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Abstract Line search algorithms for nonlinear programming must include safe-
guards to enjoy global convergence properties. This paper describes an exact penali-
zation approach that extends the class of problems that can be solved with line search
sequential quadratic programming methods. In the new algorithm, the penalty param-
eter is adjusted at every iteration to ensure sufficient progress in linear feasibility and
to promote acceptance of the step. A trust region is used to assist in the determination
of the penalty parameter, but not in the step computation. It is shown that the algorithm
enjoys favorable global convergence properties. Numerical experiments illustrate the
behavior of the algorithm on various difficult situations.
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1 Introduction

Exact penalty methods have proved to be effective techniques for solving difficult
nonlinear programs. They overcome the difficulties posed by inconsistent constraint
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40 R. H. Byrd et al.

linearizations [13] and are successful in solving certain classes of problems in which
standard constraint qualifications are not satisfied [2,3,10,18,20,21,23]. Despite their
appeal, it has proved difficult to design penalty methods that perform well over a
wide range of problems; the main difficulty lies in choosing appropriate values of the
penalty parameter. Various approaches proposed in the literature update the penalty
parameter only if convergence to an undesirable point appears to be taking place;
see e.g. [19,29] and the references therein. This can result in inefficient behavior and
requires heuristics to determine when to change the penalty parameter.

A new strategy for updating the penalty parameter was recently proposed [6,8]
in the context of trust region methods. In that approach, the penalty parameter is
selected at every iteration so that sufficient progress toward feasibility and optimality
is guaranteed, to first order. This requires that an auxiliary subproblem (a linear pro-
gram) be solved in certain cases. This approach has been implemented in the active-set
method of the knitro package [9,31] and has proved to be effective in practice. The
technique just mentioned relies on the fact that the optimization algorithm is of the
trust region kind.

In this paper we describe line search penalty methods for nonlinear programming.
Unlike trust region methods, which control the quality and length of the steps, line
search methods can produce very large and unproductive search directions in the
neighborhood of points where standard regularity conditions are not satisfied, and
this situation can lead to failures that would not occur with a trust region method. By
relaxing the constraints and ensuring that steady progress toward the solution is made,
the proposed method enjoys the same type of global convergence properties as trust
region methods. The global analysis thus shows that use of exact penalty methods can
have a regularizing effect without a trust region or an explicit regularization term.

To achieve these goals, the algorithm solves a linear program with an auxiliary trust
region that helps determine the adequacy of the penalty parameter. The algorithm is
nevertheless a pure line search method because the step computation does not depend
on the auxiliary trust region—only the choice of the penalty parameter depends on
it. In fact the auxiliary trust region radius may be fixed at an arbitrary value without
affecting convergence properties.

The penalty approach proposed in this paper is applicable to a variety of line search
methods; for concreteness we focus our discussion on sequential quadratic program-
ming (SQP). The new algorithm incurs an additional cost compared with classical
line search SQP methods. At those iterations in which the penalty parameter must
be adjusted, an auxiliary linear program must be solved and the SQP step must be
recomputed one or more times using larger values of the penalty parameter. This extra
cost may not be significant, however, because warms starts can be employed in the
solution of these additional quadratic programs. Furthermore, the hope is that the
adjustment of the penalty parameter is only performed occasionally and that the new
technique yields savings in iterations and improves the robustness of the method. An
attractive feature of the new algorithm is that it treats all problems (regular or defi-
cient) equally and does not need to resort to special iterations when progress is not
achieved.

In the next section, we present the new line search SQP algorithm, giving particular
attention to the dynamic strategy for updating the penalty parameter. The convergence
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A line search exact penalty method using steering rules 41

properties of the algorithm are analyzed in Sect. 3, and numerical experiments are
reported in Sect. 4.

2 A line search penalty method

Penalty methods solve the general nonlinear programming problem

minimize f (x) (2.1a)

subject to gi (x) ≥ 0, i ∈ I, (2.1b)

hi (x) = 0, i ∈ E, (2.1c)

by performing an unconstrained minimization of the exact penalty function

φπ(x) = f (x) + π v(x), (2.2)

where π > 0 is the penalty parameter and v(x) is a measure of constraint violation.
In this paper, we use the 1-norm to measure this violation and define

v(x) =
∑

i∈I
[gi (x)]− +

∑

i∈E
|hi (x)|, (2.3)

where [gi (x)]− = max{−gi (x), 0} is the negative part of gi (x).
It is well known (see for example [22]) that when multipliers exist, stationary points

of the nonlinear problem (2.1) are also stationary points of the exact penalty function
(2.2) for all sufficiently large values of π . Conversely, and more important from the
standpoint of practical penalty methods, any stationary point of the exact penalty
function (2.2) that is feasible for problem (2.1) is a stationary point of (2.1).

Exact penalty methods attempt to find stationary points of the nonlinear program
(2.1) by minimizing the penalty function (2.2), and use the exogenous penalty param-
eter π as a control to promote feasibility. Two key questions arise: a) How can we find
stationary points of the nonsmooth exact penalty function φπ , for a fixed value of π?
b) How should we update the penalty parameter π?

The first of these issues is well understood [13]. We can search for stationary points
of the penalty function by taking steps based on a piecewise quadratic model of φπ .
To define this model, we first construct the following piecewise linear model of the
measure of constraint violation v at an iterate xk :

mk(d) =
∑

i∈I
[∇gi (xk)

T d + gi (xk)]− +
∑

i∈E
|∇hi (xk)

T d + hi (xk)|. (2.4)

Next, we define a piecewise quadratic model of φπ at xk as

qπ
k (d) = f (xk) + ∇ f (xk)

T d + 1
2 dT Wkd + π mk(d), (2.5)

where Wk is a symmetric positive definite matrix that approximates the Hessian of
the Lagrangian of the nonlinear program (2.1). We compute the search direction dk

by solving the problem
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minimize
d

qπ
k (d). (2.6)

In practice, we recast (2.6) as the smooth quadratic program

minimize
d,r,s,t

f (xk) + ∇ f (xk)
T d + 1

2 dT Wkd + π
∑

i∈E
(ri + si ) + π

∑

i∈I
ti

(2.7a)

subject to ∇hi (xk)
T d + hi (xk) = ri − si , i ∈ E, (2.7b)

∇gi (xk)
T d + gi (xk) ≥ −ti , i ∈ I, (2.7c)

r, s, t ≥ 0. (2.7d)

Once the solution dk of problem (2.6) is found, a line search is performed in the direc-
tion dk to ensure that sufficient decrease in the exact penalty function (2.2) is achieved
at the new iterate.

The positive definiteness assumption on Wk is common in line search methods,
where Wk is obtained through a quasi-Newton update or by adding (if necessary) a
multiple of the identity to the Hessian of the Lagrangian of problem (2.1). Note that
the quadratic subproblem (2.7) is always feasible, and we show in this paper that the
introduction of the surplus variables r, s, t , together with the positive definiteness of
Wk provide a regularization effect to the algorithm.

The second challenge in penalty methods concerns the selection of the penalty
parameter. If π is too small, the penalty function (2.2) may be unbounded below, and
the iterates could diverge unless the value of π is corrected in time. If π is too large,
the efficiency of the penalty approach may be impaired [8]. The goal of this paper is
to propose a dynamic strategy for updating the penalty parameter that avoids these
pitfalls.

To describe this strategy, we denote the solution of (2.6) by dk(π) to stress its depen-
dence on the penalty parameter. At iteration k, we first solve (2.6) using the current
penalty parameter πk , to obtain dk(πk). We are content if the linearized constraints are
satisfied, i.e., if mk(dk(πk)) = 0 and sufficient penalty function rection is predicted.
In this case, the penalty parameter is not changed and we define the search direction
as dk � dk(πk). No regularization is needed in this case and the search direction
dk coincides with the classical SQP direction (in which r, s, t are always zero).

On the other hand, if mk(dk(πk)) > 0, we assess the adequacy of the current penalty
parameter by computing the lowest possible violation of the linearized constraints in
a neighborhood of the current iterate. This is done by solving the problem

minimize
d

mk(d), subject to ‖d‖∞ ≤ �k, (2.8)

where �k > 0 is given. This problem is equivalent to the linear program

minimize
d,r,s,t

∑

i∈E
(ri + si ) +

∑

i∈I
ti (2.9a)
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subject to ∇hi (xk)
T d + hi (xk) = ri − si , i ∈ E, (2.9b)

∇gi (xk)
T d + gi (xk) ≥ −ti , i ∈ I, (2.9c)

‖d‖∞ ≤ �k, (2.9d)

r, s, t ≥ 0. (2.9e)

We denote the solution of this problem by dLP
k . A new penalty parameter π+ ≥ πk

is now determined such that the solution dk(π+) of problem (2.6) yields an improve-
ment in linearized feasibility that is commensurate with that obtained by the step dLP

k ,
as measured by the model mk . This strategy is specified more precisely in Algorithm I,
which is the new line search penalty method.

Algorithm I: Line Search Penalty SQP Method
Initial data: x1, π1 > 0, ρ > 0, ε1 ∈ (0, 1], ε2 ∈ (0, ε1), τ ∈ (0, 1),
η ∈ (0, 1), and 0 < �min ≤ �1 ≤ �max.
For k = 1, 2, . . .

1. Find a search direction dk(πk) by solving the subproblem (2.6) with
π = πk . If dk(πk) = 0 and v(xk) = 0, STOP: xk is a KKT point of problem
(2.1).

2. If mk(dk(πk)) = 0, and qπk
k (0) − qπk

k (dk(πk)) ≥ ε2πkmk(0), set
π+ = πk and go to Step 6.

3. Solve the linear programming subproblem (2.8) to get dLP
k . If

0 < mk(0) = mk(dLP
k ), (2.10)

STOP: xk is an infeasible stationary point of the penalty function (2.2).
4. Update the penalty parameter:

(a) If mk(dLP
k ) = 0, find π+ ≥ πk + ρ and a corresponding vector

dk(π+) that solves (2.6), such that
mk(dk(π+)) = 0. (2.11)

(b) Else set π+ = πk . If the following inequality does not hold
mk(0) − mk(dk(π+)) ≥ ε1[mk(0) − mk(dLP

k )], (2.12)
then find π+ ≥ πk + ρ and a corresponding vector

dk(π+), such that (2.12) is satisfied.
5. If the following inequality does not hold

qπ+
k (0) − qπ+

k (dk(π+)) ≥ ε2π+[mk(0) − mk(dLP
k )], (2.13)

then increase π+ (by at least ρ) as necessary, until the
solution dk(π+) of (2.6) satisfies (2.13).

6. Set dk = dk(π+), and let 0 < αk ≤ 1 be the first member of the
sequence {1, τ, τ 2, . . .} such that

φπ+(xk) − φπ+(xk + αkdk) ≥ ηαk[qπ+
k (0) − qπ+

k (dk)]. (2.14)
7. Set �k+1 ∈ [�min,�max].
8. Let πk+1 = π+ and xk+1 = xk + αkdk .

It is worth emphasizing that Algorithm I is a line search method. The global conver-
gence results established in the next section are based on the properties of line search
methods together with the regularization effects of the penalty approach. The trust
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region constraint in (2.8) plays an indirect role, since it only influences the choice of
the penalty parameter.

Note that since the Hessian Wk in the piecewise quadratic model (2.5) is positive
definite, qπ

k is strictly convex. Therefore the solution of problem (2.6), which we
denote by dk(π), is unique. On the other hand, the convex model mk(d) is not strictly
convex.

The overall design of Algorithm I is based on the following three updating guide-
lines that we call the steering rules and are an adaptation of the strategy given in [8]
to the line search setting:

1. If it is possible to satisfy the linearized constraints in a neighborhood of the current
iterate, we compute such a step. This is achieved by enforcing condition (2.11).
In other words, if a classical SQP step exists and is not too long, we would like to
use it.

2. If the linearized constraints are locally infeasible, we will be content with tak-
ing a step that achieves at least a fraction of the best possible local feasibility
improvement. We impose this requirement through condition (2.12). Note that
(2.12) could be satisfied with the current penalty parameter πk , in which case no
extra quadratic subproblems (2.6) need to be solved.

3. Not only feasibility but also improvement in the penalty function has to be com-
mensurate with the improvement in feasibility obtained with dLP

k . This is guar-
anteed by condition (2.13) or the second condition in Step 2. Note that at every
iteration (2.13) is satisfied even if Step 5 is skipped because of Step 2. This is the
case since mk(0) ≥ mk(0) − mk(dLP

k ), whether or nor dLP
k is computed.

We note that when condition (2.13) is violated, we need to re-solve problem
(2.6) only once because an appropriate value of the penalty parameter is readily
computed. To see this, let us consider two cases. If mk(0) − mk(dLP

k ) = 0 then
(2.13) is satisfied for any π because dk(π) is the minimizer of qπ

k . Otherwise,
mk(0) > mk(dLP

k ), which implies that mk(0) > 0. Let π+ be the value of the
penalty at the beginning of Step 5 of Algorithm I, let d+ = dk(π+) and define

π̂ =
1
2 dT+Wkd+ + ∇ f (xk)

T d+
(1 − ε2)mk(0) − mk(d+) + ε2mk(dLP

k )
+ ρ. (2.15)

(Note that (2.11) or (2.12), together with the relations 0 < ε2 < ε1 ≤ 1, imply
that the denominator is positive.) Then, by writing d̂ = d(π̂) we have from (2.15)
that

ε2π̂ [mk(0) − mk(d
LP
k )] ≤ −∇ f (xk)

T d+ − 1
2 dT+Wkd+ + π̂ [mk(0) − mk(d+)]

= q π̂
k (0) − q π̂

k (d+)

≤ q π̂
k (0) − q π̂

k (d̂), (2.16)

where the last inequality follows from the fact that d̂ is the minimizer of q π̂
k . This

shows that condition (2.13) is satisfied if the penalty parameter is given by (2.15).
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Therefore, if condition (2.13) does not hold we can define the penalty parameter
by (2.15) and let the desired step be given by d(π̂).

We show in Lemma 3.5-(b) that if the penalty parameter is increased in Step 5 to
satisfy (2.13), it will still satisfy conditions (2.11) and (2.12).

When the penalty parameter is updated in Algorithm I, the main cost is in the
repeated solution of the quadratic program (2.6) for different values of π in Step 4(b);
the linear program (2.8) is solved only once in Step 3. We expect, however, that warm
starts can greatly accelerate the solution of these quadratic programs and that the
savings in total iterations will overcome any extra cost incurred in some iterations.

The choice of penalty parameter π+ in Algorithm I ensures that dk is a descent
direction for the penalty function (see Lemma 3.5 (c)). Note that in the right-hand side
of (2.14) we use the decrease in the piecewise quadratic model qπ+

k , instead of the
directional derivative of the penalty function. This accounts for possible kinks in the
merit function near the current iterate that could be overlooked by a standard Armijo
line search and result in jamming.

The constraint ‖d‖∞ ≤ �k in problem (2.8) is not a trust region in the usual sense,
and the value of �k is not critical to the performance of the algorithm. The function
mk(d) is always bounded below and the radius �k is used only to ensure that the
feasibility subproblem is bounded. In fact, the radius �k could be kept constant and
the convergence properties of Algorithm I would not be affected. In practice, however,
it may be advantageous to choose �k based on local information of the problem, as
discussed in Sect. 4.

3 Convergence analysis

In this section we study the global convergence properties of Algorithm I. We make
the following assumptions about the sequence of iterates {xk} and the matrices Wk

generated by the algorithm.

Assumptions I

A1. The functions f, gi , i ∈ I, and hi , i ∈ E , are twice differentiable with bounded
derivatives over a bounded convex set that contains the sequence {xk}.

A2. The matrices Wk are uniformly positive definite and bounded above, i.e., there
exist values 0 < μmin < μmax such that

μmin‖p‖2 ≤ pT Wk p ≤ μmax‖p‖2, (3.1)

for any p ∈ R
n .

Here and throughout the paper ‖ · ‖ denotes the 
2 norm; when using other norms
we indicate so explicitly.

We denote the directional derivative of a generic function f at x in the direction
p by D f (x; p). A point x is said to be a stationary point of the penalty function if
Dφπ(x; p) ≥ 0 for all directions p. A point x̂ is called an infeasible stationary point
for problem (2.1) if v(x̂) > 0 and Dv(x̂; p) ≥ 0 for all p. We say that problem (2.1)
is locally infeasible if there is an infeasible stationary point for it.
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The analysis in this section is divided into two parts. In the first subsection we
study the behavior of the algorithm when the penalty parameter π remains bounded.
In the second subsection we consider the circumstances where the sequence of penalty
parameters can diverge.

3.1 Analysis with bounded penalty parameter

We first establish some basic properties of the algorithm and show that it is well-
defined. Then we prove that when the sequence {πk} is bounded, any accumulation
point of Algorithm I is a stationary point of φπ for some π , and is thus either a KKT
point of (2.1) or an infeasible stationary point of v(x).

The first lemma provides useful relationships between the directional derivatives
of the functions φπ and v and their local models, qπ and m.

Lemma 3.1 Given a point xk , the directional derivatives of v and φπ along a vector
p satisfy

Dv(xk; p) = Dmk(0; p) (3.2)

and

Dφπ(xk; p) = Dqπ
k (0; p). (3.3)

Proof Given xk and a vector d ∈ R
n , let us define the sets

G−
k (d) = {i ∈ I : ∇gi (xk)

T d + gi (xk) < 0},
G0

k (d) = {i ∈ I : ∇gi (xk)
T d + gi (xk) = 0}, (3.4)

G+
k (d) = {i ∈ I : ∇gi (xk)

T d + gi (xk) > 0},

which determine a partition of I. Similarly, we can define a partition H−
k (d),H0

k(d)

and H+
k (d) of E induced by the value of ∇hi (xk)

T d + hi (xk).
The directional derivative of mk(·) at d in the direction p is given by

Dmk(d; p) =
∑

i∈G0
k (d)

[ ∇gi (xk)
T p ]− −

∑

i∈G−
k (d)

∇gi (xk)
T p

+
∑

i∈H+
k (d)

∇hi (xk)
T p +

∑

i∈H0
k (d)

| ∇hi (xk)
T p | −

∑

i∈H−
k (d)

∇hi (xk)
T p.

(3.5)

On the other hand, we have that
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Dv(xk; p) =
∑

i∈G0
k (0)

[ ∇gi (xk)
T p ]− −

∑

i∈G−
k (0)

∇gi (xk)
T p

+
∑

i∈H+
k (0)

∇hi (xk)
T p +

∑

i∈H0
k (0)

| ∇hi (xk)
T p | −

∑

i∈H−
k (0)

∇hi (xk)
T p.

The equality (3.2) follows by comparing this expression with (3.5).
Given a direction p, we have that Dφπ(xk; p) = ∇ f (xk)

T p + Dv(xk; p). Also,
for any d we have that Dqπ

k (d; p) = (∇ f (xk)+Wkd)T p+ Dmk(d; p). By evaluating
Dqπ

k (d; p) at d = 0 and using (3.2) we obtain (3.3). �	
The next result is well known (see e.g. [4,22]). For a given point x∗, we define the

model (2.5) at x∗ by qπ∗ , and denote its solution by d∗(π). Similarly, m∗ denotes the
model (2.4) at x∗.

Theorem 3.2 The following three statements are true:

(a) x∗ is a stationary point of the penalty function φπ(x) if and only if d∗(π) = 0
solves problem (2.6).

(b) If x∗ is a stationary point of φπ(x) and v(x∗) = 0, then x∗ is a KKT point of
(2.1).

(c) x∗ is a stationary point of the infeasibility measure v(x) if and only if, for any
� > 0, any solution dLP of the linear feasibility problem (2.8) satisfies

m∗(dLP) = m∗(0). (3.6)

Proof (a) By definition, d∗(π) = 0 is the minimizer of qπ∗ (d) if and only if
Dqπ∗ (0; p) ≥ 0 for any direction p. The result follows from (3.3).

(b) See [27, Theorem 17.4].
(c) Given � > 0, let dLP be a solution of (2.8). Since d = 0 obviously satisfies

‖d‖∞ ≤ �, we have that m∗(dLP) ≤ m∗(0). Also, from (3.2) we have that x∗
is stationary for v(x) if and only if 0 is stationary for m∗(d), which holds (by
convexity of m∗) if and only if 0 is an unconstrained global minimizer of m∗(d).
Therefore, m∗(0) ≤ m∗(d) for any d, and in particular for d = dLP. We conclude
that (3.6) holds. �	

This theorem justifies the stopping tests in Algorithm I. If Algorithm I stops at
Step 1, Theorem 3.2 (a) and (b) imply that the current iterate xk is a KKT point of the
nonlinear program (2.1). If the algorithm stops at Step 3, then Theorem 3.2 (c) and
v(xk) > 0 imply that xk is an infeasible stationary point. If neither stop test is satisfied,
we need to show that Algorithm I will generate a new iterate xk+1 and that it is always
possible to meet the requirements in Steps 4 and 6. This is done in Lemma 3.5; first
we need to establish two auxiliary results.

Lemma 3.3 Suppose that Assumptions I hold. At any given iterate xk , and for all
π > 0, the minimizers dk(π) of qπ

k (d) are contained in a compact ball

Bk = {d : ‖d‖ ≤ rk} with rk = κ1 + κ2‖d̄k‖, (3.7)
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for some global constants κ1 and κ2, and where d̄k denotes the minimum norm mini-
mizer of mk(d).

Proof Let d̄k be the minimum norm minimizer of mk(d); it is well defined because
mk(d) is a piece-wise linear convex function that is bounded below. If ‖d‖ is large
enough that μmin‖d‖ ≥ 8‖∇ f (xk)‖ and μmin‖d‖2 ≥ 2μmax‖d̄k‖2, then by (3.1)

−∇ f (xk)
T d + ∇ f (xk)

T d̄k + 1
2 d̄T

k Wkd̄k ≤ ‖∇ f (xk)‖‖d‖ + ‖∇ f (xk)‖‖d̄k‖
+μmax

2 ‖d̄k‖2

≤ μmin
8 ‖d‖2 + μmin

8

[
μmin

2μmax

] 1
2 ‖d‖2

+μmin
4 ‖d‖2

<
μmin

2 ‖d‖2

≤ 1
2 dT Wkd,

and therefore

f (xk) + ∇ f (xk)
T d + 1

2 dT Wkd > f (xk) + ∇ f (xk)
T d̄k + 1

2 d̄T
k Wkd̄k .

Thus, for all

‖d‖ > max{8‖∇ f (xk)‖/μmin,
√

2μmax/μmin‖d̄k‖} (3.8)

and all π ≥ 0 we have

qπ
k (d) = f (xk) + ∇ f (xk)

T d + 1
2 dT Wkd + πmk(d)

> f (xk) + ∇ f (xk)
T d̄k + 1

2 d̄T
k Wkd̄k + πmk(d̄k) = qπ

k (d̄k),

since d̄k is a minimizer of mk . Therefore, no minimizer dk(π) can be larger in norm
than the right hand side of (3.8). To establish (3.7), we let κ̃1 be an upper bound for
‖∇ f (xk)‖, define κ1 = 8κ̃1/μmin and κ2 = √

2μmax/μmin. �	
The following result shows that by choosing π sufficiently large, the direction d(π)

can attain any achievable level of linear feasibility.

Lemma 3.4 At any iterate xk , for all all π sufficiently large the minimizer dk(π) of
qπ

k , also minimizes mk(d).

Proof From (2.4) we have that the piecewise linear function mk(d) may be expressed
as

mk(d) = max
j∈M

{aT
j d + b j },
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where M is a finite index set, the vectors a j are in R
n and the b j are scalars. It follows

(see e.g. [29, p. 66]) that for any d ∈ R
n the subdifferential ∂mk(d) is the convex hull

of the active support functions at d, i.e.

∂mk(d) = conv{a j | j ∈ M and aT
j d + b j = mk(d)}.

Since a vector d minimizes the convex function mk if and only if ∂mk(d) contains 0,
then if d is not a minimizer of mk it follows that ∂mk(d) is a closed convex set not
containing 0, which implies that

σ(d) � min{‖a‖|a ∈ ∂mk(d)} > 0.

Now since ∂mk(d) is defined by the active set { j ∈ M|aT
j d + b j = mk(d)} and only

a finite number of possible sets ∂mk(d) exist as d ranges over R
n , the function σ(d)

takes on only a finite set of values. Therefore

σk � min
d∈Rn

{σ(d)|0 /∈ ∂mk(d)} > 0. (3.9)

Now by Lemma 3.3, there is a compact ball Bk containing the minimizers of qπ
k , for

all π . Therefore, for all such minimizers dk(π) we have ‖∇ f (xk) + Wkdk(π)‖ ≤ βk ,
for some constant βk . Consider some π̃ > βk/σk and the minimizer dk(π̃) of q π̃

k . Any
vector g ∈ ∂q π̃

k (dk(π̃)) may be expressed as

g = ∇ f (xk) + Wkdk(π̃) + π̃a for some a ∈ ∂mk(dk(π̃)).

If dk(π̃) does not minimize mk , it follows from (3.9) that

‖g‖ ≥ π̃‖a‖ − ‖∇ f (xk) + Wkdk(π)‖ ≥ π̃σk − βk > 0.

This means 0 /∈ ∂q π̃
k contradicting the fact that dk(π̃) is a minimizer of q π̃

k . Therefore
dk(π̃) must minimize mk . �	

For the remainder of the analysis, it is useful to define the model

q f
k (d) = f (xk) + ∇ f (xk)

T d + 1
2 dT Wkd, (3.10)

so that

qπk
k (d) = q f

k (d) + πkmk(d). (3.11)

We now prove that Algorithm I is well defined.

Lemma 3.5 Suppose that xk is neither a KKT point of nonlinear program (2.1) nor a
stationary point of the infeasibility measure v(x). Then,
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(a) If Algorithm I executes Step 4, it is always possible to find a value π+ and a
corresponding vector dk(π+) such that condition (2.11) holds if mk(dLP) = 0,
or condition (2.12) holds if mk(dLP) > 0.

(b) If Algorithm I executes Step 5, it is always possible to find a value π+ and a cor-
responding vector dk(π+) such that condition (2.13) holds; moreover conditions
(2.11) and (2.12) are satisfied for such value π+.

(c) At Step 6, dk is a descent direction for φπ+(x) at xk . Therefore, there exists αk

such that condition (2.14) is satisfied.

Proof (a) By Lemma 3.4, for π+ sufficient large dk(π+) is a minimizer of mk(d)

and hence mk(dk(π+)) ≤ mk(dLP
k ); this implies (2.11). Moreover, since ε1 ≤ 1,

we have that

mk(0) − mk(dk(π+)) ≥ mk(0) − mk(d
LP
k ) ≥ ε1[mk(0) − mk(d

LP
k )],

so that (2.12) is satisfied.
(b) We have already shown in Sect. 2 (see (2.16)) that (2.13) is satisfied if the penalty

parameter is chosen by (2.15). We now show that if the penalty parameter is
increased in Step 5, this new value of π still satisfies (2.11) and (2.12).
Let π2 > π1. Then by (3.11) and the fact that dk(π) is the minimizer of qπ

k ,
we have

q f
k (dk(π1)) + π2mk(dk(π1)) ≥ q f

k (dk(π2)) + π2mk(dk(π2)) (3.12)

q f
k (dk(π1)) + π1mk(dk(π1)) ≤ q f

k (dk(π2)) + π1mk(dk(π2)). (3.13)

Hence

(π2 − π1)mk(dk(π1)) ≥ (π2 − π1)mk(dk(π2)),

which implies that mk(dk(π1)) ≥ mk(dk(π2)). We conclude that mk(dk(π))

cannot increase as π is increased.
(c) If xk is neither stationary for φπk nor for v(x), then at Step 6 we must have

dk �= 0. This is a consequence of the logic of Algorithm I and of Theorem 3.2,
parts (a) and (c). Since qπ+

k (d) is strictly convex and dk is the minimizer of qπ+
k

(and dk �= 0), we have that qπ+
k (dk) < qπ+

k (0) and thus dk is a descent direction
for qπ+

k at 0. By (3.3), we have

Dφπ+(xk; dk) = Dqπ+
k (0; dk) < 0,

and therefore dk is also a descent direction for φπ+(x) at xk . Since the constant η

is chosen in (0,1), it follows that φπ+(xk + αdk) < φπ+(xk) + αηDφπ+(xk; dk)

for all sufficiently small α > 0, or

φπ+(xk) − φπ+(xk + αdk) > −αηDφπ+(xk; dk).
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From (3.3) and the convexity of qπ+
k (d), we have that

− αηDφπ+(xk; dk) = −αηDqπ+
k (0; dk) ≥ αη[qπ+

k (0) − qπ+
k (dk)].

We conclude that there always exists a sufficiently small steplength αk that sat-
isfies condition (2.14). �	

We now establish the first convergence result. It gives conditions under which
Algorithm I identifies stationary points of the penalty function.

Theorem 3.6 Suppose that Algorithm I generates an infinite sequence of iterates {xk}
and that Assumptions I hold. Suppose also that {πk} is bounded, so that πk = π̄ for
all k large. Then any accumulation point x∗ of {xk} is a stationary point of the penalty
function φπ̄ (x).

Proof Note that, whenever π is increased in Algorithm I, it is increased by at least
ρ > 0. Therefore, if {πk} is bounded, there is a value π̄ such that πk = π̄ for all
sufficiently large k.

Let x∗ be a limit point of {xk}, which exists because Assumption A1 states that
{xk} is bounded. Let K be an infinite subset of indices such that {xk}k∈K → x∗.
The sequence of matrices {Wk} is also bounded, by Assumption A2. We restrict K
if necessary so that {Wk}k∈K → W∗, where W∗ is a limit point of {Wk}. Then, from
the continuity of the functions f, gi , hi and their gradients, and from the definition
(2.5), we have that the sequence of models q π̄

k , k ∈ K converges (pointwise) to a
function q π̄∗ .

Each of the functions q π̄
k , as well as the limiting function q π̄∗ , are strictly convex

and have a unique minimizer. We want to prove that the minimizer of q π̄∗ (d) is d∗ = 0,
for then Theorem 3.2 (a) implies that x∗ is a stationary point of φπ̄ .

We proceed by contradiction. Assume that d∗ �= 0, or equivalently, that q π̄∗ (0)−q π̄∗
(d∗) > 0. From the pointwise convergence of the functions q π̄

k , we know that there
exists ε > 0 such that

q π̄
k (0) − q π̄

k (d∗) → q π̄∗ (0) − q π̄∗ (d∗) = 2ε > 0.

Therefore, there is a number k0 such that for all k ≥ k0, with k ∈ K, we have that
πk = π̄ and

q π̄
k (0) − q π̄

k (dk) ≥ q π̄
k (0) − q π̄

k (d∗) ≥ ε. (3.14)

It is not difficult to show (see e.g. Lemma 3.4 in [6]) that for any α ∈ [0, 1],

|φπ̄ (xk + αdk) − q π̄
k (αdk)| ≤ c1‖αdk‖2, (3.15)

for some positive constant c1. Recalling that q π̄
k is a convex function, noting that

φπ̄ (xk) = q π̄
k (0), using (3.14) and (3.15), and assuming that αk ≤ (1−η)ε/(c1‖dk‖2),
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where η ∈ (0, 1) is the sufficient decrease parameter in Algorithm I, we obtain

φπ̄ (xk) − φπ̄ (xk + αkdk) ≥ [q π̄
k (0) − q π̄

k (αkdk)] − φπ̄ (xk + αkdk) + q π̄
k (αkdk)

≥ αk[q π̄
k (0) − q π̄

k (dk)] − c1α
2
k ‖dk‖2

= ηαk[q π̄
k (0) − q π̄

k (dk)] + (1 − η)αk[q π̄
k (0) − q π̄

k (dk)]
−c1α

2
k ‖dk‖2

≥ ηαk[q π̄
k (0) − q π̄

k (dk)] + (1 − η)αkε − c1α
2
k ‖dk‖2

≥ ηαk[q π̄
k (0) − q π̄

k (dk)].

Thus, for such αk the sufficient decrease condition (2.14) is satisfied, which implies
that Step 6 of Algorithm I will always select αk satisfying

αk ≥ min{τ(1 − η)ε/(c1‖dk‖2), 1}. (3.16)

Now we argue that optimality of dk implies it satisfies the bound

‖dk‖ ≤ max{1, 2
μmin

(‖∇ f (xk)‖ + π̄mk(0))}. (3.17)

This is clear since if (3.17) is violated, then ‖dk‖ > 1 and thus

1
2μmin‖dk‖2 > ‖∇ f (xk)‖‖dk‖ + π̄mk(0),

which implies

q π̄
k (dk) − q π̄

k (0) = ∇ f (xk)
T dk + 1

2
dT

k Wkdk + π̄mk(dk) − π̄mk(0)

≥ −‖∇ f (xk)‖‖dk‖ + 1

2
μmin‖dk‖2 − π̄mk(0)

> 0,

and this would mean dk does not minimize q π̄
k .

Together with Assumption A1 and (3.16), the bound (3.17) implies there is a con-
stant c2 > 0 such that αk > c2 for all k. Now, using this bound on αk together with
(3.14), it follows that Step 6 of Algorithm I guarantees that

φπ̄ (xk) − φπ̄ (xk + αkdk) ≥ ηαk[q π̄
k (0) − q π̄

k (dk)]
≥ ηc2ε. (3.18)

This relation implies that φπ̄ (xk) → −∞, which contradicts Assumption A1 (that
implies that f (xk) and gi (xk), hi (xk) are bounded). This implies that the hypothesis
q π̄∗ (0) − q π̄∗ (d∗) > 0 is false, and therefore that x∗ is a stationary point of φπ̄ . �	

Now that we have established that, when the penalty parameter is bounded the algo-
rithm will locate a stationary point of φ, the next result shows that such a stationary
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point is either a KKT point of the nonlinear program (2.1) or a stationary point of the
infeasibility measure.

Theorem 3.7 Suppose that Algorithm I generates an infinite sequence of iterates {xk},
that Assumptions I hold, and that {πk} is bounded. Let x∗ be any accumulation point
of {xk}. Then either: (a) v(x∗) = 0 and x∗ is a KKT point of (2.1); or (b) v(x∗) > 0
and x∗ is a stationary point of v(x).

Proof Let x∗ be a limit point of the sequence {xk}. Since πk is bounded there is a
scalar π̄ such that πk = π̄ for all large k. From Theorem 3.6 we have that x∗ is a
stationary point of φπ̄ (x).

(a) If v(x∗) = 0, then by Theorem 3.2 (b), x∗ is a KKT point of problem (2.1).
(b) In the case when v(x∗) > 0 we want to show that (3.6) holds for some � > 0.

Let K be an infinite subset of indices for which xk → x∗ for k ∈ K. Let W∗ be
a limiting matrix of the sequence {Wk}k∈K, and let q π̄∗ (d) be the corresponding
piecewise quadratic model. Restricting K further, if necessary, we obtain point-
wise convergence of the models, i.e., q π̄

k (d) → q π̄∗ (d) for k ∈ K. As before, let
dk denote the minimizer of q π̄

k (d).
Since x∗ is a stationary point of φπ̄ (x), by Theorem 3.2 (a) we have that the
minimizer of q π̄∗ (d) is d∗ = 0. From the pointwise convergence of the models,
it follows that dk → 0, which in turn implies that

q π̄
k (0) − q π̄

k (dk) → 0. (3.19)

Since, as pointed out in item 3 on page 6, (2.13) holds at every iteration, this limit
implies that mk(0) − mk(dLP

k ) → 0 for k ∈ K.
We also have pointwise convergence to a limiting piecewise linear model, i.e.,
mk(d) → m∗(d), and hence

0 = lim
k→∞,k∈K

[mk(0) − mk(d
LP
k )]

= lim
k→∞,k∈K

[mk(0) − min ‖d‖∞≤�k mk(d)]
≥ lim

k→∞,k∈K
[mk(0) − min ‖d‖∞≤�min mk(d)],

where the last inequality follows from the fact that Algorithm I requires that
�k ≥ �min > 0. Therefore, 0 < v(x∗) = m∗(0) = m∗(dLP(�min)) and by
Theorem 3.2 (c) we conclude that x∗ is a stationary point of infeasibility for
v(x).

�	

3.2 Analysis with unbounded penalty parameter

Now we consider the behavior of the algorithm when the penalty parameter increases
without bound. We show in Theorem 3.14 that this can occur only if the algorithm
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generates an accumulation point that is an infeasible stationary point of v or an accu-
mulation point that is feasible and where the Mangasarian-Fromovitz constraint qual-
ification fails.

To establish this result, we need to understand under what circumstances can the
penalty parameter πk be increased without bound. The first result rules out such behav-
ior of πk in a vicinity of an infeasible stationary point.

Lemma 3.8 Suppose that Algorithm I generates a sequence {xk} that satisfies Assump-
tions I. Let x∗ be a cluster point of this sequence such that v(x∗) > 0, and suppose
that for some � ∈ [�min,�max] we have m∗(0) − m∗(dLP) > 0. Then, along any
subsequence {xk}k∈K that converges to x∗ the penalty parameter is updated only a
finite number of times.

Proof We will show that for any subsequence that converges to such a point x∗,
Step 4(a) cannot be executed infinitely often, and that for xk sufficiently close to x∗,
(2.12) and (2.13) are satisfied for sufficiently large π . This will prove the result because
the penalty parameter is only increased in Steps 4 and 5 of Algorithm I.

As a preliminary observation note that, since we assume

m∗(0) − m∗(dLP) > 0, (3.20)

there exist constants r > 0 and ζ > 0 such that

mk(0) − mk(d
LP
k ) > ζ, for all xk ∈ B∗ � {x : ‖xk − x∗‖ < r}. (3.21)

We now study the situations in which the penalty parameter is increased in Algo-
rithm I. This increase can happen in Steps 4(a), 4(b) or 5 of Algorithm I, and we study
each case separately.

Case (i) Consider an iterate xk where Step 4(a) is executed. By (2.13) and (3.21), for
any such k

qπ+
k (0) − qπ+

k (dk) ≥ ε2π+ζ, (3.22)

since dk = dk(π+). Now, by the Lipschitz continuity assumptions in A1, one can
show [7, Lemma 3.4] that there is a constant c1 such that for any xk and any π

|φπ(xk + αdk) − qπ
k (αdk)| ≤ c1(1 + π)‖αdk‖2. (3.23)
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Let us consider the sufficient decrease condition (2.14). From the equality φπ+(xk) =
qπ+

k (0), the convexity of qπ+
k , (3.23) and (3.22), we have, for xk ∈ B∗,

φπ+(xk) − φπ+(xk + αdk) − ηα[qπ+
k (0) − qπ+

k (dk)]
= [qπ+

k (0) − qπ+
k (αdk)] − [φπ+(xk + αdk) − qπ+

k (αdk)]
−ηα[qπ+

k (0) − qπ+
k (dk)]

≥ α[qπ+
k (0) − qπ+

k (dk)] − c1(1 + π+)‖αdk‖2

−ηα[qπ+
k (0) − qπ+

k (dk)]
≥ α(1 − η)[qπ+

k (0) − qπ+
k (dk)] − c1(1 + π+)‖αdk‖2

≥ α(1 − η)ε2π+ζ − c1(1 + π+)α2‖dk‖2.

The right hand side is nonnegative if α ≤ (1 − η)ε2π+ζ/c1(1 +π+)‖dk‖2. Therefore
Step 6 of Algorithm I will always choose

αk ≥ min{1, τ (1 − η)ε2π+ζ/c1(1 + π+)‖dk‖2}, (3.24)

where τ is the contraction factor used in Step 6 of the algorithm.
Since mk(dLP

k ) = 0 when Step 4(a) is executed, we have that dLP
k is an uncon-

strained minimizer of mk and is thus no smaller in norm than the minimum norm
minimizer d̄k mentioned in Lemma 3.3. By applying Lemma 3.3, we obtain the bound
‖dk‖ ≤ κ1 + κ2‖dLP

k ‖ ≤ κ1 + κ2�max, since ‖dLP
k ‖ ≤ �max; see Step 7. Using this

bound in (3.24) gives

αk ≥ min

{
1,

(1 − η)τε2π+ζ

c1(1 + π+)(κ1 + κ2�max)2

}
≥ c2,

for some constant c2 > 0. This bound, together with (2.14) and (3.22) implies that
there is a constant c3 > 0 such that for any xk ∈ B∗,

φπk+1(xk+1) ≤ φπk+1(xk) − c3πk+1. (3.25)

Now, consider the scaled penalty function

1
π
φπ(x) = 1

π
f (x) + v(x),

and note that since { f (xk)} is assumed bounded below and the algorithm is unaffected
by adding a constant to f , we may assume without loss of generality that f (xk) ≥ 0
for all k. This assumption and the fact that {πk} is nondecreasing, imply that

1
πk+1

f (xk) + v(xk) ≤ 1
πk

f (xk) + v(xk). (3.26)

By the sufficient decrease condition (2.14) we have that, for all k,

1
πk+1

φπk+1(xk+1) ≤ 1
πk+1

φπk+1(xk).
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By combining this expression with (3.26) we have

1
πk+1

φπk+1(xk+1) ≤ 1
πk

φπk (xk),

which shows that the sequence { 1
πk

f (xk) + v(xk)} is monotone decreasing for all k.
Consider now an iterate xk ∈ B∗ at which Step 4(a) is executed. By combining (3.26)
with (3.25) we obtain, for such xk ,

1
πk+1

f (xk+1) + v(xk+1) ≤ 1
πk

f (xk) + v(xk) − c3. (3.27)

If there is an infinite number of such iterates xk , then we have from (3.27) that
{ 1
πk

f (xk)+v(xk)} → −∞. This, however, contradicts Assumption A1, which implies

that the sequence { 1
πk

f (xk) + v(xk)} is bounded below. We conclude that Step 4(a)
can only be executed finitely often for xk ∈ B∗.

Case (ii) Next, consider Step 4(b). First note that, since Wk is positive definite, the
lowest value of the quadratic model q f

k (d) (defined in (3.10)) is attained at the Newton
step, −W −1

k ∇ f (xk). Thus by (3.1) we have, for any d,

q f
k (d) ≥ f (xk) − ∇ f (xk)

T W −1
k ∇ f (xk) + 1

2∇ f (xk)
T W −1

k Wk W −1
k ∇ f (xk)

= f (xk) − 1
2∇ f (xk)

T W −1
k ∇ f (xk)

≥ f (xk) − 1
2‖∇ f (xk)‖2/μmin. (3.28)

Also, since the linear program (2.8) is constrained by a trust region whose radius
cannot exceed �max, we have from (3.10)

q f
k (dLP

k ) ≤ f (xk) + ‖∇ f (xk)‖�max + 1
2μmax�

2
max. (3.29)

By combining (3.28) and (3.29) and recalling that ‖∇ f (xk)‖ is bounded (by Assump-
tion A1), we deduce that there is constant ν such that, for all xk

q f
k (dLP

k ) − q f
k (dk(πk)) ≤ ν. (3.30)

Now since dk(πk) minimizes qπk
k , by (3.10) we have that

q f
k (dk(πk)) + πkmk(dk(πk)) ≤ q f

k (dLP) + πkmk(d
LP).

Combining this relation with (3.30), and assuming that xk ∈ B∗, gives

πk[mk(0) − mk(dk(πk))] ≥ πk[mk(0) − mk(d
LP
k )] − q f

k (dLP) + q f
k (dk(πk))

≥ πk[mk(0) − mk(d
LP
k )] − ν

≥ πk[mk(0) − mk(d
LP
k )](1 − ν

ζπk
),
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because (3.21) implies that −ν ≥ −ν[mk(0) − mk(dLP
k )]/ζ . If the penalty parameter

is large enough that

πk ≥ ν

ζ(1 − ε1)
(3.31)

then

mk(0) − mk(dk(πk)) ≥ ε1[mk(0) − mk(d
LP
k )], (3.32)

and condition (2.12) will be satisfied. Therefore, πk cannot be increased infinitely
often in Step 4(b), for xk ∈ B∗.

Case (iii) Finally, consider Step 5 of Algorithm I, which enforces condition (2.13).
Suppose that π+ is chosen so that

π+ ≥ ν

ζ(1 − ε1)(1 − ε2/ε1)
, (3.33)

where ν is defined in (3.30) (recall that ε2 < ε1). If we let π̃ = π+(1 − ε2/ε1) then
the fact that dk(π̃) is a minimizer of q π̃

k implies that

q f
k (0) − q f

k (dk(π̃)) + π+(1 − ε2/ε1)(mk(0) − mk(dk(π̃)) ≥ 0,

and therefore

q f
k (0) − q f

k (d(π̃)) + π+[mk(0) − mk(dk(π̃))] ≥ ε2
ε1

π+[mk(0) − mk(dk(π̃))].

Thus,

qπ+
k (0) − qπ+

k (dk(π̃)) ≥ ε2π+(mk(0) − mk(d
LP
k )),

since π̃ satisfies (3.31) and thus (3.32). The fact that π+ satisfies (2.13) follows from
noting that −qπ+

k (dk(π̃)) ≤ −qπ+
k (dk(π+)) since dk(π+) is a minimizer of qπ+

k .
Therefore since for any π+ satisfying (3.33) conditions (2.12) and (2.13) hold, and

since π increases by at least ρ, only a finite number of increases can occur for xk ∈ B∗.
�	

We now consider the behavior of the algorithm in the vicinity of a point that sat-
isfies the well-known Mangasarian-Fromovitz constraint qualification (MFCQ) [26].
We let h(x) denote the vector with components hi (x), i ∈ E , g(x) the vector with
components gi (x), i ∈ I and let ∇h(x)T and ∇g(x)T denote their Jacobians.

Definition 3.9 A point x∗ satisfies the Mangasarian-Fromovitz constraint qualifica-
tion if x∗ is feasible for (2.1), ∇h(x∗) has full rank and there is a direction dMF such
that ‖dMF‖ < 1, and

∇h(x∗)T dMF = −h(x∗) = 0 and ∇g(x∗)T dMF + g(x∗) > 0. (3.34)
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Lemma 3.10 Let x∗ be a point that satisfies MFCQ and suppose that Assumptions I
hold. Then, there is a neighborhood N of x∗ and a constant rF such that, for any iterate
xk ∈ N , there is a vector dF(xk) with ‖dF(xk)‖ ≤ rF such that mk(dF(xk)) = 0. In
addition there are constants r and β such that, for xk ∈ N , the minimizer dk(π) of
qπ

k satisfies

‖dk(π)‖ ≤ r (3.35)

and such that

q f
k (d1) − q f

k (d2) ≤ β‖d1 − d2‖ (3.36)

for any vectors d1, d2 such that ‖d1‖ ≤ 2r, ‖d2‖ ≤ 2r .

Proof Since MFCQ holds at x∗ the matrix ∇h(x∗) has full rank, and for any x suffi-
ciently near x∗ the matrix ∇h(x)T ∇h(x) is nonsingular and the vector

dF(x) = dMF − ∇h(x)(∇h(x)T ∇h(x))−1[h(x) + ∇h(x)T dMF] (3.37)

satisfies

∇h(x)T dF(x) = −h(x). (3.38)

By continuity of ∇h(x), the vector dF(x) is continuous, and the first condition in
(3.34) implies that the term in square brackets in (3.37) is small in norm near x∗.
Therefore, dF(x) is arbitrarily close to dMF and from the second condition in (3.34)
we have that ∇g(x)T dF(x) + g(x) > 0 for x near x∗. Thus, for xk in some neighbor-
hood N of x∗, we have that mk(dF(xk)) = 0. Continuity of dF(x) and the condition
‖dMF‖ < 1 also imply that there is a constant rF such that ‖dF(xk)‖ < rF for all xk

in N .
Since dF(xk) is a minimizer of mk , we have that ||d̄k || ≤ ||dF(xk)||, where d̄k is the

minimum norm minimizer of mk mentioned in Lemma 3.3. Thus, by (3.7) we have
‖dk(π)|| ≤ r , with r = κ1 + κ2rF.

From (3.10), ‖∇q f
k (d)‖ ≤ ‖∇ f (xk)‖+‖Wk‖‖d‖ and ∇ f (xk) and Wk are bounded,

by Assumptions I. The result (3.36) then follows by a Taylor expansion of q f
k and the

bounds on d1 and d2. �	
For the following results, we define A∗ to be the set of active inequality constraints

at x∗, i.e., A∗ = {i ∈ I : gi (x∗) = 0}. The next lemma is a technical result establishing
a cone of linearized feasibility with respect to constraints not in A∗.

Lemma 3.11 Suppose that Assumptions I hold and that x∗ is a feasible point with
active inequality set A∗. Then, there exists a constant γ > 0 and a neighborhood of
x∗, such that for any xk in that neighborhood, for any step dk satisfying

gi (xk) + ∇gi (xk)
T dk ≥ 0, for all i �∈ A∗ (3.39)
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and for any direction d̃, we have

gi (xk) + ∇gi (xk)
T (αdk + τ d̃) ≥ 0, for all i �∈ A∗, (3.40)

if τ > 0 and α ∈ (0, 1) satisfy

τ‖d̃‖ ≤ (1 − α)γ. (3.41)

Proof Define N ′ to be a neighborhood of x∗ over which gi (x) ≥ 1
2 gi (x∗) > 0 for

all i �∈ A∗. If ∇gi (xk) = 0 for all i �∈ A∗ then (3.40) holds trivially. Otherwise, the
quantity

γ = inf
i �∈A∗,x∈N ′

gi (x)

‖∇gi (x)‖
is positive. Multiplying (3.39) by any α ∈ (0, 1) we obtain

gi (xk) + ∇gi (xk)
T (αdk) ≥ (1 − α)gi (xk), for all i �∈ A∗. (3.42)

Now consider the composite direction αdk + τ d̃ , with τ ≥ 0 and d̃ an arbitrary
direction. We have

gi (xk) + ∇gi (xk)
T (αdk + τ d̃) ≥ (1 − α)gi (xk) + τ∇gi (xk)

T d̃, for all i �∈ A∗.
(3.43)

If xk ∈ N ′, then gi (xk) > 0 for i �∈ A∗, so that if ∇gi (xk)
T d̃ ≥ 0, the right-hand side

of (3.43) is nonnegative. If, on the other hand ∇gi (xk)
T d̃ < 0 and τ satisfies (3.41),

then

τ ≤ (1 − α)γ

‖d̃‖ ≤ (1 − α)gi (xk)

‖∇gi (xk)‖‖d̃‖ ≤ (1 − α)gi (xk)

−∇gi (xk)T d̃
, i �∈ A∗; (3.44)

hence the right-hand side of (3.43) is nonnegative. �	
The next result shows that, in a vicinity of a feasible point that satisfies the

Mangasarian-Fromovitz constraint qualification and for sufficiently large values of
the penalty parameter, the step dk generated by the algorithm satisfies the linearized
constraints (i.e., the vectors r, s, t in (2.7) are all zero).

Lemma 3.12 Suppose that Algorithm I generates a sequence {xk} that satisfies
Assumptions I. Let x∗ be a cluster point of this sequence such that v(x∗) = 0, and sup-
pose that MFCQ holds at x∗. Then for all xk sufficiently close to x∗ and πk sufficiently
large, the minimizer dk of qπk

k satisfies mk(dk) = 0.

Proof Since x∗ satisfies MFCQ, ∇h(x∗) has full rank and we can define

dM(x) � dMF − ∇h(x)[∇h(x)T ∇h(x)]−1∇h(x)T dMF (3.45)
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which is continuous in x near x∗. Clearly,

∇h(x)T dM(x) = 0, and dM(x∗) = dMF, (3.46)

since ∇h(x∗)T dMF = −h(x∗) = 0.
The continuity of dM(x) and the second relation in (3.34) imply there is a constant

σ > 0 such that for all xk near x∗, the vector dM
k � dM(xk) satisfies

∇gi (xk)
T dM

k > σ for all i ∈ A∗, and ‖dM
k ‖ < 1, (3.47)

where we have used the fact that ‖dMF‖ < 1.
Let us define g = 1

2 min j /∈A∗{g j (x∗)}. Then, since x∗ is assumed to be feasible,
for xk sufficiently near x∗ we have that v(xk) < ε where ε > 0 is a constant that may
additionally be chosen sufficiently small to satisfy both

g j (xk) ≥ g − ε > 0 for j /∈ A∗, and 2ε < g. (3.48)

We denote by N a neighborhood of x∗ contained in the neighborhoods given by
Lemmas 3.10 and 3.11, and such that for all xk ∈ N , conditions (3.46), (3.47) and
(3.48) hold and v(xk) < ε. Let us re-write (2.4) as

mk(d) =
∑

i /∈A∗
[gi (xk) + ∇gi (xk)

T d]− +
∑

i∈A∗
[gi (xk) + ∇gi (xk)

T d]−

+
∑

i∈E
|hi (xk) + ∇hi (xk)

T d|. (3.49)

The proof proceeds in three stages; each shows that for d = dk one of the summations
is zero for any xk ∈ N and for sufficiently large πk .

Part (i) Let dk minimize qπk
k , and suppose by way of contradiction that the first sum-

mation is nonzero for xk ∈ N . Then,

g j (xk) + ∇g j (xk)
T dk < 0 for some j /∈ A∗. (3.50)

By (3.48), we have that g j (xk) > 0 for xk ∈ N , and since (3.50) also holds, we know
that there exists α ∈ (0, 1) such that

g j (xk) + α∇g j (xk)
T dk = 0. (3.51)

It follows that

α(g j (xk) + ∇g j (xk)
T dk) = −(1 − α)g j (xk),

which together with (3.48) and the condition α < 1 implies

g j (xk) + ∇g j (xk)
T dk ≤ −(1 − α)(g − ε). (3.52)
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At xk define the function

a j (d) � mk(d) − [g j (xk) + ∇g j (xk)
T d]−, (3.53)

which consists of excluding the j th inequality term from (3.49) (and therefore
a j (dk) ≥ 0). For j satisfying (3.50), we have

a j (dk) = mk(dk) + g j (xk) + ∇g j (xk)
T dk . (3.54)

Clearly, a j is a convex function, which implies that for any dk

a j (αdk) ≤ (1 − α)a j (0) + αa j (dk),

and thus

a j (αdk) − a j (dk) ≤ (1 − α)(a j (0) − a j (dk)) ≤ (1 − α)ε, (3.55)

since by (3.53) a j (0) = mk(0) = v(xk) < ε, and a j (dk) ≥ 0. Now, we have from
(3.53), (3.51), (3.54), (3.55) and (3.52) that

mk(αdk) − mk(dk) = a j (αdk) − a j (dk) + g j (xk) + ∇g j (xk)
T dk

≤ (1 − α)ε − (1 − α)(g − ε)

= (1 − α)(2ε − g).

Next, by Lemma 3.10 and since qπk
k (dk) = q f

k (dk) + πkmk(dk),

qπk
k (αdk) − qπk

k (dk) ≤ (1 − α)βr + πk(1 − α)(2ε − g). (3.56)

By (3.48), 2ε − g < 0, and if πk > βr/(g − 2ε), we have that qπk
k (αdk) < qπk

k (dk),
which contradicts the fact that dk is the minimizer of qπk

k . Therefore, for xk ∈ N and
for πk sufficiently large, there cannot exist an index j satisfying (3.50), and thus the
first summation in (3.49) is zero.

Part (ii) Next, suppose that the step dk that minimizes qπk
k is such that the second sum

in (3.49) is nonzero for xk ∈ N , while the first sum is zero. Then

g
(xk) + ∇g
(xk)
T dk < 0 for some 
 ∈ A∗. (3.57)

As above, consider the linearized model of the constraints other than 
:

a
(d) = mk(d) − [g
(xk) + ∇g
(xk)
T d)]−. (3.58)

By (3.46), (3.47) and Lemma 3.11 we have that the vector dM
k = dM(xk) satisfies the

following three conditions: i) ∇hi (xk)
T dM

k = 0, i ∈ E; ii) ∇gi (xk)
T dM

k ≥ σ, i ∈
A∗; iii)

123



62 R. H. Byrd et al.

gi (xk) + ∇gi (xk)
T (αdk + τdM

k ) ≥ 0, for all i �∈ A∗, (3.59)

if

τ ≤ (1 − α)γ, (3.60)

(using (3.40) with d̃ = dM
k and recalling that by (3.47) ‖dM

k ‖ < 1). These three obser-
vations show that each of the terms in (3.49) is not larger for d = αdk + τdM

k than for
d = αdk , and the same is true for a
 since a
 consists of all but one of the terms in
mk . Thus,

a
(αdk + τdM
k ) ≤ a
(αdk) ≤ (1 − α)a
(0) + a
(dk), (3.61)

where the second inequality follows from the convexity of a
 and the condition α ∈
(0, 1). Since 
 ∈ A∗, we also have from (3.47) that

g
(xk) + ∇g
(xk)
T (αdk + τdM

k ) ≥ g
(xk) + α∇g
(xk)
T dk + τσ. (3.62)

If we choose τ > 0 small enough so that

τσ ≤ −(g
(xk) + ∇g
(xk)
T dk) (3.63)

then by (3.57)

[g
(xk) + ∇g
(xk)
T dk + τσ ]− = −(g
(xk) + ∇g
(xk)

T dk) − τσ

= [g
(xk) + ∇g
(xk)
T dk]− − τσ. (3.64)

By making use of (3.62), the fact that [ · ]− is a non-increasing convex function, the
condition α < 1 and (3.64) we have

[g
(xk) + ∇g
(xk)
T (αdk + τdM

k )]− ≤ [g
(xk) + α∇g
(xk)
T dk + τσ ]−

≤ (1 − α)[g
(xk) + τσ ]− + α[g
(xk) + ∇g
(xk)
T dk + τσ ]−

≤ (1 − α)[g
(xk)]− + α[g
(xk) + ∇g
(xk)
T dk + τσ ]−

≤ (1 − α)[g
(xk)]− + [g
(xk) + ∇g
(xk)
T dk + τσ ]−

≤ (1 − α)[g
(xk)]− + [g
(xk) + ∇g
(xk)
T dk]− − τσ. (3.65)

Now, using (3.58) to decompose mk and then applying (3.61) and (3.65), we obtain

mk(αdk + τdM
k ) = a
(αdk + τdM

k ) + [g
(xk) + ∇g
(xk)
T (αdk + τdM

k )]−
≤ (1 − α)a
(0) + a
(dk) + (1 − α)[g
(xk)]−

+[g
(xk) + ∇g
(xk)
T dk]− − τσ

≤ (1 − α)mk(0) + mk(dk) − τσ

≤ (1 − α)ε + mk(dk) − τσ, (3.66)
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for any α ∈ [0, 1], and τ > 0 satisfying (3.60) and (3.63). Since, by Lemma 3.10,
‖dk‖ ≤ r , we may also choose τ small enough that ‖αdk + τdM

k ‖ ≤ 2r . Then, if we
additionally require that (3.60) holds with equality, we have from (3.11), Lemma 3.10
and (3.66) that

qπ
k (αdk + τdM

k ) − qπ
k (dk) ≤ q f

k (αdk + τdM
k ) − q f

k (dk) − π(τσ − (1 − α)ε)

≤ β‖(α − 1)dk + τdM
k ‖ − π(τσ − (1 − α)ε)

≤
(

r

γ
+ ‖dM

k ‖
)

βτ − πτ

(
σ − ε

γ

)
,

where we have applied Lemma 3.11 with the condition that τ is small enough that
α ∈ (0, 1). If we choose ε < γσ/2, then for π > 2β(r/γ + ‖dM

k ‖)/σ the right hand
side is negative, which is not possible because dk is the minimizer of qπ

k . Therefore
the inequality (3.50) cannot hold for xk ∈ N and πk large enough.

Part (iii) Last, suppose that the step dk that minimizes qπk
k satisfies all the linear-

ized inequalities (so that the first two summations in (3.49) are zero), but is such that
h(xk) + ∇h(xk)

T dk �= 0. Then

m(dk) = ‖h(xk) + ∇h(xk)
T dk‖1. (3.67)

Consider taking a step from dk in the direction

p = −∇h(xk)[∇h(xk)
T ∇h(xk)]−1(h(xk) + ∇h(xk)

T dk) + θdM
k , (3.68)

for some θ > 0. We have from (3.46) that, for any α, τ , such that τ < α < 1,

h(xk) + ∇h(xk)
T (αdk + τp) = h(xk) + ∇h(xk)

T αdk − τ [h(xk) + ∇h(xk)
T dk],

= (α − τ)[h(xk) + ∇h(xk)
T dk] + (1 − α)h(xk).

(3.69)

Since for xk ∈ N we have ‖h(xk)‖1 ≤ ε, and since α ≤ 1, we obtain

‖h(xk) + ∇h(xk)
T (αdk + τp)‖1 ≤ (1 − τ)‖h(xk) + ∇h(xk)

T dk‖1 + (1 − α)ε.

(3.70)

By Assumption A1, the fact that ∇h(x) has full rank near x∗ and (3.47), we have that
for i ∈ A∗, there is a constant C1 such that

∇gi (xk)
T p ≥ −∇gi (xk)

T ∇h(xk)
[
∇h(xk)

T ∇h(xk)
]−1

(h(xk) + ∇h(xk)
T dk) + θσ

≥ −C1‖h(xk) + ∇h(xk)
T dk‖1 + θσ

= 2
3θσ > 0,
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provided we choose θ = 3C1‖h(xk) + ∇h(xk)
T dk‖1/σ . This bound and the fact that

[ · ]− is a non-increasing convex function, imply that for all i ∈ A∗

[gi (xk) + ∇gi (xk)
T (αdk + τp)]− ≤ [gi (xk) + ∇gi (xk)

T αdk]−
≤ (1 − α)[gi (xk)]− + α[gi (xk) + ∇gi (xk)

T dk]−
≤ (1 − α)[gi (xk)]−, (3.71)

where the last inequality follows from the assumption that dk satisfies all linearized
inequalities. Our choice of θ implies that the length of vector p is bounded as follows,

‖p‖1 ≤ C2‖h(xk) + ∇h(xk)
T dk‖1 + θ‖dM

k ‖1

= ‖h(xk) + ∇h(xk)
T dk‖1(C2 + 3C1‖dM

k ‖1/σ)

≤ C3‖h(xk) + ∇h(xk)
T dk‖1, (3.72)

for suitable constants C2 and C3. If we choose τ and α ∈ (0, 1) to satisfy

τC3‖h(xk) + ∇h(xk)
T dk‖1 = (1 − α)γ, (3.73)

then by Lemma 3.11 we have that condition (3.40) is satisfied for d̃ = p. This obser-
vation together with (3.70), (3.71) and the convexity of [ · ]−, yield

mk(αdk + τp) = ‖h(xk) + ∇h(xk)
T (αdk + τp)‖1

+
∑

i /∈A∗
[gi (xk) + ∇gi (xk)

T (αdk + τp)]−

+
∑

i∈A∗
[gi (xk) + ∇gi (xk)

T (αdk + τp)]−

≤ ‖h(xk) + ∇h(xk)
T (αdk + τp)‖1

+
∑

i∈A∗
[gi (xk) + ∇gi (xk)

T (αdk + τp)]−

≤ (1 − τ)‖h(xk)+∇h(xk)
T dk‖1+(1 − α)ε+(1 − α)

∑

i∈A∗
[gi (xk)]−

≤ m(dk) − τ‖h(xk) + ∇h(xk)
T dk‖1 + 2(1 − α)ε,

where the last inequality follows from (3.67) and the condition mk(0) < ε. It follows
from this inequality, the Lipschitz condition (3.36) of Lemma 3.10, (3.35) and (3.72),
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that we may also choose τ small enough that ‖αdk + τdM
k ‖ ≤ 2r and

qπ
k (αdk + τp) − qπ

k (dk)

≤ q f
k (αdk + τp) − q f

k (dk) + π [−τ‖h(xk) + ∇h(xk)
T dk‖1 + 2(1 − α)ε]

≤ β(‖τp‖ + (1 − α)‖dk‖) + π [−τ‖h(xk) + ∇h(xk)
T dk‖1 + 2(1 − α)ε]

≤ β(1 − α)r + (βC3 − π)τ‖h(xk) + ∇h(xk)
T dk‖1 + 2π(1 − α)ε]

≤ (βC3 − π)τ‖h(xk) + ∇h(xk)
T dk‖1 + (βr + 2πε)(1 − α).

Since we have chosen τ and α to satisfy (3.73), we have

qπ
k (αdk + τp) − qπ

k (dk)

≤ [(βC3 − π) + (βr + 2πε)C3/γ ]τ‖h(xk) + ∇h(xk)
T dk‖1

≤ [(βC3 + βrC3/γ ) + π(−1 + 2C3ε/γ )]τ‖h(xk) + ∇h(xk)
T dk‖1.

If the neighborhood of x∗ is chosen small enough that εC3/γ < 1/4, then for π >

2βC3(1+r/γ ) , we have that qπ
k (αdk + τp)−qπ

k (dk) < 0, which contradicts the fact
that dk is the minimizer of qπk

k . Therefore, we must have that h(xk)+∇h(xk)
T dk = 0,

and this concludes the proof. �	
We expand on this result to show that near x∗ all the conditions for leaving πk

unchanged are satisfied.

Lemma 3.13 Under the conditions of Lemma 3.12, for all xk sufficiently close to x∗
and πk sufficiently large, the minimizer dk of qπk

k satisfies mk(dk) = 0 and qπk
k (0) −

qπk
k (dk(πk)) ≥ ε2πkmk(0), thereby satisfying both conditions in Step 2 of Algorithm

I, so that the algorithm will not increase πk .

Proof Consider dMF, the direction defined by the MFCQ. By continuity there exists
σ > 0 such that ∇gi (x)T dMF ≥ σ for all i ∈ A∗, and for all xk in some neighborhood
of x∗. Now define

dF(x; τ) = τdMF − ∇h(x)(∇h(x)T ∇h(x))−1[h(x) + τ∇h(x)T dMF] (3.74)

Clearly for xk in some neighborhood of x∗ and τ ∈ [0, 1], we have h(xk) +
∇h(xk)

T dF(xk; τ) = 0. Also, by continuity of ∇h(x) and (3.34), ∇h(x)T dMF =
O(‖x − x∗‖), and we have that for i ∈ A∗

gi (xk) + ∇gi (xk)
T dF(x; τ) ≥ gi (xk) + τσ − O(‖h(xk)‖) − O(τ‖xk − x∗‖)

(3.75)

≥ τσ − O(v(xk)) − O(τ‖xk − x∗‖). (3.76)

This implies that there is a constantγ1 such that in a neighborhood of x∗, if τ ≥ γ1v(xk),
then dF(xk; τ) satisfies the linearized constraints, i.e. mk(dF(xk; τ)) = 0. In addition,
by (3.74), if τ = γ1v(xk) then ‖dF(xk; τ)‖ ≤ γ2v(xk), for some constant γ2.
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Now consider an iterate xk in the neighborhood specified above and close enough
to x∗ for Lemma 3.12 to hold. Suppose also that πk is large enough to satisfy the
conditions of Lemma 3.12. Then the computed step dk satisfies mk(dk) = 0, and,
using (3.36) of Lemma 3.10,

qπk
k (dk) ≤ qπk

k (dF(xk; τk)) = q f
k (dF(xk; τk)) ≤ β‖dF(xk; τk)‖ ≤ βγ2v(xk).

(3.77)

It follows, since mk(0)) = v(xk), that

qπk
k (0) − qπk

k (dk) ≥ πkmk(0) − βγ2v(xk) (3.78)

≥ ε2πkmk(0) (3.79)

if πk ≥ βγ2/(1 − ε2). Thus both conditions of Step 2 are satisfied. �	
We can now prove the main convergence result of this paper.

Theorem 3.14 Suppose that Algorithm I generates an infinite sequence of iterates
{xk} and that Assumptions I hold. Then,

(a) If {πk} is bounded, any limit point of {xk} is either a KKT point of the nonlinear
program (2.1) or is an infeasible stationary point;

(b) If {πk} → ∞, then either there is a limit point x∗ that is an infeasible stationary
point or there is a feasible limit point x∗ where MFCQ fails.

Proof Part (a) follows directly from Theorem 3.7.
To prove part (b), when {πk} → ∞, consider an infinite subsequence xk, k ∈ K

over which πk is increased without bound. Since by Assumption A1 this sequence is
bounded, it has at least one limit point, say x∗.

Suppose that v(x∗) > 0. Then by Lemma 3.8, if m∗(0) − m∗(dLP) > 0, the
penalty parameter π can be increased only finitely often in a neighborhood of x∗.
So the fact that x∗ is a limit point of the sequence xk, k ∈ K defined above, implies
that m∗(0) − m∗(dLP) = 0, i.e. that x∗ is an infeasible stationary point (see Theo-
rem 3.2 (c)).

Suppose on the other hand that v(x∗) = 0. If x∗ satisfies MFCQ, then by
Lemma 3.13 we have that, for πk sufficiently large, mk(dk) = 0 amd qπk

k (0) −
qπk

k (dk(πk)) ≥ ε2πkmk(0), for all xk in a neighborhood of x∗. By Step 2 of Algo-
rithm I, this implies that once πk is large enough it will no longer be increased in this
neighborhood of x∗. This contradicts our assumption that x∗ is the limit point of a
subsequence over which the penalty parameter is increased without bound. Therefore,
MFCQ must fail at x∗. �	

4 Numerical experiments

We developed a matlab implementation of Algorithm I and tested its performance on
several difficult situations. We present results on five small-dimensional examples that
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exhibit inconsistent constraint linearizations at some iterate or that fail to satisfy the
linear independence constraint qualification at the solution. One of the test problems
is infeasible. The analysis in this paper indicates that the algorithm should be very
robust, and these examples are chosen to test that robustness in cases where the theory
applies and in cases that go beyond the theory. Important issues related to the efficient
sparse implementation of Algorithm I are not addressed here as they lie outside the
scope of this paper.

To solve the subproblems in Algorithm I, we employed the codes provided by
the matlab optimization toolbox. The linear program (2.9) was solved using
linprog and the quadratic program (2.7), using quadprog.

We mentioned in Sect. 2 that the trust region radius �k used in the linear pro-
gram (2.9) is not crucial; in fact the convergence properties established in the previ-
ous section hold even if this radius is kept constant. In practice, however, it may be
advantageous to choose �k based on local information of the problem, and in our
implementation this choice is based on the most recently accepted step. Given the
search direction dk and the step length αk at the end of iteration k of Algorithm I, we
compute

ared
k = φπ+(xk) − φπ+(xk + αkdk), pred

k = qπ+
k (0) − qπ+

k (αkdk)

and update the LP trust region radius as follows

Procedure for Updating �k

Initial data: η1 < η2 ∈ (0, 1), �min,�max > 0.

If ared
k < η1 pred

k

set �k+1 = 1
2‖αkdk‖∞;

else if ared
k > η2 pred

k

set �k+1 = 2‖αkdk‖∞;

else
set �k+1 = ‖αkdk‖∞;

Set �k+1 = mid(�min,�k+1,�max).

The initial penalty π1 is set to 1 in all tests. Algorithm I stops in Step 1 and
reports optimality if the infinity norm of the KKT error is less than 10−6. Conver-
gence to an infeasible stationary point is reported if Algorithm I executes Step 3 and
mk(0) − mk(dLP) < 10−15. We multiply π by 10 whenever it is increased and set
�min,�1,�max to 10−3, 1, 103, respectively. The rest of the parameters are chosen
as τ = 0.5, η = 10−4, ε1 = ε2 = 0.1 and η1 = 0.25, η2 = 0.75.

The first example illustrates the behavior of Algorithm I when the linearizations of
the constraints are inconsistent. In this situation, some SQP methods trigger a switch
and revert either to a feasibility restoration phase in which the objective function is
ignored, as in filterSQP [15], or to an elastic mode (
1 minimization) phase, as in
snopt [18]. There is no switch in Algorithm I, which always takes steps based on the
penalty function φπ . An important difference between Algorithm I and the penalty
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Table 1 Output for example 1

it πk �k−1 QPs LPs x1 x2 KKT(x) Feas(x) f (x) φπ+ (x)

0 1 −3 1 9.00E+00 1.40E+01 −3.00E+00 1.10E+01

1 1 1.00E+00 1 1 −1.5405 1.2432 2.54E+00 4.67E+00 −1.54E+00 3.13E+00

2 1 2.92E+00 1 1 −0.9428 1.5316 1.94E+00 2.30E+00 −9.43E−01 1.36E+00

3 1 1.20E+00 1 1 −0.8115 1.6414 1.81E+00 1.83E+00 −8.12E−01 1.02E+00

4 1 2.63E−01 1 1 −0.8043 1.6468 1.80E+00 1.80E+00 −8.04E−01 1.00E+00

5 1 1.45E−02 2 1 −0.2924 0.8234 6.10E+00 1.55E+00 −2.92E−01 1.53E+01

6 10 8.23E−01 1 0 0.3538 0.5766 8.25E+00 1.19E+00 3.54E−01 1.23E+01

7 10 6.46E−01 1 1 1 1.4265 1.23E+01 5.73E−01 1.00E+00 6.73E+00

8 10 1.70E+00 1 0 1 2 5.73E−01 2.69E−16 1.00E+00 1.00E+00

9 10 1.15E+00 1 0 1 2 2.22E−15 2.69E−16 1.00E+00 1.00E+00

update strategy in snopt is that the latter follows a traditional approach in which
the penalty parameter is held fixed during the course of the minimization, and is only
increased when a stationary point of the penalty function is approximated. Algorithm I,
on the other hand, employs the steering rules described in §2 for updating π .

Example 1 The problem

minimize x1

subject to x2
1 + 1 − x2 = 0,

x1 − 1 − x3 = 0,

x2 ≥ 0, x3 ≥ 0

(4.1)

was introduced by Wächter and Biegler [30] to show that a class of line search inte-
rior-point methods may converge to a non-stationary point. We use the starting point
(−3, 1, 1); the solution is x∗ = (1, 2, 0). The output is summarized in Table 1, which
reports the iteration number (it) the value of the penalty parameter πk , the trust region
�k−1 used to generate the latest iterate, the number of quadratic programs (QPs) solved
at the current iterate, and the number of linear programs (LPs) solved (0 or 1). The
table also prints the values of the first two components of x , the KKT and feasibility
errors, as well as the value of the objective function f and the penalty function φ.

The linearized constraints are not satisfied in the first few iterations, i.e., if
mk(dk)>0 and Algorithm I therefore solves the linear feasibility LP subproblem. Note
that progress toward the solution is made during these initial iterations. The penalty
parameter is increased only once, at iteration 5, meaning that the initial penalty π = 1
adequately relaxed the constraints at the earlier iterations. At iteration 5, the search
direction has to be recomputed and hence two QPs are solved. Accurate optimal values
for the primal variables are found at iteration 8, but Algorithm I performs one extra
iteration to determine the correct final multipliers.
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Table 2 Output for example 2

it πk �k−1 QPs LPs x1 x2 KKT(x) Feas(x) f (x) φπ+ (x)

0 1 1 0 2.00E+00 2.00E+00 1.00E+00 3.00E+00

1 1 1.00E+00 1 1 0.6667 0.6667 6.67E−01 7.41E−01 1.11E−01 8.52E−01

2 1 1.33E+00 1 1 0.4444 0.8736 3.95E−01 2.85E−01 1.60E−02 3.01E−01

3 1 4.44E−01 1 1 0.2222 0.952 2.59E−01 6.04E−02 2.30E−03 6.27E−02

4 1 4.44E−01 1 1 0.1111 1 6.48E−02 1.37E−02 0.00E+00 1.37E−02

5 1 2.22E−01 1 1 0.0556 1 1.62E−02 3.26E−03 4.93E−32 3.26E−03

6 1 1.11E−01 1 1 0.0278 1 4.05E−03 7.93E−04 4.93E−32 7.93E−04

7 1 5.56E−02 1 1 0.0139 1 1.01E−03 1.96E−04 1.23E−32 1.96E−04

8 1 2.78E−02 1 1 0.0069 1 2.53E−04 4.86E−05 0.00E+00 4.86E−05

9 1 1.39E−02 1 1 0.0035 1 6.33E−05 1.21E−05 4.93E−32 1.21E−05

10 1 6.94E−03 1 1 0.0017 1 1.58E−05 3.02E−06 4.93E−32 3.02E−06

11 1 3.47E−03 1 1 0.0009 1 3.96E−06 7.54E−07 1.23E−32 7.54E−07

12 1 1.74E−03 1 0 0.0009 1 8.48E−07 7.54E−07 1.23E−32 7.54E−07

Example 2 The problem

minimize (x2 − 1)2

subject to x2
1 = 0,

x3
1 = 0

(4.2)

is presented in Fletcher et al. [17] and is also discussed by Chen and Goldfarb [10].
MFCQ is violated at the solution x∗ = (0, 1), and the linearized constraints are incon-
sistent at every infeasible point.

Fletcher et al. [17] mention that, starting from the infeasible point (1, 0), a feasi-
bility restoration phase is likely to converge to (0, 0), which is not the solution of the
problem. We ran the filterSQP solver [14] and observed that it did indeed converge
to (0, 0). Algorithm I does not exhibit such behavior. The sequence of iterates moves
toward the solution from the very first step, and is not attracted to the origin because
the objective function influences the choice of search direction. As shown in Table 2,
the linearized constraints are never satisfied (an LP is solved at every iteration) but
the algorithm finds that the penalty π = 1 is adequate to enforce progress. (No LP
is solved in the last iteration, because the optimality stopping test is satisfied at that
point). Thus, although the linear feasibility subproblem (2.8) of Algorithm I has some
of the flavor of a feasibility restoration phase, it is only used to determine the penalty
parameter and not to compute iterates, which is beneficial in this example. �	
Example 3 The following problem belongs to the class of mathematical programs with
complementarity constraints (MPCCs). These problems have received much atten-
tion in recent years because of their many practical applications [12]; they can be
challenging to solve because MFCQ is violated at every feasible point. The problem
is given by
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Table 3 Output for example 3

it πk �k−1 QPs LPs x1 x2 KKT(x) Feas(x) f (x) φπ+ (x)

0 1 1.00E−01 9.00E−01 1.70E+00 2.80E−01 1.00E+00 1.28E+00

1 1 1.00E+00 1 1 −1.17E−02 1.01E+00 3.08E−01 1.17E−02 9.94E−01 1.01E+00

2 1 2.23E−01 3 1 −6.42E−17 1.01E+00 1.00E+00 6.42E−17 1.01E+00 1.01E+00

3 100 2.35E−02 1 0 −1.28E−16 1.00E+00 4.82E−01 1.28E−16 1.00E+00 1.00E+00

4 100 1.11E−02 1 0 −2.57E−16 1.00E+00 3.07E−05 2.57E−16 1.00E+00 1.00E+00

5 100 1.00E−03 1 0 −2.57E−16 1.00E+00 2.36E−10 2.57E−16 1.00E+00 1.00E+00

minimize x1 + x2

subject to x2
2 − 1 ≥ 0,

x1x2 ≤ 0,

x1 ≥ 0, x2 ≥ 0.

(4.3)

The solution is x∗ = (0, 1) and is a strongly stationary point, which in the context of
this paper means that there is a finite value of the penalty parameter π∗ such that x∗ is
a stationary point for the penalty function φπ(x), for all π ≥ π∗. Equivalently, there
exist multipliers at x∗ that satisfy the KKT conditions for (2.1) (although these multi-
pliers are not unique; in fact the set of multipliers is unbounded). Fletcher et al. [16]
show that the linearization of the constraints of this problem is inconsistent for any
point of the form (ε, 1 − δ), with ε, δ > 0.

In the results reported in Table 3, the starting point was chosen as (0.1, 0.9). At the
first iteration, the linearized constraints are not satisfied; the search direction computed
with the initial penalty parameter satisfies condition (2.12), and the penalty parameter
is not increased. At the second iteration, the search direction violates the linearized
constraints, and the LP subproblem indicates that the linearized constraints can be
satisfied. The penalty parameter needs to be increased twice so that the solution of the
QP satisfies the linearized constraints. The new iterate is feasible and from that point
on, the iterates converge quadratically to the solution.

Several specialized methods have been developed in recent years that exploit the
structure of MPCCs (see e.g. [2,3,11,16,23–25,28]. In these methods, the comple-
mentarity constraints must be singled out and relaxed (or penalized). Algorithm I is, in
contrast, a general-purpose nonlinear programming solver that treats MPCCs as any
other problem. �	
Example 4 MFCQ is also violated in a subset of the feasible region in the class
of switch-off problems, also known as problems with vanishing constraints; see
Achtziger and Kanzow [1]. An instance of such problems is

minimize 2(x1 + x2)

subject to x1 ≥ 0,

x1x2 ≥ 0,

x2 ≥ −1,

(4.4)
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Table 4 Output for example 4

it πk �k−1 QPs LPs x1 x2 KKT(x) Feas(x) f (x) φπ+ (x)

0 1 0 0 1.00E+00 0.00E+00 0.00E+00 0.00E+00
1 1 1.00E+00 2 1 0 −1 9.00E+00 0.00E+00 −2.00E+00 −2.00E+00

2 10 2.00E+00 1 0 0 −1 2.66E−15 0.00E+00 −2.00E+00 −2.00E+00

which has a unique solution at x∗ = (0,−1). The feasible region is the union of the
first quadrant, where the constraints are regular (except at the origin), and a portion
of the negative x2–axis, where MFCQ is violated. The performance of Algorithm I,
starting at the origin, is summarized in Table 4.

At the starting point, the direction obtained by solving subproblem (2.7) is given
by d = (−1,−1) and leads away from the feasible region. Algorithm I, however,
discards this direction because it does not satisfy the linearization of the constraints,
which are satisfiable. The penalty parameter is increased from 1 to 10, and the new
search direction d = (0,−1) not only satisfies the linearized constraints but leads
straight to the solution of problem (4.4). The second iteration is required simply to
compute the optimal multipliers.

This example shows how a prompt identification of an inadequate penalty param-
eter can save a great deal of computational work. Classical penalty methods would
not increase the penalty parameter at the first iteration and would follow the initial
direction (−1,−1). The penalty function φπ is unbounded below along this direction
and a classical algorithm would generate a series of iterates with decreasing values of
x1 until the algorithm detects that the iterates appear to be diverging. Not only would
those iterations be wasted, but extra effort would be required to return to the vicinity
of the solution. �	
Example 5 The following infeasible problem has been studied by Burke and Han [5]
and Chen and Goldfarb [10]:

minimize x

subject to x2 + 1 ≤ 0,

x ≤ 0.

(4.5)

Chen and Goldfarb report that, starting from x1 = 10, their method converges to the
infeasible stationary point x∗ = 0 after 50 iterations, with a final penalty parameter of
π � 106. Algorithm I converges to that infeasible stationary point in 3 iterations; see
Table 5.

It may seem surprising that the final penalty parameter reported in the Table 5 is
only 10, given that our analysis suggests that the penalty parameter will tend to infinity
in the infeasible case. We note, however, that π = 10 is the penalty at the beginning
of iteration 3 and that Algorithm I drives the penalty parameter to infinity in Step 4.
It does so, while staying at the current iterate, and once it detects that the problem is
locally infeasible, it stops. �	

123



72 R. H. Byrd et al.

Table 5 Output for example 5

it πk �k−1 QPs LPs x KKT(x) Feas(x) f (x) φπ+ (x)

0 1 10 1.01E+02 1.11E+02 1.00E+01 1.21E+02
1 1 1.00E+00 1 1 4.95 2.55E+01 3.05E+01 4.95E+00 3.54E+01

2 1 1.01E+01 2 1 0 4.01E+00 1.00E+00 8.88E−16 1.00E+01

3 10 9.90E+00 1 1 0 1.00E+00 1.00E+00 8.88E−16 1.00E+01

More results obtained with our matlab implementation of Algorithm I are reported
in [25]. The test set used in those experiments includes both regular problems and prob-
lems that are infeasible or do not satisfy constraint qualifications. The results in [25]
indicate that Algorithm I is efficient on problems that do not require regularization
because condition (2.11) guarantees that a pure SQP step is used whenever the line-
arized constraints can be satisfied in a neighborhood of the current iterate. Therefore,
for regular problems, Algorithm I performs very similarly to a classical SQP method,
except that a few extra QPs and LPs are solved when the initial penalty parameter is too
small. On the other hand, Algorithm I is more robust and efficient than a classical SQP
method on problems (such as those in the Examples 1–5) that require regularization.
We believe that by using warm starts, the cost of solving the additional QPs is not
significant, but a careful sparse implementation of Algorithm I is needed to measure
the computational cost of various components of the iteration.

5 Final remarks

In this paper we have proposed a line search SQP penalty method for nonlinear pro-
gramming. The method updates the penalty parameter dynamically using an extension
of the steering rules described in [8] to the line search setting. The resulting algorithm
is robust and its global convergence properties are as strong as those of trust region
methods. Specifically, we have proved that under common assumptions all limit points
of the sequence of iterates are either KKT points, infeasible stationary points, or points
of MFCQ failure. This fact shows that use of exact penalties, together with a positive
definite Hessian approximation, has a regularizing effect similar to a trust region.

Acknowledgments The authors are grateful to the referees who provided very useful suggestions on how
to improve the manuscript.
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