
Math. Program., Ser. A (2012) 131:195–220
DOI 10.1007/s10107-010-0349-7

FULL LENGTH PAPER

An improved column generation algorithm
for minimum sum-of-squares clustering

Daniel Aloise · Pierre Hansen · Leo Liberti

Received: 4 June 2009 / Accepted: 15 February 2010 / Published online: 20 April 2010
© Springer and Mathematical Programming Society 2010

Abstract Given a set of entities associated with points in Euclidean space, minimum
sum-of-squares clustering (MSSC) consists in partitioning this set into clusters such
that the sum of squared distances from each point to the centroid of its cluster is min-
imized. A column generation algorithm for MSSC was given by du Merle et al. in
SIAM Journal Scientific Computing 21:1485–1505. The bottleneck of that algorithm
is the resolution of the auxiliary problem of finding a column with negative reduced
cost. We propose a new way to solve this auxiliary problem based on geometric argu-
ments. This greatly improves the efficiency of the whole algorithm and leads to exact
solution of instances with over 2,300 entities, i.e., more than 10 times as much as
previously done.

Keywords Clustering · Sum-of-squares · Column generation · ACCPM

Mathematics Subject Classification (2000) 65K05 · 90C27 · 91C20

D. Aloise (B)
Department of Production Engineering, Universidade Federal do Rio Grande do Norte,
Campus Universitário s/n, Natal, Rio Grande do Norte 59072-970, Brazil
e-mail: daniel.aloise@gerad.ca

P. Hansen
GERAD and HEC Montréal, 3000, Chemin de la Côte-Sainte-Catherine,
Montréal, Québec H3T 2A7, Canada
e-mail: pierre.hansen@gerad.ca

P. Hansen · L. Liberti
LIX, École Polytechnique, 91128 Palaiseau, France

L. Liberti
e-mail: liberti@lix.polytechnique.fr

123

196 D. Aloise et al.

1 Introduction

Clustering is a basic chapter in data analysis. It addresses the following problem: given
a set of entities find subsets, called clusters, which are homogeneous and/or well sep-
arated (e.g. Hartigan [29]; Jain et al. [32]; Mirkin [45]). Many different criteria are
used in the literature to express homogeneity and/or separation of the clusters to be
found (see [23] for a survey). Among them, a frequently used one is the minimum
sum of squared Euclidean distances from each entity to the centroid of the cluster to
which it belongs. Partitioning n entities into k clusters with this criterion is known as
minimum sum-of-squares clustering (MSSC).

For k ≥ 2 and one dimensional data, MSSC can be solved in O
(
n3

)
time [58]. The

problem is NP-hard in the plane for general values of k [43]. In general dimension,
MSSC is NP-hard even for k = 2 [1]. If both k and dimension s are fixed, the problem
can be solved in O

(
nsk+1

)
time [31], which may be very time-consuming even for

instances in the plane.
MSSC has several properties:

(i) It expresses both homogeneity and separation as explained in Späth’s book [58],
pages 60–61;

(ii) Given the assignments, the cluster centers are located in their centroids, due to
first order optimality conditions. These are determined by a simple closed-form
expression;

(iii) Given the centroids, each entity is assigned to its closest centroid, due to local
optimality. This just requires a few comparisons;

(iv) Clusters obtained are spheroidal due to minimization of squared Euclidean dis-
tances. This may be desirable or not, depending on the problem considered.

Mathematical properties of MSSC are discussed in the books of Späth [58], Mirkin
[46] and Kogan [35]. Several hundred papers have been written on heuristics for MSSC
and several thousand on their applications in many domains (see, for instance, Stein-
ley’s half century synthesis [60]). The best known heuristic for MSSC is k-means
[20,42] (the continuous version of k-means for space partitioning was previously
described by Steinhaus in [59]). Indeed MSSC is sometimes called the k-means prob-
lem. This heuristic alternately applies properties (ii) and (iii) above until a local opti-
mum is reached. It has been shown by Hansen and Mladenović [25] that while k-means
usually gives good results for small number of clusters its performance deteriorates,
sometimes drastically, when this number increases. Modifying k-means by adding a
jump move of a centroid to an entity location gives a much better heuristic called
j-means. Finally, combining j-means with a Variable Neighborhood Search (VNS)
heuristic [26,27,47] gives a heuristic which often provides optimal solutions or best
known ones. This empirical observation will be exploited in the algorithm presented
below.

Other recent heuristics for MSSC include the global k-means method of Likas et
al. [41], analyzed in [28] and modified by Bagirov [6], Bagirov and Yearwood’s non-
smooth optimization algorithm [7], smoothing optimization algorithms due to Teboulle
and Kogan [62] and Xavier et al. [66], Merz’s iterated local search [44], Pacheco’s scat-
ter search [48], Pacheco and Valencia’s hybrids [49], Taillard’s decomposition methods

123

An improved column generation algorithm 197

[61], Laszlo and Mukherjee’s genetic algorithms [37,38], Christou’s restricted column
generation and partitioning method [11], and the D.C. heuristic of An, Belghiti and
Tao [4]. A systematic comparison of twelve heuristics for MSSC was made by Brusco
and Steinley in [10].

Exact algorithms for MSSC are much less numerous than heuristics. To the best of
our knowledge, there are less than a dozen papers published on that topic. However,
the approaches followed are very diverse. Early branch-and-bound algorithms are due
to Koontz et al. [36] and Diehr [12]. Bounds depend on distances between entities
assigned to the same cluster and a limited look-ahead component.

A column generation method for MSSC was proposed by du Merle et al. in [15].
It solved for the first time medium size benchmark instances (i.e., instances with
100–200 entities), including Fisher’s 150 Iris [19]. The master problem is solved by
the ACCPM interior point method of Goffin, Haurie, and Vial [21]. The auxiliary
problem of finding a column with negative reduced cost is expressed as a hyperbolic
program in 0–1 variables. It is solved by a Dinkelbach-like algorithm [13] which
relies on a branch-and-bound algorithm for unconstrained quadratic 0–1 optimiza-
tion. Another branch-and-bound on the master problem leads, if needed, to an integer
solution. Finally, VNS heuristics are used both at the outset to find a good initial solu-
tion together with tentative bounds on the dual variables, as well as in the auxiliary
problem to accelerate its solution. The bottleneck of the algorithm lies in the reso-
lution of the auxiliary problem, and more precisely, in the unconstrained quadratic
0-1 optimization problem arising there. In this paper, we will propose an alternate
geometric-based approach for that step.

More recently, Xia and Peng [67] proved that the objective function of MSSC is
concave in the relaxed feasible domain. In their paper, they propose an adaptation of
Tuy’s [63] cutting plane method to solve it. Approximate results are reported for a
version where this algorithm is halted before global convergence. Some experiments
of ours showed that small instances with about 25 entities can be solved exactly with
that approach.

MSSC can also be solved by non-serial dynamic programming as shown by Jensen
[33]. An improved implementation due to van Os and Meulman [64] allows solutions
of instances with about 28 entities.

Brusco [9] proposed a repetitive branch-and-bound procedure which, after ordering
the entities, solves by branch-and-bound the problem defined by the k + 1 last ones,
then the problem with k + 2 last ones, and so on, until the problem with all given
entities is solved. The bound used at any iteration of one of those iterated branch-
and-bound procedures comprises two components, i.e., a usual one corresponding to
distances between already assigned entities and a sophisticated look-ahead one which
corresponds to distances in an optimal solution for the set of unassigned entities.
These much improved bounds led to efficient solution of some well-known bench-
mark instances, including Fisher’s 150 Iris [19], particularly when the number of
cluster is small. Artificially generated examples with well-separated clusters and up
to n = 220 entities could be solved also.

The hardest task when devising exact algorithms for MSSC is to compute good
lower bounds in a reasonable amount of time. Sherali and Desai [57] proposed to obtain
such bounds by linearizing the model via the reformulation-linearization technique

123

198 D. Aloise et al.

[56]. They claim to solve instances with up to 1,000 entities by means of a branch-
and-bound algorithm. However, these results could not be reproduced, and computing
times in an attempted replication of [3] were already high for real data sets with about
22 entities.

Recently, Peng and Xia [52] proved the equivalence of MSSC and a model called
0–1 semidefinite programming (SDP), in which eigenvalues are binary. On the basis of
these results, the present authors developed in [2] a branch-and-cut SDP-based algo-
rithm for MSSC with lower bounds obtained from the LP relaxation of the 0–1 SDP
model. This algorithm obtains exact solutions for fairly large data sets, i.e., n = 202
and k ≥ 9, with computing times comparable with those obtained by the column
generation method proposed by du Merle et al. [15].

This paper is organized as follows. Section 2 revisits the formulation of the problem
and the column generation approach. In Sect. 3, we show how the auxiliary problem
can be solved for MSSC instances in the Euclidean plane by taking advantage of
its geometric properties. This is made by a connexion with the Weber problem with
limited distances [14]. Section 4 shows how the geometric reasoning can be further
exploited to solve auxiliary problems arising from the resolution of MSSC instances
in general Euclidean space. Computational experiments for instances commonly used
in the literature are reported in Sect. 5. Finally, conclusions are given in Sect. 6.

2 Column generation algorithm revisited

A mathematical programming formulation of MSSC is as follows:

min
x,y

n∑

i=1

k∑

j=1

xi j‖pi − y j‖2

subject to
(1)

k∑

j=1

xi j = 1, ∀i = 1, . . . , n

xi j ∈ {0, 1}, ∀i = 1, . . . , n; ∀ j = 1, . . . , k.

The n entities O = {o1, o2, . . . , on} to be clustered are at given points pi =(
pr

i , r = 1, . . . , s
)

of R
s for i = 1, . . . , n; k cluster centers must be located at unknown

points y j ∈ R
s for j = 1, . . . , k; the norm ‖·‖ denotes the Euclidean distance between

the two points in its argument in the s-dimensional space under consideration. The
decision variables xi j express the assignment of the entity oi to the cluster j . We assume
that the number of entities n is greater than k, otherwise the problem is trivially solved
by locating one cluster center at the position of each entity.

If y is fixed, the condition xi j ∈ {0, 1} can be replaced by xi j ∈ [0, 1], since in
an optimal solution for the resulting problem each entity belongs to the cluster with
the nearest center. Besides, for a fixed x , first order conditions on the gradient of the

123

An improved column generation algorithm 199

objective function require that at an optimal solution

n∑

i=1

xi j

(
yr

j − pr
i

)
= 0,∀ j, r, i.e., yr

j =
∑n

i=1 xi j pr
i∑n

i=1 xi j
,∀ j, r. (2)

Hence, the optimal cluster centers are always at the centroids of the clusters.
Partitioning problems in cluster analysis can be mathematically formulated by con-

sidering all possible clusters. Let us consider any cluster Ct for which

ait =
{

1 if entity oi belongs to cluster Ct

0 otherwise,

and let us denote by yt the centroid of points pi such that ait = 1. Thus, the cost ct of
cluster Ct can be written as

ct =
n∑

i=1

‖pi − yt‖2ait .

An alternative formulation for MSSC is then given by

min
z

∑

t∈T

ct zt

subject to
∑

t∈T

ait zt = 1, ∀i = 1, . . . , n (3)

∑

t∈T

zt = k

zt ∈ {0, 1} ∀t ∈ T,

where T = {1, . . . , 2n − 1}. The zt variables are equal to 1 if cluster Ct is in the
optimal partition and to 0 otherwise. The first set of constraints state that each entity
belongs to one cluster, and the following constraint expresses that the optimal partition
contains exactly k clusters. Without loss of generality, they can be replaced by

∑

t∈T

ait zt ≥ 1, ∀i = 1, . . . , n, and
∑

t∈T

zt ≤ k,

because (i) a covering of O which is not a partition cannot be optimal, and (ii) any
partition with less than k clusters has objective value greater or equal to the optimal
partition with k clusters.

This is a large set partitioning problem with a side constraint, for which the number
of variables is exponential in the number n of entities. Therefore, it cannot be explicitly
written and solved in a straightforward way unless n is small. The column generation
method proposed in du Merle et al. [15] works with a reasonably small subset T ′ ⊆ T

123

200 D. Aloise et al.

of the columns in (3), i.e., with a restricted master problem. The method is combined
with branch-and-bound in order to solve exactly (3) for medium size (about 100–200
entities).

Problem (3) is solved iteratively, augmenting the number of columns in the restricted
master problem until optimality is proved with the columns at hand. Entering columns
are found by solving an auxiliary problem, i.e., finding the list of entities of a cluster
whose associated variable in (3) has negative reduced cost. Since a standard column
generation method for solving the linear relaxation of the formulation (3) suffers from
very slow convergence due to high degeneracy, two strategies for stabilizing column
generation [16] were used and compared in du Merle et al. [15]. That one for which
the linear relaxation is solved by an interior-point algorithm, i.e., the weighted version
of the analytic center cutting plane method (ACCPM) of Goffin et al. [21], was found
to be the best.

Once the linear relaxation of the master problem is solved, the integrality of the
obtained solution is checked (and often found to hold for small to medium size prob-
lems with few clusters). Then, if the solution is not integer, branching is needed. The
branching rule used in du Merle et al. [15] is the standard one, due to Ryan and Foster
[55], i.e., branching by imposing on the one one hand that two entities belong to the
same cluster and on the other hand that at most one of these entities belongs to any
given cluster.

2.1 Auxiliary problem

The biggest obstacle for an efficient exact resolution of the MSSC via column gen-
eration is the difficulty of the auxiliary problem. The dual of the formulation (3) is
expressed by

max −kσ +
n∑

i=1

λi

subject to

−σ +
n∑

i=1

aitλi ≤ ct ∀t ∈ T (4)

λi ≥ 0 i = 1, . . . , n

σ ≥ 0,

where the λi for i = 1, . . . , n and σ are dual variables associated with the covering
constraints and with the side constraint.

Problem (4) is solved using a cutting plane method, starting with a relaxation and
adding constraints as necessary. In the classical cutting plane method by Kelley [34],
cuts are generated at an extreme point of the relaxed dual formulation. However, Kel-
ley’s method is known to slow down considerably in the presence of degeneracy [16].
ACCPM tackles this shortcoming by generating cuts at an analytic center of the current
dual feasible region (cf. [18]). In both cases, given dual values λ, σ , a violated cut is

123

An improved column generation algorithm 201

searched to be added to the relaxed dual problem. The slack, or when negative, the
violation πt of a constraint is given by

πt = ct + σ −
n∑

i=1

λi ait .

Since we are interested in finding violated constraints πt < 0, the auxiliary problem is
given by π∗ = mint πt . Although the enumeration of πt for all t ∈ T is too expensive,
the value of π∗ can be found by solving

π∗ = σ + min
yv∈Rs ,v∈{0,1}n

n∑

i=1

(
‖pi − yv‖2 − λi

)
vi . (5)

with yv denoting the centroid of points pi for which vi = 1. If π∗ < 0, then the
optimal solution v∗ to (5) is added as a cut to the relaxed dual problem (in the primal,
this is equivalent to adding a column to the restricted master problem together with
its associated primal variable). Otherwise, problem (4) (or equivalently, problem (3))
is solved optimally.

From Huygens’ theorem (e.g., Edwards and Cavalli-Sforza [17]), which states that
the sum of squared distances from all entities of a given cluster to its centroid is equal
to the sum of squared distances between pairs of entities of this cluster divided by its
cardinality, problem (5) can be expressed by

π∗ = σ + min
v∈{0,1}n

∑n−1
i=1

∑n
j=i+1 ‖pi − p j‖2viv j

∑n
i=1 vi

−
n∑

i=1

λivi

= σ + min
v∈{0,1}n

∑n−1
i=1

∑n
j=i+1

(‖pi − p j‖2 − λi − λ j
)
viv j − ∑n

i=1 λivi
∑n

i=1 vi
. (6)

It is a hyperbolic (or fractional) program in 0–1 variables with quadratic numerator and
linear denominator. This problem is solved in du Merle et al. [15] by an adaptation to
binary variables of Dinkelbach’s algorithm [13]. This algorithm begins with a tentative
value for (6) then reduces the problem to unconstrained quadratic 0–1 optimization by
multiplying both sizes by the denominator and regrouping terms. If a positive value is
obtained for the optimal solution of this last problem, its corresponding value in (6)
is computed and the procedure iterated. Its most expensive step is the resolution of
a sequence of unconstrained quadratic 0–1 programs, which are solved in du Merle
et al. [15] by a VNS heuristic until optimality must be checked by a branch-and-bound
algorithm.

3 A geometric approach in the plane

The auxiliary problem (5) can be viewed as minimizing the sum of functions equal
to squared distances from the cluster center yv to each of the entities, but with a limit

123

202 D. Aloise et al.

on each of the distances, after which the corresponding function does not increase
anymore. Clearly, for a given location yv, vi is equal to 1 if ‖pi − yv‖2 ≤ λi , and to 0
otherwise. Geometrically, in the plane, this is equivalent to the condition that vi = 1 if
yv belongs to a disc Di = {

y|‖pi − y‖2 ≤ λi
}

(i.e., a disc with radius
√

λi centered
at pi), and 0 otherwise.

A branch-and-bound algorithm based on the vector v would consider implicitly all
2n subproblems generated by branching on binary variables vi for i = 1, . . . , n, while
adding constraints ‖pi − yv‖2 ≤ λi and ‖pi − yv‖2 ≥ λi to the resulting subproblems.
However, these subproblems pertain to D.C. programming and are difficult to solve.
Another possibility is to focus on components vi of v which are equal to 1. We then
consider subproblems of the following type:

min
y

∑

i∈S

‖pi − y‖2

subject to (7)

‖pi − y‖2 ≤ λi ∀i ∈ S,

where S ⊆ {1, 2, . . . , n} is a non-empty set. Subproblems of type (7) are convex pro-
gramming problems. Proposition 1 shows that an optimal solution for (5) is guaranteed
to be an optimal solution to a subproblem of type (7).

Proposition 1 Let
(
y∗
v , v∗) be the optimal solution to (5). Then, y∗

v is the optimal
solution to a subproblem of type (7) with a set S for which ‖pi − y∗

v‖2 > λi for all
i /∈ S.

Proof Define S∗ as the index set of all points pi such that ‖pi − y∗
v‖2 ≤ λi . Thus, for

i /∈ S∗, ‖pi −y∗
v‖2 > λi . Now let y′ be the optimal solution for (7) with S∗ and suppose

that y∗
v is not the optimal solution for it. Since, ‖pi − y∗

v‖2 > min
{‖pi − y′‖2, λi

}

for all i /∈ S∗, the cost of
(
y′, v∗) is smaller than that of

(
y∗
v , v∗) in (5), which is a

contradiction. ��

The auxiliary problem (5) has another very important property which states that
at the optimal solution

(
y∗
v , v∗), y∗

v is at the centroid of points pi for which v∗
i = 1.

Given a subproblem of type (7) with index set S, this implies that if the centroid of the
points {pi |i ∈ S} is not a feasible solution, then the subproblem does not contain the
optimal solution to (5). In the plane, it amounts to say that the centroid must belong
to the intersection of all discs with index i ∈ S (which includes the particular case
where S is a singleton).

Let us suppose D = {D1, . . . , Dn} is a set of discs in the plane such that Di ={
y|‖pi − y‖2 ≤ λi

}
for i = 1, . . . , n. We split D in two subsets: (i) DA is the set of

discs Di whose boundaries intersect at least one other boundary of a disc in exactly
two points, and (ii) DB = D − DA. The latter may include: isolated discs, discs
which intersect any other one in no more than one point, and discs which are entirely
contained into other ones. A useful result is shown by the following proposition:

123

An improved column generation algorithm 203

Proposition 2 The number T of distinct regions which result from the intersection of
discs Di ∈ D is bounded by 2n(n − 1).

Proof The total number of intersection points among discs in DA is at most
|DA|(|DA| − 1). Since each one of these intersection points can be a vertex of at
most 4 different regions, and as each of these regions contains at least two of these
points, the number of regions rA which are delimited by discs in DA is bounded by
2|DA|(|DA| − 1).

Since each one of the discs in DB delimits at most one region, the number of regions
rB delimited by discs in DB is equal to |DB |.

Thus,

T = rA + rB ≤ 2|DA|(|DA| − 1) + |DB |
≤ 2(|DA| + |DB |)(|DA| + |DB | − 1)

≤ 2n(n − 1)

��
Since each region corresponds to a different index set S in (7), Proposition 2 implies

that the number of subproblems of type (7) that need to be solved in order to obtain
an optimal solution to (5) is polynomially bounded.

An algorithm was proposed in Drezner et al. [14] for a similar problem in location
theory, i.e., the 1-center Weber problem with limited distances. The only difference
between this problem and (5) lies in the fact that Euclidean distances are used instead of
squared ones. The algorithm proceeds by considering all intersection points between
discs in the plane, and then solves, for each one of these points, the subproblems of
type (7) corresponding to the four possible regions which are adjacent to the point.
For instance, suppose that p is an intersection point between discs centered at points
pi and p j , then the four possible non-empty index sets corresponding to regions for
which p can be a vertex are formed by: Sa = {

� : ‖p� − p‖2 ≤ λ�, � = i, j
} ; Sb =

{i} ∪ Sa; Sc = { j} ∪ Sa ; and Sd = {i, j} ∪ Sa .
It appears that the algorithm of Drezner et al. [14] implicitly assumes that regions

delimited by discs in DB either do not exist or can be discarded for evaluation. How-
ever, this is not true either for the 1-center Weber problem with limited distances or
for (5), which makes the algorithm proposed in Drezner et al. [14] incomplete.

Figure 1 exhibits an auxiliary problem configuration which appears after 11 itera-
tions of our column generation algorithm while clustering the 10 points described at
the top of Fig. 1 into 3 clusters. The shaded region (2) in the figure corresponds to the
optimal solution of the auxiliary problem while region (1) is the solution provided if
the algorithm of Drezner et al. [14] is used instead.

Algorithm 1 below is the new algorithm obtained after adapting and completing
the algorithm of [14] in order to consider sets S corresponding to regions delimited
by discs of DB . This algorithm requires O

(
n3

)
time since there are O

(
n2

)
possible

intersection points and step 4 takes O(n) time per subproblem. Additional operations
due to steps 6-8 are performed in O

(
n2

)
time.

123

204 D. Aloise et al.

1
2

Fig. 1 Configuration of convex regions experimentally obtained

Algorithm 1

1. Enumerate all intersection points of pairs of discs in the plane as well as
all discs whose boundary does not intersect any other one. Let L1 and L2
be the corresponding lists.

2. For each intersection point p ∈ L1 defined by discs centered at points pi

and p j , find the set S of all k such that k = i, j and ‖pk − p‖2 ≤ λk .
3. Consider the four sets: S, S ∪ {i}, S ∪ { j}, and S ∪ {i, j}.
4. Solve subproblems of type (7) defined by each of these sets.
5. Update the best solution if an improving one is found.
6. For each disc in L2 find the set S′ composed of its own index and the

indices of all discs containing it.
7. Solve subproblems of type (7) defined by each S′.
8. Update the best solution if an improving one is found.

The following simple condition holds if two discs associated to points pi and p j

intersect

‖pi − p j‖ ≤ √
λi + √

λ j ,

one disc being contained in the other if

‖pi − p j‖ ≤ |√λi − √
λ j |.

Based on these conditions, an acceleration procedure for Algorithm 1 is to build
for each point pi , i = 1, . . . , n a list of non-decreasing distances to any other point.

123

An improved column generation algorithm 205

In step 1 of Algorithm 1, each point pi is tested in turn with all other points p j for
j = 1, . . . , n, such that j > i , in order to know if their respective discs intersect.
Indeed these points can be considered in the order given by the sorted list of pi and
the search for intersections halted as soon as

‖pi − p j‖ >
√

λi + √
λmax,

where λmax = max{λi } for i = i + 1, . . . , n. Note that exactly the same test can be
used in order to speed up step 2 of the algorithm.

3.1 Branching

The classical branching rule is applied whenever branching is needed to solve (3). It
consists on finding two rows i1, i2 such that there are two columns t1 and t2 with frac-
tional values at the optimum and such that ai1t1 = ai2t1 = 1 and ai1t2 = 1, ai2t2 = 0.
Then, constraints are introduced in the auxiliary problem of both subproblems in the
form (i) vi1 = vi2 for one branch, and (ii) vi1 + vi2 ≤ 1 for the other one. Problem (5)
in the presence of branching constraints can be expressed as

min
n∑

i=1

(‖pi − yv‖2 − λi)vi

s.t. vi = v j for (i, j) ∈ I1
(8)

vi + v j ≤ 1 for (i, j) ∈ I2

vi ∈ {0, 1} for i = 1, . . . , n

where I1, I2 are the index sets of pairs of entities involved in constraints of form (i)
and (ii), respectively.

Algorithm 1 is not able to solve problem (8), since optimal solutions may now be
associated to index sets which do not correspond directly to a region in the plane. In
fact, Proposition 1 is no longer valid in the presence of branching constraints. A very
simple example consists of two points pi , p j whose discs of radius

√
λi and

√
λ j do

not intersect while a constraint states that points pi and p j must be together. In this
case, none of the index sets S scanned by Algorithm 1 is able to provide a feasible
solution to the problem.

Fortunately, Proposition 3 below shows that Algorithm 1 can be slightly modified
in order to solve problem (8) exactly. Let us first define three index sets associated
with any vector yv

– S1(yv) is the index set of points pi for which ‖pi − yv‖2 ≤ λi , and for which
(i, j) ∈ I1 or (i, j) ∈ I2 with j ∈ S1(yv) ∪ S2(yv);

– S2(yv) is the index set of points pi for which ‖pi − yv‖2 > λi , and for which
(i, j) ∈ I1 with j ∈ S1(yv);

– S3(yv) is the index set of points pi for which ‖pi − yv‖2 ≤ λi , and such that
i /∈ S1(yv).

123

206 D. Aloise et al.

Proposition 3 Let
(
y∗
v , v∗) be the optimal solution of (8) and let v̄∗ = (

v∗
i | i ∈

S1
(
y∗
v

) ∪ S2
(
y∗
v

))
. Then,

(
y∗
v , v̄∗) is the optimal solution of a subproblem given by

min
∑

i∈S1∪S2

‖pi − y‖2vi +
∑

i∈S3

‖pi − y‖2

s.t. ‖pi − y‖2vi ≤ λi ∀i ∈ S1

‖pi − y‖2 ≤ λi ∀i ∈ S3 (9)

vi ∈ {0, 1} ∀i ∈ S1 ∪ S2

v ∈ X

y ∈ R
s

with sets S1, S2, S3 ⊆ {1, . . . , n} and where X is the polyhedron of branching con-
straints.

Proof From the definition of S1
(
y∗
v

)
, S2

(
y∗
v

)
and S3

(
y∗
v

)
, ‖pi − y∗

v‖ > λi for all
i /∈ S1

(
y∗
v

) ∪ S2
(
y∗
v

) ∪ S3
(
y∗
v

)
.

Now let
(
y′
v, v̄

′)be the optimal solution to (9) regarding S1 = S1
(
y∗
v

)
, S2 = S2

(
y∗
v

)

and S3 = S3
(
y∗
v

)
, and suppose that the optimal solution of (8)

(
y∗
v , v̄∗) is not optimal

for (9). Then, we can construct v′ as:

– v′
i = v̄′

i ,∀i ∈ S1 ∪ S2;
– v′

i = 1,∀i ∈ S3;
– v′

i = 0, otherwise;

such that the cost of
(
y′
v, v

′) is smaller than that of
(
y∗
v , v∗) in (8), which is a contra-

diction. ��
The importance of Proposition 3 lies in the fact that, given the optimal y∗

v , the opti-
mal subproblem of type (9) with sets S1 = S1

(
y∗
v

)
, S2 = S2

(
y∗
v

)
and S3 = S3

(
y∗
v

)
is

by definition associated to the region in the plane originated from the intersection of
discs ‖pi − y∗

v‖2 ≤ λi . This fact implies that the number of subproblems of type (9)
which need to be considered in order to solve (8) is polynomially bounded. However,
(9) is a problem with binary variables for which an enumeration method of resolution
is needed.

Algorithm 1 can be modified to solve subproblems of type (9). For each region in
the plane, sets S1, S2 and S3 are determined to form a subproblem of type (9) (remark
that any location y in a given region of the plane defines the same sets S1(y), S2(y)

and S3(y)). Then, the subproblem is solved by a branch-and-bound procedure. Note
that whenever S1, S2 = ∅, subproblem (9) turns out to be equivalent to subproblem
(7), and therefore, enumeration is not needed.

Decisions in the branch-and-bound algorithm are made by presence-absence dichot-
omy on variables vi , for ∀i ∈ S1 ∪ S2. Lower bounds are calculated in each node as
the difference of two values:

1. the cost of the node solution, which is calculated with respect to the centroid of
points pi for which decision vi = 1 is fixed;

2. the sum of the prices λi of the free variables vi .

123

An improved column generation algorithm 207

When (8) contains a few branching constraints, sets S1 and S2 have small cardinal-
ity by definition. So, the given branch-and-bound method to solve (9) performs very
well in practice.

Remark In the presence of a larger number of branchings, solving (9) becomes a more
difficult task. To this purpose, we note that (9) can be reformulated exactly (in the sense
of Liberti [40]) by introducing parameters:

Mi ≥ max
j

‖pi − p j‖2 ∀i ∈ S1 ∪ S2,

decision variables:

ωi ∈ [0, Mi] ∀i ∈ S1 ∪ S2,

and constraints:

‖pi − y‖2 ≤ ωi + (1 − vi)Mi ∀i ∈ S1 ∪ S2

to (9). We then replace constraints ‖pi − y‖2vi ≤ λi∀i ∈ S1 by

‖pi − y‖2 ≤ λi + (1 − vi)Mi ∀i ∈ S1,

and the terms ‖pi − y‖2vi for i ∈ S1 ∪ S2 in the objective function by ωi . We thus
obtain the reformulated problem:

min
∑

i∈S1∪S2

ωi +
∑

i∈S3

‖pi − y‖2

s.t. ‖pi − y‖2 ≤ λi + (1 − vi)Mi ∀i ∈ S1

‖pi − y‖2 ≤ ωi + (1 − vi)Mi ∀i ∈ S1 ∪ S2

‖pi − y‖2 ≤ λi ∀i ∈ S3 (10)

vi ∈ {0, 1} ∀i ∈ S1 ∪ S2

v ∈ X

y ∈ R
s

ωi ∈ [0, Mi] ∀i ∈ S1 ∪ S2

which is a convex MINLP, for which there exist practically efficient algorithms (e.g.
[8,39]). We also remark that its continuous relaxation is a continuous NLP which can
be solved in polynomial time [65].

Finally, note that Algorithm 1 can be used without modifications to provide approx-
imate solutions to (8). This can be done up to the moment that the exact resolution of
(8) is required to prove that (3) was in fact optimally solved.

4 Generalization to the Euclidean space

While extension of the approach of the previous section to higher dimensional
space than the plane is straightforward, finding intersections of hyperspheres rapidly

123

208 D. Aloise et al.

becomes very time consuming. However, it is possible to use the definition of hyper-
sphere to obtain a condition excluding that a pair of entities oi and o j belong to the
same cluster. This will be useful in a branch-and-bound algorithm for solving the
auxiliary problem.

Let us consider a graph G = (N , E) for which there is a node ni ∈ N correspond-
ing to each point pi , for i = 1, . . . , n. Besides, an edge ei j exists in G if and only
if

‖pi − p j‖ ≤ √
λi + √

λ j ,

i.e., ei j ∈ E if and only if the hyperspheres centered at pi and p j with radius
√

λi and√
λ j intersect.
The following result allows us to generalize the geometric approach in the plane

by considering the intersection graph of hyperspheres centered at the points pi , for
i = 1, . . . , n.

Proposition 4 If a solution
(
y∗
v , v∗) is optimal to (5) then the elements of the set

N∗ = {
ni |v∗

i = 1
}

form a clique in G.

Proof Let us suppose that
(
y∗
v , v∗) is the optimal solution of (5) and that the ele-

ments of N∗ do not form a clique in G. Hence, there are two nodes ni , n j in N∗ for
which ei j /∈ E , i.e., the hyperspheres centered at pi and p j with radius

√
λi and

√
λ j

do not intersect. In such a case, y∗
v is certainly located outside at least one of these

hyperspheres. Suppose ‖pi − y∗
v‖ >

√
λi , then a reduction in the cost of the solution

is obtained by setting v∗
i = 0, which contradicts the optimality of

(
y∗
v , v∗). ��

The number of distinct regions resulting from the intersection of hyperspheres is
not polynomially bounded in n only. However, Proposition 4 allows to better exploit
(6) above. Indeed it can be written as

σ + min
vi ∈{0,1}

∑n−1
i=1

∑n
j=i+1

(
d2

i j − λi − λ j

)
viv j − ∑n

i=1 λivi
∑n

i=1 vi
,

where di j represents the Euclidean distance between the entities associated to variables
vi and v j . Coefficients d2

i j − λi − λ j of the product viv j can be set to an arbitrarily

large value M in (6) if di j >
√

λi + √
λ j due to Proposition 4, since vi = v j = 1

does not occur in the optimal solution.

4.1 Branching

As proposed in du Merle et al. [15], branching constraints of type vi = v j can be
added to the auxiliary problem (6) by reducing by one the number of its variables
and updating coefficients accordingly. In the case of branching constraints of type
vi + v j ≤ 1, it suffices to set coefficient d2

i j − λi − λ j to an arbitrary large value M .

123

An improved column generation algorithm 209

Thus, the auxiliary problem is expressed by

σ + min
vi ′ ∈{0,1}

∑n′−1
i ′=1

∑n′
j ′=i ′+1

(
d2

i ′ j ′−w j ′λi ′ −wi ′λ j ′
)

vi ′v j ′ −∑n′
i ′=1

(
wi ′λi ′ −d2

i ′i ′
)
vi ′

∑n′
i ′=1 wi ′vi ′

,

(11)

where wi ′ is the number of variables merged in variable vi ′ . Note that the form of the
auxiliary problem is not changed. It is still a fractional program in 0–1 variables with
quadratic numerator and linear denominator.

An observation must be made when setting coefficients based on the intersection
graph of hyperspheres in the presence of branching constraints of type vi = v j .
Consider entities oi and o j for which there is a constraint stating that vi = v j . Conse-
quently, variables vi and v j are merged together in a single variable vi ′ of (11). Let us
consider now vk′ the variable associated to entity ok , then coefficient d2

i ′k′ −λi ′ − 2λk′
is set to an arbitrary large value M in (11) only if

dik >
√

λi + √
λk and d jk >

√
λ j + √

λk,

i.e., only if

di ′k >
√

λi + √
λ j + 2

√
λk .

This can be generalized to any pair of variables vi ′ , v j ′ . Let us consider μi ′ and μ j ′
the index set of variables merged at variables vi ′ and v j ′ , respectively. Thus, if

di ′ j ′ > w j ′
∑

i∈μi ′

√
λi + wi ′

∑

j∈μ j ′

√
λ j

then d2
i ′ j ′ − w j ′λi ′ − wi ′λ j ′ can be set to an arbitrary large value M in (11).

4.2 Solving by cliques

Moreover, Proposition 4 permits to exactly solve the auxiliary problem by directly
searching for cliques in G. Algorithm 2 presents the steps to compute the optimal
solution to (11) from the intersection graph of hyperspheres G = (N , E). This is done
by an implicit branch-and-bound algorithm where the smallest degree vertex ni is
recursively selected for branching and problem (11) solved for the subset of variables
associated to ni and its as yet undeleted neighbors.

Algorithm 2

1. While G is not empty
(a) Find a vertex ni with smallest degree in G.
(b) Consider Gi = (

N i , Ei
)

the subgraph composed by ni and its adjacent
vertices.

123

210 D. Aloise et al.

Table 1 List of data sets

1 The attributes used are:
weight, height, chest girth, waist
girth and hip girth

Data sets n s

Ruspini’s data [54] 75 2

Grötschel and Holland’s 202 cities coordinates [22] 202 2

Grötschel and Holland’s 666 cities coordinates [22] 666 2

Reinelt’s hole-drilling data [53] 1,060 2

Padberg and Rinaldi’s hole-drilling data [50] 2,392 2

Fisher’s Iris [5] 150 4

Glass identification [5] 214 9

Body measurements1 [30] 507 5

Telugu Indian vowel sounds [51] 871 3

Concrete compressive strength [5,68] 1,030 8

Image segmentation [5] 2,310 19

(c) Solve (11) for variables v� such that n� ∈ Gi .
(d) Save the clique obtained if it is the best found so far.
(e) Remove ni and its adjacent edges from G.

2. Return the best clique found.
Clearly, Algorithm 2 is more efficient for sparse graphs G than for dense ones as

subproblems (11) solved in (c) tend to have less variables. Indeed, the sparsity of G
depends on the dual values λ, which tends to decrease with the number of clusters.
This is due to the fact that when k is large, entities are likely to be close to their
second-closest centroids in the optimal solution. Consequently, a second copy of an
entity has little impact on the objective function value which means that the values λ

of the dual variables are small.

5 Computational results

Computational experiments were performed on a AMD 64 bits platform with a 2 GHz
clock and 10 Gigabytes of RAM memory. The algorithms were implemented in C++
and compiled by gcc 3.4. Unconstrained 0–1 quadratic programs are solved by a
specialized branch-and-bound algorithm proposed by Hansen et al. [24] which was
observed to perform better than CPLEX 10.1 for that purpose. Eleven real-world data
sets were used in our numerical experiments. They are briefly listed in Table 1 together
with references to where more information about them can be found.

For all experiments reported here, initial upper bound solutions are obtained by
j-means [25]. They are used to add initial cuts to (4), as well as to estimate initial dual
bounds which may be adjusted throughout execution if necessary. Lower and upper
bounds for dual variables λ can be estimated from any given upper bound solution U B.
For each dual variable λi , for i = 1, . . . , n, a lower bound value lbi is estimated by
calculating the cost variation in U B caused by omitting entity oi from its associated
cluster in U B. The estimation of an upper bound value ubi is done by calculating
the cost variation in U B caused by assigning entity oi to its second-closest centroid.
These estimations are exact whenever U B is the optimal solution and no integrality
gap exists (cf. [15]).

123

An improved column generation algorithm 211

Table 2 Results for Ruspini data set with 75 entities

k fopt rbba bb-sdp accpm-vns-qp accpm-vns-a1 accpm-a1 Gap (%)

2 0.893378e +05 0.01 3.56 0.55 0.24 0.39 i

3 0.510634e +05 0.28 8.34 0.57 0.20 0.42 i

4 0.128810e +05 0.01 0.48 0.53 0.14 0.07 i

5 0.101267e +05 0.17 0.57 0.59 0.16 0.10 i

6 0.857541e +04 21.97 1.03 0.91 0.27 0.18 i

7 0.712620e +04 181.90 0.98 1.12 0.28 0.18 i

8 0.614964e +04 2921.93 7.27 1.04 0.44 0.23 0.01 (3)

9 0.518165e +04 >1 h 2.87 1.20 0.30 0.17 i

10 0.444628e +04 >1 h 2.39 1.17 0.26 0.12 i

5.1 Results in the plane

In this subsection we compare the column generation of du Merle et al. [15], denoted
accpm-vns-qp, with two improved ones, i.e., (i) accpm-a1 which uses Algorithm 1
to exactly solve all auxiliary problems, and (ii) accpm-vns-a1 which uses heuristic
VNS to provide approximate solutions to auxiliary problems until optimality must be
proved by Algorithm 1. The VNS heuristic used by algorithms accpm-vns-qp and
accpm-vns-a1 is set to run for one iteration, i.e., it reaches the largest neighbor-
hood only once. Note that it is not worthwhile to use VNS for many iterations since
Algorithm 1 is polynomially bounded in O

(
n3

)
.

The results are also compared to those of two other methods proposed in the litera-
ture, i.e., the repetitive branch-and-bound algorithm (rbba) of Brusco [9] and the best
branch-and-cut SDP-based algorithm (bb-sdp) of Aloise and Hansen [2].

Tables 2, 3, 4, 5, 6, and 7 show results for data sets in the plane. They present
in the first column the number k of clusters, and optimal solution values fopt are
reported in the second column. The values associated to each algorithm refer to their
respective CPU times (in seconds) spent on solving exactly the instance. Finally,
a last column is included to present gap values between upper and lower bounds
obtained at the root node, denoted U B0 and L B0 respectively, which are calculated as(
U B0 − L B0

)
/L B0. The letter ‘i’ indicates that no initial gap exists, i.e., the prob-

lem is already solved by the accpm algorithms at the root node, without branching.
Otherwise, the number of branch-and-bound nodes is given in parenthesis.

Table 2 shows that all methods perform well or very well for Ruspini’s data set
with n = 75 entities. Algorithm rbba is particularly efficient for small values of k,
while its performance quickly deteriorates as k increases. This is due to the fact that
the number of branches in RBBA is O (kn). For k ≥ 5, algorithms accpm-a1 and
accpm-vns-a1 are always faster than the other methods.

Table 3 presents results obtained in less than 12 h of CPU time for the Grötschel and
Holand’s data set with n = 202. Algorithm rbba is not able to solve even the problem
with k = 2 clusters in less than 12 h. So, we do not refer to its results in the subsequent
tables. As empirically observed in Aloise Hansen [2], the performance of algorithm

123

212 D. Aloise et al.

Table 3 Results for Grötschel and Holland’s data set with 202 entities

k fopt bb-sdp accpm-vns-qp accpm-vns-a1 accpm-a1 Gap (%)

2 0.234374e +05 >12 h >12 h 19.85 61.54 i

3 0.153274e +05 >12 h >12 h 19.64 79.65 i

4 0.114556e +05 >12 h >12 h 21.87 82.89 i

5 0.889490e +04 >12 h >12 h 15.62 63.95 i

6 0.676488e +04 >12 h >12 h 26.33 69.97 i

7 0.581757e +04 >12 h >12 h 33.79 85.56 i

8 0.500610e +04 >12 h 1526.63 48.80 65.56 i

9 0.437619e +04 48885.38 1334.06 33.79 47.87 i

10 0.379249e +04 23680.84 496.85 16.42 35.84 i

15 0.232008e +04 39756.23 41.49 18.43 30.71 i

20 0.152351e +04 3839.77 59.90 18.87 17.75 i

25 0.108556e +04 1915.05 33.95 18.24 11.05 i

30 0.799311e +03 1060.77 27.03 17.78 5.96 i

Table 4 Results for Grötschel
and Holland’s data set with 666
entities

k fopt accpm-vns-a1 accpm-a1 Gap (%)

2 1.754012e+06 1179.68 2723.48 i

3 0.772707e+06 1525.10 1758.92 i

4 0.613995e+06 3585.39 3290.45 i

5 0.485088e+06 3277.55 2410.83 i

6 0.382676e+06 3162.39 1909.23 i

7 0.323283e+06 3082.65 1909.49 i

8 0.285925e+06 4314.00 2469.90 i

9 0.250989e+06 4134.31 2162.06 i

10 0.224183e+06 3131.41 2108.38 i

20 0.106276e+06 10504.30 4819.84 0.00 (3)

50 0.351795e+05 6161.84 447.48 i

bb-sdp improves as k increases, in contrast with algorithm rbba. It is unable to solve
problems for k ≤ 8 in less than 12 h. It also appears that it is better to approximately
solve the auxiliary problems by VNS up to k = 15. For k ≥ 20, the sparsity of the
discs in the plane, which is implied by small dual values, makes Algorithm 1 more
efficient than VNS to solve the auxiliary problems. So, algorithm accpm-a1 performs
better than accpm-vns-a1 for these values of k. The sparsity effect also appears to
be advantageous to the unconstrained 0–1 quadratic programming solver since the
algorithm is faster for instances with larger number of clusters.

Regarding the results for the Grötschel and Holand’s data set with n = 666 enti-
ties presented in Table 4, a CPU time limit of 1 day was established, which proved
not to be enough for algorithms bb-sdp and accpm-vns-qp. Therefore, the results
of these algorithms will not be reported from now on since they demand too much
time to exactly solve instances of the largest data sets. Table 4 shows that algorithm
accpm-a1 is faster than accpm-vns-a1 from k ≥ 4.

123

An improved column generation algorithm 213

Table 5 Results for Reinelt’s
drilling data set with 1,060
entities

k fopt accpm-vns-a1 accpm-a1 Gap (%)

2 0.983195e+10 7417.92 13657.78 i

3 0.670578e+10 17897.19 30016.73 i

4 0.475197e+10 13429.61 26921.27 i

5 0.379100e+10 15966.45 26049.23 i

6 0.317701e+10 15128.71 19970.91 i

7 0.270386e+10 39966.71 22289.93 i

8 0.226315e+10 24863.21 19942.57 i

9 0.198104e+10 21810.90 16438.40 i

10 0.175484e+10 349793.97 56625.07 0.01 (3)

100 0.963178e+08 17017.10 496.85 i

110 0.848396e+08 14930.74 373.54 i

120 0.755366e+08 8165.25 393.21 i

130 0.675542e+08 8296.29 301.77 i

140 0.611196e+08 13886.32 299.75 i

150 0.559082e+08 4998.90 292.37 i

200 0.361572e+08 4234.54 229.74 i

Table 6 Results for Padberg
and Rinaldi’s data set with 2,392
entities for 2 ≤ k ≤ 10

k fopt accpm-vns-a1 Gap (%)

2 0.296723e+11 180581.30 i

3 0.212012e+11 393564.16 i

4 0.141184e+11 298724.00 i

5 0.115842e+11 416314.64 i

6 0.948900e+10 218403.68 i

7 0.818180e+10 565361.77 i

8 0.701338e+10 482525.96 i

9 0.614600e+10 663595.15 i

10 0.532491e+10 478613.29 i

Table 7 Results for Padberg
and Rinaldi’s data set with 2,392
entities for large values of k

k fopt accpm-a1 Gap (%)

100 0.404498e+09 21528.56 i

150 0.245685e+09 105852.43 0.01 (7)

200 0.175431e+09 18918.16 i

250 0.132352e+09 16460.46 i

300 0.101568e+09 35939.04 0.00 (3)

350 0.804783e+08 8131.32 i

400 0.657989e+08 9336.05 i

The results in Table 5 show that accpm-a1 is faster than accpm-vns-a1 from
k ≥ 7. The algorithms appear to be scalable for larger values of k due to increasing
sparsity of discs in the auxiliary problems. It is worthwhile to mention that some of
the state-of-art heuristics proposed in [11,25,37,38,48,61] did not report the optimal

123

214 D. Aloise et al.

Table 8 Results for Fisher’s Iris with 150 entities in 4 dimensions

k fopt rbba bb-sdp accpm-vns-qp accpm-vns-qp+ accpm-vns-a2 Gap (%)

2 0.152348e+03 0.05 169.44 251.04 486.62 1958.06 i

3 0.788514e+02 2.10 283.24 83.09 19.88 19.55 i

4 0.572285e+02 136.29 240.19 138.85 32.71 17.22 i

5 0.464462e+02 1699.75 145.54 42.00 6.52 8.80 i

6 0.390400e+02 >12 h 147.51 15.50 11.70 10.47 i

7 0.342982e+02 >12 h 742.83 10.50 7.83 6.65 i

8 0.299889e+02 >12 h 108.73 7.82 6.41 6.74 i

9 0.277861e+02 >12 h 70.04 6.44 6.11 7.48 i

10 0.25834e + 02 >12 h 59.66 8.51 8.38 9.03 i

solutions found here for the Reinelt’s drilling data set with n = 1,060 entities and
k = 120, 150. To the best of our knowledge, this is the first time that such solutions
are reported in the literature.

Finally, algorithms accpm-vns-a1 and accpm-a1 were tested for Padberg and Ri-
naldi’s data set with n = 2,392 entities. From the geometric interpretation of the auxil-
iary problem corroborated by the results presented in the previous tables, we concluded
that algorithm accpm-vns-a1 is the most efficient one for instances with a small
number of clusters. Therefore, Table 6 presents only the results of accpm-vns-a1 for
2 ≤ k ≤ 10. Note that these instances require a lot of computing time to be exactly
solved (e.g. more than one week was necessary to solve the instance with k = 9).

Table 7 presents the results obtained by algorithm accpm-a1 for the Padberg and
Rinaldi’s data set with n = 2,392 entities using large values of k. For these instances,
approximately 3–5% of the total computing time is spent solving the auxiliary prob-
lems, revealing that at this point (≈ 2,000 entities) the resolution of the restricted
master problem by ACCPM is the most expensive step of the algorithm. Note that the
largest CPU time reported in Table 7 is of approximately 29 h for k = 150.

5.2 Results in general Euclidean space

Two other algorithms were implemented in order to check the computational effect of
the geometric arguments in general Euclidean space. They are: (i) accpm-vns-qp+,
which is similar to accpm-vns-qp proposed in du Merle et al. [15] except that some
coefficients are modified to arbitrarily large values in the auxiliary problem follow-
ing the geometrical arguments presented in Sect. 4, and (ii) accpm-vns-a2, which
uses one iteration of VNS to obtain approximate solutions to auxiliary problems until
optimality is certified by Algorithm 2.

Table 8 shows CPU times spent by the different algorithms in order to solve exactly
instances of the Fisher’s Iris data set with n = 150 entities in s = 4 dimensions.
The results show that again rbba is very efficient for small number of clusters,
though its performance deteriorates very fast as k increases. Moreover, except for
k = 2, algorithm accpm-vns-qp+ performs better than accpm-vns-qp. Finally,
since the auxiliary problems are small for this data set (n = 150), Algorithm 2 is not

123

An improved column generation algorithm 215

Table 9 Results for the glass identification data set with 214 entities in 9 dimensions

k fopt bb-sdp accpm-vns-qp accpm-vns-qp+ accpm-vns-a2 Gap (%)

15 0.155766e+03 >1 day >1 day 37714.82 7983.52 i

20 0.114646e+03 >1 day >1 day 30065.43 13365.79 0.02 (3)

25 0.842515e+02 >1 day >1 day 24568.26 19011.65 0.00 (3)

30 0.632478e+02 49831.18 269.36 52.80 39.50 i

35 0.492386e+02 25629.86 22.60 16.33 18.87 i

40 0.394983e+02 6272.84 27.87 16.85 18.32 i

45 0.320395e+02 17437.27 43.27 29.37 32.21 0.00 (3)

50 0.267675e+02 10032.09 21.69 20.51 21.46 i

very advantageous for solving them. In fact, for the instance with k = 2, algorithm
accpm-vns-a2 is much less efficient than the others.

The results in Table 9 give CPU times spent on solving exactly instances of the
Glass identification data set with n = 214 in s = 9 dimensions. We notice that
instances with k ≤ 10 cannot be solved in less than 1 day of computation. In par-
ticular, algorithm rbba takes more than 1 day to solve even its most favorable case
with k = 2. Therefore, the next tables will not refer to its results. Likewise, results
of algorithm bb-sdp will not be reported in the following tables since it is clearly
outperformed by ACCPM algorithms. From the results in Table 9, algorithm accpm-
vns-qp+ outperforms accpm-vns-qp in all tested instances. Since this is also true for
the computational experiments on the other data sets, we will not report the results of
accpm-vns-qp from now on. This fact confirms the benefits derived from the geomet-
ric interpretation of the auxiliary problem. Moreover, algorithm accpm-vns-a2 was
more efficient than accpm-vns-qp+ for the instances with the most difficult auxiliary
problems (i.e., 15 ≤ k ≤ 30), showing that solving (11) by isolating cliques is a good
strategy in these cases.

Taking into account the increasing computing times spent by VNS as the value
of n increases, one may ask if it would not be better to solve exactly the auxiliary
problems at each iteration of ACCPM. In order to answer this question, two other
algorithms are considered for comparison in Tables 10, 11, 12. They differ only in the
way that auxiliary problems are dealt with. While accpm-qp+ always uses Dinkel-
bach’s algorithm to solve the auxiliary problems, accpm-a2 uses Algorithm 2 instead,
i.e., using Dinkelbach’s algorithm on each clique.

From Table 10, we notice that the algorithms that solve auxiliary problems by
cliques (i.e., accpm-vns-a2 and accpm-a2) perform usually better than their coun-
terparts that solve the auxiliary problems by considering the whole intersection
graph of hyperspheres (accpm-vns-qp+ and accpm-qp+, respectively). In partic-
ular accpm-a2 is the best algorithm from k ≥ 60. The same conclusions can be
extended to Tables 11 and 12, except that for these larger data sets accpm-a2 is very
often the best algorithm for the instances that can be exactly solved within a CPU time
limit of 2 days.

We have still obtained results for a larger data set consisting of 2,310 entities in 19
dimensions taken from [5] by means of algorithm accpm-a2. The results presented

123

216 D. Aloise et al.

Table 10 Results for the body measurements data set with 507 entities in 5 dimensions

k fopt accpm-vns-qp+ accpm-qp+ accpm-vns-a2 accpm-a2 Gap (%)

30 0.195299e+05 79819.81 >2 days 12433.74 >2 days 0.00 (3)

40 0.162318e+05 3981.92 25196.16 3954.62 13396.05 0.00 (3)

50 0.139547e+05 26991.10 >2 days 22945.66 67178.35 0.04 (11)

60 0.121826e+05 2847.94 3284.43 2242.53 1860.72 0.00 (3)

70 0.107869e+05 2606.16 2421.93 2534.06 1329.71 0.00 (3)

80 0.964873e+04 5565.30 5026.03 6191.68 2705.14 0.01 (5)

Table 11 Results for the Telugu Indian vowel sounds data set with 871 entities in 3 dimensions

k fopt accpm-vns-qp+ accpm-qp+ accpm-vns-a2 accpm-a2 Gap (%)

40 0.636653e+07 26059.64 83537.53 10232.80 8209.48 i

50 0.524020e+07 5070.60 14304.07 4314.11 2450.54 i

60 0.442262e+07 >2 days >2 days >2 days 107905.07 0.10 (21)

70 0.375286e+07 7439.66 8853.31 6524.48 1726.57 0.00 (3)

80 0.324801e+07 2538.37 2320.29 2389.09 323.95 i

90 0.285069e+07 2227.94 1929.68 1980.14 282.73 i

100 0.251058e+07 5717.78 1606.62 5054.39 195.53 0.00 (3)

Table 12 Results for the concrete compressive strength data set with 1030 entities in 9 dimensions

k fopt accpm-vns-qp+ accpm-qp+ accpm-vns-a2 accpm-a2 Gap (%)

60 0.288107e+07 >2 days >2 days 93018.98 114291.96 i

70 0.247893e+07 32524.80 33373.40 8671.61 2825.70 i

80 0.215791e+07 5622.55 7538.82 5717.15 1405.62 i

90 0.189364e+07 >2 days >2 days 64518.66 88849.78 0.01 (7)

100 0.168778e+07 3330.97 3530.60 3773.60 380.75 i

110 0.151334e+07 2950.36 2465.40 2714.67 301.46 i

120 0.136737e+07 3883.50 2754.42 3835.67 310.24 i

Table 13 Results for the image
segmentation data set with 2,310
entities in 19 dimensions

k fopt accpm-a2 Gap (%)

230 0.463938e+06 16717.39 i

250 0.421018e+06 10864.30 i

300 0.338072e+06 25693.02 0.00 (3)

350 0.276957e+06 7036.09 i

400 0.230310e+06 99554.55 0.00 (11)

450 0.195101e+06 66655.32 0.00 (7)

500 0.157153e+06 36772.86 0.01 (5)

in Table 13 show that instances with a ratio of n/k ≈ 10 can be exactly solved in a
reasonable amount of time by the column generation algorithm, which is a new record
for benchmark data sets of this magnitude (n = 2,310) and this dimension (s = 19).

123

An improved column generation algorithm 217

 0

 20

 40

 60

 80

 100

 120

 100 150 200 250 300

C
P

U
 ti

m
e

de
vi

at
io

n
(%

)

k

Fig. 2 Percentage of CPU time spent by algorithm accpm-a2 in excess of the CPU time spent by algorithm
accpm-a1 for instances of the Reinelt’s planar data set with 1,060 entities

For the last instances clearly the number k of clusters is large. Indeed computing
times increase rather sharply when k decreases. For small values of k, and as large
instances as above, heuristics are presently the only recourse. In particular, that one
of Christou [11] exploits column generation in a heuristic way.

5.3 Comparison of approaches in the plane and in general Euclidean space

Finally, we compare our approach in the plane with that tailored for problems in gen-
eral Euclidean space. Since the superiority of the approach in the plane for a small
number of clusters is obvious, we decided to focus this comparison on instances with
large values of k. The best algorithm regarding each one of the approaches is then
selected for comparison, i.e., accpm-a1 from the class of algorithms which tackles
exclusively instances in the plane and accpm-a2 from the class of algorithms dealing
with instances in general Euclidean space.

In the graph of Fig. 2, we plot the percentage of CPU time spent by algorithm
accpm-a2 in excess of the CPU time spent by algorithm accpm-a1 when solving
different instances of the Reinelt’s planar data set with 1,060 entities.

From the graph, we notice that accpm-a1 tends to be increasingly better than
accpm-a2 as k augments, though the computing times are smaller for instances with
a large number of clusters.

6 Conclusions

MSSC is a central problem in cluster analysis. Numerous heuristics as well as a variety
of exact algorithms have been proposed for its solution. These last ones include the
column generation algorithm of du Merle et al. [15] which is the point of departure of
this paper. The bottleneck step of that algorithm appeared within the auxiliary problem

123

218 D. Aloise et al.

and was the solution of unconstrained 0–1 quadratic programs. Based on geometric
reasoning, a different and more efficient way of solving this auxiliary problem is pro-
posed in this paper. It exploits systematically the property that far apart points will not
belong to the same cluster. This property is made precise by proving that it is the case
when their mutual distance exceeds the sum of square roots of the corresponding dual
variables at the current iteration. Geometrically, solutions in the plane correspond to a
quadratic number of regions which are determined by a O

(
n2

)
algorithm. This leads

to solution of the auxiliary problem in O
(
n3

)
, at least when there is little branching

in the master problem which appears to be most often the case. Finding all similar
regions in a higher dimensional space would be time consuming. However, the way to
solve the auxiliary problem can still be improved by replacing by a large value coeffi-
cients in the unconstrained 0-1 quadratic programs corresponding to far apart entities.
This has led to substantially increase the size of instances solved exactly. In the plane,
instances with n up to 2,392 entities and k ≥ 2 have been solved exactly, most of
them for the first time. The increase in the size of the instances exactly solved has thus
been multiplied by more than 10. Euclidean space problems with up to n = 2,310
and k = 230 clusters in 19 dimensions have been solved. However, it appears that the
number of entities per cluster should be small, i.e. n/k roughly equal to 10, in order
to solve such instances in reasonable time.

Acknowledgments Research of the first author has been supported by CAPES/Brazil grant number 2479-
04-4. Research of the second author has been supported by NSERC grant number 105574-07, FQRNT grant
2007-PR-112176, Digiteo Chair 2009-14D “RMNCCO”, and the Data Mining Chair of HEC Montréal.
Research of the third author has been supported by ANR-07-JCJC-0151 “Ars” and Digiteo Chair 2009-
14D “RMNCCO”. We thank Olivier du Merle and Christophe Meyer for communicating their codes for
the ACCPM algorithm for MSSC, and for quadratic 0-1 programming, respectively. We also thank two
anonymous referees for insightful remarks.

References

1. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-of-squares cluster-
ing. Mach. Learn. 75, 245–249 (2009)

2. Aloise, D., Hansen, P.: A branch-and-cut SDP-based algorithm for minimum sum-of-squares cluster-
ing. Pesquisa Operacional 29, 503–516 (2009)

3. Aloise, D., Hansen, P.: Evaluating a branch-and-bound RLT-based algorithm for minimum sum-of-
squares clustering. To appear in J. Glob. Optim. (2010)

4. An, L.T., Belghiti, M.T., Tao, P.D.: A new efficient algorithm based on DC programming and DCA
for clustering. J. Glob. Optim. 37, 593–608 (2007)

5. Asuncion, A., Newman, D.J.: UCI machine learning repository. http://www.ics.uci.edu/~mlearn/
MLRepository.html. (2007)

6. Bagirov, A.M.: Modified global k-means algorithm for minimum sum-of-squares clustering prob-
lems. Pattern Recognit. 41, 3192–3199 (2008)

7. Bagirov, A.M., Yearwoord, J.: Hierarchical grouping to optimize an objective function. Eur. J. Oper.
Res. 170, 578–596 (2006)

8. Bonami, P., Lee, J.: BONMIN user’s manual. Technical report, IBM Corporation, June (2007)
9. Brusco, M.J.: A repetitive branch-and-bound procedure for minimum within-cluster sum of squares

partitioning. Psychometrika 71, 347–363 (2006)
10. Brusco, M.J., Steinley, D.: A comparison of heuristics procedures for minimum within-cluster sums

of squares partitioning. Psychometrika 72, 583–600 (2007)
11. Christou, I.T.: Exact method-based coordination of cluster ensembles. To appear in IEEE Trans. Pattern

Anal. Mach. Intell. (2010)

123

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

An improved column generation algorithm 219

12. Diehr, G.: Evaluation of a branch and bound algorithm for clustering. SIAM J. Sci. Stat. Comput. 6, 268–
284 (1985)

13. Dinkelbach, W.: On nonlinear fractional programming. Manage Sci 13, 492–498 (1967)
14. Drezner, Z., Mehrez, A., Wesolowsky, G.O.: The facility location problem with limited distances.

Transp. Sci. 25, 183–187 (1991)
15. du Merle, O., Hansen, P., Jaumard, B., Mladenović, N.: An interior point algorithm for minimum

sum-of-squares clustering. SIAM J. Sci. Comput. 21, 1485–1505 (2000)
16. du Merle, O., Villeneuve, D., Desrosiers, J., Hansen, P.: Stabilized column generation. Discrete Math.

194, 229–237 (1999)
17. Edwards, A.W., Cavalli-Sforza, L.L.: A method for cluster analysis. Biometrics 21, 362–375 (1965)
18. Elhedhli, S., Goffin, J.-L.: The integration of an interior-point cutting plane method within a branch-

and-price algorithm. Math. Program. 100, 267–294 (2004)
19. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. VII, 179–188

(1936)
20. Forgy, E.W.: Cluster analysis of multivariate data: efficiency vs. interpretability of classifications.

Biometrics 21, 768 (1965)
21. Goffin, J.-L., Haurie, A., Vial, J.-P.: Decomposition and nondifferentiable optimization with the pro-

jective algorithm. Manag. Sci. 38, 284–302 (1992)
22. Grötschel, M., Holland, O.: Solution of large-scale symmetric traveling salesman problems. Math. Pro-

gram. 51, 141–202 (1991). Data sets available at http://www.iwr.uni-heidelberg.de/groups/comopt/
software/TSPLIB95/tsp

23. Hansen, P., Jaumard, B.: Cluster analysis and mathematical programming. Math. Program. 79, 191–215
(1997)

24. Hansen, P., Jaumard, B., Meyer, C.: A simple enumerative algorithm for unconstrained 0–1 quadratic
programming. Cahier du GERAD G-2000-59, GERAD, November (2000)

25. Hansen, P., Mladenović, N.: J-means: a new local search heuristic for minimum sum of squares clus-
tering. Pattern Recognit. 34, 405–413 (2001)

26. Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applications. Eur. J. Oper.
Res. 130, 449–467 (2001)

27. Hansen, P., Mladenović, N., Pérez, J.A.M.: Variable neighborhood search: methods and applications.
4OR 6, 319–360 (2008)

28. Hansen, P., Negai, E., Cheung, B.K., Mladenović, N.: Analysis of global k-means, an incremental
heuristic for minimum sum-of-squares clustering. J. Classif. 22, 287–310 (2005)

29. Hartigan, J.A.: Clustering Algorithms. Wiley, New York (1975)
30. Heinz, G., Peterson, L.J., Johnson, R.W., Kerk, C.J.: Exploring relationships in body dimensions.

J. Stat. Education 11, (2003) Data set available at www.amstat.org/publications/jse/v11n2/datasets.
heinz.html

31. Inaba, M., Katoh, N., Imai, H.: Applications of weighted Voronoi diagrams and randomization to var-
iance-based k-clustering. In: Proceedings of the 10th ACM Symposium on Computational Geometry,
pp. 332–339 (1994)

32. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31, 264–323 (1999)
33. Jensen, R.E.: A dynamic programming algorithm for cluster analysis. Oper. Res. 17, 1034–1057 (1969)
34. Kelley, J.E.: The cutting plane method for solving convex programs. J. SIAM 8, 703–712 (1960)
35. Kogan, J.: Introduction to Clustering Large and High-Dimensional Data. Cambridge University Press,

New York (2006)
36. Koontz, W.L.G., Narendra, P.M., Fukunaga, K.: A branch and bound clustering algorithm. IEEE Trans.

Comput. C-24, 908–915 (1975)
37. Laszlo, M., Mukherjee, S.: A genetic algorithm using hyper-quadtrees for low-dimensional k-means

clustering. IEEE Trans. Pattern Anal. Mach. Intell. 28, 533–543 (2006)
38. Laszlo, M., Mukherjee, S.: A genetic algorithm that exchanges neighboring centers for k-means clus-

tering. Pattern Recognit. Lett. 36, 451–461 (2007)
39. Leyffer, S.: User manual for MINLP_BB. Technical report, University of Dundee, UK, March (1999)
40. Liberti, L.: Reformulations in mathematical programming: definitions and systematics. RAIRO-RO

43(1), 55–86 (2009)
41. Likas, A., Vlassis, N., Verbeek, J.J.: The global k-means clustering algorithm. Pattern Recognit. 36,

451–461 (2003)

123

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp
www.amstat.org/publications/jse/v11n2/datasets.heinz.html
www.amstat.org/publications/jse/v11n2/datasets.heinz.html

220 D. Aloise et al.

42. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Pro-
ceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 2, pp. 281–297.
Berkeley, CA (1967)

43. Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar k-means problem is NP-hard. Lect. Notes
Comput. Sci. 5431, 274–285 (2009)

44. Merz, P.: An iterated local search for minimum sum-of-squares clustering. Lect. Notes Comput. Sci.
2810, 286–296 (2003)

45. Mirkin, B.: Mathematical Classification and Clustering. Kluwer, Dordrecht, The Netherlands (1996)
46. Mirkin, B.: Clustering for Data Mining: A Data Recovery Approach. Chapman and Hall/CRC, Boca

Raton (2005)
47. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)
48. Pacheco, J.A.: A scatter search approach for the minimum sum-of-squares clustering problem. Comput.

Oper. Res. 32, 1325–1335 (2005)
49. Pacheco, J.A., Valencia, O.: Design of hybrids for the minimum sum-of-squares clustering prob-

lem. Comput. Stat. Data Anal. 43, 235–248 (2003)
50. Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale symmetric

traveling salesman problems. SIAM Rev. 33, 60–100 (1991). Data set available at http://www.iwr.
uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp

51. Pal, S.K., Majumder, D.D.: Fuzzy sets and decision making approaches in vowel and speaker recog-
nition. IEEE Trans. Syst. Man. Cybern. 7, 625–629 (1977). Data set available at http://www.isical.ac.
in/sushmita/patterns/vowel.dat

52. Peng, J., Xia, Y.: A new theoretical framework for k-means-type clustering. Stud Fuzziness Soft
Comput. 180, 79–96 (2005)

53. Reinelt, G.: TSPLIB– a traveling salesman library. ORSA J. Comput. 3, 319–350 (1991). http://www.
iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95

54. Ruspini, E.H.: Numerical method for fuzzy clustering. Inf. Sci. 2, 319–350 (1970)
55. Ryan, D.M., Foster, B.A.: An integer programming approach to scheduling. In: Wren, A. Computer

Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling, pp. 269–280. North-
Holland, Amsterdam (1981)

56. Sherali, H.D., Adams, W.P.: Reformulation-linearization techniques for discrete optimization prob-
lems. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization 1, pp. 479–532.
Kluwer, Dordrecht (1999)

57. Sherali, H.D., Desai, J.: A global optimization RLT-based approach for solving the hard clustering
problem. J. Glob. Optim. 32, 281–306 (2005)

58. Späth, H.: Cluster Analysis Algorithm for Data Reduction and Classification of Objects. Wiley,
New York (1980)

59. Steinhaus, H.: Sur la division des corps matèriels en parties. Bulletin De L’Académie Polonaise Des
Sciences Classe III. IV, 801–804 (1956)

60. Steinley, D.: K-means clustering: a half-century synthesis. Br. J. Math. Stat. Psychol. 59, 1–34 (2006)
61. Taillard, É.D.: Heuristic methods for large centroid clustering problems. J. Heuristics 9, 51–73 (2003)
62. Teboulle, M.: A unified continuous optimization framework for center-based clustering methods.

J. Mach. Learn. Res. 8, 65–102 (2007)
63. Tuy, H.: Concave programming under linear constraints. Soviet Math. 5, 1437–1440 (1964)
64. van Os, B.J., Meulman, J.J.: Improving dynamic programming strategies for partitioning. J. Classif.

21, 207–230 (2004)
65. Vavasis, S.A.: Nonlinear Optimization: Complexity Issues. Oxford University Press, Oxford (1991)
66. Xavier, A.E., Negreiros, M.J., Maculan, N., Michelon, P.: The use of the hyperbolic smoothing cluster-

ing method for planning the tasks of sanitary agents in combating dengue. In: Proceedings of IFORS
2005 (2005)

67. Xia, Y., Peng, J.: A cutting algorithm for the minimum sum-of-squared error clustering. In: Proceedings
of the SIAM International Data Mining Conference (2005)

68. Yeh, I.-C.: Modeling of strength of high performance concrete using artificial neural networks. Cement
and Concrete Res. 28, 1797–1808 (1998). Data set available at http://archive.ics.uci.edu/ml/datasets/
Concrete+Compressive+Strength

123

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp
http://www.isical.ac.in/sushmita/patterns/vowel.dat
http://www.isical.ac.in/sushmita/patterns/vowel.dat
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95
http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength

	An improved column generation algorithm for minimum sum-of-squares clustering
	Abstract
	1 Introduction
	2 Column generation algorithm revisited
	2.1 Auxiliary problem

	3 A geometric approach in the plane
	3.1 Branching

	4 Generalization to the Euclidean space
	4.1 Branching
	4.2 Solving by cliques

	5 Computational results
	5.1 Results in the plane
	5.2 Results in general Euclidean space
	5.3 Comparison of approaches in the plane and in general Euclidean space

	6 Conclusions
	Acknowledgments
	References

