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Abstract Convex optimization problems arising in applications, possibly as approx-
imations of intractable problems, are often structured and large scale. When the data
are noisy, it is of interest to bound the solution error relative to the (unknown) solu-
tion of the original noiseless problem. Related to this is an error bound for the lin-
ear convergence analysis of first-order gradient methods for solving these problems.
Example applications include compressed sensing, variable selection in regression,
TV-regularized image denoising, and sensor network localization.
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1 Introduction

Optimization problems arising in application areas such as signal/image denoising,
compressed sensing, regression, multi-task learning, classification, sensor network
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264 P. Tseng

localization, are often large scale, possibly nonconvex or NP-hard, and the data may
be noisy. Such problems may be approximated by convex relaxations that are highly
structured.

Question 1: How accurate are approximations obtained via the convex relaxations?

Specifically, can we bound the error between a solution of the convex relaxation and an
(unknown) solution of the original noiseless problem in terms of knowable quantities
such as the noise level? This question is meaningful when a solution of the original
problem changes (semi)continuously with small perturbations in the data, so the prob-
lem has both discrete and continuous nature. Examples include compressed sensing
and sensor network localization; see Sect. 2. A certain noise-aware property of the
convex relaxation appears key.

Question 2: How fast can the convex relaxations be solved?

Due to the large problem size, first-order gradient methods seem better suited to exploit
structures such as sparsity, (partial) separability, and simple nonsmoothness in the con-
vex relaxations; see Sect. 3. The asymptotic convergence rate of these methods depend
on an error bound on the distance to the solution set of the convex relaxation in terms
of a certain residual function. We prove such an error bound for a class of 2-norm-
regularized problems that includes the group lasso for linear and logistic regression;
see Sect. 4. Thus our aims are threefold: exposit on existing results, present a new
result, and suggest future research.

We begin with a problem that has received much attention recently: compressed
sensing. In the basic version of this problem, we wish to find a sparse representation
of a given noiseless signal b0 ∈ �m from a dictionary of n elementary signals. This
may be formulated as

min
x |Ax=b0

�(x), (1)

where A ∈ �m×n comprises the elementary signals for its columns and �(x) counts
the number of nonzero components in x ∈ �n . In typical applications, m and n are
large (m, n ≥ 2000). This problem is known to be difficult (NP-hard) and a popular
solution approach is to approximate it by a convex relaxation, with �(·) replaced by
the 1-norm ‖ · ‖1.1 This results in the linear program

min
x |Ax=b0

‖x‖1, (2)

which can often be efficiently solved by simplex or interior-point methods [30,103,
105,151,155]. Moreover, when the optimal value of (1) is sufficiently small and the
columns of A are “approximately orthogonal,” which occur with high probability
when A is, say, a Gaussian random matrix, the solution of (2) also solves (1), i.e.,
the relaxation is exact [28–30,37,42,44,58,59,62,65,84,112,135,136]. For a noisy
signal b, Ax = b may be inconsistent and we seek a sparse solution x whose residual

1 We are using the term “relaxation” loosely since �(·) majorizes ‖ · ‖1 only on the unit ∞-norm ball.
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Structured convex optimization 265

Ax − b is small in the least square sense, either in the primal form

min
x | ‖Ax−b‖2≤ρ

‖x‖1 (3)

(ρ > 0), or in the dual form [34,45,46,123]

min
x

‖Ax − b‖2
2 + τ‖x‖1 (4)

(τ > 0). Partial results on the accuracy of these relaxations are known [43,135,
144]. Various methods have been proposed to solve (3) and/or (4) for fixed ρ and τ ,
including interior point [34], coordinate minimization [123,124], proximal gradient
(with or without smoothing) [14,15,36], and proximal minimization [156]. Homotopy
approaches have been proposed to follow the solution as τ varies between 0 and ∞
[55,66,111,108]. The efficiency of these methods depend on the structure of A. The
polyhedral and separable structure of ‖ · ‖1 is key.

A problem related to (4) is image denoising using total variation (TV) regulariza-
tion:

min
x∈B

n
2
2

‖Ax − b‖2
2, (5)

where n is even, B2 denotes the unit 2-norm (Euclidean) ball in �2, A ∈ �m×n is
the adjoint of the discrete (via finite difference) gradient mapping, and b ∈ �m . Inte-
rior point, proximal minimization, coordinate minimization, and gradient projection
methods have been proposed for its solution [63,109,148,153,160,161].

A second problem related to (1) and of growing interest is matrix rank minimization.
The basic problem is

min
x |Ax=b0

rank(x), (6)

where rank(x) is the rank of a matrix x ∈ �p×n , and A is a linear mapping from �p×n

to �m , and b0 ∈ �m . In the case of matrix completion, we have Ax = (xi j )(i, j)∈A,
where A indexes the known entries of x . This problem is also NP-hard, and a con-
vex relaxation has been proposed whereby rank(x) is replaced by the nuclear/trace
norm ‖x‖nuc (the 1-norm of the singular values of x) [25,27,52,76,83,117,157]. The
resulting problem

min
x |Ax=b0

‖x‖nuc (7)

has a more complex structure than (2), and only recently have solution methods, includ-
ing interior-point method and dual gradient method, been developed [25,76,83] and
exactness results been obtained [27,117]. For noisy b, we may consider, analogous to
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(4), the relaxation

min
x

‖Ax − b‖2
F + τ‖x‖nuc , (8)

where τ > 0 and ‖ · ‖F denotes the Frobenious-norm. This problem has applications
to dimension reduction in multivariate linear regression [78] and multi-task learn-
ing [1,3,106]. Recently, proximal/gradient methods have been applied to its solution
[78,83,133]. How well does (8) approximate (6)?

A third problem related to (1) and of recent interest is that of sparse inverse covari-
ance estimation, where we seek a positive definite x ∈ Sn that is sparse and whose
inverse approximates a given sample covariance matrix s ∈ Sn . This may be formu-
lated as the nonconvex problem

min
λI�x�λ̄I

− log det(x)+ 〈s, x〉 + τ�(x) (9)

with 0 ≤ λ < λ̄ ≤ ∞ and τ > 0, where 〈s, x〉 = trace[sx], I denotes the n × n iden-
tity matrix, and � denotes the partial ordering with respect to the cone Sn+ of positive
semidefinite matrices [5,9,56,77,159]. Replacing �(x) by ‖x‖1 := ∑n

i, j=1 |xi j | yields
the convex relaxation

min
λI�x�λ̄I

− log det(x)+ 〈s, x〉 + τ‖x‖1. (10)

Interior-point method appears unsuited for solving (10) owing to the large size of the
Newton equation to be solved. Block-coordinate minimization methods (with each
block corresponding to a row/column of x) and Nesterov’s accelerated gradient meth-
ods have been applied to its solution [5,9,56,77]. How well does (10) approximate
(9)?

A fourth problem of much recent interest is that of ad hoc wireless sensor net-
work localization [4,18,19,21,22,31,38,39,49,73,75,128]. In the basic version of this
problem, we have n points z0

1, . . . , z0
n in �d (d ≥ 1). We know the last n − m points

(“anchors”) and an estimate di j ≥ 0 of the Euclidean distance d0
i j = ‖z0

i −z0
j‖2 between

“neighboring” points i and j for all (i, j) ∈ A, where A ⊆ ({1, . . . ,m}×{1, . . . , n})∪
({1, . . . , n}×{1, . . . ,m}). We wish to estimate the first m points (“sensors”). This
problem may be formulated as

min
z1,...,zm

∑

(i, j)∈As

|‖zi − z j‖2
2 − d2

i j | +
∑

(i, j)∈Aa

|‖zi − z0
j‖2

2 − d2
i j |, (11)

where As := {(i, j) ∈ A | i < j ≤ m} and Aa := {(i, j) ∈ A | i ≤ m < j}
are the sets of, respectively, sensor-to-sensor and sensor-to-anchor neighboring pairs.
Typically, d = 2 and two points are neighbors if the distance between them is below
some threshold, e.g., the radio range. In variants of this problem, constraints such as
bounds on distances and angles-of-arrival are also present [17,31,39,73]. This prob-
lem is NP-hard for any d ≥ 1. It is closely related to distance geometry problems
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Structured convex optimization 267

arising in molecular conformation [20,90], graph rigidity/realization [2,38,49,128],
and max- min/avg dispersion [35,116,150]. Letting z := (

z1 · · · zm
)

and I denote the
d×d identity matrix, Biswas and Ye [21,22] proposed the following convex relaxation
of (11):

min
x

∑

(i, j)∈A

∣
∣
∣�i j (x)− d2

i j

∣
∣
∣

subject to x =
(

y zT

z I

)

 0, (12)

where y =
(

yi j 1≤i, j≤m

)
, and

�i j (x) :=
{

yii − 2yi j + y j j if (i, j) ∈ As,

yii − 2zT
i z0

j + ‖z0
j‖2 if (i, j) ∈ Aa .

The relaxation (12) is a semidefinite program (SDP) and is exact if it has a solu-
tion of rank d. On the other hand, (12) is still difficult to solve by existing methods
for SDP when m > 500, and decomposition methods have been proposed [21,31].
Recently, Wang, Zheng, Ye, and Boyd [149] proposed a further relaxation of (12),
called edge-based SDP (ESDP) relaxation, which is solved much faster by an interior-
point method than (12), and yields solution comparable in approximation accuracy
as (12). The ESDP relaxation is obtained by relaxing the constraint x  0 in (12)
to require only those principal submatrices of x associated with A to be positive
semidefinite. Specifically, the ESDP relaxation is

min
x

∑

(i, j)∈A

∣
∣
∣�i j (x)− d2

i j

∣
∣
∣

subject to x =
(

y zT

z I

)

,

⎛

⎜
⎝

yii yi j zT
i

yi j y j j zT
j

zi z j I

⎞

⎟
⎠  0 ∀(i, j) ∈ As,

(
yii zT

i
zi Id

)

 0 ∀i ≤ m. (13)

Notice that the objective function and the positive semidefinite constraints in (13) do
not depend on yi j , (i, j) �∈ A. How well does (12) approximate (11)? Only partial
results are known in the noiseless case, i.e., (11) has zero optimal value [128,142].
How well does (13) approximate (11)?

The above convex problems share a common structure, namely, they entail mini-
mizing the sum of a smooth (i.e., continuously differentiable) convex function and a
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“simple” nonsmooth convex function. More specifically, they have the form

min
x∈E

F(x) := f (x)+ τ P(x), (14)

where E is a finite-dimensional real linear space endowed with a norm ‖ · ‖, τ >
0, P : E → (−∞,∞] is lower semicontinuous (lsc), convex, with dom P = {x |
P(x) < ∞} closed, and f : E → (−∞,∞] is convex and smooth on dom f , assumed
open, and f (x) → ∞ whenever x approaches a boundary point of dom f [118]. A
well-known special case of (14) is smooth constrained convex optimization, for which
P is the indicator function for a nonempty closed convex set X ⊆ E , i.e.,

P(x) =
{

0 if x ∈ X ,
∞ else.

(15)

The class of problems (14) was studied in [6,61,100] and by others; see [147] and
references therein. For example, (4) corresponds to

E = �n, ‖ · ‖ = ‖ · ‖2, f (x) = ‖Ax − b‖2
2, P(x) = ‖x‖1, (16)

(5) corresponds to

E = �n, ‖ · ‖ = ‖ · ‖2, f (x) = ‖Ax − b‖2
2, P(x) =

{
0 if x ∈ B

n
2
2 ,

∞ else,
(17)

(8) corresponds to

E = �p×n, ‖ · ‖ = ‖ · ‖F , f (x) = ‖Ax − b‖2
F , P(x) = ‖x‖nuc , (18)

and (10) corresponds to

E = Sn, ‖ · ‖ = ‖ · ‖F , f (x) = − log det(x)+ 〈s, x〉, P(x) = ‖x‖1. (19)

In the case of 0 < λ < λ̄ < ∞, Lu [77] proposed a reformulation of (10) via Fenchel
duality [118,131], corresponding to

f (x)= sup
λI�y�λ̄I

〈x, y〉 − log det(y), P(x) =
{

0 if ‖x − s‖∞ ≤ τ,

∞ else,
(20)

where ‖x‖∞ = maxi, j |xi j |. (Note that P in (20) depends on τ .) Importantly, for (16),
(17), (19), (20), P is block-separable, i.e.,

P(x) =
∑

J∈J
PJ (xJ ), (21)
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Structured convex optimization 269

where J is some partition of the coordinate indices of x . Then (14) is amenable to solu-
tion by (block) coordinatewise methods. Another special case of interest is variable
selection in logistic regression [89,127,158,134], corresponding to

E =�n, ‖ · ‖=‖ · ‖2, f (x)=
m∑

i=1

log
(

1+eAi x
)
−bi Ai x, P(x)=‖x‖1, (22)

with Ai the i th row of A ∈ �m×n and bi ∈ {0, 1}; also see [57,122,125,126] for
variants. A closely related problem is group variable selection (“group lasso”), which
uses instead

P(x) =
∑

J∈J
ωJ ‖xJ ‖2, (23)

with ωJ ≥ 0, in (16) and (22) [89,158]. The TV image reconstruction model in [148,
Eq. (1.3)] and the TV-L1 image deblurring model in [153, Eq. (1.5)] are special cases
of (14) with f quadratic and P of the form (23).

How accurate approximations are the convex relaxations (7), (8), (10), (12), (13),
and other related convex relaxations such as that for max- min dispersion, allowing
for noisy data? What are the iteration complexities and asymptotic convergence rates
of first-order gradient methods for solving these and related problems? First-order
methods are attractive since they can exploit sparse or partial separable structure of f
and block-separable structure of P .

Throughout, �n denotes the space of n-dimensional real column vectors, Sn =
{x ∈ �n×n | x = xT }, and T denotes transpose. For any x ∈ �n and nonempty
J ⊆ {1, . . . , n}, x j denotes j th coordinate of x, xJ denotes subvector of x comprising

x j , j ∈ J , and ‖x‖ρ =
(∑n

j=1 |x j |ρ
)1/ρ

for 0 < ρ < ∞, and ‖x‖∞ = max j |x j |.
For any x ∈ �p×n, xi j denotes the (i, j)th entry of x .

2 Approximation accuracy of the convex relaxations

Let a j denote column j of A in (1), normalized so that ‖a j‖2 = 1, for all j . It is easily
seen that the relaxation (2) is exact (i.e., its solution also solves (1)) if a1, . . . , an

are pairwise orthogonal. This hints that (2) may remain exact if these columns are
approximately orthogonal. Mallat and Zhang [84] introduced the following measure
of approximate orthogonality, called “mutual coherence” (variously known as “mutual
incoherence” [44]), in their study of matching pursuit:

μ := max
1≤i �= j≤n

∣
∣
∣aT

i a j

∣
∣
∣ . (24)

There exist overcomplete sets with n ≈ m2 andμ ≈ 1/
√

m; see [130, pages 265–266]
and references therein. The quantity μ is central to the analysis in [42–44,58,59,62,

65,84,135,136,144]. In particular, (2) is exact whenever N 0 < 1
2 (μ

−1 +1) = O(n
1
4 ),
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270 P. Tseng

where N 0 denotes the optimal value of (1) [42, Theorem 7], [65, Theorem 1], [58],
[135, Theorems A and B]. When b is noisy, it can be shown that the solution xρ of
the noise-aware model (3) is close to the solution x0 of the original noiseless problem
(1), i.e.,

‖xρ − x0‖2
2 ≤ (δ + ρ)2

1 − μ(4N 0 − 1)
(25)

whenever ρ ≥ δ := ‖b −b0‖2 and N 0 < ( 1
2 − O(μ))μ−1 +1; see [43, Theorem 3.1],

[144, Theorem 1]. The bound (25) also extends to ρ < δ with some limitations [144,
Theorem 1]. In addition to convex relaxation, greedy methods can also be shown to
recover or approximate x0 and identify the support of x0 under similar conditions on
N 0, δ, and ρ; see [43, Theorem 5.1(a)], [135, Theorems A and B], [144, Theorems 3
and 4].

A different measure of approximate orthogonality, introduced by Candès and Tao
[30], is the “restricted isometry” constant μN , defined as the smallest scalar satisfying

(1 − μN )‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + μN )‖x‖2
2 ∀x with �(x) ≤ N . (26)

In fact, μ2 = μ.2 It is known that ‖xρ − x0‖2 = O(ρ) whenever ρ ≥ δ and μ3N 0 +
3μ4N 0 < 2 [29, Theorem 1]; also see [29, Theorem 2] for a relaxation of the latter
condition. Candes [26] and Baraniuk et al. [10] give more recent and accessible discus-
sions. For A randomly generated from certain classes of distributions (e.g., Gaussian),
this condition holds with high probability (for N 0 in the order of n to within log
factors); see [28,30,41,137,47,112] and references therein for the noiseless case and
[29,40] for the noisy case. The approximation bounds in [29,40] for (3) require ρ ≥ δ,
as well as n = O(m) in [40]. Is extension to ρ < δ possible, as in [144, Theorem 1]?

Can the aforementioned exactness results and error bounds be extended to matrix
rank minimization (6) and its convex relaxations (7) and (8)? Recent progress has been
made in the noiseless case [27,117]. The nuclear norm has a more complex structure
than the 1-norm.

For the sensor network localization problem (11), its SDP relaxation (12) is exact
if the distances di j , (i, j) ∈ A, are exact (i.e., di j = d0

i j for all (i, j) ∈ A) and any
relative-interior solution (i.e., a point in the relative interior of the solution set) of (12)
has rank d [128, Theorem 2]. However, this assumption is quite strong. What can we
say in general? Remarkably, a kind of partial exactness still holds. Biswas and Ye [22,
Section 4] introduced the notion of individual traces for a feasible solution x of (12),
defined as

tri (x) := yii − ‖zi‖2, i = 1, . . . ,m,

2 Why? Since ‖a j ‖2 = 1 for all j , (26) with N = 2 reduces to 1 − μ2 ≤ 1 + 2aT
i a j xi x j ≤ 1 + μ2 for

all i �= j and all xi , x j ∈ � with x2
i + x2

j = 1. Since (xi , x j ) �→ 2xi x j has minimum value of −1 and
maximum value of 1 on the unit sphere, the smallest μ2 for which this holds is precisely μ given by (24).
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Structured convex optimization 271

or, equivalently, the diagonals of the Schur complement y − zT z. It can be shown
that, for any relative-interior solution x of (12), tri (x) = 0 implies zi is invariant
over the solution set of (12) and hence equals z0

i , the true position of sensor i , when
distances are exact [142, Proposition 4.1]. An analogous result holds for the ESDP
relaxation (13) [149, Theorem 2]. Thus, upon finding a relative-interior solution x of
(12) or (13), we know that every sensor i with tri (x) = 0 (within numerical accuracy)
has zi as its true position. Is this result sharp? Yes, at least when the distances are
exact. In this case, the converse holds for the ESDP relaxation; see [115, Theorem
1]. It is not known if the converse holds for the SDP relaxation. On the other hand,
an example in [115, Example 2] shows that, in the noisy case where the distances
are inexact, tri (x) = 0 is not a reliable indicator of sensor i position accuracy even
when x is the unique solution of the SDP/ESDP relaxation. The reason is that the solu-
tion set of the SDP/ESDP relaxation can change abruptly under arbitrarily small data
perturbation. This contrasts with a second-order cone (SOCP) relaxation of the same
problem, whose solution set changes gradually with data perturbation [142, Section 7].
To overcome this difficulty, a noise-aware version of the ESDP relaxation, analogous
to (3) for compressed sensing, was proposed in [115, Section 5]. Specifically, for any
ρ = (ρi j )(i, j)∈A ≥ 0, let

Sρ

resdp
:=
{

x | x is feasible for (13) and |�i j (x)− d2
i j | ≤ ρi j∀(i, j) ∈ A

}
. (27)

Then Sρ

resdp
contains the noiseless ESDP solutions whenever ρ ≥ δ := (|d2

i j −
(d0

i j )
2|)(i, j)∈A. Moreover, defining its “analytic center” as

x
ρ := arg min

x∈Sρ
resdp

−
∑

(i, j)∈As

log det

⎛

⎜
⎝

yii yi j zT
i

yi j y j j zT
j

zi z j I

⎞

⎟
⎠−

m∑

i=1

log tri (x), (28)

it can be shown that, for ρ > δ sufficiently small, tri (x
ρ
) = 0 is a reliable indicator of

sensor i position accuracy; see [115, Theorem 4]. Moreover, for any ρ > δ, we have
the following computable bound on the individual sensor position accuracy:

‖z
ρ

i − z0
i ‖ ≤ √

2|As | + m · tri (x
ρ

)
1
2 ∀i.

Can these results be extended to the SDP relaxation (12) or SOS relaxations [69,104]
or to handle additional constraints such as bounds on distances and angles-of-arrival?

Closely related to sensor network localization is the continuous max-min disper-
sion problem, whereby, given existing points z0

m+1, . . . , z0
n in �d (d ≥ 1), we wish

to locate new points z1, . . . , zm inside, say, a box [0, 1]d that are furthest from each
other and existing points [35,150]:

max
z1,...,zm∈[0,1]d

min

{

min
i< j≤m

ωi j‖zi − z j‖2, min
i≤m< j

ωi j‖zi − z0
j‖2

}

, (29)
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272 P. Tseng

with ωi j > 0. Replacing “max” by “sum” yields the max-avg dispersion problem
[116, Section 4]. It can be shown (by reduction from 0/1-integer program feasibil-
ity) that (29) is NP-hard if d is a part of the input, even when m = 1. How accurate
approximations are their convex (e.g., SDP, SOCP) relaxations? Another related prob-
lem arises in protein structure prediction, whereby the distances between neighboring
atoms and their bond angles are known, and we wish to find positions of the atoms
that minimize a certain energy function [120]. Although the energy function is com-
plicated and highly nonlinear, one can focus on the most nonlinear terms, such as the
Lennard-Jones interactions, in seeking approximate solutions.

3 Gradient methods for solving the convex relaxations

How to solve (14)? We will assume that ∇ f is Lipschitz continuous on a closed convex
set X ⊇ domP , i.e.,

‖∇ f (x)− ∇ f (y)‖∗ ≤ L‖x − y‖ ∀x, y ∈ X , (30)

for some L > 0, where E∗ is the vector space of continuous linear functionals on
E , endowed with the dual norm ‖x∗‖∗ = sup‖x‖≤1〈x∗, x〉 and 〈x∗, x〉 is the value of
x∗ ∈ E∗ at x ∈ E . This assumption, which is satisfied by (16), (17), (18), (20), (22),
can be relaxed to hold for (19) as well. Owing to its size and structure, (14) is suited for
solution by first-order gradient methods, whereby at each iteration f is approximated
by a linear function plus a “simple” proximal term. We describe such methods below.
To simplify notation, we denote the linearization of f in F at y ∈ X by

�F (x; y) := f (y)+ 〈∇ f (y), x − y〉 + τ P(x) ∀x . (31)

3.1 Proximal gradient methods

Choose a strictly convex function η : E → (−∞,∞] that is differentiable on an open
set containing X ,3 Then the function

D(x, y) := η(x)− η(y)− 〈∇η(y), x − y〉 ∀y ∈ X , ∀x ∈ E,

is nonnegative and zero if and only if x = y, so D acts as a proximity measure. This
function was studied by Bregman [24] and many others; see [8,11,33,48,70,132] and
references therein. By scaling η if necessary, we assume that

D(x, y) ≥ 1

2
‖x − y‖2 ∀ x, y ∈ X . (32)

The classical gradient projection method of Goldstein and Levitin, Polyak (see
[16,114]) naturally generalizes to solve (14) using the Bregman function D, with

3 This assumption can be relaxed to η being differentiable on the interior of X only.
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constant stepsize 1/L:

xk+1 = arg min
x

{

�F (x; xk)+ L

2
D(x, xk)

}

, k = 0, 1, . . . , (33)

where x0 ∈ domP . This method, which we call the proximal gradient (PG) method,
is closely related to the mirror descent method of Nemirovski and Yudin [93], as is
discussed in [8,12]; also see [61] for the case of η(·) = 1

2‖ · ‖2
2. When P is the 1-norm

or has the block-separable form (21), the new point xk+1 can be found in closed form,
which is a key advantage of this method for large-scale optimization; see [147,152]
and references therein. When P is given by (15) and X is the unit simplex, xk+1 can be
found in closed form in O(n) floating point operations (flops) by taking η(x) to be the
x log x-entropy function [12, Section 5], [99, Lemma 4]. Moreover, the corresponding
D satisfies (32) with ‖ · ‖ being the 1-norm [12, Proposition 5.1], [99, Lemma 3]. If
η(·) = 1

2‖ · ‖2
2 is used instead, then xk+1 can still be found in O(n) flops, but this

requires using a more complicated algorithm; see [72] and references therein. It can
be shown that

F(xk)− inf F ≤ O

(
L

k

)

∀k,

and hence O( L
ε
) iterations suffice to come within ε > 0 of inf F ; see, e.g., [14,

Theorem 3.1], [96, Theorem 2.1.14], [114, page 166], [145, Theorem 5.1].
In a series of work [94,95,99] surveyed in [96] (also see [114, page 171]), Nesterov

proposed three methods for solving the smooth constrained case (15) that, at each iter-
ation, use either one or two projection steps together with extrapolation to accelerate
convergence. These accelerated gradient projection methods generate points {xk} that
achieve

F(xk)− inf F ≤ O

(
L

k2

)

∀k,

so that O(
√

L
ε
) iterations suffice to come within ε > 0 of inf F . In [99], it is shown

that various large convex-concave optimization problems can be efficiently solved
by applying these methods to a smooth approximation with Lipschitz constant L =
O(1/ε). These methods have inspired various extensions and variants [7, Section 5],
[14,64,74], [96, Section 2.2], [99,101,143], as well as applications to compressed
sensing, sparse covariance selection, matrix completion, etc. [15,5,67,77,78,83,97,
133]. In particular, all three methods can be extended to solve (14) in a unified way and

achieve O(
√

L
ε
) iteration complexity; see [143] and discussion below. The work per

iteration is between O(n) and O(n3) flops for the applications of Sect. 1. In contrast,
the number of iterations for interior-point methods is at best O(

√
n log

( 1
ε

)
) and the

work per iteration is typically between O(n3) and O(n4) ops. Thus, for moderate ε
(say, ε = .001), moderate L (which may depend on n), and large n (say, n ≥ 10000),
a proximal gradient method can outperform interior-point methods.
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The first accelerated proximal gradient (APG) method for solving (14) is the sim-
plest, but requires E to be a Hilbert space (i.e., E∗ = E, ‖ · ‖ = √〈·, ·〉) and η(·) =
1
2‖ · ‖2, so that D(x, y) = 1

2‖x − y‖2. For any x0 = x−1 ∈ domP and θ0 = θ−1 = 1,
it generates (for k = 0, 1, . . .)

yk = xk + θk(θ
−1
k−1 − 1)(xk − xk−1), (34)

xk+1 = arg min
x

{

�F (x; yk)+ L

2
‖x − yk‖2

}

, (35)

θk+1 =
√
θ4

k + 4θ2
k − θ2

k

2
. (36)

An inductive argument shows that θk ≤ 2
k+2 for all k. As k → ∞, we have θk

θk−1
=√

1 − θk → 1, so that, by (34), yk is asymptotically an isometric extrapolation from
xk−1 to xk . In particular, yk may lie outside of domP . However, since xk, xk−1 ∈
domP , it is readily seen that yk ∈ {2x −w | x, w ∈ domP} (since x +α(x − x−1) =
2x − w with w = (1 − α)x + αx−1). This method was recently proposed by Beck
and Teboulle [14] as an extension of Nesterov’s first method [94]; also see [64] for
refinements in the unconstrained case of P ≡ 0.

The second APG method imposes no requirement on E or D, and maintains yk ∈
domP , so it is less restrictive than the first method. For any x0, z0 ∈ domP and θ0 = 1,
it generates (for k = 0, 1, . . .)

yk = (1 − θk)x
k + θk zk, (37)

zk+1 = arg min
x

{
�F (x; yk)+ θk L D(x, zk)

}
, (38)

xk+1 = (1 − θk)x
k + θk zk+1, (39)

with θk+1 given by (36). Since 0 < θk ≤ 1, we have from xk, zk ∈ domP that
yk ∈ domP . In the smooth constrained case (15), this method corresponds to Auslen-
der and Teboulle’s extension [8, Section 5] of Nesterov’s second method [95]; also see
[96, page 90]. A variant proposed by Lan, Lu, and Monteiro [74, Section 3] replaces
(39) by a PG step from yk .

The third APG method differs from the second method mainly in the computa-
tion of zk+1. For any x0 ∈ domP and z0 = arg min

x∈domP
η(x), θ0 = 1, it generates (for

k = 0, 1, . . .) yk by (37),

zk+1 = arg min
x

{
k∑

i=0

�F (x; yi )

θi
+ Lη(x)

}

, (40)

and xk+1, θk+1 by (39), (36). Thus, (40) replaces �F (x; yk)/θk in (38) by its cumu-
lative sum and replaces D(·, zk) by η(·). In the case of (15), this method is similar to
Nesterov’s third method [99] but with only one projection instead of two. In the case
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of E being a Hilbert space and η(·) = 1
2‖ · ‖2, this method bears some resemblance to

an accelerated dual gradient method in [101, Section 4].
The preceding accelerated methods may look unintuitive, but they arise “naturally”

from refining the analysis of the PG method, as is discussed in Appendix A. Moreover,
these methods are equivalent (i.e., generate the same sequences) when P ≡ 0, E is a
Hilbert space, and the Bregman function D is quadratic (i.e., η(·) = 1

2‖ · ‖2). Some
extensions of these methods, including cutting planes, estimating L , are discussed in
[143]. In particular, L can be estimated using backtracking: increase L and repeat the
iteration whenever a suitable sufficient descent condition (e.g., 52 or 56) is violated;
see [14,94,143]. Below we summarize the iteration complexity of the PG and APG
methods.

Theorem 1 (a) Let {xk} be generated by the PG method (33). For any x ∈ domP,
we have

F(xk) ≤ F(x)+ 1

k
L D(x, x0) ∀k ≥ 1.

(b) Assume E is a Hilbert space, η(·) = 1
2‖ · ‖2, and X ⊇ {2x −w | x, w ∈ domP}.

Let {xk} be generated by the first APG method (34)–(36). For any x ∈ domP,
we have

F(xk) ≤ F(x)+ θ2
k−1L D(x, x0) ∀k ≥ 1.

(c) Let {xk} be generated by the second APG method (36)–(39). For any x ∈ domP,
we have

F(xk) ≤ F(x)+ θ2
k−1L D(x, z0) ∀k ≥ 1.

(d) Let {xk} be generated by the third APG method (36), (37), (39), (40). For any
x ∈ domP, we have

F(xk) ≤ F(x)+ θ2
k−1L(η(x)− η(z0)) ∀k ≥ 1.

A proof of Theorem 1(a)–(c) is given in Appendix A. A proof of part (d) can be
found in [143, Corollary 3(a)]. Taking any x satisfying F(x) ≤ inf F + ε

2 in Theorem
1 yields F(xk) ≤ inf F + ε after k = O

( L
ε

)
iterations for the PG method and after

k = O

(√
L
ε

)

iterations for the APG methods.

How can we terminate the PG and APG methods in practice with a guaranteed
optimality gap? The bounds in Theorem 1 requires estimating the distance to an ε

2 -
minimizer of F and are rather conservative. In the case where f has the form

f (x) = max
v∈V

φ(x, v),
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for some saddle function φ and convex set V in a suitable space, duality gap can be
used to terminate the methods [92,99,98]. The dual problem is maxv Q(v), with dual
function

Q(v) := min
x

{φ(x, v)+ τ P(x)}.

Then we compute (say, every 5 or 10 iterations) a candidate dual solution

vk = arg max
v

φ(xk, v),

and check that F(xk) − Q(vk) ≤ ε. In fact, assuming furthermore that domP is
bounded, it can be shown using an idea of Nesterov [99, Theorem 3] that

0 ≤ F(xk+1)− Q(v̄k) ≤ θ2
k L max

x∈domP
(η(x)− η(z0)) ∀k ≥ 0,

where xk+1, yk, θk are generated by the third APG method, and we let

vk = arg max
v

φ(yk, v), v̄k = (1 − θk)v̄
k−1 + θkv

k .

with v̄−1 = 0 [143, Corollary 3(c)]; also see [77, Theorem 2.2] and [98] for related
results in the constrained case (15). Analogous bounds hold for the first two APG
methods; see [143, Corollaries 1(b) and 2].

When applied to (4), the first APG method yields an accelerated version of the
iterative thresholding method of Daubechie et al. [14,36]. What about the other two
methods? How efficiently can these methods be applied to solve (5), (7), (8), (10),
(22), and related problems such as those in [50,122,125,126,154]? When applied to
(7) and (8), singular value decomposition is needed at each iteration, and efficiency
depends on the cost for this decomposition. However, only the largest singular val-
ues and their associated singular vectors are needed [25]. Can these be efficiently
computed or updated? Some progress on this have recently been made [83,133].

Can the iteration complexity be further improved? The proofs suggest that the con-
vergence rate can be improved to O( 1

k p ) (p > 2) if we can replace ‖ · ‖2 in the
proofs by ‖ · ‖p; see Appendix A. However, this may require using a higher-order
approximation of f in �F (·; y), so the improvement would not come “for free”.

3.2 Block-coordinate gradient methods

When E is a Hilbert space and P is block-separable (21), we can apply (33) block-
coordinatewise, possibly with L and D dynamically adjusted, resulting in a block-
coordinate gradient (BCG) method. More precisely, given xk ∈ domP , we choose Jk

as the union of some subcollection of indices in J and choose a self-adjoint positive
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definite linear mapping Hk : E → E (ideally Hk ≈ ∇2 f (xk)), compute

dk = arg min
d

{

�F (x
k + d; xk)+ 1

2
〈Hkd, d〉 ∣∣ d j = 0 ∀ j �∈ Jk

}

, (41)

and update

xk+1 = xk + αkdk, (42)

with stepsize αk > 0 [147,145]. This method may be viewed as a coordinate/SOR
version of a sequential quadratic programming (SQP) method, and it is related to the
variable/gradient distribution methods for unconstrained smooth optimization [53,60,
87,121] and (block) coordinate minimization methods [16,85,88,105,123,138,141].
In the case of Hkd = Ld and Jk comprising all coordinate indices of x , (41)–(42)
with αk = 1 reduces to the PG method (33) with η(·) = 1

2‖ · ‖2.
How to choose αk and Jk? Various stepsize rules for smooth optimization [16,54,

105] can be adapted to this nonsmooth setting. One that works well in theory and
practice is an Armijo-type rule adapted from SQP methods:

αk = max
{
α ∈ {1, β, β2, . . . } | F(xk + αdk) ≤ F(xk)+ ασ�k

}
, (43)

where 0 < β, σ < 1 and �k is the difference between the optimal value of (41)
and F(xk). This rule requires only function evaluations, and �k predicts the descent
from xk along dk . For global convergence, the index subset Jk is chosen either in a
Gauss-Seidel manner, i.e., Jk ∪ · · · ∪ Jk+K covers all subsets of J for some constant
K ≥ 0 [32,89,107,141,147] or Jk is chosen in a Gauss-Southwell manner to satisfy

�k ≤ ω�
all

k ,

where 0 < ω < 1 and�
all

k denotes the analog of�k when Jk is replaced by the entire
coordinate index set [147,145,145]. Moreover, assuming (30) with X = domP , the
BCG method using the Gauss-Southwell choice of Jk finds an ε-minimizer of F in
O( L

ε
) iterations [145, Theorem 5.1].

The above BCG method, which has been successful for compressed sensing and
variable selection in regression [89,127,134] and can be extended to handle linear con-
straints as in support vector machine (SVM) training [145,113], may also be suited
for solving (5), (10), (13), (20), and related problems. When applied to (10) with Jk

indexing a row/column of x, dk and αk are computable in O(n2) flops using Schur
complement and properties of determinant. This method may be similarly applied
to Lu’s reformulation (20). This contrasts with the block-coordinate minimization
method in [9] which uses O(n3) flops per iteration. This method can also be applied
to solve (28) by using a smooth convex penalty 1

2θ max{0, | · |−ρi j }2 (θ > 0) for each
constraint in (27) of the form | · | ≤ ρi j . By choosing each coordinate block to com-
prise zi , yii , and (yi j ) j |(i, j)∈A, the computation distributes, with sensor i needing to
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communicate only with its neighbors when updating its position—an important con-
sideration for practical implementation. The resulting method can accurately position
up to 9000 sensors in little over a minute; see [115, Section 7.3]. Can Nesterov’s
extrapolation techniques of Sect. 3.1 be adapted to the BCG method?

3.3 Incremental gradient methods

A problem that frequently arises in machine learning and neural network training has
the form (14) with

f (x) =
m∑

i=1

fi (x), (44)

where each fi : E → (−∞,∞] is smooth, convex on an open subset of E contain-
ing domP . (The convexity assumption can be relaxed depending on the context.) For
example, fi (x) may be the output error for an input-out system (e.g., a classifier),
parameterized by x , on the i th training example. P given by (15) would confer con-
straints on x and P(·) = ‖ · ‖1 would induce a sparse representation. m may be large.
A popular approach to minimizing f of the form (44) is by an incremental gradient
method (“on-line back-propagation”):

xk+1 = xk − αk∇ fik (x
k), (45)

with ik chosen cyclically from {1, . . . ,m} and stepsize αk > 0 either constant or
adjusted dynamically; see [16,71,79,86,91,129,139] and references therein. When
some the ∇ fi ’s are “similar”, this incremental method is more efficient than (pure)
gradient method since it does not wait for all component gradients ∇ f1, ...,∇ fm to be
evaluated before updating x . However, global convergence (i.e., ∇ f (xk) → 0) gener-
ally requires αk → 0, which slows convergence. Recently, Blatt, Hero and Gauchman
[23] proposed an aggregate version of (45) that approximates ∇ f (xk) by

gk =
k∑

�=k−m+1

∇ fi� (x
�).

This method achieves global convergence for any sufficiently small constant stepsize
αk , but requires O(mn) storage. We can reduce the storage to O(n) by updating a
cumulative average of the component gradients

gk
sum

= gk−1
sum

+ ∇ fik (x
k), gk = m

k
gk

sum
,

with g−1
sum

= 0. We then use gk in the PG, APG, or BCG method. The resulting incre-
mental methods share features with recently proposed averaging gradient methods
[68,102]. What are their convergence properties, iteration complexities, and practical
performances?
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4 Error bound and linear convergence of gradient methods

Analogous to superlinear convergence for second-order methods, linear convergence
is a good indicator of efficiency for first-order methods. Key to a linear convergence
analysis is the following Lipschizian error bound on dist(x, X̄ ) := min

s∈X̄
‖x − s‖ in

terms of the norm of the residual

R(x) := arg min
d

{

�F (x + d; x)+ 1

2
‖d‖2

}

, (46)

where X̄ denotes the set of minimizers of F , which we assume to be nonempty, and
�F (·; x) contains the linearization of F at x (cf. (31)).

EB condition: For any ζ ≥ min F , there exist scalars κ > 0 and ε > 0 such that

dist(x, X̄ ) ≤ κ‖R(x)‖ whenever F(x) ≤ ζ, ‖R(x)‖ ≤ ε. (47)

Under the EB condition, asymptotic linear and even superlinear convergence can be
established for various methods, including interior point, gradient projection, proximal
minimization, coordinate minimization, and coordinate gradient methods—even if X̄
is unbounded; see [13,51,81,82,140,147,145,146] and references therein. Moreover,
the EB condition holds under any of the following conditions; see [147, Theorem 4]
as well as [110, Theorem 3.1], [82, Theorem 2.1] for the constrained case (15).

C1. E = �n, f (x) = h(Ax) + 〈c, x〉 for all x ∈ �n , where A ∈ �m×n, c ∈ �n ,
and h is a strongly convex differentiable function on �m with ∇h Lipschitz
continuous on �m . P is polyhedral.

C2. E = �n, f (x) = maxy∈Y {〈y, Ax〉 − h(y)} + 〈c, x〉 for all x ∈ �n, where
Y is a polyhedral set in �m, A ∈ �m×n, c ∈ �n , and h is a strongly con-
vex differentiable function on �m with ∇h Lipschitz continuous on �m . P is
polyhedral.

C3. f is strongly convex and satisfies (30) for some L > 0.

What if f is not strongly convex and P is non-polyhedral? In particular, we are
interested in the group lasso for linear and logistic regression (see (16), (22), (23)), for
which f is not strongly convex (unless A has full column rank) and P is non-polyhedral
(unless J is a singleton for all J ∈ J ). The following new result shows that the error
bound (47) holds for the group lasso. The proof, given in Appendix B, exploits the
structure of the weighted sum of 2-norms (23). To our knowledge, this is the first
Lipschitzian error bound result for f not strongly convex and P non-polyhedral.

Theorem 2 Suppose that E = �n, P has the form (23) with ωJ > 0 for all J ∈ J ,
and f has the form

f (x) = h(Ax), (48)

where A ∈ �m×n, and h : �m → (−∞,∞] is differentiable on domh, which is
assumed to be convex and open. Also suppose that (a) h is strongly convex and ∇h
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is Lipschitz continuous on any compact convex subset of domh, and (b) h(y) → ∞
whenever y approaches a boundary point of domh. If X̄ �= ∅, then

{x | F(x) ≤ ζ } is bounded ∀ζ ∈ �, (49)

and the EB condition (47) holds.

The assumptions on h in Theorem 2 are satisfied by

h(y) = 1

2
‖y − b‖2,

corresponding to linear regression, and

h(y) =
m∑

i=1

log(1 + eyi )− 〈b, y〉 with b ∈ {0, 1}m,

corresponding to logistic regression (22). The assumptions are also satisfied by

h(y) = −
m∑

i=1

log(yi )+ 〈b, y〉 with b ≥ 0,

which arises in likelihood estimation under Poisson noise [122]. In the first two exam-
ples, h is bounded from below by zero. In the third example, h is unbounded from
below but tends to −∞ sublinearly. Since P given by (23) is homogeneous of degree
1, it is readily seen that X̄ �= ∅ for all three examples. (An example of X̄ = ∅ is
minx ex + 2x + |x |.)

However, X̄ need not be a singleton. An example is

min
x

1

2
|x1 + x2 − 2|2 + |x1| + |x2|,

for which X̄ = {(1− t, t) | t ∈ [0, 1]}. Can Theorem 2 be extended to f satisfying C2
and P given by (23) or to (17) or (18)? Can the constant κ in (47), which determines the
convergence ratio, be estimated for compressed sensing (16) in terms of the restricted
isometry constant μN ?

Corollary 1 Under the assumptions of Theorem 2, let {(xk, Hk, Jk, αk)} be generated
by the BCG method (41)–(42) with (i) λI � Hk � λ̄I for all k (0 < λ ≤ λ̄), (ii) {Jk}
cycling through J ∈ J , and (iii) {αk} chosen by the Armijo rule (43). If X̄ �= ∅, then
{F(xk)}k∈T converges at least Q-linearly and {xk}k∈T converges at least R-linearly,
where T = {0, K , 2K , . . . } and K is the cardinality of J .

Proof Theorem 2 shows that [147, Assumption 2(a)] is satisfied. By [147, Theorem
1(a)], {F(xk)} ↓, so, by (49), {xk} is bounded. Since F is convex, [147, Assumption
2(b)] is automatically satisfied. Also, {xk} is lies in a compact convex subset of dom f ,
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over which ∇ f is Lipschitz continuous (since ∇h is Lipschitz continuous over the the
image of this subset under A). Conditions (i)–(iii) imply that the remaining assump-
tions in [147, Theorem 2(b)] are satisfied. In particular, the restricted Gauss-Seidel
rule in [147] holds with the given T . Since {xk} is bounded, [147, Theorem 2(b)]
implies that {F(xk)}k∈T converges at least Q-linearly and {xk}k∈T converges at least
R-linearly [107]. ��

By Corollary 1, the method in [158], [89, Section 2.2.1] for linear group lasso (corre-
sponding to Hk = AT A) and the method in [89, Section 2.2.2] for logistic group lasso
(corresponding to Hk = νk I with νk > 0) attain linear convergence. Linear conver-
gence of the block-coordinate minimization methods used in [148] for TV-regularized
image reconstruction, with f (w, u) = 1

2‖w − Bu‖2
2 + γ

2 ‖Au − b‖2
2, P(w, u) =∑

J ‖wJ ‖2, and in [153] for TV-regularized image deblurring, with f (w, u, z) =
1
2‖w − Bu‖2

2 + γ
2 ‖Au − b − z‖2

2, P(w, u, z) = ∑
J ωJ ‖wJ ‖2 + ‖z‖1, can be ana-

lyzed similarly using a generalization of Theorem 2 to allow ωJ = 0 for some J . Can
the linear convergence analysis be extended to the APG methods or their variants?

5 Appendix A: Analyzing the PG and APG methods

Since f is convex and (30) holds with X ⊇ domP , we have from (31) that

F(x) ≥ �F (x; y) ≥ F(x)− L

2
‖x − y‖2 ∀x ∈ domP, y ∈ X . (50)

The following “3-point” property is also key; see [33, Lemma 3.2], [74, Lemma 6],
[143, Section 2].

3-Point Property: For any proper lsc convex function ψ : E → (−∞,∞] and any
z ∈ X , if η is differentiable at z+ = arg minx {ψ(x)+ D(x, z)}, then

ψ(x)+ D(x, z) ≥ ψ(z+)+ D(z+, z)+ D(x, z+) ∀x ∈ domP.

The APG methods can be motivated by analyzing the PG method (33). Let {xk} be
generated by the PG method. For any x ∈ domP and any k ∈ {0, 1, . . . }, we have

F(xk+1) ≤ �F (x
k+1; xk)+ L

2
‖xk+1 − xk‖2

≤ �F (x
k+1; xk)+ L D(xk+1, xk)

≤ �F (x; xk)+ L D(x, xk)− L D(x, xk+1)

≤ F(x)+ L D(x, xk)− L D(x, xk+1) ∀x ∈ domP, (51)

where the first and fourth inequalities use (50), the second inequality uses (32), and
the third inequality uses (33) and the 3-Point Property with ψ(x) = �F (x; xk)/L .
Letting ek = F(xk)− F(x) and �k = L D(x, xk), this simplifies to the recursion

ek+1 ≤ �k −�k+1 ∀k ≥ 0.
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It follows from ek+1 ≤ ek that (k + 1)ek+1 ≤ �0 − �k+1 ≤ �0, which proves
Theorem 1(a).

The above proof suggests that, for faster convergence, we should find a similar
recursion as (51) but with L scaled by something tending to zero with k. To do this,
we need to modify (33). Suppose for simplicity E is a Hilbert space and η(·) = 1

2‖ · ‖2

(so that D(x, y) = 1
2‖x − y‖2). One such modification is to replace xk in (33) by

some yk ∈ X to be determined, yielding (35). Then, as in the above proof for the PG
method, we have

F(xk+1) ≤ �F (x
k+1; yk)+ L

2
‖xk+1 − yk‖2 (52)

≤ �F (y; xk)+ L

2
‖y − yk‖2 − L

2
‖y − xk+1‖2

≤ F(y)+ L

2
‖y − yk‖2 − L

2
‖y − xk+1‖2 ∀y ∈ domP, (53)

where the first and third inequalities use (50), and the second inequality uses (35)
and the 3-Point Property. To get L to be scaled by something tending to zero, set
y = (1−θk)xk +θk x in the above inequality, with x ∈ domP arbitrary and 0 < θk ≤ 1
to be determined. We can then factor θk out of x to scale L , yielding

F(xk+1) ≤ F((1 − θk)x
k + θk x)+ L

2
‖(1 − θk)x

k + θk x − yk‖2

− L

2
‖(1 − θk)x

k + θk x − xk+1‖2

= F((1 − θk)x
k + θk x)+ L

2
θ2

k ‖x + (θ−1
k − 1)xk

−θ−1
k yk‖2 − L

2
θ2

k ‖x + (θ−1
k − 1)xk − θ−1

k xk+1‖2,

where we have rearranged the terms to look like the recursion (51). We want the two
terms inside ‖ ‖2 to have the form “x − zk” and “x − zk+1”, which we get by setting

zk = −(θ−1
k − 1)xk + θ−1

k yk

and yk by (34). Using also the convexity of F , we then obtain that

F(xk+1) ≤ (1−θk)F(x
k)+θk F(x)+θ2

k
L

2
‖x−zk‖2−θ2

k
L

2
‖x−zk+1‖2 ∀k. (54)

Letting ek = F(xk)− F(x) and �k = L
2 ‖x − zk‖2, this simplifies to

ek+1 ≤ (1 − θk)ek + θ2
k�k − θ2

k�k+1.
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Upon dividing both sides by θ2
k , we see that, by choosing θk+1 so that 1

θ2
k

= 1−θk+1

θ2
k+1

(which, upon solving for θk+1, yields (36)), this rewrites as the recursion

1 − θk+1

θ2
k+1

ek+1 +�k+1 ≤ 1 − θk

θ2
k

ek +�k,

which propagates backwards to yield

1 − θk+1

θ2
k+1

ek+1 +�k+1 ≤ 1 − θ0

θ2
0

e0 +�0 ∀k.

Since 1−θk+1

θ2
k+1

= 1
θ2

k
, setting θ0 = 1 simplifies this to 1

θ2
k

ek+1 ≤ �0−�k+1 ≤ �0.Also,

we have from (34) and taking θ−1 = 1 that z0 = y0 = x0. This proves Theorem 1(b).
The preceding proof depends crucially on rearranging terms inside ‖ ‖2, so it cannot

be directly extended to other Bregman functions D. However, (54) suggests we seek
a recursion of the form

F(xk + 1)≤ (1 − θk)F(x
k)+ θk F(x)+ θ2

k L D(x, zk)− θ2
k L D(x, zk + 1) ∀k, (55)

which, as our derivation of (51) and (54) suggests, can be achieved by setting zk+1 by
(38) and using the 3-Point Property, setting xk+1 by (39) (analogous to our setting of
y in (53)), and then choosing yk so that xk+1 − yk = θk(zk+1 − zk) (which works out
to be (37)). Specifically, for any k ∈ {0, 1, . . . }, we have

F(xk+1) ≤ �F (x
k+1; yk)+ L

2
‖xk+1 − yk‖2

= �F ((1 − θk)x
k + θk zk+1; yk)+ Lθ2

k

2
‖zk+1 − zk‖2

≤ (1 − θk)�F (x
k; yk)+ θk�F (z

k+1; yk)+ θ2
k L D(zk+1, zk)

≤ (1 − θk)�F (x
k; yk)+ θk

(
�F (x; yk)+ θk L D(x, zk)− θk L D(x, zk + 1)

)

∀x ∈ domh, (56)

where the first inequality uses (50), the second inequality uses the convexity of
�F (·; yk) and (32), the last inequality uses the 3-Point Property with ψ(x) =
�F (x; yk)/(θk L). Using (50) yields (55), from which Theorem 1(c) follows.

The third APG method (see 40) can be derived and analyzed similarly using an
analog of the 3-Point Property for η; see [143, Property 2]. For brevity we omit the
details.

6 Appendix B: A Proof of Theorem 2

Througout we assume that the assumptions of Theorem 2 are satisfied. By scaling f
by 1/τ , we will assume without loss of generality that τ = 1.
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Lemma 1 For any x ∈ �n, letting g = ∇ f (x), we have for all J ∈ J that

R(x)J =
⎧
⎨

⎩

−xJ if ‖gJ − xJ ‖2 ≤ ωJ ,

−
(

1 − ωJ‖gJ −xJ ‖2

)
gJ −

(
ωJ‖gJ −xJ ‖2

)
xJ if ‖gJ − xJ ‖2 ≥ ωJ .

(57)

Moreover, R is continuous on dom f .

Proof Let r = R(x). Then (23), (31), (46), and τ = 1 yield

r = arg min
d

⎧
⎨

⎩
〈g, d〉 + 1

2
‖d‖2 +

∑

J∈J
ωJ ‖xJ ‖2

⎫
⎬

⎭
,

whose necessary and sufficient optimality condition is

0 ∈ gJ + rJ + ωJ ∂‖xJ + rJ ‖2 ∀J ∈ J .

Fix any J ∈ J . Since ∂‖0‖2 is the unit 2-norm ball and ∂‖xJ ‖2 = {xJ /‖xJ ‖2} if
xJ �= 0, we have that rJ = −xJ if ‖gJ − xJ ‖2 ≤ ωJ and otherwise

gJ + rJ + ωJ
xJ + rJ

‖xJ + rJ ‖2
= 0. (58)

Letting α = ‖xJ + rJ ‖2, we solve for rJ to obtain

rJ = −αgJ + ωJ xJ

α + ωJ
.

Hence xJ + rJ = α
α+ωJ

(xJ − gJ ) so that

α = ‖xJ + rJ ‖2 = α

α + ωJ
‖xJ − gJ ‖2.

Solving for α yields α = ‖xJ − gJ ‖2 − ωJ , which when plugged into the above
formula for rJ yields (57).

The continuity of R follows from the continuity of ∇ f and the continuity of the
right-hand side of (57) in g. In particular, the two formulas in (57) yield −xJ at the
boundary ‖gJ − xJ ‖2 = ωJ . ��

Since h is strictly convex, x �→ Ax is invariant over X̄ , i.e., there exists ȳ ∈ domh
such that

Ax = ȳ ∀x ∈ X̄ . (59)

Since P is given by (23), it follows from (48) and (59) that

X̄ =
⎧
⎨

⎩
x |

∑

J∈J
ωJ ‖xJ ‖2 = min F − h(ȳ), Ax = ȳ

⎫
⎬

⎭
,

123



Structured convex optimization 285

so that X̄ is bounded (since ωJ > 0 for all J ∈ J ), as well as being closed convex.
Since F is convex and X̄ is bounded, it follows from [118, Theorem 8.7] that (49)
holds. By using these observations and Lemma 1, we prove below the EB condition
(47).

We argue by contradiction. Suppose there exists a ζ ≥ min F such that (47) fails
to hold for all κ > 0 and ε > 0. Then there exists a sequence x1, x2, . . . in �n\X̄
satisfying

F(xk) ≤ ζ ∀k, {rk} → 0,

{
rk

δk

}

→ 0, (60)

where for simplicity we let rk := R(xk), δk := ‖xk − x̄ k‖2, and x̄ k :=
arg mins∈X̄ ‖xk − s‖2. Let

gk := ∇ f (xk) = AT ∇h(Axk), ḡ := AT ∇h(ȳ). (61)

By (59) and (61), Ax̄k = ȳ and ∇ f (x̄ k) = ḡ for all k.
By (49) and (60), {xk} is bounded. By further passing to a subsequence if necessary,

we can assume that {xk} → some x̄ . Since {R(xk)} = {rk} → 0 and R is continuous
by Lemma 1, this implies R(x̄) = 0, so x̄ ∈ X̄ . Hence δk ≤ ‖xk − x̄‖2 → 0 as k → ∞
so that {x̄ k} → x̄ . Also, by (59) and (61), {gk} → ∇ f (x̄) = ḡ. Since P(xk) ≥ 0, (48)
implies h(Axk) = F(xk) − P(xk) ≤ F(xk) ≤ ζ for all k. Since {Axk} is bounded
and h(y) → ∞ whenever y approaches a boundary point of domh, this implies that
{Axk} and ȳ lie in some compact convex subset Y of the open convex set domh. By
our assumption on h, h is strongly convex and ∇h is Lipschitz continuous on Y , so,
in particular,

σ‖y− ȳ‖2
2 ≤〈∇h(y)−∇h(ȳ), y− ȳ〉 and ‖∇h(y)−∇h(ȳ)‖2 ≤ L‖y− ȳ‖2 ∀y ∈Y,

(62)

for some 0 < σ ≤ L .
We claim that there exists κ > 0 such that

‖xk − x̄ k‖2 ≤ κ‖Axk − ȳ‖2 ∀k, (63)

We argue this by contradiction. Suppose this is false. Then, by passing to a subsequence
if necessary, we can assume that

{‖Axk − ȳ‖2

‖xk − x̄ k‖2

}

→ 0.

Since ȳ = Ax̄k , this is equivalent to {Auk} → 0, where we let

uk := xk − x̄ k

δk
∀k. (64)
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Then ‖uk‖2 = 1 for all k. By further passing to a subsequence if necessary, we will
assume that {uk} → some ū. Then Aū = 0 and ‖ū‖2 = 1. Moreover,

Axk = A(x̄ k + δkuk) = ȳ + δk Auk = ȳ + o(δk).

Since Axk and ȳ are in Y , the Lipschitz continuity of ∇h on Y (see (62)) and (61)
yield

gk = ḡ + o(δk). (65)

By further passing to a subsequence if necessary, we can assume that, for each J ∈ J ,
either (a) ‖gk

J − xk
J ‖2 ≤ ωJ for all k or (b) ‖gk

J − xk
J ‖2 > ωJ and x̄ k

J �= 0 for all k or
(c) ‖gk

J − xk
J ‖2 > ωJ and x̄ k

J = 0 for all k.

Case (a). In this case, Lemma 1 implies that rk
J = −xk

J for all k. Since {rk} → 0
and {xk} → x̄ , this implies x̄ J = 0. Also, by (64) and (60),

uk
J = −rk

J − x̄ k
J

δk
= o(δk)− x̄ k

J

δk
.

Thus ū J = − limk→∞ x̄ k
J /δk . Suppose ū J �= 0. Then x̄ k

J �= 0 for all k
sufficiently large, so x̄ k ∈ X̄ and the optimality condition for (14) with
τ = 1, (23), and ∇ f (x̄ k) = ḡ imply

ḡJ + ωJ
x̄k

J

‖x̄ k
J ‖2

= 0, (66)

so ū J is a positive multiple of ḡJ .
Case (b). Since x̄ k ∈ X̄ and x̄ k

J �= 0, the optimality condition for (14) with τ = 1,
(23), and ∇ f (x̄ k) = ḡ imply (66) holds for all k. Then Lemma 1 implies

−rk
J =

(

1 − ωJ

‖gk
J − xk

J ‖2

)

gk
J + ωJ xk

J

‖gk
J − xk

J ‖2

=
(

1 − ωJ

‖gk
J − xk

J ‖2

)

(ḡJ + o(δk))+ ωJ (x̄ k
J + δkuk

J )

‖gk
J − xk

J ‖2

= ḡJ + ωJ (x̄ k
J − ḡJ )

‖gk
J − xk

J ‖2
+ o(δk)+ ωJ δkuk

J

‖gk
J − xk

J ‖2

=
(

ωJ

‖ḡJ − x̄ k
J ‖2

− ωJ

‖gk
J − xk

J ‖2

)

(ḡJ − x̄ k
J )+ o(δk)+ ωJ δkuk

J

‖gk
J − xk

J ‖2

=
(

ωJ

‖ḡJ − x̄ k
J ‖2

− ωJ

‖ḡJ − x̄ k
J − δkuk

J + o(δk)‖2

)

(ḡJ − x̄ k
J )
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+o(δk)+ ωJ δkuk
J

‖ḡJ − x̄ k
J − δkuk

J + o(δk)‖2

= ωJ 〈ḡJ − x̄ k
J ,−δkuk

J 〉
‖ḡJ − x̄ k

J ‖3
2

(ḡJ − x̄ k
J )+ o(δk)+ ωJ δkuk

J

‖ḡJ − x̄ k
J ‖2

= ωJ δk

‖ḡJ − x̄ k
J ‖2

(
〈ḡJ ,−uk

J 〉
ω2

J

ḡJ + uk
J

)

+ o(δk),

where the second and fifth equalities use (64) and (65); the fourth and

last equalities use (66) so that ḡJ = ωJ
ḡJ −x̄ k

J

‖ḡJ −x̄ k
J ‖2

; the sixth equality uses

∇x‖x‖−1
2 = − x

‖x‖3
2
. Multiplying both sides by ‖ḡJ − x̄ k

J ‖2/(ωJ δk) and

using (60) and ‖ḡJ ‖2 = ωJ (by (66)) yields in the limit

0 = −〈ḡJ , ū J 〉
‖ḡJ ‖2

2

ḡJ + ū J . (67)

Thus ū J is a nonzero multiple of ḡJ .
Case (c). In this case, it follows from {x̄ k} → x̄ that x̄ J = 0. Since ‖gk

J −xk
J ‖2 > ωJ

for all k, this implies ‖ḡJ ‖2 ≥ ωJ . Since x̄ ∈ X̄ , the optimality condi-
tion 0 ∈ ḡJ + ωJ ∂‖0‖2 implies ‖ḡJ ‖2 ≤ ωJ . Hence ‖ḡJ ‖2 = ωJ . Then
Lemma 1 implies

−rk
J =

(
ωJ

‖ḡJ ‖2
− ωJ

‖gk
J − xk

J ‖2

)

gk
J + ωJ xk

J

‖gk
J − xk

J ‖2

= ωJ 〈ḡJ , gk
J − xk

J − ḡJ 〉
‖ḡJ ‖3

2

gk
J + o(‖gk

J − xk
J − ḡJ ‖2)+ ωJ xk

J

‖gk
J − xk

J ‖2

= −ωJ 〈ḡJ , xk
J 〉

‖ḡJ ‖3
2

gk
J + o(δk)+ ωJ xk

J

‖gk
J − xk

J ‖2
,

where the second equality uses ∇x‖x‖−1
2 = − x

‖x‖3
2
, and the third equality

uses (65) and x̄ k
J = 0. Since x̄ k

J = 0 for all k, (64) implies {xk
J /δk} =

{uk
J } → ū J . Thus, dividing both sides by δk and using (60), {xk

J } → 0,
and ‖ḡJ ‖2 = ωJ yield in the limit (67). Since ‖gk

J − xk
J ‖2 > ωJ for all k,

(58) implies

gk
J + rk

J + ωJ
xk

J + rk
J

‖xk
J + rk

J ‖2
= 0 ∀k.

123



288 P. Tseng

Suppose ū J �= 0. Then uk
J = xk

J /δk �= 0 for all k sufficiently large, so that

〈gk
J , uk

J 〉 = 〈gk
J , xk

J 〉
δk

= −〈rk
J , xk

J 〉
δk

− ωJ
‖xk

J ‖2
2 + 〈rk

J , xk
J 〉

δk‖xk
J + rk

J ‖2

= −〈rk
J , xk

J 〉
δk

− ωJ

‖uk
J ‖2 + 〈 rk

J
δk
,

xk
J

‖xk
J ‖2

〉
∥
∥
∥
∥

xk
J

‖xk
J ‖2

+ rk
J

‖xk
J ‖2

∥
∥
∥
∥

2

.

Then (60) and {‖xk
J ‖2/δk} → ‖ū J ‖ > 0 yield in the limit that 〈ḡJ , ū J 〉 =

−ωJ ‖ū J ‖2 < 0. This together with (67) implies ū J is a negative multiple
of ḡJ .

Since {(xk − x̄ k)/δk} = {uk} → ū �= 0, we have 〈xk − x̄ k, ū〉 > 0 for all k
sufficiently large. Fix any such k and let

x̂ := x̄ k + εū

with ε > 0. Since Aū = 0, we have ∇ f (x̂) = ∇ f (x̄ k) = ḡ. We show below that, for
ε > 0 sufficiently small, x̂ satisfies

0 ∈ ḡJ + ωJ ∂‖x̂ J ‖2 (68)

for all J ∈ J , and hence x̂ ∈ X̄ . Then 〈xk − x̄ k, ū〉 > 0 and ‖ū‖2 = 1 yield

‖xk − x̂‖2
2 = ‖xk − x̄ k − εū‖2

2 = ‖xk − x̄ k‖2
2 − 2ε〈xk − x̄ k, ū〉 + ε2 < ‖xk − x̄ k‖2

2

for all ε > 0 sufficiently small, which contradicts x̄ k being the point in X̄ nearest
to xk and thus proves (63). For each J ∈ J , if ū J = 0, then x̂ J = x̄ k

J and (68)
holds automatically (since x̄ k ∈ X̄ ). Suppose that ū J �= 0. We prove (68) below by
considering the three aforementioned cases (a), (b), and (c).

Case (a). Since ū J �= 0, we have that ū J is a positive multiple of ḡJ . Also, by (66),
x̄ k

J is a negative multiple of ḡJ . Hence x̂ J is a negative multiple of ḡJ for
all ε > 0 sufficiently small, so, by (66), it satisfies

ḡJ + ωJ
x̂ J

‖x̂ J ‖2
= 0. (69)

Case (b). Since (66) holds, x̄ k
J is a negative multiple of ḡJ . Also, ū J is a nonzero

multiple of ḡJ . A similar argument as in case (a) shows that x̂ J satisfies
(69) for all ε > 0 sufficiently small.

Case (c). We have x̄ k
J = 0 and ū J is a negative multiple of ḡJ . Hence x̂ J is a negative

multiple of ḡJ for all ε > 0, so it satisfies (69).
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The remaining argument is similar to the proof of [147, Theorem 4], but using (63)
and the strong convexity of h in place of the strong convexity of f . For each k, since
rk is a solution of the subproblem (46), by Fermat’s rule [119, Theorem 10.1],

rk ∈ arg min
d

〈gk + rk, d〉 + P(xk + d).

Hence

〈gk + rk, rk〉 + P(xk + rk) ≤ 〈gk + rk, x̄ k − xk〉 + P(x̄ k).

Since x̄ k ∈ X̄ and ∇ f (x̄ k) = ḡ, we have similarly that

P(x̄ k) ≤ 〈ḡ, xk + rk − x̄ k〉 + P(xk + rk).

Adding the above two inequalities and simplifying yield

〈gk − ḡ, xk − x̄ k〉 + ‖rk‖2
2 ≤ 〈ḡ − gk, rk〉 + 〈rk, x̄ k − xk〉.

Since Axk and Ax̄k = ȳ are in Y , we also have from (61), (62), and (63) that

〈gk − ḡ, xk − x̄ k〉=〈∇h(Axk)−∇h(ȳ), Axk − ȳ〉 ≥ σ‖Axk − ȳ‖2
2 ≥ σ

κ2 ‖xk − x̄ k‖2
2.

Combining these two inequalities and using (62) yield

σ

κ2 ‖xk − x̄ k‖2
2 + ‖rk‖2

2 ≤ 〈∇h(ȳ)− ∇h(Axk), Ark〉 + 〈rk, x̄ k − xk〉
≤ L‖A‖2

2‖xk − x̄ k‖2‖rk‖2 + ‖xk − x̄ k‖2‖rk‖2,

where ‖A‖2 := max‖d‖2=1
‖Ad‖2. Thus

σ

κ2 ‖xk − x̄ k‖2
2 ≤ (L‖A‖2

2 + 1)‖xk − x̄ k‖2‖rk‖2 ∀k.

Dividing both sides by ‖x − x̄ k‖2 yields a contradiction to (60).
The key to the above proof is the bound (63). An analogous bound was used in the

proof of [80, Lemma 2.6(b)] for the case of (15) with X polyhedral and f satisfying
C1. The above proof is more complex due to P being non-polyhedral.
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