ≤ β‖Az‖ + γ̂ ‖z‖1 ≤ β(υ + ε) + γ̂ ‖z‖1. (3.22)

On the other hand, exactly in the same way as in the proof of Proposition 1 we conclude
that

‖z‖1 ≤ 2‖z(s)‖1 + 2‖w − ws‖1 + ν,

which combines with (3.22) to imply that

‖z‖1 ≤ 2β(υ + ε) + 2γ̂ ‖z‖1 + 2‖w − ws‖1 + ν.
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Since γ̂ = γ̂s(A, β) < 1/2, this results in

‖z‖1 ≤ (1 − 2γ̂ )−1[2β(υ + ε) + 2‖w − ws‖1 + ν],

which is (3.20). ��

The bound (3.20) can be easily rewritten in terms of γs

(

A,
β

1−γ̂

)

= γ̂
1−γ̂

< 1 instead

of γ̂ = γ̂s(A, β).
The error bound (3.20) for imperfect �1-recovery, while being in some respects

weaker than the RI-based bound (1.7), is of the same structure as the latter bound:
assuming β < ∞ and γ̂s(A, β) < 1/2 (or, equivalently, γs(A, 2β) < 1), the error of
imperfect �1-recovery can be bounded in terms of γ̂s(A, β), β, measurement error ε,
“s-tail” ‖ws −w‖1 of the signal to be recovered and the inaccuracy (υ, ν) to which the
estimate solves the program (3.18). The only flaw in this interpretation is that we need
γ̂s(A, β) < 1/2, while the “true” necessary and sufficient condition for s-goodness
is γ̂s(A) < 1/2. As we know, γ̂s(A, β) = γ̂s(A) for all finite “large enough” values
of β, but we do not want the “large enough” values of β to be really large, since the
larger β is, the worse is the error bound (3.20). Thus, we arrive at the question “what
is large enough” in our context. Here are two simple results in this direction.

Proposition 2 Let A be a k × n sensing matrix of rank k.

(i) Let ‖ · ‖ = ‖ · ‖2. Then for every nonsingular k × k submatrix Ā of A and every
s ≤ k one has

β ≥ β̄ = σ−1( Ā)
√

k, γs(A) < 1 ⇒ γs(A, β) = γs(A), (3.23)

where σ( Ā) is the minimal singular value of Ā.
(ii) Let ‖ · ‖ = ‖ · ‖1, and let for certain ρ > 0 the image of the unit ‖ · ‖1-ball in

R
n under the mapping x �→ Ax contain the ball B = {u ∈ R

k : ‖u‖1 ≤ ρ}.
Then for every s ≤ k

β ≥ β̄ = 1

ρ
, γs(A) < 1 ⇒ γs(A, β) = γs(A) (3.24)

Proof Given s, let γ = γs(A) < 1, so that for every vector z ∈ R
n with s nonzero

entries, equal to ±1, there exists y ∈ R
k such that (AT y)i = sign(xi ) when xi 
= 0

and |(AT y)i | ≤ γ otherwise. All we need is to prove that in the situations of (i) and
(ii) we have ‖y‖∗ ≤ β̄.

In the case of (i) we clearly have ‖ ĀT y‖2 ≤ √
k, whence ‖y‖∗ = ‖y‖2 ≤

σ−1( Ā)‖ ĀT y‖2 ≤ σ−1( Ā)
√

k = β̄, as claimed. In the case of (ii) we have
‖AT y‖∞ ≤ 1, whence

1 ≥ maxv

{

vT AT y : v ∈ R
n, ‖v‖1 ≤ 1

} = maxu
{

yT u : u = Av, ‖v‖1 ≤ 1
}

≥
︸︷︷︸

(∗)

maxu
{

uT y : u ∈ R
k, ‖u‖1 ≤ ρ

} = ρ‖y‖∞ = ρ‖y‖∗,
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where (∗) is due to the inclusion {u ∈ R
k : ‖u‖1 ≤ ρ} ⊂ A {v ∈ R

n : ‖v‖1 ≤ 1}
assumed in (ii). The resulting inequality implies that ‖y‖∗ ≤ 1/ρ, as claimed. ��

4 Efficient bounding of γs(·)

In the previous section we have seen that the properties of a matrix A relative to �1-
recovery are governed by the quantities γ̂s(A, β)—the less they are, the better. While
these quantities is difficult to compute, we are about to demonstrate—and this is the
primary goal of our paper—that γ̂s(A, β) admits efficiently computable “nontrivial”
upper and lower bounds.

4.1 Efficient lower bounding of γ̂s(A, β)

Recall that γ̂s(A, β) ≥ γ̂s(A) for any β > 0. Thus, in order to provide a lower bound
for γ̂s(A, β) it suffices to supply such a bound for γ̂s(A). Theorem 2 suggests the
following scheme for bounding γ̂s(A) from below. By (2.16) we have

γ̂s(A) = max
u∈Ps

f (u), f (u) = max
x

{

xT u : ‖x‖1 ≤ 1, Ax = 0
}

.

Function f (u) clearly is convex and efficiently computable: given u and solving the
LP problem

xu ∈ Argmaxx

{

uT x : ‖x‖1 ≤ 1, Ax = 0
}

,

we get a linear form xT
u v of v ∈ Ps which underestimates f (v) everywhere and coin-

cides with f (v) when v = u. Therefore the easily computable quantity maxv∈Ps xT
u v

is a lower bound on γ̂s(A). We now can use the standard sequential convex approxi-
mation scheme for maximizing the convex function f (·) over Ps . Specifically, we run
the recurrence

ut+1 ∈ Argmaxv∈Ps
xT

ut
v, u1 ∈ Ps,

thus obtaining a nondecreasing sequence of lower bounds f (ut ) = xT
ut

ut on γ̂s(A).
We can terminate this process when the improvement in bounds falls below a given
threshold, and can make several runs starting from randomly chosen points u1.

4.2 Efficient upper bounding of γ̂s(A, β)

We have seen that the representation (2.16) suggests a computationally tractable
scheme for bounding γ̂s(A) from below. In fact, the same representation allows for a
tractable way to bound γ̂s(A) from above, which is as follows. Whatever be a k × n
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matrix Y , we clearly have

max
u,x

{

uT x : ‖x‖1 ≤ 1, Ax = 0, u ∈ Ps

}

= max
u,x

{

uT (x − Y T Ax) : ‖x‖1 ≤ 1, Ax = 0, u ∈ Ps

}

,

whence also

max
u,x

{

uT x : ‖x‖1 ≤ 1, Ax = 0, u ∈ Ps

}

≤ max
u,x

{

uT (x − Y T Ax) : ‖x‖1 ≤ 1, u ∈ Ps

}

.

The right hand side in this relation is easily computable, since the objective in the right
hand side problem is linear in x , and the domain of x in this problem is the convex
hull of just 2n points ±ei , 1 ≤ i ≤ n, where ei are the basic orths:

max
u,x

{

uT (x − Y T Ax) : ‖x‖1 ≤ 1, u ∈ Ps

}

= max
u,i,

1≤i≤n

{

|uT (I − Y T A)ei | : u ∈ Ps

}

= max
1≤i≤n

max
u∈Ps

|uT (I − Y T A)ei | = max
i

‖(I − Y T A)ei‖s,1.

Thus, for all Y ∈ R
k×n ,

γ̂s(A) = max
u,x

{

uT x : ‖x‖1 ≤ 1, Ax = 0, u ∈ Ps

}

≤ f A,s(Y ) := max
u∈Ps

uT [(I − Y T A)ei ] = max
i

‖(I − Y T A)ei‖s,1,

so that when setting αs(A,∞) := min
Y

f A,s(Y ), we get

γ̂s(A) ≤ αs(A,∞).

Since f A,s(Y ) is an easy-to-compute convex function of Y , the quantity αs(A,∞)

also is easy to compute (in fact, this is the optimal value in an explicit LP program
with sizes polynomial in k, n).

This approach can be easily modified to provide an upper bound for γ̂s(A, β).
Namely, given a k × n matrix A and s ≤ k, β ∈ [0,∞], let us set

αs(A, β) = min
Y=[y1,...,yn ]∈Rk×n

{

max
1≤ j≤n

‖(I − Y T A)e j‖s,1 : ‖yi‖∗ ≤ β, 1 ≤ i ≤ n

}

.

(4.25)

As with γs, γ̂s we shorten the notation αs(A,∞) to αs(A).
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It is easily seen that the optimization problem is (4.25) is solvable, and that αs(A, β)

is nondecreasing in s, convex and nonincreasing in β, and is such that αs(A, β) =
αs(A) for all large enough values of β (cf. similar properties of γ̂s(A, β)). The central
observation in our context is that αs(A, β) is an efficiently computable upper bound
on γ̂s(A, sβ), provided that the norm ‖ · ‖ is efficiently computable. Indeed, the effi-
cient computability of αs(A, β) stems from the fact that this is the optimal value in
an explicit convex optimization problem with efficiently computable objective and
constraints. The fact that αs is an upper bound on γ̂s is stated by the following

Theorem 4 One has γ̂s(A, sβ) ≤ αs(A, β).

Proof Let I be a subset of {1, . . . , n} of cardinality ≤ s, z ∈ R
n be a s-sparse vector

with nonzero entries equal to ±1, and let I be the support of z. Let Y = [y1, . . . , yn]
be such that ‖yi‖∗ ≤ β and the columns in � = I − Y T A are of the ‖ · ‖s,1-norm not
exceeding αs(A, β). Setting y = Y z, we have ‖y‖∗ ≤ β‖z‖1 ≤ βs due to ‖y j‖∗ ≤ β

for all j . Besides this,

‖z − AT y‖∞ = ‖(I − AT Y )z‖∞ = ‖�T z‖∞ ≤ αs(A, β),

since the ‖ · ‖s,1-norms of rows in �T do not exceed αs(A, β) and z is an s-sparse
vector with nonzero entries ±1. We conclude that γ̂s(A, sβ) ≤ αs(A, β), as claimed.

��
Some comments are in order.

A. By the same reasons as in the previous section, it is important to know how large
should be β in order to have αs(A, β) = αs(A). Possible answers are as follows. Let
A be a k × n matrix of rank k. Then

(i) Let ‖ · ‖ = ‖ · ‖2. Then for every nonsingular k × k submatrix Ā of A and every
s ≤ k one has

β ≥ β̄ = 3

2
σ−1( Ā)

√
k, αs(A) < 1/2 ⇒ αs(A, β) = αs(A), (4.26)

where σ( Ā) is the minimal singular value of Ā.
(ii) Let ‖ · ‖ = ‖ · ‖1, and let for certain ρ > 0 the image of the unit ‖ · ‖1-ball in

R
n under the mapping x �→ Ax contain the centered at the origin ‖ · ‖1-ball of

radius ρ in R
k . Then for every s ≤ k

β ≥ β̄ = 3

2ρ
, αs(A) < 1/2 ⇒ αs(A, β) = αs(A) (4.27)

The proof is completely similar to the one of Proposition 2.

Note that the above bounds on β “large enough to ensure αs(A, β) = αs(A)”,
same as their counterparts in Proposition 2, whatever conservative they might be, are
“constructive”: to use the bound (4.26), it suffices to find a (whatever) nonsingular
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k × k submatrix of A and to compute its minimal singular value. To use (4.27), it
suffices to solve k LP programs

ρi = max
x,ρ

{

ρ : ‖x‖1 ≤ 1, (Ax) j = ρδ
j
i , 1 ≤ j ≤ k

}

, i = 1, . . . , k

(δ j
i are the Kronecker symbols) and to set ρ = mini ρi .

B. Whenever s, t are positive integers, we clearly have ‖z‖st,1 ≤ s‖z‖t,1, whence

αs(A, β) ≤ sα1(A, β). (4.28)

Thus, we can replace in Theorem 4 the quantity αs(A, β) with sα1(A, β). Further,
we have α1(A, β) = maxi αi , where

αi := min
yi

{

‖ei − AT yi‖∞ : ‖yi‖∗ ≤ β
}

, i = 1, . . . , n. (4.29)

On the other hand, we have

αi = min
y

max
j

{

[ei − AT y] j : ‖yi‖∗ ≤ β
}

= min
y

max
x

{

(ei − AT y)T x : ‖yi‖∗ ≤ β, ‖x‖1 ≤ 1
}

= max
x

min
y

{

eT
i x − yT Ax : ‖yi‖∗ ≤ β, ‖x‖1 ≤ 1

}

= max
x

{

eT
i x − β‖Ax‖ : ‖x‖1 ≤ 1

}

≤ γ̂1(A, β),

and by Theorem 4 we conclude that

α1(A, β) = γ̂1(A, β), (4.30)

i.e. the relaxation for γ̂1(A, β) is exact. As a compensation for increased conserva-
tism of the bound (4.28), note that while both αs and α1 are efficiently computable,
the second quantity is computationally “much cheaper”. Indeed, computing α1(A, β)

reduces to solving n convex programs (4.29) of design dimension k each. In contrast
to this, solving (4.25) with s ≥ 2 seemingly cannot be decomposed in the aforemen-
tioned manner, while “as it is” (4.25) is a convex program of the design dimension kn.
Unless k, n are small, solving a single optimization program of design dimension kn
usually is much more demanding computationally than solving n programs of similar
structure with design dimension k each.
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4.3 Relation to the mutual incoherence condition

Remarks in B point at some simple, although instructive conclusions. Let A be a k ×n
matrix with nonzero columns A j , 1 ≤ j ≤ n, and let μ(A) be its mutual incoherence,
as defined in (1.8).1

Proposition 3 For β(A) = max
1≤ j≤n

‖A j ‖∗
‖A j ‖2

2
we have

α1

(

A,
β(A)

1 + μ(A)

)

≤ μ(A)

1 + μ(A)
. (4.31)

In particular, when μ(A) < 1 and 1 ≤ s <
1+μ(A)
2μ(A)

, one has

γs(A, 2sβ(A)) ≤ γs

(

A,
sβ(A)(1 + μ(A))

1 − (s − 1)μ(A)

)

≤ sμ(A)

1 − (s − 1)μ(A)
< 1. (4.32)

Proof Indeed, with Y∗ = [A1/‖A1‖2
2, . . . , An/‖An‖2

2], the diagonal entries in Y T∗ A
are equal to 1, while the off-diagonal entries are in absolute values ≤ μ(A); besides
this, the ‖ · ‖∗-norms of the columns of Y∗ do not exceed β(A). Consequently, for
Y+ = 1

1+μ(A)
Y∗, the absolute values of all entries in I − Y T+ A are ≤ μ(A)

1+μ(A)
, while

the ‖ · ‖∗-norms of columns of Y+ do not exceed β(A)
1+μ(A)

. We see that the right hand
side in the relation

α1

(

A,
β(A)

1 + μ(A)

)

= min
Y=[y1,...,yn ]

{

max
i, j

|(I − Y T A)i j | : ‖yi‖∗ ≤ β(A)

1 + μ(A)

}

does not exceed μ(A)
1+μ(A)

, since Y+ is a feasible solution for the optimization program
in right hand side. This implies the bound (4.31).

To show (4.32) note that from (4.31) with β = β(A)
1+μ(A)

and (4.28) we have

αs(A, β) ≤ sα1(A, β) ≤ sμ(A)

1 + μ(A)
,

and it remains to invoke Theorem 4 and Theorem 1 (ii). ��
Observe that taken along with Theorem 3, bound (4.32) recovers some of the results

from [17].
Proposition 3 implies that computing αs(·, ·) allows to infer that a given k × n

matrix A is s-good, for “reasonably large” values of s. Indeed, take a realization of a
random k ×n matrix with independent entries taking values ±1/

√
k with probabilities

1/2. For such a matrix A, with an appropriate absolute constant O(1) one clearly has

1 Note that the “Euclidean origin” of the mutual incoherence is not essential in the following derivation.
We could start with an arbitrary say, differentiable outside of the origin, norm p(·) on R

k , define μ(A) as
maxi 
= j |AT

j p′(Ai )|/p(Ai ) and define β(A) as maxi ‖p′(Ai )/p(Ai )‖∗, arriving at the same results.
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μ(A) ≤ O(1)
√

ln(n)/k with probability ≥ 1/2, meaning that γs(A, 2sβ(A)) ≤ 1/2
for s ≤ O(1)

√
k/ ln(n). Note that such verifiable sufficient conditions for s-goodness

based on mutual incoherence are certainly not new, see [17]. We use them here to
show that our machinery does allow sometimes to justify s-goodness for “nontrivial”
values of s, like O(

√
k/ ln(n)).

4.4 Application to weighted �1-recovery

Note that �1-recovery “as it is” makes sense only when A is properly normalized, so
that, speaking informally, Ax is “affected equally” by all entries in x . In a general
case, one could prefer to use a “weighted” �1-recovery

x̃Λ,ε(y) ∈ Argmin z∈Rn {‖Λz‖1 : ‖Az − y‖ ≤ ε}, (4.33)

where Λ is a diagonal matrix with positive diagonal entries λi , 1 ≤ i ≤ n, which, with-
out loss of generality, we always assume to be ≤ 1. By change of variables x = Λ−1ξ ,
investigating Λ-weighted �1-recovery reduces to investigating the standard recovery
with the matrix AΛ−1 in the role of A, followed by simple “translation” of the results
into the language of the original variables. For example, the “weighted” version of our
basic Theorem 3 reads as follows:

Theorem 5 Let A be a k×n matrix, Λ be a n×n diagonal matrix with positive entries,
s ≤ n be a nonnegative integer, and let β ∈ [0,∞) be such that γ̂ := γ̂s(AΛ−1, β) <

1/2. Let also w ∈ R
n, ω = Λw, and let ωs be the vector obtained from ω by zeroing

all coordinates except for the s largest in magnitude. Assume, further, that y in (4.33)
satisfies the relation ‖Aw − y‖ ≤ ε, and that x is a (υ, ν)-optimal solution to (4.33),
meaning that

‖Ax − y‖ ≤ υ and ‖Λx‖1 ≤ ν + Opt(y),

where Opt(y) is the optimal value of (4.33). Then

‖Λ(x − w)‖1 ≤ (1 − 2γ̂ )−1[2β(υ + ε) + 2‖ω − ωs‖1 + ν]. (4.34)

The issue we want to address here is how to choose the scaling matrix Λ. When our
goal is to recover well signals with as much nonzero entries as possible, we would
prefer to make γ̂s(AΛ−1) < 1/2 for as large s as possible (see Theorem 1), imposing
a reasonable lower bound on the diagonal entries in Λ (the latter allows to keep the left
hand side in (4.34) meaningful in terms of the original variables). The difficulty is that
γ̂s(AΛ−1, β) is hard to compute, not speaking about minimizing it in Λ. However,
we can minimize in Λ the efficiently computable quantity αs(AΛ−1, β̄), β̄ = β/s,
which is an upper bound on γ̂s(AΛ−1, β). Indeed, let

Y = {Y = [y1, . . . , yn] : ‖yi‖∗ ≤ β̄, 1 ≤ i ≤ n}.
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Denoting by Ai the columns of A, we have

αs(AΛ−1, β̄) = min
Y∈Y

{

max
1≤i≤n

‖ei − Y T Aiλ
−1
i ‖s,1

}

= min
Y∈Y, α

{

α : ‖ei − Y T Aiλ
−1
i ‖s,1 ≤ α, 1 ≤ i ≤ n

}

= min
Y∈Y, α

{

α : ‖λi ei − Y T Ai‖s,1 ≤ αλi , 1 ≤ i ≤ n
}

,

so that the problem of minimizing αs(AΛ−1, β̄) in Λ under the restriction 0 < � ≤
λi ≤ 1 on the diagonal entries of λ reads

min
{λi }, α, Y∈Y

{

α : ‖λi ei − Y T Ai‖s,1 ≤ αλi , � ≤ λi ≤ 1, 1 ≤ i ≤ n
}

. (4.35)

The resulting problem, while not being exactly convex, reduces, by bisection in α, to
a “small series” of explicit convex problems and thus is efficiently solvable. In our
context, the situation is even better: basically, all we want is to impose on the would-
be γ̂s an upper bound γ̂s(AΛ−1, β) ≤ γ̂ with a given γ̂ < 1/2, and this reduces to
solving a single explicit convex feasibility problem

find {λi ∈ [�, 1]}n
i=1 and Y ∈ Y such that ‖λi ei − Y T Ai‖s,1 ≤ γ̂ λi , 1 ≤ i ≤ n.

4.5 Limits of performance

As we have seen in Sect. 4.3, the bounding mechanism based on computing αs(·, ·)
allows to certify s-goodness of an k ×n-sensing matrix for s as large as O(

√
k/ ln(n)).

Unfortunately, the O(
√

k)-level of values of s is the largest which can be justified via
the proposed approach, unless A is “nearly square”.

4.6
√

k-bound

Proposition 4 For every k × n matrix A with n ≥ 32k, every s, 1 ≤ s ≤ n and every
β ∈ [0,∞] one has

αs(A, β) ≥ min

[

3s

4(s + √
2k)

,
1

2

]

. (4.36)

In particular, in order for αs(A, β) to be < 1/2 (which, according to Theorems 4 and
1, is a verifiable sufficient condition for s-goodness of A), one should have s < 2

√
2k.

Proof Let α := αs(A, β); note that α ≤ 1.
Observe that

∀v ∈ R
n : ‖v‖2

2 ≤ ‖v‖2
s,1 max[1,

n

s2 ]. (4.37)
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Postponing for a while the proof of (4.37), let us derive (4.36) from this relation.
Assume, first, that s2 ≤ n. Let Y ∈ R

k×n be such that ‖[I − Y T A] j‖s,1 ≤ α for
all j , where [B] j is j-th column of B. Setting Q = I − Y T A, we get a matrix with
‖ · ‖s,1-norms of columns ≤ α. From (4.37) it follows that the Frobenius norm of Q
satisfies the relation

‖Q‖2
F :=

∑

i, j

Q2
i j ≤ n2α2

s2 .

Consequently,

‖QT ‖2
F ≤ n2α2

s2 ,

whence, setting

H = 1

2
[Q + QT ] = I − 1

2
[Y T A + AT Y ],

we get

‖H‖2
F ≤ n2α2

s2

as well. Further, the magnitudes of the diagonal entries in Q (and thus – in QT and in
H ) are at most α, whence Tr(I − H) ≥ n(1−α). The matrix I − H = 1

2 [Y T A+ AT Y ]
is of the rank at most 2k and thus has at most 2k nonzero eigenvalues. As we have
seen, the sum of these eigenvalues is ≥ n(1 − α), whence the sum of their squares

(i.e., ‖I − H‖2
F ) is at least n2(1−α)2

2k . We have arrived at the relation

n(1 − α)√
2k

≤ ‖I − H‖F ≤ ‖I‖F + ‖H‖F ≤ √
n + nα

s
.

whence

αn

[

1√
2k

+ 1

s

]

≥ n√
2k

− √
n ≥ 3n

4
√

2k

(the concluding inequality is due to n ≥ 32k), and (4.36) follows. We have derived
(4.36) from (4.37) when s2 ≤ n; in the case of s2 > n, let s′ = �√n�, so that s′ ≤ s.
Applying the just outlined reasoning to s′ in the role of s, we get αs′(A, β) ≥ 3s′

4(s′+√
2k)

,

and the latter quantity is ≥ 1/2 due to n ≥ 32k and the origin of s′. Since s ≥ s′, we
have αs(A, β) ≥ αs′(A, β) ≥ 1/2, and (4.36) holds true.

It remains to prove (4.37). W.l.o.g. we can assume that v1 ≥ v2 ≥ · · · ≥ vn ≥ 0
and ‖v‖s,1 = 1; let us upper bound ‖v‖2

2 under these conditions. Setting vs+1 = λ,
observe that 0 ≤ λ ≤ 1

s and that for λ fixed, we have
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‖v‖2
2 ≤ max

v1,...,vs

{

s
∑

i=1

v2
s :

s
∑

i=1

vi = 1, vi ≥ λ, 1 ≤ i ≤ s

}

+ (n − s)λ2.

The maximum of the right hand side is achieved at an extreme point of the set {v ∈
R

s : ∑

i vi = 1, vi ≥ λ}, that is, at a point where all but one of vi ’s are equal to λ,
and remaining one is 1 − (s − 1)λ. Thus,

‖v‖2
2 ≤ [1 − (s − 1)λ]2 + (s − 1)λ2 + (n − s)λ2

= 1 − 2(s − 1)λ + (s2 − 2s + n)λ2

≤ max
0≤λ≤1/s

[1 − 2(s − 1)λ + (s2 − 2s + n)λ2].

The maximum in the right hand side is achieved at an endpoint of the segment [0, 1/s],
i.e., is equal to max[1, n/s2], as claimed. ��

Discussion. Proposition 4 is a really bad news—it shows that our verifiable suffi-
cient condition fails to establish s-goodness when s > O(1)

√
k, unless A is “nearly

square”. This “ultimate limit of performance” is much worse than the actual values
of s for which a k × n matrix A may be s-good. Indeed, it is well known, see, e.g.
[9], that a random k × n matrix with i.i.d. Gaussian or ±1 elements is, with close
to 1 probability, s-good for s as large as O(1)k/ ln(n/k). This is, of course, much
larger than the above limit s ≤ O(

√
k). Recall, however, that we are interested in

efficiently verifiable sufficient condition for s-goodness, and efficient verifiability has
its price. At this moment we do not know whether the “price of efficiency” can be
made better than the one for the proposed approach. Note, however, that for all known
deterministic provably s-good k × n matrices s is ≤ O(1)

√
k, provided n � k

[13].

5 Restricted isometry property and characterization of s-goodness

Recall that the RI property (1.6) plays the central role in the existing Compressed Sens-
ing results, like the following one: For properly chosen absolute constants δ ∈ (0, 1)

and integer κ > 1 (e.g., for δ <
√

2 − 1, κ = 2, see [10, Theorem 1.1]), a matrix
possessing RI(δ, m) property is s-good, provided that m ≥ κs. By Theorem 1 it
follows that with an appropriate δ ∈ (0, 1), the RI(δ, m)-property of A implies that
γs(A) < 1, provided m ≥ κs. Thus, the RI property possesses important implica-
tions in terms of the characterization/verifiable sufficient conditions for s-goodness
as developed above. While these implications do not contribute to the “constructive”
part of our results (since the RI property is seemingly difficult to verify), they certainly
contribute to better understanding of our approach and integrating it into the existing
Compressed Sensing theory. In this section, we present the “explicit forms” of several
of those implications.
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5.1 Bounding γ̂s(A) for RI sensing matrices

Proposition 5 Let s be a positive integer, and let A be a k × n matrix possessing the
RI(δ, 2s)-property with 0 < δ <

√
2 − 1. Then

γ̂s(A) ≤
√

2δ

1 + (
√

2 − 1)δ
< 1/2 and γs(A) ≤

√
2δ

1 − δ
< 1. (5.38)

Proof Observe that by Lemma 2.2 of [10], for any vector h ∈ Ker(A) and any index
set I of cardinality ≤ m/2 we have under the premise of Proposition:

∑

i∈I

|hi | ≤ ρ
∑

i /∈I

|hi |, ρ = √
2δ(1 − δ)−1.

This implies that for any h ∈ Ker(A) one has ‖h‖s,1 ≤ ρ(‖h‖1 − ‖h‖s,1), that is,
‖h‖s,1 ≤ ρ

1+ρ
‖h‖1. By Corollary 1 it follows that γ̂s(A) ≤ ρ

1+ρ
(< 1/2), and thus

γs(A) ≤ ρ (< 1). ��

Combining Proposition 5 and Theorem 1, we arrive at a sufficient condition for
s-goodness in terms of RI-property identical to the one in [10, Theorem 1.1]: a matrix
A is s-good if it possesses the RI(δ, 2s)-property with δ <

√
2 − 1.

The representation (2.15) also allows to bound the value of γ̂s(A, β) and corre-
sponding β in the case when the Restricted Eigenvalue assumption RE(m, ρ, κ) of [4]
holds true. The exact formulation of the latter assumption is as follows. Let I be an
arbitrary subset of indices of cardinality s; for x ∈ R

n , let x I be the vector obtained
from x by zeroing all the entries with indices outside of I . A sensing matrix A is
RE(s, ρ, κ) if

κ(s, ρ) := min
x,I

{‖Ax‖2

‖x I ‖2
: x ∈ R

n, ρ‖xs‖1 ≥ ‖x − xs‖1; Card(I ) = s

}

> 0.

Note that the condition ρ‖xs‖1 ≥ ‖x − xs‖1 is equivalent to ‖xs‖1 ≥ (1 + ρ)−1‖x‖1,
and ‖Ax‖2‖xs‖2

≥ κ implies that ‖xs‖1 ≤ κ−1√s‖Ax‖2. Thus if the RE(s, ρ, κ) assump-
tion holds for A, we clearly have for any x ∈ R

n

‖x‖s,1 ≤ max

{√
s‖Ax‖2

κ
, (1 + ρ)−1‖x‖1

}

.

In other words, assumption RE(s, ρ, κ) implies that

γ̂s

(

A,

√
s

κ

)

≤ (1 + ρ)−1.
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5.2 “Large enough” values of β

We present here an upper bound on the value of β such that γs(A, β) = γs(A) in the
case when the matrix A possesses the RI-property (cf. Proposition 2):

Proposition 6 Let s be a positive integer, A be a k×n matrix possessing the RI(δ, 2s)-
property with 0 < δ <

√
2 − 1 and s ≤ n and let ‖ · ‖ be the �2-norm. Then

γ̂s(A, β) ≤
√

2δ

1 + (
√

2 − 1)δ
for all β ≥

√
(1 + δ)s

1 + (
√

2 − 1)δ
. (5.39)

Proof The derivations below are rather standard to Compressed Sensing. Let us prove
that

∀w ∈ R
n : ‖w‖s,1 ≤

√
(1 + δ)s

1 + (
√

2 − 1)δ
‖Aw‖2 +

√
2δ

1 + (
√

2 − 1)δ
‖w‖1. (5.40)

There is nothing to prove when w = 0; assuming w 
= 0, by homogeneity we can
assume that ‖w‖1 = 1. Besides this, w.l.o.g. we may assume that |w1| ≥ |w2| ≥
· · · ≥ |wn|. Let us set α = ‖Aw‖2. Let us split w into consecutive s-element “blocks”
w0, w1, . . . , wq , so that w0 is obtained from w by zeroing all coordinates except for
the first s of them, w1 is obtained from w by zeroing all coordinates except of those
with indices s + 1, s + 2, . . . , 2s, and so on, with evident modification for the last
block wq . By construction we have

w =
q

∑

j=0

w j , ‖w0‖1 ≥ ‖w1‖1 ≥ · · · ≥ ‖wq‖1, ‖w‖1 =
q

∑

j=0

‖w j‖1.

Further, we have due to the monotonicity of |wi | and s-sparsity of all w j :

j ≥ 1 ⇒ ‖w j‖2
2 ≤ ‖w j‖∞‖w j‖1 ≤ s−1‖w j−1‖1‖w j‖1 ≤ s−1‖w j−1‖2

1. (5.41)

On the other hand, due to the RI-property of A and the fact that ‖Aw‖2 = α we have
the first inequality in the following chain:

α
√

1 + δ‖w0 + w1‖2 ≥ ‖Aw‖2‖A(w0 + w1)‖2 ≥ (Aw)T A(w0 + w1)

= (w0 + w1)T AT A(w0 + w1) +
q

∑

j=2

(w0 + w1)T AT Aw j

≥ (1 − δ)‖w0 + w1‖2
2 −

q
∑

j=2

√
2δ‖w0 + w1‖2‖w j‖2, (5.42)

where we have used the “classical” RI-based relation (see [6])

vT AT Au ≤ √
2δ‖v‖2‖u‖2
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for any two vectors u, v ∈ R
n with disjoint supports and such that u is s-sparse and

v is 2s-sparse. Using (5.41) we can now continue (5.42) to get

(1 − δ)‖w0 + w1‖2
2 ≤ α

√
1 + δ‖w0 + w1‖2 + √

2δ‖w0 + w1‖2 s−1/2
q−1
∑

j=1

‖w j‖1

≤ α
√

1 + δ‖w0 + w1‖2 + √
2s−1/2δ‖w0 + w1‖2‖w − w0‖1.

Since w0 is s-sparse, we conclude that

‖w0‖1 ≤ √
s‖w0‖2 ≤ √

s‖w0 + w1‖2 ≤ α
√

(1 + δ)s

1 − δ
+ ρ‖w − w0‖1

= α
√

(1 + δ)s

1 − δ
+ ρ(1 − ‖w0‖1)

[

ρ =
√

2δ

1 − δ

]

(recall that ‖w‖1 = 1). It follows that

‖w0‖1 ≤ α
√

(1 + δ)s

(1 + ρ)(1 − δ)
+ ρ

1 + ρ
= α

√
(1 + δ)s

1 + (
√

2 − 1)δ
+

√
2δ

1 + (
√

2 − 1)δ
.

Recalling that α = ‖Aw‖2, the concluding inequality is exactly (5.40) in the case of
‖w‖1 = 1. (5.40) is proved.

Invoking (2.15), (5.40) implies that with ‖ · ‖ = ‖ · ‖2 and with β ≥
√

(1+δ)s
1+(

√
2−1)δ

,

one has γ̂s(A, β) ≤
√

2δ

1+(
√

2−1)δ
. ��

It is worth to note that when using the bounds of Proposition 6 on γ̂s(A, β) and
the corresponding β along with Theorem 3, we recover the classical bounds on the
accuracy of the �1-recovery as those given in [9,10].

5.3 Performance of verifiable conditions for s-goodness in the case of RI sensing
matrices

It makes sense to ask how conservative is the verifiable sufficient condition for
s-goodness “αs(A) < 1/2” as compared to the difficult-to-verify RI condition “if
A is RI(δ, m), then A is s-good for s ≤ O(1)m”. It turns out that this conservatism is
under certain control, fully compatible with the “limits of performance” of our verifi-
able condition as stated in Proposition 4. Specifically, we are about to prove that if A is
RI(δ, m), then αs(A) < 1/2 when s ≤ O(1)

√
m: our verifiable condition “guarantees

at least square root of what actually takes place”. The precise statement is as follows:
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Proposition 7 Let a k × n matrix A possess RI(δ, m)-property. Then

α1(A) ≤
√

2 δ

(1 − δ)
√

m − 1
, (5.43)

so that

s <
(1 − δ)

√
m − 1

2
√

2δ
⇒ αs(A) ≤ sα1(A) < 1/2. (5.44)

Proof 10. We start with the following simple fact (cf. Proposition 5):

Lemma 1 Let A possess RI(δ, m)-property. Then

γ̂1(A) ≤
√

2δ

(1 − δ)
√

m − 1
. (5.45)

Proof Invoking Theorem 2, all we need to prove is that under the premise of Lemma
for every s, 1 ≤ s < m, and for every w ∈ Ker(A) we have

‖w‖∞ = ‖w‖1,1 ≤ γ̂ ‖w‖1.

To prove this fact we use again the standard machinery related to the RI-property (cf
proof of Proposition 6): we set t = �m/2�, assume w.l.o.g. that ‖w‖1 = 1, |w1| ≥
|w2| ≥ · · · ≥ |wn| and split w into q consecutive “blocks” so that the cardinality
of the “blocks” is 1, t − 1, t, t, . . .. i.e. the first “block” ω0 ∈ R

n is the vector such
that w0

1 = w1 and all other coordinates vanish, w1 is obtained from w by zeroing all
coordinates except of those with indices 2, 3, . . . , t, w2 is obtained from w by zeroing
all coordinates except of those with indices t + 1, . . . , 2t , and so on, with evident
modification for the last vector wq . Acting as in the proof of Proposition 6, and using
the relation (see [6])

vT AT Au ≤ δ‖v‖2‖u‖2

for any two t-sparse vectors u, v ∈ R
n, t ≤ m/2, with disjoint supports, we obtain

0 = (A(w0 + w1))T Aw ≥ (1 − δ)‖w0 + w1‖2
2 − t−1/2δ‖w0 + w1‖2

whence

|w1| ≤ ‖w0 + w1‖2 ≤ δ

(1 − δ)
√

t
,

what is (5.45). ��
20. Now we are ready to complete the proof of (5.43). We already know that αs(A) ≤
sα1(A), so all we need is to verify (5.43). The latter is readily given by (4.30) combined
with (5.45). ��
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6 Numerical illustration

We are about to present some very preliminary numerical results for relatively small
sensing matrices.

The data. In the two series of experiments presented below we deal with sensing
matrices of row dimension n = 256 and n =1,024.

For n = 256 we generate three sets of random matrices of column dimension
m = 0.1n, . . . , 0.9n: Gaussian matrices, with the i.i.d. normal entries, Fourier matri-
ces, which are m rows of the Fourier basis on [0, 1] drawn at random and, finally,
Hadamard matrices, which are, again, random m × n cuts from the n × n Hadamard
matrix.2 Then all matrices are normalized so that their columns have unit �2-norm.

For n = 1, 024 we provide the result of an experiment with a family of Gaussian
matrices of column dimension m = 0.1n, . . . , 0.9n and with a 992×1024 matrix Aconv
which is constructed as follows. Let us consider a signal x “living” on Z2 and supported
on the 32×32 grid � = {(i, j) ∈ Z2 : 0 ≤ i, j ≤ 31}. We subject such a signal to dis-
crete time convolution with a kernel supported on the set {(i, j) ∈ Z2 :−7 ≤ i, j ≤ 7},
and then restrict the result on the 32 × 31 grid �+ = {(i, j) ∈ � :1 ≤ j ≤ 31}. This
way we obtain a linear mapping x �→ Aconvx :R1024 → R

992.

The goal of the experiment is to bound from below and from above the maximal s for
which the m ×n matrix A in question is s-good (the quantity s∗(A) from Definition 1).

The lower bound on s∗(A) was obtained via bounding from above, for various s,
the quantity αs(A) and invoking Theorem 4 and Theorem 1 (ii) which, taken together,
state that a sufficient condition for A to be s-good is αs(A) < 1/2.

We provide two lower bounds for s∗(A). The first bound is obtained using the upper
bound αs(A) ≤ sα1(A) (see Comment B in Sect. 4). When the upper bound sα1(A) for
αs(A) is computed and turns out to be < 1/2, we know that A is s-good, and our lower
bound on s∗(A) is the largest s for which this situation takes place; note that computing
this bound reduces to a single computation of α1(A). As explained in Comment B,
this computation reduces to solving n convex programs of design dimension m each,
and these programs are easily convertible to LP’s with (2n + 1) × (m + 1) constraint
matrices. These LP’s were solved using the commercial LP solver mosekopt [1].
Note that in fact computing α1(A) allows to somehow improve the trivial upper bound
sα1(A) on αs(A), specifically, as follows. As a result of computing α1(A), we get the
associated matrix Y ; the largest of ‖ · ‖s,1-norms of the columns of I − Y T A clearly
is an upper bound on αs(A), and this bound is at worst sα1(A).

For “small” matrices with the row dimension n = 256 we also provide the
“improved” lower bound, obtained using the computation of αs(A) itself. We act
as follows: when the bound s(α1) is computed, verify if the value s(α1) + 1 can
be certified lower bound for s∗(A) using the computation of αs(A). If this bound is

2 Hadamard matrix H� of order n = 2� is the orthogonal matrix with entries ±1 given by the recurrence
H0 = 1, H�+1 = [H�, H�; H�,−H�].
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Table 1 Efficiently computable bounds on s∗(A), n = 256

m Lower bounds on s∗(A) Upper bound s CPU time (s)

s[μ] s[α1] s[αs ] s[α1] s[αs ] s

Gaussian matrix

25 1 1 1 1 11.0 21.6 3.4

51 1 2 2 4 22.3 24.1 8.8

76 1 3 3 7 34.2 34.3 23.1

102 1 3 4 11 50.8 190.7 34.0

128 1 5 5 15 69.3 75.8 31.6

153 1 5 6 19 93.8 557.6 60.7

179 2 7 8 25 115.4 658.3 103.8

204 2 9 11 31 141.2 551.5 97.8

230 2 14 17 41 173.0 561.0 97.8

Random Fourier matrix

24 1 1 1 2 9.3 6.1 1.3

51 1 2 2 4 129.5 14.5 7.2

76 2 3 3 6 233.1 12.8 16.1

102 2 4 4 7 213.9 11.2 25.6

128 2 4 4 8 270.9 426.5 58.1

152 3 5 5 10 245.9 2350.7 57.8

178 3 6 6 14 319.7 161.2 81.5

204 4 7 7 14 234.0 97.9 75.8

230 4 9 9 19 343.2 76.0 51.9

Random Hadamard matrix

25 1 1 1 2 10.1 7.4 1.2

51 1 2 2 4 21.6 11.7 3.5

76 2 3 3 4 34.1 14.2 6.7

102 3 4 4 11 50.8 23.8 37.7

128 3 5 5 7 69.6 48.5 24.1

153 3 7 7 11 93.8 31.1 84.7

179 4 9 9 15 112.0 51.0 88.9

204 5 12 12 15 141.6 51.1 78.6

230 6 18 18 28 141.5 55.4 44.1

Lower bound s[μ]: the bound (4.32) based on mutual incoherence; s[α1]-bound: the “improved” bound
based on upper bounding of αs (A) via the matrix Y obtained when computing α1(A); s[αs ]: the bound
based on computing αs (A). Upper bound s: the bound based on successive convex approximation

certified we proceed with s(α1) + 2, and so on. Note that, exactly as it is in the case
of α1(A), computing αs(A) allows to improve the lower bound on s∗(A) in the case
when αs(A) < 1/2. Indeed, as a result of computing αs(A), we get the associated
matrix Y ; the largest s such that the ‖ ·‖s,1-norms of the columns of I −Y T A is < 1/2
clearly is a lower bound on s∗(A).
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Table 2 Efficiently computable bounds on s∗(A), n = 1024

m Lower bounds on s∗(A) Upper bound s CPU time (s)

s[μ] s[α1] s[α1] s

Gaussian matrix

102 2 2 8 457.0 400.7

204 2 4 18 1179.0 1722.1

307 2 6 30 2234.6 7585.9

409 3 7 44 3658.6 3421.7

512 3 10 61 5341.7 6304.3

614 3 12 78 7155.7 17616.7

716 3 15 105 9446.1 11670.4

819 4 21 135 12435.1 8373.1

921 4 32 161 13564.2 9838.3

Convolution matrix

960 0 5 7 4579.1 271.8

Lower bound s[μ]: the bound (4.32) based on mutual incoherence; s[α1]-bound: the “improved” bound
based on upper bounding of αs (A) via the matrix Y obtained when computing α1(A). Upper bound s: the
bound based on successive convex approximation

We would like to add here two words about the techniques used to compute the
corresponding bound (being of interest by themselves, these techniques are the subject
of a separate paper). While αs(A) is efficiently computable via LP (when β = ∞, the
optimization program in (4.25) is easily convertible into a linear programming one),
the sizes of the resulting LP are rather large—when A is m × n, the LP reformulation
of (4.25) has a (2n2 + n) × (n(m + n + 1) + 1) constraint matrix. For instance, for
m = 230 and n = 256, the size of the LP becomes 131, 328 × 127, 233, and we pre-
ferred to avoid solving this, by no means small, LP program using the interior-point
solver available with mosekopt. Instead, the LP is reformulated as a saddle-point
problem and is solved using an implementation of the non-Euclidean mirror-prox
algorithm, described in [20].

The upper bound on s∗(A) is computed using the lower bound on γs(A) by the
Sequential Convex Approximation algorithm presented in Sect. 4.1.

The results of our experiments are presented in Tables 1 and 2. The computations we
run on an Intel P9500@2.53 GHz CPU (the computations were running single-core).
We present along with the results the corresponding CPU usage.

We would like to add the following comment: our efficiently computable lower
bounds on s∗(A) outperform significantly those based on mutual incoherence. Fur-
ther, these lower and upper bounds “somehow” work in the case of the randomly chosen
sensing matrix and work quite well in the case of the convolution matrix. While the
gap between the lower and the upper bound in the case of the random sensing matrix
could be better, we can re-iterate at this point our remark that computability has its
price.
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Appendix A: Proof of Theorem 1

Proof (i): (a) Assume that A is s-good, and let us prove that γs(A) < 1. Let I be an s-
element subset of the index set {1, . . . , n} and Ī be its complement, and let w be a vector
supported on I and with nonzero wi , i ∈ I . Then w should be the unique solution to
the LP problem (2.9). From the fact that w is an optimal solution to this problem it fol-
lows, by optimality conditions, that for certain y the function fy(x) = ‖x‖1 − yT Ax
attains its minimum over x ∈ R

n at x = w, meaning that 0 ∈ ∂ fy(w), that is,

(AT y)i

{= sign(wi ), i ∈ I
∈ [−1, 1], i ∈ Ī

,

so that the LP problem

min
y,γ

{

γ : (AT y)i

{= sign(wi ), i ∈ I
∈ [−γ, γ ], i ∈ Ī

}

(A.46)

has optimal value ≤ 1. Let us prove that in fact the optimal value is < 1. Indeed,
assuming that the optimal value is exactly 1, there should exist Lagrange multipliers
{μi : i ∈ I } and {ν±

i ≥ 0 : i ∈ Ī } such that the function

γ +
∑

i 
∈I

[

ν+
i [(AT y)i − γ ] + ν−

i [−(AT y)i − γ ]
]

−
∑

i∈I

μi

[

(AT y)i − sign(wi )
]

has unconstrained minimum in γ, y equal to 1, meaning that

(a)
∑

i∈ Ī [ν+
i + ν−

i ] = 1,

(b)
∑

i∈I μi sign(wi ) = 1,

(c) Ad = 0, where d ∈ R
n with di =

{−μi , i ∈ I
ν+

i − ν−
i , i ∈ Ī .

Now consider the vector xt = w + td, where t > 0. This is a feasible solution to (2.9)
due to (c); the ‖ · ‖1-norm of this solution is

∑

i∈I

|wi − tμi | + t
∑

i∈ Ī

|ν+
i − ν−

i | ≤
∑

i∈I

|wi − tμi | + t

where the concluding inequality is given by (a) and the fact that ν±
i ≥ 0. Since wi 
= 0

for i ∈ I , for small positive t we have

∑

i∈I

|wi − tμi | =
∑

i∈I

|wi | − t
∑

i∈I

μi sign(wi ) =
∑

i∈I

|wi | − t,
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where the concluding equality is given by (b). We see that xt is feasible for (2.9) and
‖xt‖1 ≤ ‖w‖1 for all small positive t . Since w is the unique optimal solution to (2.9),
we should have xt = w, t > 0, which would imply that μi = 0 for all i ; but the latter
is impossible by (b). Thus, the optimal value in (A.46) is < 1.
We see that whenever x is a vector with s nonzero entries, equal to ±1, there exists y
such that (AT y)i = xi when xi 
= 0 and |(AT y)i | < 1 when xi = 0 (indeed, in the
role of this vector one can take the y-component of an optimal solution to the problem
(A.46) coming from w = x), meaning that γs(A) < 1, as claimed.

(b) Now assume that γs(A) < 1, and let us prove that A is s-good. Thus, let w

be an s-sparse vector; we should prove that w is the unique optimal solution to (2.9).
There is nothing to prove when w = 0. Now let w 
= 0, let s′ be the number of nonzero
entries of w, and I be the set of indices of these entries. By C we have γ := γs′(A) ≤
γs(A), i.e., γ < 1. Recalling the definition of γs(·), there exists y ∈ R

k such that
(AT y)i = sign(wi ) when wi 
= 0 and |(AT y)i | ≤ γ when wi = 0. The function

f (x) = ‖x‖1 − yT [Ax − Aw]
=

∑

i∈I

[|xi | − sign(wi )(xi − wi )
] +

∑

i 
∈I

[|xi | − γi xi
]

,

γi = (AT y)i , i 
∈ I,

coincides with the objective of (2.9) on the feasible set of (2.9). Since |γi | ≤ γ < 1,
this function attains its unconstrained minimum in x at x = w. Combining these two
observations, we see that x = w is an optimal solution to (2.9). To see that this optimal
solution is unique, let x ′ be another optimal solution to the problem. Then

0 = f (x ′) − f (w)

=
∑

i∈I

[|x ′
i | − sign(wi )(x ′

i − wi ) − |wi |
]

︸ ︷︷ ︸

≥0

+
∑

i 
∈I

[|x ′
i | − γi x ′

i

] ;

since |γi | < 1 for i 
∈ I , we conclude that x ′
i = 0 for i 
∈ I . This conclusion combines

with the relation Ax ′ = Aw to imply the required relation x ′ = w, due to the following
immediate observation:

Lemma 2 If γs(A) < 1, then every k × s submatrix of A has trivial kernel.

Proof Let I be the set of column indices of a k × s submatrix of A. If this subma-
trix has a nontrivial kernel there exists a nonzero s-sparse vector z ∈ R

n such that
Az = 0. Let I be the support set of z. By A, there exists a vector y ∈ R

k such that
(AT y)i = sign(zi ) whenever i ∈ I , that is

0 = yT Az =
∑

i :zi 
=0

(AT y)i zi = ‖z‖1,

which is impossible. ��
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(ii) Let γ := γs(A, β) < 1. By definition it means that for every vector z ∈ R
n

with s nonzero entries, equal to ±1, there exists y, ‖y‖∗ ≤ β, such that AT y coincides
with z on the support of z and is such that ‖AT y − z‖∞ ≤ γ . Given z, y as above and
setting y′ = 1

1+γ
y, we get ‖y′‖∗ ≤ 1

1+γ
β and

‖AT y′ − z‖∞ ≤ max

[

1 − 1

1 + γ
,

γ

1 + γ

]

= γ

1 + γ
.

Thus, for every vector z with s nonzero entries, equal to ±1, there exists y′ such that
‖y′‖∗ ≤ 1

1+γ
β and ‖AT y′ − z‖∞ ≤ γ

1+γ
, meaning that γ := γs(A, β) < 1 implies

γ̂s

(

A,
1

1 + γ
β

)

≤ γ

1 + γ
< 1/2. (A.47)

Now assume that γ̂ := γ̂s(A, β) < 1/2. For an s-element subset I of the index set
{1, . . . , n}, let

�I =
{

u ∈ R
n : exists y ∈ R

k : ‖y‖∗ ≤ β, (AT y)i = ui

for i ∈ I, |(AT y)i | ≤ γ̂ for i ∈ Ī
}

,

where Ī is the complement of I . It is immediately seen that �I is a closed and con-
vex set in R

n . Let B be the centered at the origin ‖ · ‖∞-ball of the radius 1 − γ̂

in R
n : B = {u ∈ R

n : ‖u‖∞ ≤ 1 − γ̂ }. We claim that �I contains B. Using
this fact we conclude that for every vector z supported on I with entries zi , i ∈ I ,
equal to ±1, there exists an u ∈ �I such that ui = (1 − γ̂ )zi , i ∈ I . Recalling the
definition of �I , we conclude that there exists y with ‖y‖∗ ≤ (1 − γ̂ )−1β such that
(AT y)i = (1 − γ̂ )−1ui = zi for i ∈ I and |(AT y)i | ≤ (1 − γ̂ )−1γ̂ for i 
∈ I . Thus,
the validity of our claim would imply that

γ̂ := γ̂s(A, β) < 1/2 ⇒ γs

(

A,
1

1 − γ̂
β

)

≤ γ̂

1 − γ̂
< 1. (A.48)

Let us prove our claim. Observe that by definition �I is the direct product of its pro-
jection Q on the plane L I = {u ∈ R

n : ui = 0, i 
∈ I } and the entire orthogonal
complement L⊥

I = {u ∈ R
n : ui = 0, i ∈ I } of L I ; since �I is closed and convex,

so is Q. Now, L I can be naturally identified with R
s , and our claim is exactly the

statement that the image Q̄ ⊂ R
s of Q under this identification contains the centered

at the origin ‖ · ‖∞ ball Bs , of the radius 1 − γ̂ , in R
s . Assume that it is not the case.

Since Q̄ is convex and Bs 
⊂ Q̄, there exists v ∈ Bs\Q̄, and therefore there exists a
vector e ∈ R

s, ‖e‖1 = 1 such that eT v > maxv′∈Q̄ eT v′ (recall that Q, and thus Q̄,
is both convex and closed). Now let z ∈ R

n be the s-sparse vector supported on I
such that the entries of z with indices i ∈ I are the signs of the corresponding entries
in e. By definition of γ̂ = γ̂s(A, β), there exists y ∈ R

k such that ‖y‖∗ ≤ β and
‖AT y − z‖∞ ≤ γ̂ ; recalling the definition of �I and Q̄, this means that Q̄ contains a
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vector v̄ with |v̄ j − sign(e j )| ≤ γ̂ , 1 ≤ j ≤ s, whence eT v̄ ≥ ‖e‖1 − γ̂ ‖e‖1 = 1− γ̂ .
We now have

1 − γ̂ ≥ ‖v‖∞ ≥ eT v > eT v̄ ≥ 1 − γ̂ ,

where the first ≥ is due to v ∈ Bs , an > is due to the origin of e. The resulting
inequality is impossible, and thus our claim is true.

We have proved the relations (A.47), (A.48) which are slightly weakened versions
of (2.14a–b). It remains to prove that the inequalities ≤ in the conclusions of (A.47),
(A.48) are in fact equalities. This is immediate: assume that under the premise of
(2.14.a) we have

γ̂ := γ̂s

(

A,
1

1 + γ
β

)

< γ+ := γ

1 + γ
.

When applying (A.48) with β replaced with 1
1+γ

β, we get

γs

(

A,
1

1 − γ̂

[

1

1 + γ
β

])

≤ γ̂

1 − γ̂
<

γ+
1 − γ+

= γ. (A.49)

At the same time, 1
1−γ̂

1
1+γ

< 1
1−γ+

1
1+γ

= 1 due to γ̂ < γ+; since γs(A, ·) is nonin-
creasing by B, we see that

γs

(

A,
1

1 − γ̂

[

1

1 + γ
β

])

≥ γs(A, β),

and thus (A.49) implies that γs(A, β) < γ, which contradicts the definition of γ .
Thus, the concluding ≤ in (A.47) is in fact equality. By completely similar argument,
so is the concluding ≤ in (A.48). ��
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