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Abstract Bilevel programming problems are often reformulated using the Karush–
Kuhn–Tucker conditions for the lower level problem resulting in a mathematical pro-
gram with complementarity constraints(MPCC). Clearly, both problems are closely
related. But the answer to the question posed is “No” even in the case when the lower
level programming problem is a parametric convex optimization problem. This is not
obvious and concerns local optimal solutions. We show that global optimal solutions
of the MPCC correspond to global optimal solutions of the bilevel problem provided
the lower-level problem satisfies the Slater’s constraint qualification. We also show
by examples that this correspondence can fail if the Slater’s constraint qualification
fails to hold at lower-level. When we consider the local solutions, the relationship
between the bilevel problem and its corresponding MPCC is more complicated. We
also demonstrate the issues relating to a local minimum through examples.
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1 Introduction

Bilevel programming problems are hierarchical optimization problems combining
decisions of two decision makers, the so-called leader and the so-called follower.
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While the leader has the first choice and the follower reacts optimally on the leader’s
selection, the leader’s aim consists in finding such a selection which, together with
the follower’s response, minimizes some cost function. To be more formal, denote the
leader’s selection by x ∈ X for some closed set X ⊆ R

n and let the follower solve an
optimization problem parameterized in x :

y ∈ �(x) := Argmin
y

{ f (x, y) : g(x, y) ≤ 0}. (1.1)

Then, the bilevel programming problem (in its optimistic formulation, see e.g. the
monograph [4] for different formulations and relations between them) consists in
solving

min
x,y

{F(x, y) : x ∈ X, y ∈ �(x)}. (1.2)

Here, f, F, gi : R
n × R

m → R, i = 1, . . . , p. Problem (1.2) is often called the
leader’s problem. The bilevel programming problem (1.1), (1.2) has many applica-
tions (see e.g. the annotated bibliography Dempe [5]). Many theoretical results can be
found in the monographs Bard [2] and Dempe [4] and the edited volumes Migdalas
et al. [13] and Dempe and Kalashnikov [6] on that topic. Note that the lower level
problem is assumed to be solved globally. Hence, to keep the investigations tractable
we assume throughout this paper that, for each fixed parameter value x ∈ X , the lower
level problem (1.1) is a convex problem in the variables y ∈ R

n , i.e. that the functions
y �→ f (x, y), y �→ gi (x, y), i = 1, . . . , p, are convex in y for every fixed x ∈ X .
If the functions f (x, y) and gi (x, y), i = 1, . . . , p are strongly convex or strictly
convex in y for each fixed x ∈ X then for each x ∈ X the lower-level problem has a
unique solution and the bilevel problem (in its original formulation where the leader
minimizes with respect to x only) is well defined. Without these conditions in general
the solution map �(·) is a set-valued map, which makes the objective function of the
upper-level problem also a set-valued one. In order to avoid the issue of handling a
set-valued objective function at the upper-level the notion of optimistic formulation
and pessimistic formulation of a bilevel programming problem was introduced in the
literature. For more details on the issue of optimistic and pessimistic formulation see
for example Dempe [4]. The major reason for considering convexity at the lower-level
can be motivated as follows. Assume for the moment that each local optimal solu-
tion of problem (1.1) is strongly stable in the sense of Kojima [10] for some x ∈ X .
Then, without convexity assumption, the mapping �(·) of global optimal solutions
can contain more than one (strongly stable, isolated) optimal solution locally around x
and is in general not continuous, see Jongen and Weber [9]. Hence, the function y(x)

with y(x) ∈ Argmin
y

{F(x, y) : y ∈ �(x)} is in general also not uniquely determined

locally around x and can have jumps. This makes attempts to formulate optimality
conditions or solution algorithms very difficult.

Moreover in what follows we will consider an approach for investigating bilevel
programming problems in which the lower level problem is replaced with its Karush–
Kuhn–Tucker conditions. This results in a mathematical program with equilibrium
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constraints, MPCC for short. In the nonconvex case, the Karush–Kuhn–Tucker con-
ditions are not sufficient and this approach will, hence, result is a much larger feasible
set, see Mirrlees [14]. Thus, if the lower level problem is not convex, it is clear that
the bilevel programming problem cannot be equivalent to the corresponding MPCC.
But, are they equivalent in the case when the lower level problem is a parametric con-
vex optimization problem? For solving a bilevel programming problem this is often
reformulated in a MPCC and this is then solved using well developed approaches, see
e.g. [1,3,7]. Those methods converge to (B-) stationary solutions or local optima and
the question arises if the obtained solution then corresponds to a local optimal solution
of the original problem. We will show below that this is unfortunately in general not
the case. This makes this approach at least difficult and asks for a careful interpreta-
tion of the computed solution, respectively, a certain modification of the used solution
algorithm, see [12].

The bilevel programming problem is a nonconvex programming problem with an
implicitly determined feasible set. To solve it and to find (necessary and sufficient)
optimality conditions for it the problem has to be reformulated. There are several
different possibilities to do this.

The first and most often used attempt is to replace the lower level problem with
its Karush–Kuhn–Tucker conditions. For this assume throughout this paper that the
functions f, gi are differentiable with respect to y and that these gradients are contin-
uous with respect to both x, y. The objective function F of the upper level problem
is assumed to be at least continuous with respect to both x, y. Let Slater’s constraint
qualification be satisfied for the lower level problem at any parameter value x ∈ X :

Slater’s CQ: There exists y(x) such that gi (x, y(x)) < 0, i = 1 . . . .p.

Then, the bilevel programming problem (1.1), (1.2) can be replaced with problem

min
x,y,u

{F(x, y) : x ∈ X, ∇y L(x, y, u) = 0, g(x, y) ≤ 0, u ≥ 0, u	g(x, y) = 0}.
(1.3)

Here L(x, y, u) = f (x, y) + u	g(x, y) is the Lagrange function of problem (1.1)
and ∇y denotes the gradient with respect to the variables y only. This is a special
case of a mathematical program with complementarity constraints, sometimes called
mathematical problem with equilibrium constraints, see Luo et al. [11] and Outrata et
al. [16]. This is a one-level programming problem involving additionally the Lagrange
multipliers of the lower level problem as variables. It has been shown in the paper Ye
et al. [20] that the Mangasarian-Fromowitz constraint qualification is violated at any
feasible point of problem (1.3).

A second reformulation uses the optimal value function of the lower level problem

ϕ(x) := min
y

{ f (x, y) : g(x, y) ≤ 0} (1.4)

and replaces the bilevel programming problem (1.1), (1.2) with

min
x,y

{F(x, y) : x ∈ X, f (x, y) − ϕ(x) ≤ 0, g(x, y) ≤ 0}. (1.5)
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This reformulation has been used in the paper Ye and Zhu [19] for describing nec-
essary optimality conditions for the bilevel programming problem. See also Outrata
[15] for describing a solution approach for bilevel programming problems using this
reformulation. Problem (1.5) is a nonsmooth optimization problem since, even under
strong assumptions, the function ϕ(·) is not differentiable. Moreover, the nonsmooth
variant of the Mangasarian-Fromowitz constraint qualification is violated at any fea-
sible point of this problem, see Ye and Zhu [19]. Problem (1.5) is clearly equivalent to
problem (1.1), (1.2), but it is formulated using an implicitly determined, nonsmooth
function ϕ(·) which can in general only be computed at fixed values of the parameter
and approximated locally using e.g. generalized derivatives.

These two possibilities are the most widely used ones. Others reduce to replacing the
lower level problem with a generalized variational inequality or to use a reformulation
as a set-valued optimization problem (see e.g. [4]).

In most of the references dealing with bilevel programming problems they are
quickly replaced by problem (1.3) and it is claimed that this can be done equivalently.
We will investigate this topic for the global optimal solution in Sect. 2. The case of a
local optimal solution will be treated in Sect. 3. We will show in Sect. 4 by an example
that the linear independence constraint qualification is not generically satisfied in the
lower level problem at an optimal solution of the bilevel programming problem.

2 Global optimal solution of a bilevel program

A feasible point (x, y) to the bilevel programming problem is a local optimal solution
provided that there exists ε > 0 such that

F(x, y) ≥ F(x, y) ∀ (x, y) ∈ gph �, x ∈ X and ‖(x, y) − (x, y)‖ < ε.

Here gph � := {(x, y) : y ∈ �(x)} denotes the graph of the solution set mapping
� : R

n → 2R
m

of the lower level problem defined in Eq. (1.1). A local optimal solu-
tion of problem (1.3) is defined in a similar way. A local optimal solution is a global
one, if ε can be chosen arbitrarily large.

Theorem 2.1 Let (x, y) be a global optimal solution of the bilevel programming
problem and assume that the lower level problem is a convex one for which Slater’s
constraint qualification is satisfied at x = x. Then, for each

u ∈ �(x, y) := {u ≥ 0 : ∇y L(x, y, u) = 0, u	g(x, y) = 0}

the point (x, y, u) is a global optimal solution of problem (1.3).

The proof of this theorem is an obvious consequence of u ∈ �(x, y) if and only if
(x, y) ∈ gph �. Further it is interesting to note that for a given (x̄, ȳ) the set �(x̄, ȳ)

is closed and the set-valued map (x, y) �→ �(x, y) has a closed graph.
The following small example shows that, without regularity of the lower level prob-

lem, this theorem is in general not correct. Then, the bilevel programming problem
can have a global optimal solution while the corresponding MPCC has no solution.
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Example 2.2 Consider the convex lower level problem

min
y1,y2

{y1 : y2
1 − y2 ≤ x, y2

1 + y2 ≤ 0} (2.1)

Then, for x = 0, Slater’s condition is violated, y = 0 is the only feasible point for
x = 0. The optimal solution for x ≥ 0 is

y(x) =
{

(0, 0)	 for x = 0(−√
x/2,−x/2

)	 for x > 0

The Lagrange multiplier is u(x) with u1(x) = u2(x) = 1
4
√

x/2
for x > 0. For x = 0,

the problem is not regular and the Karush–Kuhn–Tucker conditions are not satisfied.
Consider the bilevel programming problem

min{x : x ≥ 0, y ∈ �(x)} (2.2)

where �(x) is the solution set mapping of problem (2.1).
Then, the unique (global) optimal solution of the bilevel programming problem

(2.2) is x = 0, y = 0 and there does not exist local optimal solutions.
Consider the corresponding MPCC. Then, (x, y(x), u(x)) is feasible for the MPCC

for x > 0 and the objective function value converges to zero for x → 0. But, an opti-
mal solution of this problem does not exist, since for x = 0 the only optimal solution
of the lower level problem is y = 0 and there does not exist a corresponding feasible
solution of the MPCC.

Note that this example can be used to show that the MPCC need not have a global
optimal solution even if its feasible set is not empty and bounded.

The opposite implication of Theorem 2.1 is also true under a very mild assumption.
We add the proof of this result, since despite of many authors are using it, we have not
been able to find a thorough proof of it.

Theorem 2.3 Let (x, y, u) be a global optimal solution of problem (1.3), let the lower
level problem (1.1) be convex and assume that Slater’s constraint qualification is sat-
isfied for the lower level problem for each x ∈ X. Then, (x, y) is a global optimal
solution of the bilevel programming problem.

Proof If (x, y, u) is a global optimal solution of (1.3) then �(x, y) 
= ∅ and, since the
objective function value of problem (1.3) is independent of u ∈ �(x, y), each solution
(x, y, u), u ∈ �(x, y) is a global optimal solution, too. Assume now, that (x, y) is
not a global optimal solution of the bilevel programming problem. Hence there exists
(x, y) with x ∈ X and y ∈ �(x) such that F(x, y) < F(x̄, ȳ). Since y ∈ �(x) and
the Slater’s constraint qualification holds at x the KKT conditions hold and thus there
exists u ∈ R

p
+ such that
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∇y f (x, y) +
p∑

i=1

ui∇y gi (x, y) = 0,

uT g(x, y) = 0

gi (x, y) ≤ 0.

This clearly shows that (x, y, u) is a feasible solution of the problem (1.3). This fact
combined with the fact that F(x, y) < F(x̄, ȳ) shows that (x̄, ȳ, ū) is not a global
optimal point of (1.3). This is a contradiction. Hence the result. ��

Summing up, the bilevel programming problem is equivalent under some assump-
tions to the mathematical program with complementarity constraints if global optimal
solutions are investigated.

It is important to observe that in Theorem 2.3 we need the assumption that for all
x ∈ X the Slater’s constraint qualification holds for the lower-level problem. This
assumption is essentially taken so that the KKT condition holds for the lower level
problem for each (x, y) with x ∈ X and y ∈ �(x). An interesting question is, if
the KKT condition for the lower-level does not hold for every such point, what is
the relation between the MPCC and the bilevel programming problem when we are
investigating only global solutions. In the following example we present a bilevel pro-
gramming problem whose lower-level problem satisfies the KKT conditions at only
one point and none of the global solutions of the MPCC is a global solution of the
bilevel programming problem. In this example, the MPCC has a global optimal solu-
tion but this point is not a (local or global) optimal solution of the bilevel programming
problem. This example also shows that the assumption in Theorem 2.3 is essential.

Example 2.4 Consider the following optimistic bilevel programming problem where
(x, y) ∈ R × R:

min
x,y

{(x − 1)2 + y2 : x ∈ R, y ∈ �(x)},

where � denotes the solution set mapping of the following lower-level problem:

min
y

{x2 y : y2 ≤ 0}.

It is clear that the lower-level problem has only one feasible solution i.e. y = 0 cor-
responding to any x ∈ R. Further it is simple to check that (x, y) = (0, 0) is the only
point where the KKT conditions are satisfied. Observe that (1, 0) is the only global
solution of the bilevel problem. On the other hand the corresponding MPCC is given
as

(x − 1)2 + y2 → min
x,y,λ

x2 + 2λy = 0,

λ ≥ 0,
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y2 ≤ 0

λy2 = 0.

It is clear that the only feasible points of the MPCC problem are of the form (0, 0, λ)

where λ ∈ R and λ ≥ 0. Thus all the feasible points of this MPCC are global solutions
of MPCC. However, as we have already shown that (0, 0) is a not a global solution
of the bilevel problem it is clear that no global minimum of the MPCC is a global
minimum of the bilevel programming problem.

It should be mentioned that, in the case when the KKT conditions for the lower level
problem (1.1) are satisfied only in one point (x, y), x ∈ X , which is a global opti-
mal solution of the bilevel programming problem, then this point is the only feasible
solution for the corresponding MPCC and hence also the unique (global) optimum.
For the MPCC, there cannot exist local optimal solutions in this case. The bilevel
programming problem, yet, can have more local and / or global optimal solutions.

3 Local optimal solutions

We have seen in the previous section that under a very mild condition the bilevel pro-
gramming problem is equivalent to the corresponding MPCC when global solutions
are investigated. Further it is important to note that it is very difficult to find a global
solution and in many practical cases one needs to be happy with just obtaining a local
solution. Thus from the point of view of solving the bilevel programming problem it
is important to investigate the relation between local optimal solutions of the bilevel
programming problem and the corresponding MPCC. The most important question in
this regard is whether the equivalence that we observed in the case of global solutions
still remains valid in the case of a local solution. The answer turns out to be NO as
it is shown in the following counter example. In this example it is demonstrated that
the local optimal solution of the MPCC need not be a local optimal solution to the
bilevel programming problem. We remark that the lower level problem in this example
is a parametric convex optimization problem having a unique (even strongly stable)
optimal solution for all feasible (for the upper level problem) parameter values.

Example 3.1 Consider the lower level problem

y2
1 + (y2 + 1)2 → min

(y1 − x1)
2 + (y2 − 1 − x1)

2 ≤ 1

(y1 + x2)
2 + (y2 − 1 − x2)

2 ≤ 1

and let �(x) denote its solution set. Figure 1 shows the lower level problem for fixed
values of the parameters. These are the centers of the discs whose intersection is the
feasible set of the lower level problem. These centers move along the dotted lines.
Then, the optimal solution of the lower level problem is the feasible point with the
smallest distance to the point (0,−1)	.
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Fig. 1 The lower level problem
in Example 3.1 for fixed
parameter values

For x = (0, 0)	 we have that y = (0, 0)	 ∈ �(x) is the unique optimal solution
and

�(x, y) = {u ∈ R
2+ : u1 + u2 = 1}.

Consider the bilevel programming problem

min{−y2 : y1 y2 = 0, x ≥ 0, y ∈ �(x)}.

Then, since obviously y2 ≥ 0 for all points y ∈ �(x), x ≥ 0 we have that each
feasible point of the bilevel programming problem has an objective function value
zero except at points (x, y), y ∈ �(x) for which y1 = 0, y2 > 0. Those points have
a negative objective function value for the bilevel programming problem.

The point (x, y), x = (0, 0)	, y = (0, 0)	 is feasible for the bilevel programming
problem. But it is not locally optimal. We will demonstrate this fact in the following
way. First observe that (0, y2)

T ∈ �(x) with y2 > 0 if and only if x1 = x2 and
u1 = u2. This shows that there exists a sequence {(xk, yk)} converging to (x, y) with
yk ∈ �(xk), yk

1 = 0 and yk
2 > 0 for all k. For this sequence we have xk

1 = xk
2 and

uk
1 = uk

2 for all k. This implies that the limit point of multipliers uk = (uk
1, uk

2)
	

is u = (0.5, 0.5)	. Hence, the point (x, y, u) is not a local minimum of the corre-
sponding mathematical program with complementarity constraints. All other points
(x, y, u) with u ∈ �(x, y) are local minima.

Further it follows immediately from Theorem 2.1 that local optimal solutions (x, y)

of the bilevel programming problem correspond to local optimal solutions (x, y, u)

of problem (1.3) for each u ∈ �(x, y) provided that the lower level problem (1.1) is
convex and satisfies Slater’s constraint qualification.

If Slater’s constraint qualification is satisfied for the convex lower level problem,
the set �(x, y) is a compact convex polyhedron having a finite set of vertices and
being nonempty if and only if y ∈ �(x), see Gauvin [8].

Let (x, y, u) be a local optimal solution of problem (1.3). Then there exists ε > 0
such that for each (x, y, u) with ∇y L(x, y, u) = 0, x ∈ X, g(x, y) ≤ 0, u	g(x, y) =
0, u ≥ 0 and ‖(x, y, u) − (x, y, u)‖ < ε we have F(x, y) ≥ F(x, y). The com-
plementarity conditions then imply that for each partition of {1, . . . , p} into two sets
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I1, I2 ⊂ {1, . . . , p}, I1 ∪ I2 = {1, . . . , p}, I1 ∩ I2 = ∅,

{ j : u j > 0} ⊆ I1, {i : gi (x, y) < 0} ⊆ I2 (3.1)

and for each (x, y, u) satisfying ‖(x, y, u) − (x, y, u)‖ < ε and

∇y L(x, y, u) = 0, x ∈ X, gi (x, y)

{= 0 if i ∈ I1,

≤ 0 if i ∈ I2
, u j

{= 0 if i ∈ I2,

≥ 0 if i ∈ I1

(3.2)

we have F(x, y) ≥ F(x, y).

Theorem 3.2 Let the lower level problem (1.1) be convex, Slater’s constraint qualifi-
cation be satisfied at the point x and (x, y, u) be a local optimal solution for problem
(1.3) for all u ∈ �(x, y). Then, the point (x, y) is a local optimal solution of problem
(1.1), (1.2), too.

Proof Let (x, y) not be a local optimal solution, i.e. let there exists a sequence
{(xk, yk)} ⊂ gph � converging to (x, y) with xk ∈ X and F(xk, yk) < F(x, y)

for all k. Since Slater’s constraint qualification is satisfied at x and persistent in some
open neighborhood of x , there exists uk ∈ �(xk, yk) having an accumulation point
û ∈ �(x, y) by upper semicontinuity of the Lagrange multiplier set mapping [17].
This means that there is a sequence (xk, yk, uk) of feasible solutions to problem (1.3)
converging to a feasible point (x, y, û) of (1.3) with F(xk, yk) < F(x, y). This vio-
lates local optimality of (x, y, u) for all u ∈ �(x, y) for (1.3). Hence, (x, y) is local
optimal for the bilevel programming problem.

It will be interesting to note in Example 3.1 the crucial requirement of Theorem 3.2 that
(x̄, ȳ, ū) has to be a local minimum of the MPCC problem (1.3) for all ū ∈ �(x̄, ȳ)

is violated. Note that in Example 3.1, u = (0.5, 0.5) ∈ �(0, 0) but (0, 0, 0.5, 0.5) is
not a local minimum of the corresponding MPCC problem.

For checking local optimality of the bilevel programming problem the Example 3.1
indicates that it is (in the worst case) necessary to verify if all feasible solutions
(̂x, ŷ, û), x̂ ∈ X , g(̂x, ŷ) ≤ 0, û ∈ �(̂x, ŷ) are local optimal solutions of the MPCC.
This is an infinite number of points, and possibly only one point out of them (where
û ∈ int �(̂x, ŷ) is possible) is not a local optimal solution proving that (̂x, ŷ) is not a
local optimal solution for the bilevel programming problem. Under the constant rank
constraint qualification below we reduce this effort to a finite number of points. Note,
that û needs not to be a vertex of �(x, u) in the proof of Theorem 3.2.

Consider the constant rank constraint qualification:

Constant rank CQ: There exists an open neighborhood V of (x, y) such that for each
index set I1 ⊆ { j : g j (x, y) = 0} the family of gradients {∇y g j (x, y) : j ∈ I1} has
the same rank on V .

Corollary 3.3 If the constant rank constraint qualification is added to the assump-
tions in Theorem 3.2 local optimality of (x, y, u) for all vertices u ∈ �(x, y) for
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problem (1.3) implies local optimality of (x, y) for the bilevel programming problem
(1.1), (1.2).

Indeed, the multipliers uk in the proof of Theorem 3.2 can without assumptions be
taken as vertices of �(xk, yk). The constant rank constraint qualification then implies,
that the sequence {uk} converges to a vertex of �(x, y). Hence, û can also be taken
as a vertex of �(x, y), showing the desired result.

The following example shows that, in case of multiple Lagrange multipliers and if
the constant rank constraint qualification is satisfied it is not possible to weaken the
assumptions of the corollary. Theoretically fixing (x, y, u) to an open neighborhood of
some local optimal solution (x, y, u) means that an inequality constraint gi (x, y) ≤ 0
with ui > 0 is replaced by an equation gi (x, y) = 0 thus reducing the feasible set of
the bilevel programming problem to a possibly proper subset. If (x, y, u) is a local
optimal solution subject to this subset it is in general not a local optimal solution
subject to the feasible set itself.

Example 3.4 Consider the linear lower level problem

min
y

{−y : x + y ≤ 1, −x + y ≤ 1} (3.3)

having the unique optimal solution y(x) and the set �(x, y) of Lagrange multipliers

y(x) =
{

x + 1 if x ≤ 0
−x + 1 if x ≥ 0

,�(x, y) =
⎧⎨
⎩

{(1, 0)} if x > 0
{(0, 1)} if x < 0

conv{(1, 0), (0, 1)} if x = 0

where conv A denotes the convex hull of the set A. The bilevel programming problem

min{(x − 1)2 + (y − 1)2 : (x, y) ∈ gph �} (3.4)

has the unique optimal solution (x, y) = (0.5, 0.5) and no local optimal solutions. The
points (x, y, u1, u2) = (0.5, 0.5, 1, 0) and (x0, y0, u0

1, u0
2) = (0, 1, 0, 1) are a local

optimal solutions of problem (1.3). To see that the point (x0, y0, u0
1, u0

2) = (0, 1, 0, 1)

is locally optimal remark that in an open neighborhood V of this point we have u2 > 0
implying that the second constraint in problem (3.3) is active, i.e. y = x + 1 which
by feasibility implies x ≤ 0. Substituting this into the upper level objective function
gives

(x − 1)2 + (y − 1)2 = (x − 1)2 + x2 ≥ 1

for each feasible point of the mathematical program with equilibrium constraints cor-
responding to the bilevel problem (3.4) in V . Together with F(0, 1) = 1 we derive that
(x0, y0, u0

1, u0
2) is indeed a local optimum of the mathematical program with equilib-

rium constraints corresponding to (3.4). Also observe that we had mentioned before
that when we have multiple Lagrange multipliers and the constant rank constraint
qualification is satisfied it is not possible to weaken the assumption of Corollary 3.3.
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Consider the point (x0, y0) = (0, 1). Then it is simple to see that the vertices of
�(x0, y0) = �(0, 1) are the vectors (1, 0) and (0, 1). It has been shown above that
(0, 1, 0, 1) is a local optimal solution of the associated MPCC problem while note that
(0, 1, 1, 0) is not a local minimum of the MPCC problem. Also note that (0, 1) is not
a solution of the bilevel problem.

4 Regularity

For mathematical programs with equilibrium constraints it has been shown by Schol-
tes and Stöhr [18] that the MPCC-LICQ is generically satisfied. Closely related is
the question if the partial gradients of the active constraints with respect to y in the
lower level problem are generically linearly independent, i.e. if the linear indepen-
dence constraint qualification is generically satisfied for the lower level problem at
a local optimal solution. If this would be true, then the above examples would be
exceptions and a local optimal solution of the MPCC would generically imply local
optimality for the bilevel programming problem (if the lower level problem is convex
in y satisfying a suitable regularity condition).

The following example shows that the linear independence constraint qualification
(and hence uniqueness of a Lagrange multiplier) in the lower level problem is not a
generic assumption.

Example 4.1 Consider the lower level problem

�L(x) := Argmin
y,z

{−y − z : x + y ≤ 1, −x + y ≤ 1, 0 ≤ z ≤ 1}

and the bilevel programming problem

min{0.5x − y + 3z : (y, z) ∈ �L(x)}.

Then, we derive �L(x) = {(y(x), z(x)) : z(x) = 1, x ∈ R} with

y(x) =
{

1 − x if x ≥ 0
1 + x if x ≤ 0.

Substituting this solution into the upper level objective function we derive

0.5x − y(x) + 3z(x) =
{

0.5x − 1 + x + 3 = 2 + 1.5x ≥ 2 if x ≥ 0
0.5x − 1 − x + 3 = 2 − 0.5x ≥ 2 if x ≤ 0.

Hence, (x, y, z) = (0, 1, 1) is the global (and unique local) optimal solution of the
problem. And three constraints in the lower level problem are active. Since only two
variables occur in the lower level problem, the linear independence constraint qualifi-
cation is violated. Note that small smooth perturbations of the data of both the lower
and the upper level problems will have no impact on this property.
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