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Abstract Recently Wang, Zheng, Boyd, and Ye (SIAM J Optim 19:655–673, 2008)
proposed a further relaxation of the semidefinite programming (SDP) relaxation of the
sensor network localization problem, named edge-based SDP (ESDP). In simulation,
the ESDP is solved much faster by interior-point method than SDP relaxation, and
the solutions found are comparable or better in approximation accuracy. We study
some key properties of the ESDP relaxation, showing that, when distances are exact,
zero individual trace is not only sufficient, but also necessary for a sensor to be cor-
rectly positioned by an interior solution. We also show via an example that, when
distances are inexact, zero individual trace is insufficient for a sensor to be accurately
positioned by an interior solution. We then propose a noise-aware robust version of
ESDP relaxation for which small individual trace is necessary and sufficient for a
sensor to be accurately positioned by a certain analytic center solution, assuming the
noise level is sufficiently small. For this analytic center solution, the position error
for each sensor is shown to be in the order of the square root of its trace. Lastly,
we propose a log-barrier penalty coordinate gradient descent method to find such an
analytic center solution. In simulation, this method is much faster than interior-point
method for solving ESDP, and the solutions found are comparable in approximation
accuracy. Moreover, the method can distribute its computation over the sensors via
local communication, making it practical for positioning and tracking in real time.
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1 Introduction

A problem that has received considerable attention is that of ad hoc wireless sensor
network localization [2,4,6,8–16,18–21,25–28,30–32,37]. In the basic version of this
problem, we have n distinct points in R

d (d ≥ 1). We are given the Cartesian coordi-
nates of the last n−m points (called “anchors”) xm+1, . . . , xn , and an estimate di j > 0
of the Euclidean distance between “neighboring” points i and j for all (i, j) ∈ A,
where A ⊆ ({1, . . . ,m}×{1, . . . , n}) ∪ ({1, . . . , n}×{1, . . . ,m}).1 We wish to esti-
mate the Cartesian coordinates of the first m points (called “sensors”). Typically, d = 2
and two points are neighbors if the distance between them is below some threshold
(e.g., the radio range). In variants of this problem, the distances may be non-Euclidean
[31] or may have measurement errors, and there may be additional constraints on the
unknown points [12]. This problem is closely related to distance geometry problems
arising in the determination of protein structure [7,22] and to graph rigidity [1,13,32].

The sensor network localization problem is NP-hard in general [29]; also see remark
in [22]. This can be proved for d = 1 by reduction from the set partition problem, and
the proof readily extends for d > 1; also see [2,27] for related studies. Thus, efforts
have been directed at solving this problem approximately. These include heuristics
based on Euclidean geometry, shortest path, and local improvement; see [25,27,28,
30,37] and references therein. A different approach involves solving a convex relaxa-
tion, and then refining the resulting solution through local improvement. This has been
effective in simulation and, under appropriate assumptions, the solution is provably
exact/accurate. For example, a second-order cone programming (SOCP) relaxation
can be efficiently solved and yields good approximation when the anchors are “spread
out” [12,34]. Here we are interested in semidefinite programming (SDP) relaxations
since they are better approximations than SOCP relaxations [34, Proposition 3.1], [36,
Theorem 4.5], though SDPs are also more difficult to solve than SOCPs.

In the SDP approach of Biswas and Ye [8,9], the original problem is formulated as
the following nonconvex minimization problem:

υopt := min
x1,...,xm

∑

(i, j)∈A
|‖xi − x j‖2 − d2

i j |, (1)

where ‖ · ‖ denotes the Euclidean norm. Letting X := (x1 · · · xm) and Id denote
the d × d identity matrix, Biswas and Ye considered the following SDP relaxation
of (1):

1 The set A is undirected in the sense that (i, j) = ( j, i) and di j = d ji for all (i, j) ∈ A.
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υsdp := min
Z

∑

(i, j)∈A

∣∣∣�i j (Z)− d2
i j

∣∣∣

s.t. Z =
(

Y X T

X Id

)
, Z � 0, (2)

where Y = (yi j )1≤i, j≤m , “s.t.” is short for “subject to”, and

�i j (Z) :=
{

yii − 2yi j + y j j if (i, j) ∈ As;
yii − 2xT

i x j + ‖x j‖2 if i ≤ m < j,
(3)

with As := {(i, j) ∈ A | i, j ≤ m}. It can be seen that (2) reduces to (1) when we add
the constraint rank Z = d. Properties of (2) and its solutions are studied in [8,32].2

In particular, Biswas and Ye [8, Section 4] introduced the notion of individual traces,
defined as

tri (Z) := yii − ‖xi‖2, i = 1, . . . ,m.

These individual traces are equivalently the diagonals of the Schur complement Y −
X T X . In [9, Section 2] and [10, Section 3], they were used to evaluate the accuracy of
the estimated positions x1, . . . , xm , with smaller trace indicating higher accuracy. So
and Ye [32, Theorem 2] proved in the case of υsdp = 0 that the sensors are “uniquely
localizable” if and only if, for any interior solution Z (equivalently, Z has maximum
rank), all individual traces of Z are zero, i.e., Y = X T X . (Throughout, “interior solu-
tion” means a point in the relative interior of the solution set.) Moreover, for any interior
solution Z , tri (Z) = 0 implies xi is invariant over the solution set and hence equals
the true position of sensor i when υopt = 0 [34, Proposition 4.1]. Other extensions
and refinements of the above SDP approach are described in [3–7,10,20].

While (2) is a good approximation of the original problem (1), it cannot be solved
in reasonable time for m ≥ 500, and domain decomposition methods have been pro-
posed to solve many small SDP subproblems and refine the solutions using local
improvement heuristics [9,10,20]. These methods tend to work well if many anchors
are uniformly distributed; see [36, Section 5.4]. This contrasts with SOCP relaxation
which can be solved in under 6 min for n = 4,000 using a smoothing coordinate gradi-
ent descent method [34]. Recently, Wang, Zheng, Boyd, and Ye [36] proposed a further
relaxation of the SDP relaxation (2), called edge-based SDP (ESDP) relaxation. The
ESDP relaxation is stronger than the SOCP relaxation and, can be solved in under
11 min for n = 4,000 using SeDuMi [33], and yields solution comparable or better
in approximation accuracy to the SDP relaxation; see [36, Section 5], [37, Section 7].
The ESDP relaxation is obtained by relaxing the constraint Z � 0 in (2) to require
only those principal submatrices of Z associated with A to be positive semidefinite.
Specifically, the ESDP relaxation is

2 Throughout, “solution” of an optimization problem means a global optimal solution.
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υesdp := min
Z

∑

(i, j)∈A

∣∣∣�i j (Z)− d2
i j

∣∣∣

s.t. Z =
(

Y X T

X Id

)
,

⎛

⎝
yii yi j xT

i
yi j y j j xT

j
xi x j Id

⎞

⎠ � 0 ∀(i, j) ∈ As,

(
yii xT

i
xi Id

)
� 0 ∀i ≤ m. (4)

Notice that the objective function and the positive semidefinite constraints in (4) do
not depend on yi j , (i, j) 
∈ A. Also, the third constraint in (4) is redundant for those
i ≤ m such that (i, j) ∈ A for some j ≤ m (i.e., sensor i has another sensor as
neighbor) since it is implied by the second constraint.

In [11,19], a variant of (1) and (2) is considered whereby | · | is replaced with | · |2,
and a primal-dual interior-point method is applied to solve the SDP and its dual in
a certain reduced/projected form. Simulation results with up to m = 20 sensors are
reported. Nie [26] considered the same problem variant and proposed a sparse sum-
of-square (SOS) relaxation which is equivalent to a certain sparse SDP. In simulation
with m = 500 sensors and exact distances, accurate solutions were found in about
1.5 h using SeDuMi. Recently, Kim, Kojima, and Waki [18] reformulated this problem
variant as a constrained quadratic optimization problem, and used a positive definite
matrix completion technique to reduce the SOS relaxation of order 1 into an SDP
having analogous form as (4), but with each principal submatrix of Z associated with
a maximal clique of a chordal extension of a minimal subgraph. In simulation with
m = 4,000 sensors and exact distances, accurate solutions were found in 80–1,000 s
using SeDuMi.

In practice, due to limited transmission power of the sensors, measured distances
may be inexact, i.e.,

d2
i j = ‖x

true

i − x
true

j ‖2 + δi j ∀(i, j) ∈ A, (5)

where δ = (δi j )(i, j)∈A ∈ R
|A| denotes the measurement noise, and x

true

i denotes the

true position of the i th point (so that xi = x
true

i for i > m); see [14, Eq. (2)], [15,
Eq. (3a)–(3f)], [21, Section 2]. Methods for sensor network localization can be highly
sensitive to such noises. Our aims are three-fold. First, we study the approximation
accuracy of SDP relaxation (2) and ESDP relaxation (4), as measured by the individ-
ual traces of interior solutions. We show that, when distances are exact (i.e., δ = 0),
zero individual trace is not only sufficient, but also necessary for a sensor to be cor-
rectly positioned by an interior solution of the ESDP relaxation; see Theorem 1. On the
other hand, we show via an example that, when distances are inexact (i.e., δ 
= 0), zero
individual trace is insufficient for a sensor to be accurately positioned by an interior
solution of the SDP/ESDP relaxation; see Example 3. This somewhat surprising result
shows that SDP and ESDP relaxations are more noise-sensitive than SOCP relaxation
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(Robust) Edge-based semidefinite programming relaxation 325

(compare with [34, Proposition 7.2]). Second, we propose a noise-aware robust ver-
sion of ESDP relaxation for which small individual trace is necessary and sufficient
for a sensor to be accurately positioned by an analytic center solution, assuming ‖δ‖
is sufficiently small. Moreover, we show that the position error for each sensor is in
the order of the square root of the individual trace; see Theorems 3 and 4. Third,
we propose a log-barrier penalty coordinate gradient descent method to find such an
analytic center solution; see Sect. 6. In our simulation, this method is much faster
than interior-point method for solving ESDP, and the solutions found are comparable
in approximation accuracy; see Sect. 7. Moreover, this method is implementable in a
distributed manner, with each sensor updating its position estimate knowing only the
current position estimates of its neighbors, the measured distance between them, and a
few other quantities. This is an important consideration for real-time implementation
[16, p. 65], [21,25,28]. In contrast, existing SDP-based methods [5,6,8–11,18–20,36]
require some level of centralization. Thus, our method is efficient, potentially imple-
mentable in real time, and can handle noise and certify which sensors are accurately
positioned. The positions of remaining sensors can be refined using any number of
local improvement heuristics, such as those used in [5,6,10,18,20,36], though their
accuracy cannot be certified.

Throughout, Sn denotes the space of n× n real symmetric matrices, and T denotes
transpose. For a vector x ∈ R

p, ‖x‖ and ‖x‖∞ denote the Euclidean norm of x and
the∞-norm of x , respectively. For A ∈ R

p×q , ai j denotes the (i, j)th entry of A, and
‖A‖F denotes the Fröbenius norm of A. For A, B ∈ S p, A � B means A − B is
positive semidefinite. For A ∈ S p and I ⊆ {1, . . . , p}, AI = (ai j )i, j∈I denotes the
principal submatrix of A comprising the rows and columns of A indexed by I. We
will abbreviate “m + 1,m + 2, . . . ,m + d” as “m+”. Thus, Z{i, j,m+} and Z{i,m+} are,
respectively, the (2+ d)× (2+ d) and (1+ d)× (1+ d) principal submatrices of Z
appearing in the second and third constraint of (4). For any finite set J , |J | denotes
the cardinality of J . For any I ⊆ {1, . . . ,m}, we denote the set of its neighbors and
the set of edges to its neighbors by

N (I) := { j /∈ I | (i, j) ∈ A for some i ∈ I},
A(I) := {(i, j) ∈ A | i ∈ I, j /∈ I}.

2 Trace test for uniquely positioned sensors by SDP and ESDP

Let Sδ
sdp

denote the solution set of (2), where the measured distances di j are given by

(5). Similarly, let Sδ
esdp

denote the solution set of (4), where the distances di j are given
by (5), but with yi j set arbitrarily to zero for all (i, j) 
∈ A (see the remark follow-
ing (4)). The latter simplifies certain compactness arguments later, e.g., the proof of
Proposition 3. Both Sδ

sdp
and Sδ

esdp
are closed convex, and hence their relative interiors

ri(Sδ
sdp
) and ri(Sδ

esdp
) are well defined. As in [32, Proposition 1] and [34, p. 162], we

make the reasonable assumption that each sensor is connected, directly or indirectly,
to some anchor.
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Assumption 1 Each connected component of the graph G := ({1, . . . , n},A) con-
tains an anchor index.

Assumption 1 is necessary and sufficient for Sδ
sdp

and Sδ
esdp

to be bounded–an impor-
tant consideration when solving (2) or (4) by an interior-point method. Assumption 1
is reasonable since if a connected component of G does not contain an anchor index,
then the location of the corresponding sensors can be determined only up to a common
translation factor. In applications such as 3D protein structure prediction, the unknown
points only need to be determined up to common translation and rotation factors, so
Assumption 1 can be made without loss of generality; see [9].

In what follows, we define

Iδ
esdp
:=
{

i ∈ {1, . . . ,m}
∣∣∣∣xi is invariant over all Z =

(
Y X T

X Id

)
∈ Sδ

esdp

}
.

We define Iδ
sdp

analogously. In the noiseless case (δ = 0), those sensors indexed by

Iδ
esdp

(respectively, Iδ
sdp

) are correctly positioned by any ESDP solution (respectively,
SDP solution). Thus it is of interest to identify these index sets. The following result
from [34, Proposition 4.1] shows that a subset of Iδ

esdp
is identified by zero individual

traces at an interior solution of SDP (2); see [32, Theorem 2] for related results in the
case of δ = 0 and all individual traces being zero at interior solutions.

Proposition 1 For any δ ∈ R
|A|, Z ∈ ri(Sδ

sdp
) and i ∈ {1, . . . ,m}, if tri (Z) = 0, then

i ∈ Iδ
sdp

.

An analogous result can be proved for the ESDP relaxation; also see [36, Theo-
rem 2].

Proposition 2 For any δ ∈ R
|A|, Z ∈ ri(Sδ

esdp
) and i ∈ {1, . . . ,m}, if tri (Z) = 0,

then i ∈ Iδ
esdp

.

The proofs of Propositions 1 and 2 are based on the following simple properties of
the individual trace. Let Fesdp denote the feasible set of (4) with yi j set to zero for all
(i, j) 
∈ A. For any Z ∈ Fesdp , we have from the third constraint in (4) that

tri (Z) ≥ 0, i = 1, . . . ,m.

We also note the following key identity for individual traces. For any Z , Z ′ ∈ Fesdp

and any α ∈ [0, 1], we have Zα := αZ + (1− α)Z ′ ∈ Fesdp and

tri (Z
α) = αtri (Z)+ (1− α)tri (Z

′)+ α(1− α)‖xi − x ′i‖2, i = 1, . . . ,m. (6)

Thus each individual trace is a concave function on Fesdp . The following result follows
from the concavity and nonnegativity of the individual trace on Fesdp .

Lemma 1 For any δ ∈ R
|A|, if tri (Z) = 0 for some Z ∈ ri(Sδ

esdp
), then tri (Z) = 0

for all Z ∈ Sδ
esdp

.
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(Robust) Edge-based semidefinite programming relaxation 327

3 Trace test for correctly positioned sensors by ESDP:
necessity in the noiseless case

In this section we show that the converse of Proposition 2 holds in the noiseless case
(δ = 0). In other words, in the noiseless case, the condition tri (Z) = 0 is not only
sufficient, but also necessary for xi to equal x true

i for any Z ∈ ri(S0
esdp
). The proof is

divided into two parts. In the first part, we show by induction that if a sensor i ∈ I0
esdp

is connected to some anchor through neighboring sensors also in I0
esdp

, then tri (Z) = 0

for all Z ∈ S0
esdp

; see Lemma 3. In the second part, we show that if there exists a sensor

i ∈ I0
esdp

with tri (Z) > 0 for some Z ∈ S0
esdp

, then xi can be rotated to obtain another

ESDP solution, contradicting the definition of I0
esdp

. We begin with the following two
lemmas relating the traces of neighboring sensors.

Lemma 2 (a) For any Z ∈ Fesdp , we have

(
yii − ‖xi‖2 yi j − xT

i x j

yi j − xT
i x j y j j − ‖x j‖2

)
� 0. (7)

(b) Suppose δ = 0. For any Z ∈ S0
esdp

and (i, j) ∈ As , if ‖xi − x j‖ = di j , then
tri (Z) = tr j (Z).

Proof (a) Since Z ∈ Fesdp so that it satisfies the second constraint in (4), a basic
property of Schur complement yields (7).

(b) Since δ = 0 so that υesdp = 0 and Z ∈ S0
esdp

, we have �i j (Z) = d2
i j . Since

(i, j) ∈ As , (3) implies

yii − 2yi j + y j j = d2
i j .

This together with ‖xi − x j‖ = di j implies that

yii − ‖xi‖2 + y j j − ‖x j‖2 = 2(yi j − xT
i x j ). (8)

As in the proof of [34, Proposition 3.1], by setting a = yii − ‖xi‖2, b = y j j − ‖x j‖2
and c = yi j − xT

i x j , we have from (7) that a, b ≥ 0, ab − c2 ≥ 0. Then (a + b)2 =
(a − b)2 + 4ab ≥ (a − b)2 + 4c2 ≥ 4c2. By (8), we also have a + b = 2c, so that
(a + b)2 = 4c2. Hence a = b, i.e., tri (Z) = tr j (Z). 
�

In what follows, we denote

X true := ( x true
1 · · · x true

m

)
, ytrue

i j :=
{

0 if (i, j) 
∈ A;
(x true

i )T x true
j else,

Z true :=
(

Y true (X true)T

X true Id

)
. (9)

Thus Z true ∈ S0
esdp
⊆ Fesdp .
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Lemma 3 Suppose δ = 0.

(a) For any (i, j) ∈ A with i, j ∈ I0
esdp

, we have tri (Z) = tr j (Z) for all Z ∈ S0
esdp

.

(b) For any (i, j)∈A with i ∈I0
esdp

and j>m, we have tri (Z)=0 for all Z ∈S0
esdp

.

Proof (a) Fix any Z ∈ S0
esdp

. Since i, j ∈ I0
esdp

and Z true ∈ S0
esdp

, we have xi = x
true

i and

x j = x
true

j . Hence ‖xi − x j‖ = ‖x true

i − x
true

j ‖ = di j . By Lemma 2(b), tri (Z) = tr j (Z).

(b) Fix any Z ∈ S0
esdp

. Since i ∈ I0
esdp
, j > m and Z true ∈ S0

esdp
, we have xi = x

true

i

and x j = x
true

j . Also υesdp = 0, so that �i j (Z) = d2
i j . Since j > m, (3) implies

yii − 2xT
i x j + ‖x j‖2 = d2

i j . Hence

tri (Z) = yii − ‖xi‖2 = d2
i j + 2xT

i x j − ‖x j‖2 − ‖xi‖2 = d2
i j − ‖xi − x j‖2

= d2
i j − ‖x

true

i − x
true

j ‖2 = 0.


�
Lemma 3 shows that if a sensor i ∈ I0

esdp
is connected to some anchor by a path in

G whose intermediate nodes are all in I0
esdp

, then tri (Z) = 0 for all Z ∈ S0
esdp

. We will

show in Theorem 2 that in fact all sensors i ∈ I0
esdp

have this property. We also need
the following matrix identity about Schur complement.

Lemma 4 For any Ā, A ∈ R
d×k, B̄, B ∈ R

k×k , and α ∈ [0, 1], we have upon letting
Xα = α Ā + (1− α)A and Y α = α B̄ + (1− α)B that

Y α − (Xα)T Xα = α(B̄ − ĀT Ā)+ (1− α)(B − AT A)

+α(1− α) ( Ā − A
)T (

Ā − A
)
.

We are now ready to prove the main result of this section, showing that the con-
verse of Proposition 2 holds in the noiseless case. The proof uses Assumption 1, and
Lemmas 1, 3 and 4. In particular, we show that if there exist ī ∈ I0

esdp
and Z ∈ S0

esdp
with

trī (Z) > 0, then we can rotate xī to obtain another element of S0
esdp

, thus contradicting

the definition of I0
esdp

.

Theorem 1 For any i ∈ I0
esdp

, we have tri (Z) = 0 for all Z ∈ S0
esdp

.

Proof Fix any ī ∈ I0
esdp

and Z̄ ∈ S0
esdp

. Let Ī be the set of all i ∈ I0
esdp

that are joined

to ī by a path in the subgraph of G induced by I0
esdp

(i.e., i ∈ Ī if and only if i is joined

to ī by a path in G consisting only of nodes in I0
esdp

). By Assumption 1, N (Ī) 
= ∅. If

there exists an i ∈ Ī with tri (Z̄) = 0 or a j ∈ N (Ī) with j > m, then, by Lemma 3,
tri (Z̄) = 0 for all i ∈ Ī and, in particular, trī (Z̄) = 0. Suppose that no such i or j
exists, so that tri (Z̄) > 0 for all i ∈ Ī and, by the definition of Ī,

N (Ī) ⊆ {1, . . . ,m}\I0
esdp
. (10)

We will arrive at a contradiction below.
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(Robust) Edge-based semidefinite programming relaxation 329

By (10), there exists a Z ∈ ri(S0
esdp
) such that x j 
= x true

j for all j ∈ N (Ī). Since

Z true ∈ S0
esdp

and S0
esdp

is convex, we have

Zα := αZ true + (1− α)Z ∈ S0
esdp
∀ 0 ≤ α ≤ 1.

Fix any (i, j) ∈ A(Ī) with i ∈ Ī. By (10), j ≤ m so that (i, j) ∈ As . Applying
Lemma 4 with Ā = ( x true

i x true
j

)
, A = ( xi x j

)
, B̄ = Z true{i, j}, B = Z{i, j} and using

xi = x true
i (since i ∈ I0

esdp
) yield

(Y α − XαT Xα){i, j} = (1− α)
((

tri (Z) yi j − xi
T x j

yi j − xi
T x j tr j (Z)

)

+α
(

0 0
0 ‖x j − x true

j ‖2
))
.

Since tri (Z̄) > 0, Lemma 1 implies tri (Z) > 0. Since x j 
= x true
j and the first matrix

on the right-hand side is positive semidefinite (since Z{i, j,m+} � 0), the right-hand side
is nonsingular or, equivalently, Zα{i, j,m+} is nonsingular for all 0 < α ≤ 1 sufficiently
small. Choose a 0 < α ≤ 1 such that Zα{i, j,m+} is nonsingular (and hence positive

definite) for all (i, j) ∈ A(Ī). We now construct a feasible perturbation of Zα . By
translating all n points by a common factor if necessary, we can assume that xαi 
= 0
for all i ∈ Ī. For each θ > 0, let Uθ ∈ R

d×d be an orthogonal matrix satisfying
0 < ‖Uθ − Id‖F = O(θ) (e.g., Uθ corresponds to a rotation by angle θ ). Then, for
θ > 0 sufficiently small, we have

⎛

⎜⎝
yαi i yαi j (Uθ xαi )

T

yαi j yαj j xαj
T

Uθ xαi xαj Id

⎞

⎟⎠ � 0 ∀(i, j) ∈ A(Ī).

Fix any such θ . For each (i, j) ∈ A with i, j ∈ Ī, we have from Zα ∈ Fesdp that

(
yαi i yαi j
yαi j yαj j

)
− (Uθ

(
xαi xαj

) )T
Uθ
(

xαi xαj
)

=
(

yαi i yαi j
yαi j yαj j

)
− ( xαi xαj

)T ( xαi xαj
) � 0,

from which it follows that

⎛

⎜⎝
yαi i yαi j (Uθ xαi )

T

yαi j yαj j (Uθ xαj )
T

Uθ xαi Uθ xαj Id

⎞

⎟⎠ � 0.
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Thus, replacing xαi in Zα by Uθ xαi for all i ∈ Ī yields a Z̃α that is feasible for (4). More-
over, Z̃α is optimal for (4) (with δ = 0) since, by (3) and Ī ∪N (Ī) ⊆ {1, . . . ,m} (see
(10)), the objective function of (4) does not depend on xi for i ∈ Ī. Thus Z̃α ∈ S0

esdp
but

its Uθ xαi component differs from the xαi component of Zα for all i ∈ Ī, contradicting
the definition of Ī. 
�

By using Proposition 2, Lemmas 1 and 2(a), and Theorem 1, we show below that
every sensor i ∈ I0

esdp
is connected to some anchor through neighboring sensors also

in I0
esdp

. This result is analogous to [34, Proposition 5.1(b)] for an SOCP relaxation
of (1), though here we consider only the noiseless case. The proof, like the proof of
Theorem 1, involves a feasible perturbation of xi for all i ∈ Ī, where Ī is some subset
of I0

esdp
. However, we make use of tr j (Z) > 0 for all j ∈ N (Ī) instead of tri (Z) > 0

for all i ∈ Ī, and the perturbation involves a contraction instead of a rotation.

Theorem 2 Every i ∈ I0
esdp

is joined to some j > m by a path in G whose intermediate

nodes are all in I0
esdp

.

Proof Fix any ī ∈ I0
esdp

. Let Ī be the set of all i ∈ I0
esdp

that are joined to ī by a path

in the subgraph of G induced by I0
esdp

. By Assumption 1, N (Ī) 
= ∅. If there exists a

j ∈ N (Ī) with j > m, then the conclusion follows. Suppose that no such j exists.
Then, by the definition of Ī, (10) holds.

Fix any Z ∈ ri(S0
esdp
). By translating all n points by a common factor if necessary,

we can assume that xi 
= 0 for all i ∈ Ī. Also, by (10), Proposition 2 and Lemma 1,
we have that tr j (Z) > 0 for all j ∈ N (Ī). For each 0 < ε ≤ 1, define

xεi := (1− ε)xi ∀i ∈ Ī.

For each (i, j) ∈ A(Ī) with i ∈ Ī, we have from i ∈ I0
esdp

and Theorem 1 that

yii = ‖xi‖2. Since Z ∈ Fesdp , so that 7 holds, this implies yi j = xi
T x j . Then

yii − ‖xεi ‖2 = ‖xi‖2 − (1− ε)2‖xi‖2 = (2ε − ε2)‖xi‖2 > 0 and

det

(
yii − ‖xεi ‖2 yi j − xεi

T x j

yi j − xεi
T x j y j j − ‖x j‖2

)
= (2ε − ε2)‖xi‖2tr j (Z)− ε2(xi

T x j )
2

= ε
(

2‖xi‖2tr j (Z)− ε‖xi‖2tr j (Z)− ε(xi
T x j )

2
)
,

which is positive for all ε sufficiently small. Hence we can choose 0 < ε ≤ 1 so that

⎛

⎝
yii yi j xεi
yi j y j j x j

xεi x j Id

⎞

⎠ � 0 ∀(i, j) ∈ A(Ī) with i ∈ Ī.
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For each (i, j) ∈ A with i, j ∈ Ī, we have from Theorem 1 that yii = ‖xi‖2, y j j =
‖x j‖2 and hence (7) implies yi j = xi

T x j . Then

(
yii yi j

yi j y j j

)
−
(
‖xεi ‖2 xεi

T xεj
xεi

T xεj ‖xεj‖2
)
= (2ε − ε2)

( ‖xi‖2 xi
T x j

xi
T x j ‖x j‖2

)
,

which is positive semidefinite for 0 < ε ≤ 1. Hence

⎛

⎝
yii yi j xεi
yi j y j j xεj
xεi xεj Id

⎞

⎠ � 0 ∀(i, j) ∈ A with i, j ∈ Ī.

Thus, replacing xi in Z by xεi for all i ∈ Ī yields a Z̃ that is feasible for (4). Moreover,
Z̃ is optimal for (4) (with δ = 0) since, by (3) and (10), the objective function of (4)
does not depend on xi for i ∈ Ī. Thus Z̃ ∈ S0

esdp
but its xεi component differs from the

xi component of Z for all i ∈ Ī, contradicting the definition of Ī. 
�
Notice that Lemmas 1, 2 and 3 readily extend to the SDP relaxation (2). However, it

is an open question whether Theorem 1 extends to the SDP relaxation. The following
computational example suggests that Theorem 2 is not true for SDP relaxation. This
makes a direct generalization of the proof of Theorem 1 impossible.

Example 1 Let n= 7,m= 5, x
true

1 = (2, 0)T , x
true

2 = (1, 1)T , x
true

3 = (1,−1)T , x
true

4 =
(3,−1)T , x

true

5 = (3, 1)T , x6 = (4, 0)T and x7 = (0, 0)T . Also, let d12 = d13 =
d14 = d15 = d27 = d37 = d46 = d56 =

√
2, and d23 = d45 = 2.

Then, solving the corresponding SDP relaxation (2) in SeDuMi gives a solution Z
with tr1(Z) ≈ 10−9. This suggests, by Proposition 1, that 1 ∈ I0

sdp
. Also, the computed

positions x2 through x5 all lie on the x-axis, which suggests that those four sensors are
not accurately positioned. Hence x1 is not connected to x6 or x7 through any invariant
sensors.

On the other hand, by solving the corresponding ESDP relaxation (4), the individual
traces obtained are all greater than 1, which suggests, by Theorem 1, that no sensor is
accurately positioned.

4 Trace test for accurately positioned sensors by SDP and ESDP:
failure in the noisy case

We saw from Proposition 2 and Theorem 1 that, in the noiseless case, tri (Z) = 0 for
any interior ESDP solution Z implies xi is invariant over all ESDP solutions (and hence
xi = x true

i ) and conversely. Thus, by computing an interior ESDP solution (using, say,
an interior-point method) and checking the individual traces, we can determine exactly
which sensors are correctly positioned. Can this be extended to the noisy case? For
example, if the noise level is sufficiently low and Z is the analytic center of the ESDP
solution set, does tri (Z) = 0 imply xi is near x true

i ? However, the examples below
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show that this is false for ESDP and SDP relaxations. Thus, ESDP and SDP relaxations
are more sensitive to noises than the SOCP relaxation.

Our first example shows that Theorem 1 is false when I0
esdp

and S0
esdp

are replaced

by Iδ
esdp

and Sδ
esdp

, regardless of how small ‖δ‖ is.

Example 2 Let m = 1, n = 4, x
true

1 = (0, 0)T , and x2, x3, x4 be non-collinear points
in R

2. Let δ1i = ε for i = 2, 3, 4 (ε ≥ 0). Then d2
1i = ‖xi‖2 + ε for i = 2, 3, 4. Here

ε = 0 corresponds to the noiseless case.
The corresponding ESDP relaxation (4), which is equivalent to the SDP relaxation

(2), is the following problem:

min
Z

4∑

i=2

|y11 − 2xT
i x1 + ‖xi‖2 − d2

1i |

s.t. Z =
(

y11 xT
1

x1 I2

)
, y11 ≥ ‖x1‖2. (11)

We claim that

Sδ
esdp
=
{(

ε 0
0 I2

)}
∀ε ≥ 0.

To see this, note that the unique element of the above set is feasible for (11) with zero
objective value. Thus the optimal value of (11) is 0. Hence, for Z to be a solution of
(11), it must satisfy

0 = y11 − 2xT
i x1 + ‖xi‖2 − d2

1i = y11 − 2xT
i x1 − ε, i = 2, 3, 4. (12)

Since x2, x3, x4 are not collinear, the vectors (1,−2xT
i ), i = 2, 3, 4, are linearly inde-

pendent, implying that (12) has a unique solution. Hence Iδ
esdp
= {1}. However, for

ε > 0, we have δ 
= 0 and tr1(Z) = ε − 0 > 0 for all Z ∈ Sδ
esdp

.

In Example 2, as ε → 0, we have x1 = x
true

1 and tr1(Z)→ 0 for all Z ∈ Sδ
esdp
= Sδ

sdp
.

In general, if δ ≈ 0, does tri (Z) = 0 for some Z ∈ ri(Sδ
esdp
) (or Z ∈ ri(Sδ

sdp
)) imply

xi ≈ x
true

i ? Our second example below shows that this is false even when Z is the unique
solution of the SDP/ESDP relaxation and ‖δ‖ is arbitrarily small. This contrasts with
an SOCP relaxation of (1), for which such a result does hold [34, Proposition 7.2].

Example 3 Let m = 2, n = 6, x true
1 = (2, 0)T , x true

2 = (0,−1)T , x3 = (2,−1)T ,

x4 = (2, 1)T , x5 = (−1, 0)T , x6 = (1, 0)T . Let δ12 =
√

4+ (1− ε)2 − √5, δ13 =
ε, δ14 = −ε, and δ25 = δ26 = 0 (0 ≤ ε < 1

2 ). Then d12 =
√

4+ (1− ε)2, d13 =
1+ ε, d14 = 1− ε, d25 = d26 =

√
2. Here ε = 0 corresponds to the noiseless case.

The corresponding ESDP relaxation (4), which is equivalent to the SDP relaxation
(2), is the following problem:
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min
Z
|y11 − 2xT

3 x1 + 5− (1+ ε)2| + |y11 − 2xT
4 x1 + 5− (1− ε)2|

+|y22−2xT
5 x2 − 1|+|y22 − 2xT

6 x2 − 1|+|y11 − 2y12 + y22−4− (1−ε)2|

s.t. Z =

⎛

⎜⎜⎝

y11 y12 xT
1

y12 y22 xT
2

x1 x2 I2

⎞

⎟⎟⎠ � 0. (13)

We claim that

Sδ
esdp
=

⎛

⎜⎜⎝

4+ ε2 ε 2 ε

ε 1 0 1
2 0 1 0
ε 1 0 1

⎞

⎟⎟⎠ ∀ 0 < ε <
1

2
.

To see this, note that the unique element of the above set has zero objective value and
it is feasible for (13) because

(
4+ ε2 ε

ε 1

)
−
(

2 ε

0 1

)(
2 0
ε 1

)
=
(

0 0
0 0

)
.

Thus the optimal value of (13) is 0. We show below that (13) has a unique solution.
Since the optimal value of (13) is zero, the expressions inside the absolute values

in the objective function must be zero when evaluated at any Z ∈ Sδ
esdp

. Then we

have from y11 − 2xT
3 x1 + 5− (1+ ε)2 = y11 − 2xT

4 x1 + 5− (1− ε)2 = 0 and the
constraint y11 ≥ ‖x1‖2 that x1 = (2, ε)T , y11 = 4 + ε2, from y22 − 2xT

5 x2 − 1 =
y22 − 2xT

6 x2 − 1 = 0 that x2 = (0, t)T for some t ∈ R and y22 = 1, and from

y11−2y12+ y22−4− (1−ε)2 = 0 that y12 = y11 + y22 − 4− (1− ε)2
2

= ε. Hence

each Z ∈ Sδ
esdp

must have the form

Z =

⎛

⎜⎜⎝

4+ ε2 ε 2 ε

ε 1 0 t
2 0 1 0
ε t 0 1

⎞

⎟⎟⎠.

Since Z � 0 and tr1(Z) = 0, we must have y12 − xT
1 x2 = ε − (2 ε )

(
0
t

)
= 0,

i.e., t = 1. Thus, for ε ∈ (0, 1
2 ),Sδesdp

is a singleton and Iδ
esdp
= {1, 2}. Moreover,

tr1(Z) = tr2(Z) = 0 for all Z ∈ Sδ
esdp

. However, while x1 = (2, ε)T approaches

x true
1 = (2, 0)T as ε → 0, x2 = (0, 1)T does not approach x true

2 = (0,−1)T as
ε → 0.
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Fig. 1 An example showing that, when distance measurements have noise, zero individual trace is unin-
formative of sensor position accuracy in ESDP and SDP solutions

By using the observation that

(
4 0
0 1

)
−
(

2 0
0 t

)(
2 0
0 t

)
=
(

0 0
0 1− t2

)
� 0 ∀t ∈ [−1, 1],

it is straightforward to verify that

S0
esdp
=

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝

4 0 2 0
0 1 0 t
2 0 1 0
0 t 0 1

⎞

⎟⎟⎠

∣∣∣∣∣∣∣∣
t ∈ [−1, 1]

⎫
⎪⎪⎬

⎪⎪⎭
.

Hence I0
esdp
= {1}, i.e., only x1 is invariant over S0

esdp
. This example is also illustrated

in Fig. 1.

Example 3 shows that individual traces are uninformative of the accuracy of the
ESDP solution in the presence of noise. What property is missing? We shall see in
Proposition 3 that Sδ

esdp
is upper semicontinuous at 0 with respect to δ. If it is also lower

semicontinuous at 0, then for any Z ∈ ri(S0
esdp
), there exist Z δ ∈ ri(Sδ

esdp
), δ > 0, such

that limδ→0 Z δ = Z . Hence, if xi is not invariant over S0
esdp

, then 0 < tri (Z) =
limδ→0 tri (Z δ), showing that tri (Z δ) has to be “large” when noise is small. In Exam-
ple 3, Sδ

esdp
is not lower semicontinuous with respect to δ at 0.

Other than the individual trace, we know of no easy way to judge which computed
sensor positions are accurate in the noisy case. In the next section, we propose a robust
version of ESDP that overcomes this difficulty. We close this section with some com-
pactness and semicontinuity properties of Sδ

esdp
with respect to δ. These properties will

be used to prove Lemma 5.

Proposition 3 (a) lim supδ→0 Sδ
esdp
⊆ S0

esdp
.

(b) For any bounded set � ⊆ R
|A|,
⋃
δ∈� Sδ

esdp
is a bounded set.

(c) For each ε > 0 there exists a scalar δ > 0 such that

min
Z0∈S0

esdp

‖Z − Z0‖F ≤ ε ∀Z ∈ Sδ
esdp
, ∀ 0 ≤ ‖δ‖∞ < δ. (14)
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Proof (a) Let f δ(Z) denote the objective function of (4) with d2
i j given by (5). Fix

any Z̄ ∈ lim supδ→0 Sδ
esdp

. Then there exist sequences δk ∈ R
|A| and Zk ∈ Sδk

esdp
, k =

1, 2, . . ., such that limk→∞ δk = 0, limk→∞ Zk = Z̄ . Since Zk ∈ Fesdp and Fesdp is
closed, Z̄ ∈ Fesdp . Fix any Z ∈ S0

esdp
. Since Zk ∈ Sδk

esdp
and Z ∈ Fesdp , we have

f δk (Zk) ≤ f δk (Z), k = 1, 2, . . .

Taking limit yields

0 ≤ f 0(Z̄) = lim
k→∞ f δk (Zk) ≤ lim

k→∞ f δk (Z) = f 0(Z) = 0.

Hence Z̄ ∈ S0
esdp

.
(b) Owing to the positive semidefinite constraints in (4) and yi j = 0 for (i, j) 
∈ A

and Z ∈ Sδ
esdp

, it suffices to show that yii is uniformly bounded over δ ∈ � and

Z ∈ Sδ
esdp

, for i = 1, . . . ,m. Fix any 	 > 0 such that � ⊆ [−	, 	]|A|.
Since Z true ∈ Fesdp , we have for any δ ∈ � and Z ∈ Sδ

esdp
that

∑

(i, j)∈A

∣∣∣�i j (Z)− d2
i j

∣∣∣ ≤
∑

(i, j)∈A

∣∣∣�i j (Z
true)− d2

i j

∣∣∣

=
∑

(i, j)∈A

∣∣∣‖x true
i − x true

j ‖2 − d2
i j

∣∣∣

=
∑

(i, j)∈A
|δi j | ≤ |A|	,

where the equalities use (3), (9), and (5). Thus (3) yields

yii − 2yi j + y j j ≤ d2
i j + |A|	 ∀(i, j) ∈ As ,

yii − 2xT
i x j +‖x j‖2 ≤ d2

i j + |A|	 ∀(i, j)∈A with i ≤m< j,
∀Z ∈Sδ

esdp
, ∀δ ∈�.

(15)

Fix any δ ∈ � and Z ∈ Sδ
esdp

. We first consider those i ≤ m such that (i, j) ∈ A
for some j > m (i.e., i is a neighbor of some anchor). We have from tri (Z) ≥ 0 and
(15) that

‖xi‖2 − 2‖xi‖‖x j‖ + ‖x j‖2
≤ yii − 2xT

i x j + ‖x j‖2 ≤ d2
i j + |A|	 ≤ (d true

i j )2 + 	̄,

where we let d true
i j := ‖x

true

i − x
true

j ‖ and 	̄ := (1 + |A|)	. By writing the left-hand

side as (‖xi‖− ‖x j‖)2, we obtain ‖xi‖ ≤
√
(d true

i j )2 + 	̄+‖x j‖, which together with
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the second inequality above yields

yii ≤ (d true
i j )2 + 	̄ + 2‖x j‖

√
(d true

i j )2 + 	̄ + ‖x j‖2.

We next consider those i ≤ m such that (i, j) ∈ A for some j ≤ m. We have from
Z{i, j} � 0 and (15) that

(
√

yii −√y j j )
2 = yii − 2

√
yii y j j + y j j

≤ yii − 2yi j + y j j ≤ d2
i j + |A|	 ≤ (d true

i j )2 + 	̄,

from which it follows that 0 ≤ yii ≤
(√
(d true

i j )2 + 	̄ +√y j j

)2
. It then follows from

induction and Assumption 1 that each yii is uniformly bounded, independent of δ.
(c) If the statement were false, then there would exist an ε > 0 such that, for each

integer k > 0 there exist δk ∈ R
|A| with ‖δk‖∞ ≤ 1

k and Zk ∈ Sδk
esdp

satisfying

min
Z0∈S0

esdp

‖Zk − Z0‖F > ε. (16)

By part (b), {Zk} is bounded. Since {δk} → 0, part (a) implies that every cluster point
of {Zk} lies in S0

esdp
, so that

min
Z0∈S0

esdp

‖Zk − Z0‖F → 0 as k →∞.

This contradicts (16). 
�
Proposition 3(c) implies that, when the noise level ‖δ‖ is low, the computed position

xi from Z ∈ Sδ
esdp

is near its true position x true
i for all i ∈ I0

esdp
. However, in practice we

are unlikely to know I0
esdp

and, as Example 3 shows, there is no easy way to estimate

I0
esdp

from Z ∈ Sδ
esdp

, however, small ‖δ‖ is.

5 A robust ESDP relaxation

We saw from Example 3 that SDP and ESDP relaxations have the defect that individual
traces are uninformative of sensor position accuracy in the presence of noise. In this
section we propose a noise-aware robust version of the ESDP relaxation that dampens
sensitivity to noise by expanding the solution set to include the noiseless solutions. In
particular, let Sρ,δ

resdp
denote the set of Z satisfying

Z ∈ Fesdp and |�i j (Z)− d2
i j | ≤ ρi j ∀(i, j) ∈ A. (17)

with ρ = (ρi j )(i, j)∈A ≥ 0. Notice that each Z satisfying (17) belongs to Su
esdp

, where

ui j = �i j (Z) − d2
i j + δi j for all (i, j) ∈ A. Since |u| ≤ ρ + |δ|, where | · | is taken
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componentwise, this implies

Sρ,δ

resdp
⊆
⋃

|u|≤ρ+|δ|
Su

esdp
. (18)

By Proposition 3(b), the right-hand side is bounded. Hence (18) implies that Sρ,δ

resdp
is

bounded. Moreover, if ρ ≥ |δ| (i.e., ρi j ≥ |δi j | for all (i, j) ∈ A), then

S0
esdp
⊆ Sρ,δ

resdp
. (19)

(since Z ∈ S0
esdp

implies �i j (Z) = ‖x true

i − x
true

j ‖2 and hence |�i j (Z)− d2
i j | = |δi j | for

all (i, j) ∈ A). Then any xi that is not invariant over S0
esdp

would also not be invariant

over Sρ,δ

resdp
. In applications, each |δi j | may be estimated by d2

i j/σi j , where σi j is the
signal-to-noise ratio for communication between sensors i and j .

The following lemma shows that the robust ESDP generalizes two key properties
of ESDP in the noiseless case (i.e., Proposition 2 and Theorem 1) to the noisy case.
Its proof uses Theorem 1, Propositions 2 and 3, as well as (18) and (19).

Lemma 5 (a) lim|δ|<ρ→0 Sρ,δ

resdp
= S0

esdp
.

(b) For each i ∈ {1, . . . ,m}, i ∈ I0
esdp

if and only if for every η > 0, there exists a
ρ̄ > 0 such that

tri (Z) < η ∀Z ∈ Sρ,δ
resdp
, ∀|δ| < ρ < ρ̄e, (20)

where e := (1, . . . , 1)T ∈ R
|A|.

Proof Part (a) follows readily from (18), (19), and Proposition 3(a). We prove part (b)
below.

Fix any i ∈ {1, . . . ,m}. Suppose that for every η > 0 there exists a ρ̄ > 0 such that
(20) holds. Fix any Z0 ∈ ri(S0

esdp
). For any η > 0, by taking |δ| < ρ sufficiently small,

we have from (19) that Z0 ∈ Sρ,δ

resdp
and from (20) that tri (Z0) < η. Hence tri (Z0) = 0,

so that Proposition 2 yields i ∈ I0
esdp

.

Conversely, suppose that i ∈ I0
esdp

. We have from (18) that

Sρ,δ
resdp
⊆
⋃

|u|<2ρ

Su
esdp
⊆ F :=

⋃

|u|<2e

Su
esdp

∀|δ| < ρ ≤ e. (21)

By Proposition 3(b), F is bounded. Since tri (Z) is continuous in Z , this implies that
tri (Z) is uniformly continuous over Z ∈ F , i.e., for any η > 0, there exists an ε > 0
such that

|tri (Z)− tri (Z
′)| < η ∀Z , Z ′ ∈ F with ‖Z − Z ′‖F ≤ ε. (22)

123



338 T. K. Pong, P. Tseng

By Proposition 3(c), there exists a δ̄ > 0 satisfying (14). Take ρ̄ = min{1, δ̄}/2. Then
(21), (14), (22), together with tri (Z0) = 0 for all Z0 ∈ S0

esdp
(see Theorem 1), yield

(20). 
�
Lemma 5(b) says that we can determine whether i ∈ I0

esdp
by checking tri (Z) for

all Z ∈ Sρ,δ

resdp
and all |δ| < ρ near 0. This is clearly an impractical way to find I0

esdp
.

Below we consider a more practical way based on computing, for a single |δ| < ρ near
0, a Z ∈ Sρ,δ

resdp
that is “most interior” and hence least sensitive to noise. In particular,

for each |δ| < ρ, let Z
ρ,δ

be the unique solution of the following log-barrier problem:

min
Z∈Sρ,δresdp

B(Z) := −
∑

(i, j)∈As

ln det(Z{i, j,m+})−
m∑

i=1

ln tri (Z). (23)

Since |δ| < ρ, there exists a Z ∈ Sρ,δ

resdp
satisfying B(Z) <∞ (e.g., take any Z ∈ S0

esdp
and increase yii , i = 1, . . . ,m, by a sufficiently small amount). Moreover, the objec-
tive function of (23) is a strictly convex function and Sρ,δ

resdp
is compact. Hence Z

ρ,δ
,

which may be viewed as a variant of the analytic center of Sρ,δ

resdp
, is well defined,

unique, and B(Z
ρ,δ
) < ∞. The following result justifies the term of robust ESDP,

showing that tri (Zρ,δ) ≈ 0 and xρ,δi ≈ x true
i whenever |δ| < ρ ≈ 0, for all i ∈ I0

esdp
.

Its proof uses Theorem 1 and Lemma 5(a).

Theorem 3 (a) Every cluster point of {Zρ,δ}, as |δ| < ρ → 0, belongs to ri(S0
esdp
).

(b) For each i ∈ I0
esdp

,

lim|δ|<ρ→0
tri (Z

ρ,δ

) = 0 and lim|δ|<ρ→0
x
ρ,δ

i = x true
i . (24)

Proof (a) Since B � 0 and B̄ � 0 imply that Null(B + B̄) = Null(B)∩Null(B̄), we
see that, for each (i, j) ∈ As and l ∈ {1, . . . ,m}, rank(Z{i, j,m+}) and rank(Z{l,m+})
are constant over all Z ∈ ri(S0

esdp
), which we denote by ri j and rl , respectively. Then,

rank(Z{i, j,m+}) ≤ ri j and rank(Z{l,m+}) ≤ rl for all (i, j) ∈ As, l ∈ {1, . . . ,m}, and
Z ∈ S0

esdp
. Moreover,

Z ∈ ri(S0
esdp
)⇐⇒ Z ∈ S0

esdp
,

rank(Z{i, j,m+}) = ri j ∀(i, j) ∈ As, rank(Z{i,m+}) = ri ∀i. (25)

For any Z ∈ Fesdp and i ∈ {1, . . . ,m}, since tri (Z) is the Schur complement of
Id in Z{i,m+}, we have rank(Z{i,m+}) = d + rank(tri (Z)). Then (25), together with
Proposition 2 and Theorem 1, implies that

ri =
{

d if i ∈ I0
esdp
;

d + 1 if i /∈ I0
esdp
.
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Hence (25) is equivalent to

Z ∈ ri(S0
esdp
)⇐⇒ Z ∈ S0

esdp
,

rank(Z{i, j,m+}) = ri j ∀(i, j) ∈ As, tri (Z) > 0 ∀i /∈ I0
esdp
. (26)

For any W ∈ S p (p ≥ 1), let λk(W ) denote the kth eigenvalue of W , arranged in
decreasing order. Let

λ
i, j
k (Z) := λk

(
Z{i, j,m+}

)
, k = 1, . . . , d + 2, (i, j) ∈ As,

J a := {(i, j, k) | (i, j) ∈ As, 1 ≤ k ≤ ri j },
Ba(Z) := −

∑

(i, j,k)∈J a

ln λi, j
k (Z)−

∑

i /∈I0
esdp

ln tri (Z).

Then, by (26), ri(S0
esdp
) = S0

esdp
∩ domBa .

Let Z̄ be any cluster point of {Z ρ,δ } as |δ| < ρ → 0. By Lemma 5(a), Z̄ ∈ S0
esdp

.

Suppose to the contrary that Z̄ 
∈ ri(S0
esdp
), so that Z̄ 
∈ domBa . Consider any sequence

|δt | < ρt , t = 1, 2, . . ., such that {ρt } → 0 and {Z ρt ,δt } → Z̄ . Fix any Za ∈ ri(S0
esdp
).

Hence Z̄+Za

2 ∈ ri(S0
esdp
). Since Z̄ 
∈ domBa , we have {Ba(Z

ρt ,δt
)} → ∞. Since

Z̄+Za

2 ∈ domBa so that Ba is continuous there, we also have

{
Ba
(

Z
ρt ,δt +Za

2

)}
→

Ba
(

Z̄+Za

2

)
<∞. Thus

Ba

(
Z
ρt ,δt + Za

2

)
− Ba(Z

ρt ,δt
)→−∞ as t →∞. (27)

On the other hand, for (i, j, k) /∈ J a , since Za
{i, j,m+} � 0 and λi, j

k (·) is operator
monotone (see [17, Corollary 4.3.3]), we have

λ
i, j
k

(
Z
ρt ,δt + Za

2

)
≥ λi, j

k

(
1

2
Z
ρt ,δt

)

for all t . Since − ln(·) is nonincreasing, this implies that

− ln λi, j
k

(
Z
ρt ,δt + Za

2

)
≤ − ln λi, j

k

(
1

2
Z
ρt ,δt

)
= − ln λi, j

k (Z
ρt ,δt

)+ ln 2. (28)

For i = 1, . . . ,m, we have from (6) that

tri

(
Z
ρt ,δt + Za

2

)
= 1

2
tri (Z

ρt ,δt
)+ 1

2
tri (Z

a)+ 1

4
‖xρt ,δt

i − xa
i ‖2 ≥

1

2
tri (Z

ρt ,δt
)
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for all t . Since − ln(·) is nonincreasing, this implies that

− ln tri

(
Z
ρt ,δt + Za

2

)
≤ − ln

1

2
tri

(
Z
ρt ,δt
)
= − ln tri (Z

ρt ,δt
)+ ln 2. (29)

Combining (28) and (29) yields that

B

(
Z
ρt ,δt + Za

2

)
= Ba

(
Z
ρt ,δt + Za

2

)
−
∑

(i, j,k)/∈J a

ln λi, j
k

(
Z
ρt ,δt + Za

2

)

−
∑

i∈I0
esdp

ln tri

(
Z
ρt ,δt + Za

2

)

≤ Ba

(
Z
ρt ,δt + Za

2

)
−
∑

(i, j,k)/∈J a

ln λi, j
k (Z

ρt ,δt
)

−
∑

i∈I0
esdp

ln tri (Z
ρt ,δt

)+ (|As |(2+ d)+ m) ln 2

= Ba

(
Z
ρt ,δt + Za

2

)
− Ba(Z

ρt ,δt
)

+ B(Z
ρt ,δt

)+ (|As |(2+ d)+ m) ln 2.

By (27), the right-hand side is less than B(Z
ρt ,δt

) for all t sufficiently large. Since

Za ∈ S0
esdp
⊆ Sρt ,δt

resdp
(see (19)) so that Z

ρt ,δt +Za

2 ∈ Sρt ,δt

resdp
, this contradicts the definition

of Z
ρt ,δt as the solution of (23). Thus, Ba(Z̄) <∞ and hence Z̄ ∈ ri(S0

esdp
).

(b) By (21), {Z ρ,δ }|δ|<ρ≤e lies in the bounded set F . By Lemma 5(a), as |δ| < ρ →
0, all cluster points of {Z ρ,δ } are in S0

esdp
. For each i ∈ I0

esdp
, since xi is invariant over

S0
esdp

, we have x̄i = x true
i for every cluster point x̄i of {xρ,δi } as |δ| < ρ → 0. Since

{xρ,δi } lies in a bounded set, this implies that

lim|δ|<ρ→0
x
ρ,δ

i = x true
i .

Similarly, Theorem 1 implies that tri (Z) = 0 for all Z ∈ S0
esdp

. Since {xρ,δi } and {yρ,δi i }
lie in a bounded set, this implies that

lim|δ|<ρ→0
tri (Z

ρ,δ

) = 0.


�
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It is an open question whether {Z ρ,δ } converges as |δ| < ρ → 0 and, if yes, what
the limit is; see [24] and references therein for related results. The following result
shows that I0

esdp
is identified by those i with tri (Z

ρ,δ
) ≈ 0 for any |δ| < ρ ≈ 0. It also

shows that the distance from x
ρ,δ

i to its true position x true
i is O

(√
tri (Z

ρ,δ
)
)

. Its proof

uses Proposition 2, Lemma 4, and Theorem 3.

Theorem 4 (a) There exists η̄ > 0, ρ̄ > 0 such that

tri (Z
ρ,δ

) < η̄ for some|δ| < ρ ≤ ρ̄e �⇒ i ∈ I0
esdp
,

tri (Z
ρ,δ

) ≥ 0.1η̄ for some|δ| < ρ ≤ ρ̄e �⇒ i /∈ I0
esdp
,

where e := (1, . . . , 1)T ∈ R
|A|.

(b) For i ∈ {1, . . . ,m},

‖xρ,δi − x true
i ‖ ≤

√
2|As | + m

(
tri (Z

ρ,δ

)
) 1

2 ∀|δ| < ρ. (30)

Proof (a) Let C denote the set of all cluster points of Z
ρ,δ

as |δ| < ρ → 0. By
Theorem 3, C ⊆ ri(S0

esdp
). Then C, being a closed subset of S0

esdp
, is compact. Define

η̄ := 1

2
min

i /∈I0
esdp

inf
Z∈C

tri (Z). (31)

Since tri (Z) is continuous in Z and C is compact, for each i ∈ {1, . . . ,m}\I0
esdp

, there

exists Zi ∈ C such that inf Z∈C tri (Z) = tri (Zi ) and, by Proposition 2, tri (Zi ) > 0.
Hence η̄ > 0.

We claim that there exists a ρ̄ > 0 such that

tri (Z
ρ,δ) ≥ η̄ ∀i /∈ I0

esdp
, ∀|δ| < ρ ≤ ρ̄e.

If this claim were false, then there would exist some i /∈ I0
esdp

and sequence |δt | <
ρt , t = 1, 2, . . ., such that {ρt } → 0 and tri (Z

ρt ,δt
) < η̄ for all t . Then taking the limit

would yield tri (Z̄) ≤ η̄, where Z̄ is any cluster point of {Z ρt ,δt }. Since Z̄ ∈ C, (31)
would imply η̄ ≤ 1

2 tri (Z̄), a contradiction of η̄ > 0.

By Theorem 3(b), for each i ∈ I0
esdp

, we have that lim|δ|<ρ→0 tri (Z
ρ,δ
) = 0. Com-

bining this with the preceding claim, we conclude that there exists ρ̄ > 0 such that

tri (Z
ρ,δ

) < 0.1η̄ ∀i ∈ I0
esdp

and tri (Z
ρ,δ

) ≥ η̄ ∀i /∈ I0
esdp
, ∀|δ| < ρ ≤ ρ̄e.

(b) Fix any |δ| < ρ. Let α ∈ (0, 1). For any i ∈ {1, . . . ,m}, we have from (6) and
tri (Z true) = 0 (see (9)) that

tri (αZ
ρ,δ + (1− α)Z true) = αtri (Z

ρ,δ

)+ α(1− α)‖xρ,δi − x true
i ‖2. (32)

123



342 T. K. Pong, P. Tseng

For any (i, j) ∈ As , letting Ā =
(

xρ,δi xρ,δj

)
, A = ( x true

i x true
j

)
, B̄ = Zρ,δ{i, j}, B =

Z true{i, j}, we have

det
(
αZρ,δ{i, j,m+} + (1− α)Z true

{i, j,m+}
)

= det

(
α B̄ + (1− α)B (α Ā + (1− α)A)T
α Ā + (1− α)A Id

)

= det
(
(α B̄ + (1− α)B)− (α Ā + (1− α)A)T (α Ā + (1− α)A)

)

= det
(
α(B̄ − ĀT Ā)+ (1− α)(B − AT A)+ α(1− α) ( Ā − A

)T (
Ā − A

))

≥ det
(
α(B̄ − ĀT Ā)

)

= α2 det(Z
ρ,δ

{i, j,m+}), (33)

where the third equality uses Lemma 4; the fourth equality uses det

(
B̄ ĀT

Ā Id

)
=

det(B̄− ĀT Ā) and the second equality uses an analogous identity; the inequality uses
B− AT A � 0, ( Ā− A)T ( Ā− A) � 0, and the monotonicity of det(·) with respect to
� over positive semidefinite matrices. Note that the solution Z

ρ,δ
of (23) equivalently

solves

max
Z∈Sρ,δ

resdp

G(Z) :=
∏

(i, j)∈As

det Z{i, j,m+}
m∏

i=1

tri (Z).

Since Z true ∈ S0
esdp

, (19) implies that αZ
ρ,δ + (1 − α)Z true ∈ Sρ,δ

resdp
. Hence, for any

ī ∈ {1, . . . ,m}, we have

G(Z
ρ,δ

) ≥ G(αZ
ρ,δ + (1− α)Z true)

≥
⎛

⎝
∏

(i, j)∈As

α2 det(Z
ρ,δ

{i, j,m+})

⎞

⎠

⎛

⎝
∏

i 
=ī

αtri (Z
ρ,δ

)

⎞

⎠

×
(
αtrī (Z

ρ,δ

)+ α(1− α)‖xρ,δ
ī
− x true

ī
‖2
)

= α2|As |+m G(Z
ρ,δ

)+ α2|As |+m(1− α)G(Z
ρ,δ
)

trī (Z
ρ,δ
)
‖xρ,δ

ī
− x true

ī
‖2,

where the inequality uses (32) and (33). It follows that

‖xρ,δ
ī
− x true

ī
‖2 ≤ 1− α2|As |+m

α2|As |+m(1− α) trī (Z
ρ,δ

) ∀α ∈ (0, 1).

Letting α→ 1 and using limα→1
1−αr

1−α = r (r ≥ 1) yields (30). 
�
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Remark 5.1 It can be seen that (32) and (33) hold for any Z ∈ Sρ,δ

resdp
in place of Z true.

Hence, following the proof of Theorem 4(b), we have for each i = 1, . . . ,m that,

sup
Z ,Z ′∈Sρ,δ

resdp

‖xi − x ′i‖ ≤ 2
√

2|As | + m(tri (Z
ρ,δ

))
1
2 .

This suggests that tri (Z
ρ,δ
) will likely increase as ρ increases since the set Sρ,δ

resdp
will

be enlarged.

6 An LPCGD method for solving the robust ESDP relaxation

The results of Sect. 5 suggest solving (23), with ρ small but above the noise level,
and then checking the individual traces of the solution to determine which sensors are
accurately positioned. How can (23) be efficiently solved? An interior-point method
can be used, but it cannot easily exploit the problem structure and distribute the com-
putation over sensors—an important consideration for practical implementation. In
this section, we propose a method for solving (23) that can distribute the computa-
tion over sensors by exploiting the partially separable structure of the problem. This
method is a block-coordinate gradient descent method [35], similar to the one used
in [34, Section 8] for an SOCP relaxation, applied to an unconstrained reformulation
of (23) using quadratic penalization. In our simulation (see Sect. 7), this method is
significantly faster than solving the ESDP relaxation (4) by an interior-point method.

We first reformulate (17) as a smooth convex optimization problem over Fesdp by
introducing a smooth convex penalty function for its second set of constraints. For
any scalar r > 0, let

hr (t) := 1

2
max{0, t − r}2 + 1

2
max{0,−t − r}2 = 1

2
max{0, |t | − r}2.

Then hr is smooth (i.e., continuously differentiable), convex, nonnegative-valued, and
hr (t) = 0 if and only if |t | ≤ r . For any ρ = (ρi j )(i, j)∈A > 0, define the smooth
convex penalty function

fρ(Z) :=
∑

(i, j)∈A
hρi j (�i j (Z)− d2

i j ). (34)

Then when ρ ≥ |δ|, Z ∈ Sρ,δ

resdp
if and only if Z ∈ Fesdp and fρ(Z) = 0 (i.e., Z is a

minimizer of fρ over Fesdp with zero objective function value). We augment fρ by a
scalar μ > 0 multiple of the log-barrier function B from (23) to obtain the following
log-barrier penalty function:

f μρ (Z) := fρ(Z)+ μB(Z). (35)

Then f μρ is convex, twice differentiable on domB, partially separable (i.e., a sum of
functions, each of few variables), and f μρ (Z) → ∞ as Z approaches any boundary
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point of domB. A standard argument shows that arg minZ f μρ (Z)→ Zρ,δ as μ→ 0,
assuming ρ > |δ|. If ρ 
> |δ|, then it can still be shown that every cluster point of
arg minZ f μρ (Z) as μ→ 0 is a solution of

min
Z∈Fesdp

fρ(Z). (36)

Since h0(t) = 1
2 t2, we see that, in the special case of ρ = 0, (36) is equivalent to

the variant of (4) whereby | · | is replaced with | · |2. Thus (36) may be viewed as a
noise-aware generalization of this variant.

By a slight abuse of notation, we denote by Zi the subvector of variables
xi , yii , {yi j | (i, j) ∈ As} and by ∇Zi f μρ the gradient of f μρ with respect to Zi , i =
1, . . . ,m. Notice that B is twice differentiable on domB. We denote its Hessian with
respect to Zi by ∇2

Zi
B. Although the quadratic penalty function hr is not twice dif-

ferentiable, ∇hr is Lipschitz continuous and piecewise-linear. Thus the generalized
Hessian ∂2hr is well defined and given by

∂2hr (t) =

⎧
⎪⎨

⎪⎩

1 if |t | > r;
[0, 1] if |t | = r;
0 else.

For our method, we make the (somewhat arbitrary) selection of 1 if |t | > r and 0 else.
This yields, via (34) and the chain rule, a selection of ∂2

Zi
fρ(Z), which we denote by

Hi,ρ(Z). The corresponding selection of ∂2
Zi

f μρ (Z) is

Hμ
i,ρ(Z) := Hi,ρ(Z)+ μ∇2

Zi
B(Z).

Since Hi,ρ(Z) � 0 and ∇2
Zi

B(Z) � 0, we have Hμ
i,ρ(Z) � 0 for Z ∈ domB. More-

over, Hμ
i,ρ(Z) has an “arrow” sparsity structure:

⎛

⎜⎜⎜⎜⎜⎝

yi j1 · · · yi jk xT
i yii

yi j1 ∗ ∗ ∗
...

. . .
...

...

yi jk ∗ ∗ ∗
xi ∗ · · · ∗ ∗ ∗
yii ∗ · · · ∗ ∗ ∗

⎞

⎟⎟⎟⎟⎟⎠
,

where N (i) = { j1, . . . , jk}, so its Cholesky factorization can be efficiently computed
in linear time.

Our method, which we call the log-barrier penalty coordinate gradient descent
(LPCGD) method, is based on applying a block-coordinate gradient descent method
[35] to minimize f μρ inexactly, with Zi as coordinate block and with μ decreased
periodically; see [34, Section 8] for a related method for an SOCP relaxation of (1).
We describe this method below.
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0. Choose initial μ > 0 and Z ∈ domB with Z{m+} = Id . Choose μfinal > 0 and a
continuous function ψ : (0,∞) → (0,∞) such that limμ↓0 ψ(μ) = 0. Choose
stepsize parameters 0 < β < 1 and 0 < ω < 1

2 . Go to step 1.
1. If there exists i ∈ {1, . . . ,m} such that ‖∇Zi f μρ (Z)‖ > ψ(μ), then construct the

block-coordinate generalized Newton direction:

Di = −(Hμ
i,ρ(Z))

−1∇Zi f μρ (Z),

and repeat step 1 with

Znew = Z [α],

where Z [α] is obtained from Z by replacing Zi with Zi +αDi and α is the largest
element of {1, β, β2, · · · } satisfying

f μρ (Z [α]) ≤ f μρ (Z)+ αωDT
i ∇Zi f μρ (Z).

Otherwise, go to step 2.
2. If μ ≤ μfinal, then stop. Otherwise, decrease μ and return to step 1.

The LPCGD method is highly parallelizable since, for any i, j ∈ {1, . . . ,m} that
share no neighbor, Zi and Z j share no variable and can be updated simultaneously.
Moreover, the computation distributes over the sensors since each sensor i needs
to communicate only with its neighbors in order to update Zi . This is an important
practical consideration, especially when tracking the position of moving sensors in
real time, since the coordination of communication/computation over all sensors is
expensive and the graph topology may change; see [16,21,25,28]. Only the changing
of μ needs centralized coordination among all sensors, but this needs to be done only
infrequently. For tracking,μ can conceivably be held fixed at a small value, especially
when sensors are moving slowly relative to the frequency of computation and one-hop
communication.

In the noiseless case (δ = 0), by setting ρ to be sufficiently small, Z
ρ,0

, computed
by the LPCGD method within a desired accuracy, approximates closely an interior
solution of the ESDP relaxation (4), according to Theorem 3.

7 Implementation and simulation results

In this section, we describe an implementation of the LPCGD method of Sect. 6 and
present simulation results for the ρ-ESDP relaxation (23), as solved by the LPCGD
method, and compare them with those for the ESDP relaxation (4), as solved by an
interior-point method [33], and for the SOCP relaxation, as solved by the SCGD
method in [34, Section 8].
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Table 1 Input parameters for
the test problems.

rr = 0.06 for n =1,000, 2,000,
rr = 0.035 for n =4,000,
rr = 0.02 for n =10,000.

P n σ |A|
1 1,000 0 5,063

2 1,000 0.001 5,288

3 1,000 0.01 5,212

4 1,000 0.1 5,292

5 1,000 0.2 5,356

6 2,000 0 21,122

7 2,000 0.001 21,070

8 2,000 0.01 20,897

9 2,000 0.1 21,245

10 2,000 0.2 21,048

11 4,000 0 29,547

12 4,000 0.001 29,342

13 4,000 0.01 29,892

14 4,000 0.1 29,361

15 4,000 0.2 29,571

16 10,000 0 61,124

17 10,000 0.001 61,038

18 10,000 0.01 61,124

19 10,000 0.1 61,140

20 10,000 0.2 60,954

7.1 Problem generation

To facilitate comparison with existing work, we follow [8,9,34,36] and generate
x true

1 , . . . , x true
n independently according to a uniform distribution on the unit square

[−0.5, 0.5]2, and set m = 0.9n (i.e., 10% of the points are anchors), A = {(i, j) :
‖x true

i − x
true

j ‖ < rr}, and

di j = ‖x true

i − x
true

j ‖ · |1+ εi j · σ | ∀(i, j) ∈ A,

where εi j is a random variable, rr ∈ (0, 1) is the radio range, and σ ∈ [0, 1] is the
noisy factor. As in [8,9,34,36], each εi j is normally distributed with mean 0 and vari-
ance 1, and we use the parameter values of σ = 0, 0.001, 0.01, 0.1, 0.2 and rr = 0.06
for n = 1,000, 2,000, rr = 0.035 for n = 4,000, rr = 0.02 for n = 10,000; see
Table 1. While an additive Gaussian noise model is standard, the standard deviation is
often assumed to be independent of the distances [15, Eq. (3a)–(3d)], [21, Section 6].
Still, for radio signal, the standard deviation increases with distance and the above
noise model seems reasonable [38].
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7.2 Implementation of the LPCGD method

We coded in Fortran-77 the LPCGD method of Sect. 6, with initial μ = 0.1 and

μfinal = 10−14, ψ(μ) =
{

μ if μ > 10−7;
10−7 if μfinal ≤ μ ≤ 10−7,

β = 0.5, ω = 0.1.

(37)

We choose i in Step 1 in a cyclic order, compute Di using a Cholesky factorization
of Hμ

i,ρ(Z), and decrease μ by a factor of 10 in Step 2. These choices were made
with little experimentation and can conceivably be improved. As in [34], initially
xi = x true

i + �i , with the components of �i randomly generated from the square
[−0.2, 0.2]2. We then set yii = ‖xi‖2 + 1 and yi j = xT

i x j .
Since the Gaussian distribution has unbounded support, the condition ρ > |δ|

for ρ-ESDP is not guaranteed to hold for a fixed ρ > 0. On the other hand, the
tail of the Gaussian beyond 2 standard deviations is below 5% and, in particular,
Prob(|εi j | < 2) = 0.9545. Thus we will estimate |δi j | under the assumption that
|εi j | < 2. We have

|δi j | = |d2
i j − ‖x

true

i − x
true

j ‖2|
= d2

i j

∣∣∣∣1−
1

(1+ εi j · σ)2
∣∣∣∣

< d2
i j max|t |≤2

∣∣∣∣1−
1

(1+ t · σ)2
∣∣∣∣

= d2
i j

(
1

(1− 2σ)2
− 1

)
,

where the last equality is obtained by dividing into two cases t ∈ [0, 2] and t ∈ [−2, 0]
and comparing the respective maximum found (at t = 2 and t = −2). Accordingly,
we set

ρi j = d2
i j

(
1

(1− 2σ̂ )2
− 1

)
∀(i, j) ∈ A, (38)

where 0 ≤ σ̂ < 1
2 is our estimate of σ . If σ̂ ≥ σ > 0, then ρi j > |δi j | for over 95%

of the edges on average.
For each Z found by our LPCGD code, we judge a sensor i to be accurately posi-

tioned if

tri (Z) ≤ (a0 + a1σ̂ ) d̄i
2
, (39)

where d̄i := 1
|N (i)|
∑

j∈N (i) di j and a0, a1 are positive constants. This is patterned
after the trace test used for SOCP relaxation [34, Section 9]; see also (40). Here, the
distance is squared so that (39) is invariant under scaling of the points and distances.
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Table 2 Comparing ρ-ESDP, SOCP, and ESDP as solved by LPCGD, SCGD, and SeDuMi-I06, respec-
tively, for small and moderate noise

ρ-ESDP (LPCGD) SOCP (SCGD) ESDP (SeDuMi-I06)

P iter*/cpu/map/errap/err/RMSD iter*/cpu/map/errap/err/RMSD iter/cpu(cpuS )/map/errap/err/RMSD

1 62/4/666/1.6e−3/0.13/1.7e−2 199/8/384/4.1e−4/0.13/2.5e−2 21/45(30)/676/2.1e−3/0.12/1.7e−2

2 48/3/666/4.1e−3/0.19/2.4e−2 495/20/443/2.2e−3/0.19/3.3e−2 21/47(31)/736/3.6e−3/0.18/2.2e−2

3 40/3/660/2.2e−2/0.10/1.7e−2 599/24/441/6.3e−3/0.12/2.2e−2 20/36(20)/737/4.3e−2/0.11/1.6e−2

6 103/14/1762/3.6e−4/0.04/1.8e−3 558/47/1463/8.8e−5/0.10/9.6e−3 18/206(101)/1759/4.9e−4/0.03/1.2e−3

7 78/10/1729/1.7e−3/0.05/2.6e−3 835/68/1501/2.7e−3/0.11/9.9e−3 19/206(101)/1759/2.5e−3/0.05/2.2e−3

8 83/11/1699/1.4e−2/0.05/5.5e−3 2301/186/1557/2.2e−2/0.07/9.0e−3 21/182(79)/1750/2.2e−2/0.04/4.3e−3

11 180/18/3438/3.5e−4/0.03/8.0e−4 990/56/2913/3.9e−4/0.04/4.2e−3 18/555(159)/3313/4.6e−4/0.03/1.4e−3

12 150/15/3339/1.0e−3/0.11/5.8e−3 1257/72/2860/2.2e−3/0.11/8.2e−3 18/554(159)/3332/2.1e−3/0.09/5.1e−3

13 133/13/3396/1.9e−2/0.08/5.8e−3 3141/182/3045/7.4e−3/0.08/8.3e−3 19/544(149)/3458/2.0e−2/0.08/4.8e−3

16 399/33/7845/2.3e−3/0.05/3.0e−3 2890/133/6397/4.9e−4/0.05/4.4e−3 17/3148(424)/6472/2.5e−3/0.04/2.6e−3

17 364/30/8115/2.4e−3/0.04/2.2e−3 3638/175/6570/1.5e−3/0.04/3.8e−3 17/3148(420)/8043/1.7e−3/0.04/2.3e−3

18 317/27/8334/9.9e−3/0.05/3.7e−3 5681/274/7171/5.7e−3/0.05/4.4e−3 17/3130(403)/8600/8.7e−3/0.04/3.0e−3

cpu times are in seconds. In the LPCGD and SCGD columns, iter* represents iterations in ten thousands. In the SeDuMi-I06
column, cpu and cpuS denote the total time to solve ESDP and the time to run SeDuMi, respectively

The test (39) is justified by Proposition 2, Theorems 1, 3 and 4. Specifically, when
δ = 0 and we set σ̂ ≈ 0 (we use 10−6 in our experiments), we have Z approximately
equal to some Z0 ∈ ri(S0

esdp
) by Theorem 3 and, by Proposition 2 and Theorem 1,

i ∈ I0
esdp

if and only if tri (Z0) = 0, implying tri (Z) ≈ 0. When δ 
= 0 is sufficiently
small and we set σ̂ such that |δ| < ρ and ρ is sufficiently small, we have from Theo-
rem 4(a) that i ∈ I0

esdp
if and only if tri (Zρ,δ) is sufficiently small, implying tri (Z) is

sufficiently small. We settled on the constants of a0 = 0.01 and a1 = 30 after some
experimentation.

7.3 Simulation results

In Table 2, we compare theρ-ESDP relaxation (23), as solved by LPCGD method, with
an SOCP relaxation, as solved by the SCGD method [34, Section 8] and the ESDP
relaxation (4), as solved by a primal-dual interior-point method, namely, SeDuMi
(Version 1.05R5) by Jos Sturm [33]. In the LPCGD method, we assume knowledge of
σ and set σ̂ = max{σ, 10−6}. As in [34, Section 9], for each interior SOCP solution
x1, . . . , xm, (yi j )(i, j)∈A found, a sensor i is judged to be accurately positioned if there
exists a j ∈ N (i) satisfying

∣∣∣‖xi − x j‖2 − yi j

∣∣∣ ≤ 10−7di j , (40)

(with xi = x
true

i for i > m). For each interior ESDP solution Z found, a sensor i is
judged to be accurately positioned if (39) is satisfied. Although Example 3 shows that
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(39) may wrongly judge a sensor to be accurately positioned when there is noise, in
our simulation this test showed good predictive power.

Analogous to [34, Section 9], we denote by map the number of sensors that are
judged to be accurately positioned. We check the accuracy of these computed posi-
tions by computing the maximum error between them and the true positions:

errap = max
iaccurately
positioned

‖xi − x true
i ‖.

For comparison, we also compute the maximum error and the root-mean-square devi-
ation between computed positions and true positions of all sensors:

err = max
i=1,...,m

‖xi − x true
i ‖,

RMSD =
(

1
m

m∑
i=1
‖xi − x true

i ‖2
) 1

2

.

In Table 2, we report the number of iterations and the cpu time (in seconds)
for LPCGD, SCGD, and SeDuMi on the test problems from Table 1, with noise
σ = 0, 0.001, 0.01. For each solution found, we report map, errap, err , and RMSD. For
LPCGD and SCGD, the number of iterations is shown in ten thousands. Like LPCGD,
SCGD is coded in Fortran, while SeDuMi is coded in C. SeDuMi is interfaced with
a Matlab code, written by Wang et al. [36], that constructs the SDP data in SeD-
uMi format from the anchor positions and distance measurements. The code further
drops some edges (i, j) ∈ As to keep the number of neighboring sensors below a
user-specified threshold, suggested to be between 5 and 10. We set the threshold to 5
for faster solution time; also see [18, Section 5]. The total time cpu shown includes
the time to run the interface, as well as the SeDuMi run time (which is indicated by
cpuS). The results in Table 2 are obtained using a 2006 version of the Matlab inter-
face, sent to the second author by Yinyu Ye in a private communication, instead of the
current public-domain version available from http://www.stanford.edu/~yyye/. This is
because the 2006 version does not postprocess the ESDP solution using local improve-
ment and includes yii in its output, thus allowing for a direct comparison of ρ-ESDP
solution with ESDP solution and a test of solution accuracy using individual trace.
We distinguish the two versions by the suffixes “I06” and “I08”. We also consider
the Dual ESDP as solved by SeDuMi, using the publicly available code from http://
www.stanford.edu/~yyye/. We denote this version by the suffix “D”. A comparison of
LPCGD with SeDuMi-I08 and SeDuMi-D is given in the next subsection on refining
solutions using local improvement. The Fortran codes were compiled by Gnu F-77
compiler (Version 3.4.6). All codes were run on a Dell POWEREDGE 1950, under
Debian 4.0 Kernel Linux and installed with Matlab Version 7.8.

We see from Table 2 that LPCGD is faster than SCGD and much faster than
SeDuMi-I06. The accuracy of the solutions found by LPCGD is better than solu-
tions found by SCGD (i.e., map is larger, errap is comparable, err and RMSD are lower)
and almost comparable to solutions found by SeDuMi-I06, though the latter tends
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Fig. 2 The left figure shows the anchor (“◦”) and the solution found by LPCGD for problem 3 in Table 1
(n =1,000, σ = 0.01). Each sensor position (“·”) found is joined to its true position (“∗”) by a line. The right
figure shows the same information for the solution of ESDP found by SeDuMi-I06 for the same problem

Table 3 Comparing ρ-ESDP, as
solved by LPCGD, for varying σ̂

cpu times are in seconds. iter*
represents iterations in ten
thousands

ρ-ESDP (LPCGD)

P σ̂ iter*/cpu/map/errap/err /RMSD

1 0.005 37/2.5/638/1.4e−2/0.14/2.0e−2

1 0.01 34/2.3/659/1.9e−2/0.14/2.2e−2

1 0.02 30/2.1/686/2.8e−2/0.14/2.3e−2

2 0.005 36/2.7/673/1.1e−2/0.19/2.7e−2

2 0.01 34/2.4/704/2.0e−2/0.19/2.8e−2

2 0.02 29/2.1/733/3.1e−2/0.19/3.0e−2

3 0.015 36/2.6/674/2.4e−2/0.11/1.8e−2

3 0.02 33/2.3/686/2.9e−2/0.11/1.9e−2

3 0.03 30/2.1/703/3.7e−2/0.11/2.1e−2

to have lower RMSD. This is also illustrated in Fig. 2. Notice that the cpu time for
LPCGD increases about linearly with n.

In Table 2, we set σ̂ = max{σ, 10−6}, which may be restrictive since it assumes
an accurate knowledge of σ . In Table 3, we report the performance of ρ-ESDP on
the first three problems from Table 1 with varying σ̂ . Not too surprisingly, when σ̂ is
larger than σ, err and errap are larger. Intuitively, as σ̂ increases, each ρi j increases

according to (38), and Sρ,δ

resdp
expands. Then, the Z found by LPCGD, a sort of “center”

of this set, would tend to be further away from Z true, and err would increase. On
the other hand, the number of iterations and the cpu time for LPCGD decreases with
increasing σ̂ .

We next compare ρ-ESDP, SOCP, and ESDP in the presence of higher noise. We
consider test problems from Table 1 with noise σ = 0.1, 0.2. For LPCGD, we choose
ρi j as in (38) with σ̂ = max{σ, 10−6}. The results are recorded in Table 4. We see that
the solution accuracy is comparable for all three convex relaxations, with the LPCGD
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Table 4 Comparing ρ-ESDP, SOCP, and ESDP as solved by LPCGD, SCGD, and SeDuMi-I06, respec-
tively, on large problems with high distance measurement noise

ρ-ESDP (LPCGD) SOCP (SCGD) ESDP (SeDuMi-I06)

P iter*/cpu/map/errap/err /RMSD iter*/cpu/map/errap/err /RMSD iter/cpu(cpuS )/map/errap/err /RMSD

4 23/2/859/8.7e−2/0.12/2.4e−2 742/31/698/5.1e−2/0.12/2.3e−2 16/30(13)/895/1.1e−1/0.11/2.0e−2

5 22/2/795/1.1e−1/0.16/3.5e−2 742/31/743/1.2e−1/0.14/3.3e−2 16/30(13)/894/1.4e−1/0.16/3.2e−2

9 74/9/1799/5.2e−2/0.05/9.3e−3 1453/123/1731/4.4e−2/0.06/1.2e−2 16/157(51)/1800/4.8e−2/0.05/8.0e−3

10 87/11/1788/8.6e−2/0.09/1.9e−2 1233/100/1756/9.8e−2/0.10/2.1e−2 15/151(46)/1800/8.9e−2/0.09/1.7e−2

14 108/10/3491/4.8e−2/0.09/8.5e−3 2145/126/3338/3.3e−2/0.09/8.4e−3 17/487(95)/3592/6.4e−2/0.09/7.1e−3

15 104/10/3494/5.3e−2/0.06/1.1e−2 1497/87/3436/4.7e−2/0.06/1.0e−2 17/484(92)/3597/5.2e−2/0.06/9.4e−3

19 265/22/8649/2.9e−2/0.05/5.4e−3 4878/237/7998/2.3e−2/0.05/5.0e−3 18/3104(381)/8962/4.8e−2/0.05/4.5e−3

20 246/20/8427/2.9e−2/0.21/7.3e−3 4615/222/8437/2.7e−2/0.21/6.2e−3 18/3020(314)/8990/6.2e−2/0.06/5.7e−3
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Fig. 3 The left figure shows the anchor (“◦”) and the solution found by LPCGD for problem 4 in Table 1
(n =1,000, σ = 0.1). Each sensor position (“·”) found is joined to its true position (“∗”) by a line. The right
figure shows the same information for the solution of ESDP found by SeDuMi-I06 for the same problem

usually yielding an RMSD less than 10% higher than that obtained by SCGD, and
less than 20% higher than that obtained by SeDuMi-I06 (see also Fig. 3). This is a
consequence of increasing σ̂ as explained in the previous paragraph. We shall see in
the next subsection that the RMSD of the solution found by LPCGD can be refined
by local improvement heuristics. LPCGD is significantly faster than the other two
methods. Notice that for high noise, err is comparable with errap, which suggests
that the trace test is not very effective in selecting “accurately positioned” sensors.
Intuitively, it is harder to recover information about I0

esdp
when noise is higher.

We then consider an example used in [5,34] of 60 sensors, 4 anchors (at
(±0.45,±0.45)), rr = 0.3, and σ = 0.1, 0.2. For LPCGD, we choose ρi j as in
(38) with σ̂ = max{σ, 10−6}. The results are reported in Table 5. We see that the
solution accuracy is also comparable for all three convex relaxations.

Lastly, we solved the ESDP relaxation from Example 3 (with noise ε = 0.01)
using SeDuMi-I06. When the termination tolerance par.eps in SeDuMi is set to 1e-3,
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Table 5 Comparing ρ-ESDP, SOCP, and ESDP as solved by LPCGD, SCGD, and SeDuMi-I06, respec-
tively, on small problems with high distance measurement noise

ρ-ESDP (LPCGD) SOCP (SCGD) ESDP (SeDuMi-I06)

σ iter/cpu/map/errap/ err /RMSD iter/cpu/map/errap/ err /RMSD iter/cpu(cpuS )/map/errap/ err /RMSD

0.1 20073/0.2/58/2.1e−1/0.32/7.9e−2 1040709/4.9/51/1.1e−1/0.31/7.7e−2 12/0.7(0.6)/60/3.1e−1/0.31/8.7e−2

0.2 19696/0.2/51/2.5e−1/0.35/1.1e−1 1127791/4.7/47/1.7e−1/0.34/1.1e−1 12/0.7(0.6)/60/3.3e−1/0.33/1.0e−1

it outputs a Z with tr2(Z) = 0.363 and x2 = (0, 0.798). When par.eps is decreased to
1e-7, it outputs a Z with tr2(Z) = 0.009 and x2 = (0, 0.996). When par.eps is further
decreased below 1e-7, SeDuMi encounters numerical difficulty. Thus, in the pres-
ence of distance measurement noise, the solution obtained by solving SDP/ESDP to a
higher accuracy can be more misleading of the true sensor position (when proximity
to the true position is measured by individual trace)!

7.4 Refinements

When the graph G is dense, Wang et al. [36] proposed removing some of the edges
joining sensors so as to keep the number of neighboring sensors below a user-spec-
ified bound degbd, say, 5 or 10. This can significantly speed up the ESDP solution
time without significantly compromising solution accuracy. Such preprocessing was
also used by Nie [26] and Kim, Kojima, Waki [18] in solving sparse SOS relaxations.
We have implemented this preprocessing for LPCGD. In fact, since LPCGD updates
each sensor position using only information from its neighbors, removed edges can
be added back dynamically. We experimented with two versions: Version I does not
add back edges. Version II in Step 2 of LPCGD (when μ is decreased) adds back
those edges (i, j) ∈ As with |�i j (Z)− d2

i j | > 0, where yi j is chosen to minimize this
quantity subject to Z{i, j,m+} � 0. We denote these two versions by LPCGD(degbd,I)
and LPCGD(degbd,II), respectively. In our tests, we set degbd to be either 5 or m.

As in [5,10,18,20], local improvement heuristics can be used to refine the solution
found by LPCGD and improve its RMSD. In [5], a steepest descent method is applied
to locally minimize the error function

f̂ (X) :=
∑

(i, j)∈A
(‖xi − x j‖ − di j )

2.

To maintain the distributed nature of our method, we apply a block-coordinate steep-
est descent method to locally minimize f̂ . At each iteration, the method chooses an
i ∈ {1, . . . ,m} with ‖∇xi f̂ (X)‖ > 10−3 and updates xi by

xi ← xi − α∇xi f̂ (X),

and the stepsize α is chosen by an Armijo rule analogously as in Step 1 of LPCGD.
We experimented with two versions: Version A omits updating xi if xi is judged to be
accurately positioned by the trace test (39). Version B makes no such omission.
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Table 6 Comparing the time and solution RMSD for LPCGD with refinements on the problems from
Table 1

LPCGD(5,I) LPCGD(5,II) LPCGD(m,I)

P cpu/RMSD/cpuA/RMSDA/ cpu/RMSD/cpuA/RMSDA/ cpu/RMSD/cpuA/RMSDA/

cpuB/RMSDB cpuB/RMSDB cpuB/RMSDB

1 2/2.6e−2/2/2.1e−2/2/2.1e−2 4/1.7e−2/4/1.9e−2/4/2.0e−2 4/1.7e−2/4/2.0e−2/4/1.9e−2

2 1/3.1e−2/1/2.6e−2/1/2.6e−2 3/2.4e−2/3/2.8e−2/3/2.8e−2 3/2.4e−2/3/2.8e−2/3/2.8e−2

3 1/2.7e−2/1/2.0e−2/1/1.8e−2 3/1.7e−2/3/1.1e−2/3/9.6e−3 3/1.7e−2/3/1.1e−2/3/9.7e−3

4 1/2.8e−2/1/2.6e−2/1/2.1e−2 2/2.4e−2/2/2.5e−2/2/2.2e−2 2/2.4e−2/2/2.5e−2/2/2.2e−2

5 1/3.9e−2/1/3.4e−2/1/2.5e−2 1/3.5e−2/1/3.2e−2/2/2.5e−2 2/3.5e−2/2/3.1e−2/2/2.4e−2

6 2/9.3e−3/2/5.4e−3/2/6.2e−3 13/1.7e−3/13/4.6e−5/13/4.1e−5 14/1.8e−3/14/4.6e−5/14/7.5e−5

7 2/7.3e−3/2/4.0e−3/2/4.3e−3 9/2.6e−3/9/2.4e−3/9/2.4e−3 10/2.6e−3/10/2.4e−3/10/2.4e−3

8 1/1.3e−2/1/5.5e−3/1/3.9e−3 10/5.5e−3/10/2.4e−3/10/1.0e−3 11/5.5e−3/11/2.4e−3/11/1.0e−3

9 1/1.7e−2/1/1.5e−2/1/3.1e−3 9/9.3e−3/9/9.3e−3/9/2.3e−3 9/9.3e−3/9/9.3e−3/10/2.3e−3

10 1/2.4e−2/1/2.3e−2/1/8.7e−3 10/1.9e−2/10/1.9e−2/10/9.0e−3 11/1.9e−2/11/1.9e−2/11/9.1e−3

11 5/8.0e−3/5/3.2e−3/5/3.1e−3 17/8.0e−4/17/8.2e−4/17/8.3e−4 18/8.0e−4/18/1.0e−3/18/8.3e−4

12 4/1.1e−2/4/7.3e−3/4/7.3e−3 14/5.8e−3/14/5.8e−3/14/5.9e−3 15/5.8e−3/15/5.9e−3/15/5.9e−3

13 3/1.0e−2/3/6.3e−3/3/5.9e−3 13/5.8e−3/13/4.9e−3/13/4.7e−3 13/5.8e−3/13/5.0e−3/13/4.7e−3

14 2/1.3e−2/2/1.1e−2/2/5.7e−3 10/8.4e−3/10/8.0e−3/10/5.4e−3 10/8.5e−3/10/8.0e−3/10/5.5e−3

15 2/1.5e−2/2/1.4e−2/2/6.3e−3 9/1.1e−2/9/1.1e−2/10/5.6e−3 10/1.1e−2/10/1.1e−2/10/5.8e−3

16 10/7.1e−3/11/3.7e−3/11/3.9e−3 33/3.0e−3/33/3.4e−3/33/3.4e−3 33/3.0e−3/33/3.4e−3/34/3.5e−3

17 9/6.6e−3/9/3.0e−3/10/3.0e−3 31/2.2e−3/31/1.7e−3/31/1.7e−3 30/2.2e−3/30/1.8e−3/30/1.8e−3

18 8/6.8e−3/8/4.1e−3/8/4.1e−3 26/3.7e−3/26/3.8e−3/27/3.7e−3 27/3.7e−3/27/3.8e−3/27/3.7e−3

19 6/8.3e−3/6/6.7e−3/6/3.9e−3 23/5.4e−3/23/5.0e−3/23/3.7e−3 22/5.4e−3/22/5.1e−3/22/3.6e−3

20 5/1.1e−2/6/8.7e−3/6/5.2e−3 21/7.3e−3/21/7.2e−3/21/5.0e−3 20/7.3e−3/20/7.2e−3/21/5.0e−3

Table 7 Comparing the time and solution RMSD for LPCGD with refinements on the problems from
Table 5

LPCGD(5,I) LPCGD(5,II) LPCGD(m,I)

σ cpu/RMSD/cpuA /RMSDA / cpu/RMSD/cpuA /RMSDA / cpu/RMSD/cpuA /RMSDA /
cpuB /RMSDB cpuB /RMSDB cpuB /RMSDB

0.1 0.03/1.6e−1/0.03/1.4e−1/0.05/8.3e−2 0.13/7.8e−2/0.13/7.5e−2/0.13/2.1e−2 0.17/7.9e−2/0.17/6.5e−2/0.18/2.1e−2

0.2 0.03/1.5e−1/0.03/1.3e−1/0.04/8.1e−2 0.14/1.1e−1/0.14/9.3e−2/0.14/3.9e−2 0.16/1.1e−1/0.16/9.5e−2/0.16/9.3e−2

We applied LPCGD with the preceding two refinements to the problems in Tables 1
and 5. For LPCGD, we choose ρi j as in (38) with σ̂ = max{σ, 10−6}. The cpu times
(in seconds) and the solution RMSD are reported in Tables 6 and 7. Here, cpu denotes
the time to run LPCGD and RMSD denotes the RMSD of the resulting solution; cpuA
denotes the time to run LPCGD with version A of local improvement, and RMSD A denotes
the RMSD of the resulting solution; cpuB and RMSDB have analogous meanings. We
see from Tables 6 and 7 that LPCGD(5,I) is signficantly faster than LPCGD(5,II)
and LPCGD(m,I), but its solution RMSD is generally higher. Thus, if speed is more
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Fig. 4 The left figure shows the anchor (“◦”) and the solution found by LPCGD for problem 4 in Table 1
(n = 1,000, σ = 0.1). Each sensor position (“·”) found is joined to its true position (“∗”) by a line. The
right figure shows the same information for the solution found by LPCGD(m,I) using Version B of local
improvement
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Fig. 5 The left figure shows the anchor (“◦”) and the solution found by LPCGD for problem 1 in Table 7
(m = 60, σ = 0.1). Each sensor position (“·”) found is joined to its true position (“∗”) by a line. The
right figure shows the same information for the solution found by LPCGD(m,I) using Version B of local
improvement

important than solution accuracy, then LPCGD(5,I) would be preferrable. Otherwise,
either LPCGD(5,II) or LPCGD(m,I) should be used. Not surprisingly, version A of
local improvement is faster than version B. In the presence of low noise or no noise, the
improvements in RMSD obtained by the two versions are comparable and somewhat
marginal; see Table 6. However, in the presence of high noise, version B tends to yield
a significantly lower RMSD; see Tables 6 and 7. These improvements in the RMSD
are also illustrated in Figs. 4, 5 and 6.

Lastly, we compare LPCGD(5,II) with SeDuMi-I08 and SeDuMi-D, both having
a local improvement heuristic for refining the ESDP solution, as well as SeDuMi-I06,
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Fig. 6 The left figure shows the anchor (“◦”) and the solution found by LPCGD for problem 2 in Table 7
(m = 60, σ = 0.2). Each sensor position (“·”) found is joined to its true position (“∗”) by a line. The
right figure shows the same information for the solution found by LPCGD(m,I) using Version B of local
improvement

which does not have such a heuristic. We generate eight problem instances using the
same input parameters as problems 1–5 and 11–15 in Table 1. We set degree bound to 5
for SeDuMi-I06, SeDuMi-I08 and SeDuMi-D. The results are reported in Table 8. For
SeDuMi, we also report the SDP objective value (“obj”) for comparison. We see that
SeDuMi-I08 is roughly 1.1–1.4 times faster than SeDuMi-I06, SeDuMi-D is roughly
1.6–3 times faster than SeDuMi-I08, while LPCGD(5,II) is much faster than all of
them. The solution RMSD found by SeDuMi-I08 tends to be lower. The objective
values found by SeDuMi-I08 are comparable with those reported in [36, Table 5.3]
but the RMSD found by SeDuMi-I08 are consistently higher. This can probably be
explained by the fact that some problems (say, problem 2) in [36, Table 5.3] have
anchors placed in a grid, and that leads to a lower RMSD.

8 Extensions and open questions

Instead of absolute error in (1), squared error can also be used, as in [5,10,11,19,26].
Our results can be extended accordingly.

Can our analysis and method be extended to the sparse SOS relaxations studied in
[18,26]? Can they be extended to incorporate upper and lower bounds on the distances
[10,19], and angle of arrival (AoA) information [4,23,25]? It has been shown in [4]
and [3, Chapter 5] that the SDP relaxation (2) can be extended to incorporate AoA
information, but the resulting SDP appears more difficult to solve; see [4, Section 5]
and [3, Section 5.3.2].

Can Theorem 1 be extended to the SDP relaxation (2)? Does {Z ρ,δ } converge as
|δ| < ρ → 0 and, if yes, what is the limit? Despite Example 3, can the zero trace test
for SDP/ESDP solutions, as used in [9, Section 2] and [10, Section 3] (also see the
ESDP column in Table 2), be justified theoretically when there is noise?
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