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Abstract This paper considers a modification of the branch-and-cut algorithm for
Mixed Integer Linear Programming where branching is performed on general disjunc-
tions rather than on variables. We select promising branching disjunctions based on a
heuristic measure of disjunction quality. This measure exploits the relation between
branching disjunctions and intersection cuts. In this work, we focus on disjunctions
defining the mixed integer Gomory cuts at an optimal basis of the linear programming
relaxation. The procedure is tested on instances from the literature. Experiments show
that, for a majority of the instances, the enumeration tree obtained by branching on
these general disjunctions has a smaller size than the tree obtained by branching on
variables, even when variable branching is performed using full strong branching.
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1 Introduction

Branch-and-cut is the most widely used algorithm for solving Mixed Integer Linear
Programs (MILP). Its performance improved by several orders of magnitude in the last
decade due to advances in hardware but mostly due to modifications in the algorithm
[11,19]. In this paper, we propose a modification in the branching routine.

One of the important decisions made in the branch-and-cut algorithm is the choice of
a branching object. Traditionally, in general purpose MILP solvers, branching objects
are variables—the “best” candidate is chosen among the integer variables that have a
fractional value in the current optimal solution of a linear programming relaxation of
MILP. If an integer-constrained variable, x j , has a fractional value x̄ j , we impose the
constraint x j ≤ �x̄ j� in one of the children and x j ≥ �x̄ j� in the other. This can be
viewed as adding the constraints πT x ≤ π0 and πT x ≥ π0 + 1, respectively, where
π = e j , the j-th unit vector, and π0 = �x̄ j�. We propose to use a general integer
vector π and π0 = �πT x̄� for branching, where πi ∈ Z if xi is an integer variable
and 0 otherwise. We call a disjunction simple when π = e j , for some j , and general
otherwise. General disjunctions are also known as split disjunctions [12].

There is an evident trade-off between the two approaches. General disjunctions
can lead to a smaller tree size. On the other hand, branching on variables produces
LP subproblems that are easier to reoptimize because bounds on the variables do not
increase the size of the basis. Branching on a general disjunction adds one row to
the formulation of the children subproblems. When this is repeated at every node, the
number of constraints can grow notably leading to an increased solution time of each
subproblem. In our experiments, we observe that the decreased tree size usually more
than offsets this increase.

One difficulty with the application of the idea for branching on general disjunctions
is the infinite number of general disjunctions that are violated by a given basic solu-
tion. Optimizing over this set would give the best results but is impractical. A natural
objective would be to maximize the improvement in the lower bound as a result of
branching (we assume here that MILP is a minimization problem). But there is no
known way to measure this value before solving the children nodes and, hence, no
way to formulate this problem. The intimate relation between split disjunctions and
intersection cuts, introduced by Balas [6], provides a proxy for the change in the lower
bound. The depth of an intersection cut, or distance cut off, is a reasonable measure of
the cut quality. One may use the depth of the cut as a heuristic measure of the quality
of the corresponding disjunction. But even maximizing the depth over the set of all
intersection cuts is a difficult MILP problem.

In this paper, we consider a specific class of general disjunctions—the ones defin-
ing mixed integer Gomory cuts derived from the tableau [16]. The advantages of this
class are that it is finite and fast to generate. Furthermore, disjunctions corresponding to
Gomory cuts can be viewed as strengthened simple disjunctions [6]. The algorithm we
propose performs a heuristic pre-selection of the most promising disjunctions based
on the distance cut off by the corresponding cut, followed by an exact evaluation of
the quality of the pre-selected disjunctions. This idea can be applied to other classes
of intersection cuts as well, e.g. lift-and-project [7], reduce-and-split [5], and mixed
integer rounding cuts [24]. Our approach is explained in detail in Sect. 3.2 and a short
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introduction to intersection cuts is included in Sect. 3.1. A review of related earlier
work is present in Sect. 2.

In Sect. 4, we describe the experiments we conducted and their results. These
experiments measure the gap closed after branching for a fixed number of levels by
branch-and-bound, and show that general disjunctions perform better than simple ones.
An interesting observation is that pruning of a child by infeasibility, which is a desir-
able effect, happens more often when branching on general disjunctions than when
branching on simple disjunctions. In a final experiment, we study the performance of
our algorithm in a cut-and-branch framework.

Branching on general disjunctions can reduce the amount of enumeration compared
to branching on single variables, since the latter strategy is a special case of the former.
The difficulty is to find the right disjunctions to branch on. In this paper, we show that
such disjunctions can be generated and applied without much computational overhead.

2 Literature review

The idea of branching on general disjunctions is not novel. One approach proposed
in the literature is to find “thin” directions in the polyhedron of feasible solutions,
transform the space so that these directions correspond to unit vectors, and solve
the problem in the new space by regular branch-and-bound, branching on the new
variables. Transformed back to the original space, this corresponds to branching on
general disjunctions. For detailed descriptions, refer to the algorithms for solving inte-
ger programming problems in fixed dimensions by Lenstra [18], Grötschel, Lovász,
and Schrijver [17], and Lovász and Scarf [22]. Finding thin directions is done by
lattice basis reduction based on the work of Lenstra, Lenstra, and Lovász [20]. This
approach proved very efficient for some instances where branch-and-bound fails due
to huge enumeration trees. Aardal et al. [1] applied a related algorithm, developed
by Aardal, Hurkens, and Lenstra [2], to market split instances of the type proposed
by Cornuéjols and Dawande [13]. They managed to solve instances much larger than
those that could be solved by regular branch-and-bound. For a recent paper in this
direction, see Mehrotra and Li [25].

Other examples of branching on general disjunctions are SOS branching and local
branching. Given the presence of a Special Ordered Set (SOS) [9] constraint in the for-
mulation (also called Generalized upper bound), branching can be done by replacing
the original SOS constraint by a new SOS constraint, different in both children. This
results in a significant reduction of the number of nodes that need to be enumerated.
In their paper on local branching [15], Fischetti and Lodi propose a way to direct the
search in the branch-and-bound algorithm. They branch on a special type of constraint
that defines a neighborhood of the incumbent solution.

The methods cited above find a set of promising branching disjunctions before the
start of branching or apply very specific types of general disjunctions. Our approach
is to select general disjunctions at every node of the search tree based on a heuris-
tic measure of their quality. Similar ideas have not been studied extensively in the
literature. To our knowledge, there is one related study. Owen and Mehrotra [27] pro-
pose branching on general disjunctions generated by a neighborhood search heuristic.
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The neighborhood contains all disjunctions with coefficients in {−1, 0, 1} on the inte-
ger variables with fractional values at the current node. The quality of the disjunctions
is evaluated by solving the children nodes in the spirit of strong branching (see Ach-
terberg, Koch and Martin [3] for a discussion of strong branching).

Owen and Mehrotra tested their approach on 12 instances from MIPLIB 3.0 [10] and
report a significant decrease in the total number of nodes in a majority of them com-
pared to strong branching as implemented in CPLEX. The proposed procedure is not
computationally efficient because of the large number of subproblems solved before
each branching. Nevertheless, it emphasizes the important observation that branching
on general disjunctions can decrease the size of the branching tree significantly.

The main differences between our approach and that of Owen and Mehrotra are:

– we consider a different class of general disjunctions, the ones defining mixed
integer Gomory cuts, while Owen and Mehrotra propose {−1, 0, 1}-disjunctions.

– instead of an extensive heuristic search, we apply a two-phase disjunction selec-
tion procedure based on the depth of the corresponding intersection cuts in the
first phase and on strong branching in the second. As a result,

– we propose an algorithm that runs in a reasonable amount of time and competes
with branching on single variables in terms of tree size.

3 Branching on general disjunctions

3.1 Theoretical foundations of intersection cuts

We first present a summary of the theoretical foundations of intersection cuts. For a
detailed discussion, refer to Balas [6] and Andersen, Cornuéjols, and Li [5].

Consider the Mixed Integer Linear Program:

(MILP) min{cT x : Ax = b, x ≥ 0n, x j integer for j ∈ NI }, (1)

where c, x, 0n ∈ R
n, b ∈ R

m, A ∈ R
m×n , and NI ⊆ N := {1, 2, . . . , n}. Without

loss of generality, assume A is of full row rank. The Linear Programming relaxation,
denoted by (LP), is obtained from (MILP) by dropping the integrality constraint on
x j for j ∈ NI . Let PI and P denote the sets of feasible solutions to (MILP) and (LP),
respectively. A basis for (LP) is an m-subset B of N such that the column submatrix
of A induced by B is an invertible submatrix of A. Let J := N\B denote the index
set of non-basic variables. A further relaxation of the set P with respect to a basis
B is obtained by removing the non-negativity constraints on the basic variables. We
denote it by P(B):

P(B) := {x ∈ R
n : Ax = b and x j ≥ 0 for j ∈ J }. (2)

This set is a translate of a polyhedral cone: P(B) = C+x̄ , where C = {x ∈ R
n : Ax =

0 and x j ≥ 0 for j ∈ J } and x̄ solves {x ∈ R
n : Ax = b and x j = 0 for j ∈ J },

i.e. x̄ is the basic solution corresponding to the basis B. Typically B will be the optimal
basis of an LP relaxation of MILP. The cone C can be expressed also in terms of its
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Fig. 1 Deriving the intersection cut

extreme rays, r j for j ∈ J : P(B) = Cone({r j } j∈J ) + x̄ , where Cone({r j }) denotes
the polyhedral cone generated by vectors {r j }. The extreme rays of P(B) can be found
from the simplex tableau corresponding to the basis B.

Define a split disjunction D(π, π0) to be a disjunction of the form πT x ≤ π0 ∨
πT x ≥ π0 + 1, where (π, π0) ∈ Z

n+1 and π j = 0 for i /∈ NI . Clearly, any feasible
solution to (MILP) has to satisfy every split disjunction. Any violated split disjunction
can be used to define a cutting plane that cuts off points of P violating the disjunction.
The generation of this intersection cut, as defined by Balas [6], is exemplified in Fig. 1
and explained below.

Given a split disjunction D(π, π0), let FD(π,π0) := {x ∈ R
n : πT x ≤ π0 ∨ πT x ≥

π0+1}denote the set of points that satisfy the disjunction. Since PI ⊆ P(B)∩FD(π,π0),
a valid cut for P(B) ∩ FD(π,π0) is valid for PI . In particular, the intersection cut is
a half-space bounded by the hyperplane passing through the intersection points of
D(π, π0) with the extreme rays of P(B).

In order to find the intersection points, for all j ∈ J we compute the scalars:

α j (π, π0) :=

⎧
⎪⎪⎨

⎪⎪⎩

− ε(π,π0)

πT r j if πT r j < 0,

1−ε(π,π0)

πT r j if πT r j > 0,

+∞ otherwise,

(3)

where ε(π, π0) := πT x̄ − π0 is the amount by which x̄ violates the first term of the
disjunction D(π, π0). The number α j (π, π0) for j ∈ J is the smallest number α such
that x̄ + αr j satisfies the disjunction. In other words, x̄ + α j (π, π0)r j lies on one of
the disjunctive hyperplanes πT x = π0 and πT x = π0 + 1.

Now, the intersection cut associated with B and D(π, π0) is given by:

∑

j∈J

x j

α j (π, π0)
≥ 1. (4)

The Euclidean distance between x̄ and this hyperplane is:

d(B, π, π0) :=
√
√
√
√

1
∑

j∈J
1

(α j (π,π0))2

(5)
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This quantity, called distance cut off or depth, was used as a measure of cut quality by
Balas, Ceria, and Cornuéjols [8].

An important result of Balas [6] is that Gomory cuts derived from the simplex tab-
leau associated with B can be viewed as intersection cuts. Let āi j be the entry of the
simplex tableau in row i and column j . The mixed integer Gomory cut derived from
the row in which xi is basic can be obtained as an intersection cut from the disjunction
D(π̂ i , π̂ i

0):

π̂ i
j :=

⎧
⎪⎪⎨

⎪⎪⎩

�āi j� if j ∈ NI ∩ J and āi j − �āi j� ≤ x̄i − �x̄i�,
�āi j� if j ∈ NI ∩ J and āi j − �āi j� > x̄i − �x̄i�,
1 if j = i,
0 otherwise,

(6)

π̂ i
0 = �(π̂ i )T x̄�

This disjunction can also be obtained by strengthening the simple disjunction D(π i =
ei , π i

0 = �x̄i�) on the non-basic integer variables where the affected coefficients are
modified so that the distance cut off is maximized.

3.2 Our idea

This work is inspired by the relation between branching disjunctions and intersection
cuts at the optimal basic solution of the current LP relaxation. A violated split disjunc-
tion can be used for generating an intersection cut but it can be used for branching as
well. A good intersection cut cuts deeply into the polyhedron of feasible solutions of
the LP relaxation and improves the lower, Linear Programming bound. Our suggestion
is that a split disjunction defining a deep cut is good for branching too. The LP lower
bound is often an important determinant of the amount of enumeration needed to com-
plete the solution. (Because of this, improving the lower bound is the aim of common
rules for selecting branching variables implemented in current MILP solvers.) The
improvement in the lower bound caused by branching on a split disjunction is no less
than the improvement by the corresponding intersection cut. We show this below.

A routine for branching on general disjunctions requires a procedure for selecting
the disjunction to branch on, which, in turn, requires a criterion for comparing the
quality of disjunctions, i.e. a criterion for comparing some measure of improvement
in the lower bound.

3.2.1 Measure of quality of a disjunction

A common rule for choosing a branching variable (simple disjunction) is to maximize
some function of the two improvements in objective value at the children nodes that
would result from branching on this variable. Specifically, let x̄ be the optimum solu-
tion at the current node and let x̄1 and x̄2 be the optimal solutions for the first and
second child, respectively. Let z(x̄) = cT x̄, z(x̄1) = cT x̄1, and z(x̄2) = cT x̄2 be the
corresponding objective values. Let �1 = z(x̄1) − z(x̄) and �2 = z(x̄2) − z(x̄) be
the improvements in objective value when branching on these two children. Typical
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Fig. 2 The LP bound obtained
by branching is different from
the one obtained by cutting

functions used for variable selection are min(�1,�2),
1
2 [�1 + �2] or �1�2. The

last one is currently implemented in state-of-the-art MILP solvers, i.e. a variable that
maximizes �1�2 is chosen for branching. Experiments with other options have been
reported in the literature. For example, Linderoth and Savelsbergh [21] show good
results with 2

3 min(�1,�2) + 1
3 max(�1,�2), while Achterberg, Koch, and Martin

[3] propose 5
6 min(�1,�2) + 1

6 max(�1,�2). This is the function we will use in our
experiments in this paper. The only exact way to compute these functions is to solve
the linear programs at the children nodes. A commonly used method, called strong
branching, does this for the candidate branching variables before choosing the “best”
one. This is computationally expensive when applied to all integer variables with
fractional values at the current basis. In practice, it is common to estimate these func-
tions. Strong branching is impossible to apply when branching on general disjunctions
because of the infinite number of such disjunctions. A procedure for pre-selecting a
small finite set of disjunctions is needed before strong branching can be applied. Such
a procedure requires a heuristic measure of disjunction quality.

We consider the integrality gap closed, or equivalently min(z(x̄1), z(x̄2)) − z(x̄),
an “exact” measure of the quality of a disjunction. Based on the relation between an
intersection cut and the underlying disjunction, we propose to use the depth (distance
cut off) of the cut as a proxy to this measure, since the distance cut off is correlated
to the amount of integrality gap closed by adding the cut. Next, we show that the gap
closed by branching on a split disjunction is always at least as large as the gap closed
by the corresponding intersection cut.

Let P(B) be defined as in (2) and consider a split disjunction D(π, π0). Let βT x ≤
β0 be the intersection cut defined by P(B) and D(π, π0). (An example is shown in
Fig. 2.) The feasible sets of the children are F1 := P ∩ {x ∈ R

n : πT x ≤ π0}
and F2 := P ∩ {x ∈ R

n : πT x ≥ π0 + 1}. Let x̄1 := arg min{cT x : x ∈ F1}
and x̄2 := arg min{cT x : x ∈ F2} be corresponding optimal basic solutions. Let
p1 := arg min{cT x : x ∈ P(B) and πT x ≤ π0} and p2 := arg min{cT x : x ∈ P(B)

and πT x ≥ π0 + 1}. Then, z(pi ) is a lower bound for z(x̄i ), for i = 1, 2, because
P(B) ⊇ P . Therefore, the optimal solution of min{cT x : x ∈ P(B) and βT x ≤ β0},
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Fig. 3 Procedure for branching on MIG disjunctions

provides a lower bound for any measure of disjunction quality which is a convex com-
bination of z(x̄1) and z(x̄2). Consequently, branching on a general disjunction can
provide a better lower bound than the corresponding intersection cut. In this respect,
we cannot substitute branching by adding the corresponding intersection cut.

In our procedure, we will use the distance cut off by the corresponding intersection
cut as a heuristic measure of the quality of a disjunction. Other measures can be used
as well. Future research in this direction should be fruitful.

3.2.2 Procedure for selecting the branching disjunction

We need a procedure for selecting promising split disjunctions for branching.
As we discussed in the introduction, optimizing over the set of all split dis-
junctions is prohibitively expensive. Some form of heuristic search is needed
and, in fact, several suggestions have been tried recently [14,23]. Here, we sim-
ply suggest to concentrate on a finite class of general disjunctions generated
directly from the current optimal basis—the set of split disjunctions defining
mixed integer Gomory cuts, which we call MIG disjunctions. The reasons for
our choice are the following. First, this set is not only finite but relatively small.
Its cardinality at a given node of the branch-and-bound tree equals the num-
ber of integer variables with fractional values in the current basic solution. Sec-
ond, these disjunctions are fast to obtain. They can be generated from the cur-
rent tableau by a closed form formula (6). Third, as we explained at the end
of Sect. 3.1, these disjunctions can be viewed as strengthened simple disjunc-
tions (with respect to the cut depth) which suggests that they could perform
better.

The branching procedure we propose is shown in Fig. 3. We consider the set M of
all MIG disjunctions for a specific basic solution and select a subset S of it, containing
the most promising disjunctions according to the chosen criterion for comparison.
(Here, the distance cut off by the underlying intersection cut.) We limit the cardinality
of S to k. In our tests, we use a constant k throughout the branching tree (either k = ∞
or k = 10). The parameter k can be used to manage the computational effort at differ-
ent levels, e.g. a larger k can be used close to the root where branching decisions are
more important and a smaller k in the deep levels. Finally, we apply strong branching
to the disjunctions in S.

The computational complexity of this procedure at each node is dominated by Step 3
and it is comparable to applying strong branching to the k most fractional variables
in branching on simple disjunctions. Note, however, that faster strategies exist for
branching on simple disjunctions as investigated in Achterberg, Koch, and Martin [3].
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4 Experimental results

The test set for our experiments is the union of the Mixed Integer Linear Programming
libraries MIPLIB 2.0 [28], MIPLIB 3.0 [10], and MIPLIB 2003 [4]. We exclude very
easy instances that can be solved in less than 50 nodes by the algorithms we test. We
also exclude some very difficult instances—those for which only less than 50 nodes
can be processed in 1 h. These two groups of instances are considered in the first
experiment, where we compare the gap closed at the root, but they are excluded from
the subsequent experiments. We also exclude instances with zero integrality gap. The
final number of instances in the test set is 84. This is a heterogeneous set of benchmark
instances of different sizes and with different origins and applications. It serves as a
good testbed of our ideas.

All experiments are conducted on an IBM IntellistationZ Pro computer with an Intel
Xeon 3.2 GHz CPU (32-bit) and 2 GB RAM. The MILP solver used is COIN-OR BCP,
where some methods are modified for the purpose of our experiment. The LP solver
is ILOG CPLEX 9.0. Mixed integer Gomory cuts, mixed integer rounding cuts, and
knapsack cover cuts are generated using the cut generators in the library COIN-OR
CGL.

In our experiments, we compare branching on single variables to branching on
MIG disjunctions. When an instance is solved to optimality, we compare the solution
time and the size of the branch-and-bound trees. When the solution of an instance is
interrupted (due to time limit or bound on the depth of exploration), we compare the
amount of integrality gap closed. We consider the absolute gap closed: the difference
between the best lower bound at interruption and the lower bound at the root node,
and the relative (percentage) gap closed: the absolute gap closed as a fraction of the
integrality gap at the root.

In the first experiment, we study the gap closed after branching at the root node
(Sect. 4.1). In the second experiment, we study the gap closed and the number of
active nodes left after branching for eight levels (Sect. 4.2). In the third experiment,
we impose a limit of 2,000 processed nodes and study the amount of gap closed and
the solution time per node of both algorithms (Sect. 4.3). In the fourth experiment,
we let the cut-and-branch algorithm run till completion, or until a 2-h time limit is
reached. We compare the running time and the tree size, or the amount of gap closed
in case of interruption (Sect. 4.4).

We apply pure branch-and-bound or cut-and-branch in these experiments in order
to avoid the influence of adding different cutting planes in the compared algorithms.
This ensures a clean comparison between the two branching procedures. Below, we
describe features of the algorithms that we implemented. No preprocessing is applied.

Cutting planes In cut-and-branch, we generate ten rounds of mixed integer Gomory
cuts, mixed integer rounding cuts, and knapsack cover cuts at the root before proceed-
ing to branching. Inactive cuts are discarded from the formulation after each round.

Branching We apply strong branching with no limit on the number of simplex piv-
ots. We select the branching object that maximizes a function of the LP bounds at
the children as suggested by [3]: 5

6 min(�1,�2)+ 1
6 max(�1,�2), where �1 and �2
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are the improvements in LP value at the children nodes. If a branching object creates
an infeasible child, this object is preferred to all others. If several branching objects
create an infeasible child, the LP values of their feasible children are compared.

In most of the experiments, we apply strong branching on all candidates—variables
or MIG disjunctions. This provides a fair comparison since the number of MIG cuts
obtained from the tableau rows, hence the number of MIG disjunctions, equals the
number of fractional variables at the current basic solution. In the final experiment,
we select a subset of the candidates for strong branching. Again, we consider an equal
number of branching objects in both cases.

In all experiments, the node selection is performed by the best-bound-first rule: the
next node to explore is the one with minimum LP bound. This enables the comparison
of the gap closed by both algorithms.

4.1 Gap closed at the root

As a first experiment, we compare the power of the two branching objects by measur-
ing the gap closed at the root by ordinary branching on single variables and branching
on MIG disjunctions. The variable to branch on is chosen by full strong branching on
all fractional variables, as described above. For short, we call this setup for branching
on simple disjunctions simdi. When branching on general disjunctions, we select the
disjunction by full strong branching on all MIG disjunctions. This guarantees a fair
comparison for simple and general disjunctions since the number of branching candi-
dates in both cases is the same. We call this setup for branching on general disjunctions
gendi.

Detailed results of the experiment are provided in Table 1. The comparison of the
absolute gap closed shows that gendi performs better for 42 out of 94 instances, while
simdi is better for 15 instances. For 92 instances the optimal objective value is known
and this allows to compute the percentage gap closed. The average percentage gap
closed at the root by gendi and simdi over this set of instances is 11.5% and 8.6%,
respectively. The average difference is 2.9% in favor of gendi. A statistical hypoth-
esis test shows that this difference is significantly greater than zero. We performed a
one-sided paired t-test of the null hypothesis “the gap closed by gendi is no greater
than the gap closed by simdi.” The null hypothesis was rejected at 95% confidence
(p-value=0.048).

A closer look at the cases when one method substantially dominates the other shows
that for 12 instances gendi closes a positive amount of gap while simdi cannot close
any gap. In contrast, there are only two instances for which gendi is unsuccessful while
simdi manages to improve the lower bound. If we consider the instances for which both
methods managed to improve the lower bound, the gap closed by gendi is an order of
magnitude larger than that of simdi for 14 instances, while simdi is an order of mag-
nitude better for only 3 instances. Some examples where gendi is clearly more suc-
cessful are: 10teams, air05, fiber, harp2, mas76, nsrand-ipx,
nw04, pipex, qnet1, roll3000, sp97ar, swath, timtab1, and
timtab2. Similarly, simdi dominates in: bell3b, fixnet6, gesa3, and
sample2.
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Table 1 Comparison of the gap
closed at the root node by
branching on a single variable
and on a MIG disjunction

Instance Absolute gap closed Relative gap closed [%]

Simple disj. MIG disj. Simple disj. MIG disj.

10teams 0 4 0 57.14

a1c1s1 121.2 121.2 1.15 1.15

aflow30a 11.3 11.2 6.49 6.42

aflow40b 5.7 4.5 3.52 2.77

air04 14.9 20.6 2.48 3.43

air05 0.39 12.2 0.08 2.45

arki001 42.2 42.2 3.48 3.48

bell3a 3,174 1,857 20.03 11.72

bell3b 316,638 13,855 82.89 3.63

bell4 360,675 122,948 64.79 22.08

bell5 298,008 298,008 83.25 83.25

blend2 0.01 0.13 1.47 19.15

bm23 0.91 0.29 6.78 2.16

cap6000 69.8 85.6 43.55 53.38

dano3mip 0 0.01 – –

danoint 0.05 0.05 1.65 1.65

dcmulti 648 648 15.4 15.4

egout 29 29 6.92 6.92

fast0507 0 0.02 0 1.08

fiber 1,293 43,547 0.52 17.43

fixnet3 60.7 60.7 0.54 0.54

fixnet4 66.5 108 1.42 2.31

fixnet6 124 2.02 4.48 0.07

flugpl 689 1,874 2.01 5.46

gen 65.2 65.2 35.64 35.64

gesa2 14,015 14,015 4.62 4.62

gesa2_o 14,015 14,015 4.62 4.62

gesa3 4,819 21.5 3.06 0.01

gesa3_o 4,819 11,452 3.06 7.28

gt2 4,750 4,816 61.65 62.51

harp2 2.03 11,627 0 2.56

khb05250 1,670,000 1,670,000 15.15 15.15

l152lav 0.82 9.6 1.25 14.63

liu 214 214 – –

lp4l 16.57 10.66 67.63 43.51

lseu 12 98.06 4.21 34.37

manna81 0.5 0.5 0.38 0.38

markshare1 0 0 0 0

markshare2 0 0 0 0

mas74 40.8 75.5 3.10 5.73
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Table 1 continued
Instance Absolute gap closed Relative gap closed [%]

Simple disj. MIG disj. Simple disj. MIG disj.

mas76 1.76 62.3 0.16 5.60

misc01 0 0 0 0

misc02 0 25 0 3.68

misc03 0 0 0 0

misc04 5.64 5.64 54.87 54.87

misc05 1.2 0 2.24 0

misc06 2.09 2.09 22.79 22.79

misc07 0 10 0 0.72

mkc 0 0 0 0

mod008 0.17 0.02 1.06 0.12

mod010 3.58 0.92 22.49 5.78

mod011 415,328 896,043 5.49 11.85

mod013 1.36 0.63 5.46 2.53

modglob 3,984 4,225 1.29 1.36

momentum1 3,200 4,263 8.8 11.73

net12 10.4 10.4 5.29 5.29

nsrand-ipx 0 36.7 0 1.58

nw04 0.67 343 0.12 62.27

opt1217 0 0.27 0 6.72

p0033 2.47 205 0.43 36.2

p0040 4.84 161 2.1 69.83

p0201 0 191 0 25.78

p0282 32,844 32,844 40.28 40.28

p0291 101 1,031 2.86 29.31

p0548 12.7 12.7 0.15 0.15

p2756 9.8 1.42 2.25 0.33

pipex 0.05 1.62 0.34 11.16

pk1 0 0 0 0

pp08a 233 233 5.05 5.05

pp08aCUTS 61.3 81.4 3.28 4.36

qiu 0 0 0 0

qnet1 3.98 226 0.23 12.85

qnet1_o 245 351 6.22 8.91

rd-rplusc-21 0 0 0 0

rgn 0 2.2 0 6.59

roll3000 0 2.85 0 0.16

rout 2.34 2.34 2.45 2.45

sample2 15 0 11.72 0

sentoy 6.5 10.8 9.66 16.04

set1al 37.9 37.9 0.80 0.80
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Table 1 continued
Instance Absolute gap closed Relative gap closed [%]

Simple disj. MIG disj. Simple disj. MIG disj.

set1ch 757 757 3.36 3.36

set1cl 37.9 37.9 0.79 0.79

seymour 0.33 0.5 1.72 2.61

sp97ar 2,537 234,316 0.03 2.88

stein15 0 0 0 0

stein27 0 0 0 0

stein45 0 0 0 0

stein9 0 0 0 0

swath 0.02 6.45 0.02 4.85

timtab1 0 23,872 0 3.24

timtab2 0 24,000 0 2.37

tr12-30 929 929 0.80 0.80

vpm1 0.25 0.67 5.46 14.63

vpm2 0.11 0.11 2.85 2.85

These results are a strong indication that gendi closes more gap than simdi. Next,
we test whether these good results at the root proliferate throughout the tree by branch-
ing for eight levels and by solving the instances until completion. The experiment with
branching for eight levels helps observe another positive effect of branching on MIG
disjunctions: a decrease in the number of active nodes.

4.2 Branching for eight levels

In the second experiment, we branch at the top eight levels of the branch-and-bound
tree and compare the resulting gap closed. As before, gendi performs better. This
is mainly due to the larger gap closed by branching on general disjunctions, which
we recorded at the root as well. But now we observe an interesting secondary effect:
branching on MIG disjunctions tends to produce more infeasible children, which addi-
tionally decreases the amount of enumeration. We record this phenomenon by counting
the number of active nodes at the ninth level.

Detailed results of the experiment are shown in Table 2. Table 3 contains a sum-
mary of the results. In Table 3, comparison criteria are shown in italics. Lines labeled
“Average” contain the average value of the criterion. Lines labeled “Count better”
contain the number of instances for which one method dominates the other according
to the criterion.

In terms of amount of gap closed, simdi dominates in 20 cases, gendi in 48 cases
out of 84. The average gap closed by simdi and gendi is 32.1% and 41.7%, resp. The
difference in the average gap closed is 9.6%. It is statistically significantly larger than
zero with 99% confidence, according to a one-sided paired t-test (p-value=0.0021).
These results support our earlier observation that gendi closes more gap.
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Table 2 Comparison of the gap closed and number of active nodes after eight levels of branching on single
variables and on MIG disjunctions (Branch-and-bound)

Instance Absolute gap closed Relative gap closed [%] Nodes at level 9

Simple disj. MIG disj. Simple disj. MIG disj. Simple disj. MIG disj.

10teams 0 7 0 100 256 79

a1c1s1 1,051 1,051 10 10 145 107

aflow30a 32.8 48.7 18.74 27.86 252 30

aflow40b 27.6 39.6 17.03 24.37 242 92

arki001 83.6 209 6.89 17.23 172 107

bell3a 10,785 7,775 68.04 49.05 37 4

bell3b 336,827 338,368 88.17 88.57 2 3

bell4 494,120 504,243 88.76 90.58 32 23

bell5 300,135 310,221 83.84 86.66 2 1

blend2 0.21 0.38 30.93 55.97 107 193

bm23 5.31 2.86 39.54 21.3 18 8

cap6000 109 122 67.75 75.88 256 15

danoint 0.05 0.05 1.65 1.65 194 178

dcmulti 2,250 3,659 53.49 86.99 22 88

egout 118 134 28.15 32.03 1 1

fiber 6,276 198,990 2.51 79.64 256 39

fixnet3 2,066 2,066 18.36 18.36 188 188

fixnet4 877 725 18.74 15.5 190 220

fixnet6 306 26.5 11 0.95 192 232

flugpl 6,624 26,393 19.3 76.92 35 8

gen 98.6 126 53.89 69.04 2 2

gesa2 60,346 160,548 19.89 52.92 109 56

gesa2_o 60,346 160,548 19.89 52.92 109 53

gesa3 50,987 44,266 32.39 28.12 115 86

gesa3_o 50,987 47,248 32.39 30.02 115 67

gt2 6,234 6,142 80.9 79.7 256 48

harp2 11,627 211,932 2.56 46.73 1 51

khb05250 6,764,925 6,764,925 61.38 61.38 256 256

l152lav 17.9 40.0 27.24 60.86 11 7

lp4l 17.9 24.5 73.22 100 10 0

lseu 123 187 43.07 65.47 224 7

manna81 4 4 3.01 3.01 256 1

markshare1 0 0 0 0 256 89

markshare2 0 0 0 0 256 162

mas74 135 163 10.22 12.38 256 223

mas76 89.9 198 8.09 17.82 256 255

misc01 30.7 55.2 6.06 10.9 11 1

misc02 214 138 31.47 20.22 1 3
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Table 2 continued

Instance Absolute gap closed Relative gap closed [%] Nodes at level 9

Simple disj. MIG disj. Simple disj. MIG disj. Simple disj. MIG disj.

misc03 100 255 6.9 17.59 7 1

misc04 10.3 10.3 100 100 0 0

misc05 21.6 21.6 40.3 40.3 8 6

misc06 9.17 9.17 99.99 99.99 0 0

misc07 16.3 10 1.16 0.72 62 1

mkc 16.1 0 33.48 0 11 1

mod008 2.4 10.5 14.93 65.46 197 45

mod010 13.8 15.9 86.37 100 1 0

mod011 1,584,442 4,100,446 20.95 54.21 256 256

mod013 11.5 12.6 45.93 50.38 30 15

modglob 93,178 46,851 30.1 15.13 256 250

nsrand-ipx 0 190 0 8.19 256 1

nw04 139 551 25.15 100 1 0

opt1217 0 2.02 0 50.25 256 87

p0033 400 454 70.32 79.86 31 2

p0040 90.6 230 39.31 100 3 0

p0201 240 554 32.43 74.83 23 24

p0282 77,619 77,490 95.19 95.03 148 73

p0291 3,286 3,510 93.4 99.74 4 6

p0548 167 182 2 2.18 1 1

p2756 10.2 13.9 2.34 3.2 1 1

pipex 3.38 12.5 23.29 86.06 183 3

pk1 0 0 0 0 256 256

pp08a 1,378 1,404 29.96 30.51 256 250

pp08aCUTS 447 582 23.89 31.14 256 256

qiu 416 379 52.1 47.39 135 117

qnet1 734 806 41.79 45.91 112 239

qnet1_o 1,500 2,454 38.13 62.38 177 180

rgn 2.2 21.4 6.59 64.07 41 84

roll3000 0.8 13.6 0.04 0.76 6 1

rout 20.7 12.6 21.66 13.15 158 72

sample2 108 83 84.38 64.84 115 144

sentoy 26.2 48.1 38.97 71.48 256 72

set1al 262 262 5.55 5.55 1 1

set1ch 4,065 4,065 18.04 18.04 8 8

set1cl 262 262 5.44 5.44 1 1

stein15 2 0 100 0 0 1

stein27 1.33 0 26.6 0 219 1

stein45 0 0 0 0 256 1
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Table 2 continued

Instance Absolute gap closed Relative gap closed [%] Nodes at level 9

Simple disj. MIG disj. Simple disj. MIG disj. Simple disj. MIG disj.

stein9 1 0 100 0 0 1

swath 0.29 42.2 0.22 31.75 126 1

timtab1 58,221 80,887 7.91 10.99 3 4

timtab2 63,992 49,536 6.32 4.89 4 1

tr12-30 3,914 3,914 3.36 3.36 1 1

vpm1 0.67 2.83 14.63 61.79 243 9

vpm2 1 0.51 25.91 13.21 24 3

Table 3 Comparison of simdi
and gendi after eight levels of
branching (Branch-and-bound)

Simdi Gendi

Percentage gap closed

Average 32.1% 41.7%

Count better 20 48

Active nodes at level nine

Average 114.6 66.7

Count better 16 53

Gap closed and active nodes together

Count better 6 45

A graphical representation of the gap closed by simdi and gendi is shown in Fig. 4a.
In the figure, dots correspond to test instances. The gap closed by simdi is shown on
the abscissa while that closed by gendi is shown on the ordinate. The diagonal line
represents equality in the gap closed by both methods. We observe that most points
lie in the upper-left triangle, corresponding to “gendi outperforms simdi.” Further-
more, most of the points that lie in the lower-right triangle are close to the diagonal
line—there are few cases in which simdi outperforms gendi significantly.

It is interesting to observe that gendi typically produces a smaller number of active
nodes at the ninth level. On this criterion, simdi performs better in 16 cases while
gendi does so in 53 cases. Out of the maximum possible 256 nodes at level nine, sim-
di generates 113 while gendi generates 65, on average. A statistical t-test rejects the
null hypothesis “Gendi produces at least as many active nodes at level nine as simdi”
at 99.9% level of confidence (p-value=1.30e-6). This indicates that the number of
active nodes created by gendi is significantly smaller.

The difference in the performance is best seen graphically. In Fig. 4b, we plot the
number of active nodes at level nine produced by gendi vs. that produced by simdi.
Not only do most of the points lie below the equality line but many of them reside
in the bottom-right corner, corresponding to a significant difference in the number of
nodes. On the other hand, out of the 16 instances for which simdi outperforms gendi,
only eight lie visibly far from the equality line.
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Fig. 4 a Gap closed (in percentage) after eight levels of branching: gendi vs. simdi. b Number of active
nodes after eight levels of branching: gendi vs. simdi. Every data point represents a test instance

The effect of a smaller number of active nodes is important not by itself but in com-
bination with improvement in the gap. Combining both criteria, we count the cases
in which an algorithm strictly dominates in one of the criteria and performs at least
as well in the other criterion. Simdi is better than gendi in only 6 cases, while gendi
outperforms simdi in 45 cases out of 84.

The reason for the smaller number of active nodes is that gendi often generates
disjunctions that produce only one feasible child. For some instances, this happens at
most nodes of the branching tree, resulting in only a few nodes at level nine. Although
simdi generates many infeasible children, gendi generates even more. Sometimes, this
is combined with an impressive improvement of the gap closed over simdi, e.g.lseu,
nsrand-ipx, pipex, roll3000, swath, and vpm1. See also 10teams,
aflow30a, arki001, fiber, and manna81. (Table 2.)

The combination of a larger improvement in the gap and a smaller number of active
nodes is a very desirable effect and it deserves more attention. Branching on a dis-
junction that generates only one feasible child is equivalent to adding a single cut to
the formulation. One may argue that this cut would be added by a branch-and-cut
algorithm anyway. This is true in some cases but in others the disjunction inequality is
stronger than the corresponding MIG cut. Figure 5 is an example. The cut generation
procedure considers the polyhedral cone pointed at x̄ , relaxing some of the constraints
defining P , and generates the intersection cut βT x ≤ β0. But it cannot detect the fact
that one of the feasible sets of the children is empty. (Here, P ∩{x ∈ R

n : πT x ≤ π0}.)
When branching on D(π, π0), we essentially add the cut πT x ≥ π0 + 1, which is
stronger than βT x ≤ β0.

Consequently, branching on a general disjunction that generates only one child
can be viewed as strengthening the underlying intersection cut. Thus, branching on
a general disjunction cannot be substituted by adding the corresponding intersection
cut even when one of the disjunctive sets is empty. When both disjunctive sets are
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Fig. 5 Disjunction with only
one feasible child

Table 4 Comparison of simdi
and gendi after eight levels of
branching (Cut-and-branch)

Simdi Gendi

Percentage gap closed

Average 5.6% 7.4%

Count better 11 52

Active nodes at level nine

Average 107.6 81.6

Count better 23 44

Gap closed and active nodes together

Count better 6 39

non-empty, branching on a general disjunction can still close more gap than the cor-
responding cut, as we showed in Sect. 3.2.

We do not consider branching on general disjunctions a substitute for cutting planes.
Our procedure comes into play when branch-and-cut decides to start branching. It is
important to note that the observed good effects of branching on general split dis-
junctions are not neutralized by adding cuts. We repeat the above experiment in a
cut-and-branch framework where we add ten rounds of mixed integer Gomory cuts,
mixed integer rounding cuts, and knapsack cover cuts. As expected, aggressive cut
generation closes a significant amount of gap (63% on average), leaving less work for
the branching phase. As a result, the amount of gap closed by branching on the top
eight levels is smaller and the difference between the two methods is smaller. Never-
theless, the mutual relation in performance is preserved, as seen in Table 4. Detailed
results of the experiment are shown in Table 5.

4.3 Branching for two thousand nodes

As a next step in comparing the strength of the two branching strategies under con-
sideration, we let the algorithms run for 2,000 nodes and observe the amount of

123



Branching on general disjunctions 421

Table 5 Comparison of the gap closed and number of active nodes after eight levels of branching on single
variables and on MIG disjunctions (Cut-and-branch)

Instance Relative
gap closed
by cuts [%]

Relative gap closed by
branching [%]

Nodes at level 9

Simple disj. MIG disj. Simple disj. MIG disj.

10teams 100 0 0 0 0

a1c1s1 54.40 6.64 6.64 66 88

aflow30a 50.50 0.18 5.15 87 256

aflow40b 42.97 0.10 3.24 200 256

arki001 52.59 0 3.70 203 195

bell3a 70.31 0.43 12.07 114 32

bell3b 77.67 14.32 12.42 26 1

bell4 92.65 2.89 2.98 78 15

bell5 90.79 2.96 4.21 52 38

blend2 29.46 7.36 23.56 125 190

bm23 33.36 3.20 27.18 195 13

cap6000 62.98 4.77 3.56 256 18

danoint 0.99 0.66 0.99 201 178

dcmulti 69.49 2.19 27.96 15 97

egout 99.99 0.01 0.01 0 0

fiber 94.65 0.11 1.64 2 48

fixnet3 99.87 0.13 0.13 1 20

fixnet4 89.65 4.84 1.84 192 197

fixnet6 84.57 1.99 3.21 192 202

flugpl 14.69 12.09 52.96 21 6

gen 100 0 0 0 0

gesa2 98.16 1.24 1.19 232 225

gesa2_o 93.14 0.29 2.13 172 169

gesa3 77.5 13.31 10.93 150 180

gesa3_o 74.77 8.69 15.14 109 176

gt2 99.87 0.13 0.13 256 4

harp2 63.54 0.59 3.57 39 227

khb05250 99.11 0.82 0.89 1 0

l152lav 34.19 9.72 17.87 6 3

lp4l 100 0 0 0 0

lseu 78.43 0.46 7.28 256 13

manna81 100 0 0 0 0

markshare1 0 0 0 256 38

markshare2 0 0 0 256 207

mas74 8.89 0.14 2.61 256 255

mas76 13.22 1.51 8.13 256 238

misc01 4.18 0.12 5.39 13 2
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Table 5 continued

Instance Relative
gap closed
by cuts [%]

Relative gap closed by
branching [%]

Nodes at level 9

Simple disj. MIG disj. Simple disj. MIG disj.

misc02 16.56 3.29 13.25 1 1

misc03 17.62 0.04 0.90 14 2

misc04 83.67 16.34 2.24 0 1

misc05 53.06 32.59 41.04 3 4

misc06 74.59 2.84 19.08 256 256

misc07 0.72 0.90 1.79 56 2

mkc 56.56 29.81 1.19 54 2

mod008 86.68 2.49 13.32 104 0

mod010 100 0 0 0 0

mod011 46.93 4 7.44 256 256

mod013 74.25 10.07 21.02 3 6

modglob 70.11 10.61 8.54 256 254

nsrand-ipx 66.20 0 5.22 256 57

nw04 97.81 2.19 2.19 0 0

opt1217 50.50 0 2.24 256 12

p0033 99.54 0.46 0.46 0 0

p0040 100 0 0 0 0

p0201 61.32 0.44 16.59 17 25

p0282 97.53 0.99 1.18 173 60

p0291 99.82 0.16 0.18 13 0

p0548 94.37 2.60 2.89 2 5

p2756 97.83 0.11 0.04 8 2

pipex 58.15 2.20 17.23 12 2

pk1 0 0 0 256 255

pp08a 90.50 1.29 1.47 256 252

pp08aCUTS 80.21 2.77 3.05 256 256

qiu 7.80 42.98 42.98 185 185

qnet1 72.43 2.08 21.83 238 248

qnet1_o 83.33 8.44 9.57 31 221

rgn 75.15 0.21 3.29 30 34

roll3000 75.95 0.06 1.09 9 6

rout 4.11 6.90 15.31 70 21

sample2 41.71 8.16 11.41 14 18

sentoy 27.17 13.27 28.72 256 113

set1al 99.98 0.02 0.02 1 0

set1ch 91.05 0.12 0.19 256 238

set1cl 100 0 0 0 0

stein15 0 100 0 0 3
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Table 5 continued

Instance Relative
gap closed
by cuts [%]

Relative gap closed by
branching [%]

Nodes at level 9

Simple disj. MIG disj. Simple disj. MIG disj.

stein27 0 37.40 0 219 1

stein45 0 0 0 255 1

stein9 100 0 0 0 0

swath 33.68 0.24 1.22 105 10

timtab1 41.76 0.01 0.75 5 3

timtab2 34.11 0.06 2.29 12 3

tr12-30 93.31 1.07 1.07 256 256

vpm1 90.61 1.31 9.39 255 62

vpm2 77.72 0.26 2.07 113 209

Table 6 Comparison of simdi
and gendi after 2,000 nodes of
branch and bound

Simdi Gendi

Percentage gap closed

Average 73.1% 77.6%

Count larger 8 33

Processed nodes

Average 107.6 81.6

Count smaller 11 31

Solution time per node [seconds]

Average 0.94 0.84

Count smaller 46 32

Solution time per suproblem [milliseconds]

Average 6.0 11.7

Count smaller 71 7

Number of strong-branching subproblems
per node

Average 93.7 65.6

Count smaller 22 55

integrality gap closed, the running time, as well as the size of the branching trees
when the instances are solved. The limit of 2,000 nodes allows the algorithms to
explore a larger part of the branching tree while terminating in reasonable time. It also
places both algorithms under equal terms in the comparisons. We apply full strong
branching within branch-and-bound as before. Summary results of the experiment are
shown in Table 6 and detailed results are presented in Table 7.

Considering the amount of gap closed, gendi is better than simdi in 33 out of 84
instances while simdi dominates in 8 cases. On average gendi closes 4.5% more gap
than simdi and, if we consider only the 41 instances for which the performance of the
two algorithms differs, the advantage in favor of gendi increases to 9.2%. In addi-
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Table 7 Comparison of the gap closed, the number of processed nodes, the solution time and the average
integer infeasibilities per node when branching on single variables and on MIG disjunctions (Branch-and-
bound. Node limit of 2,000 processed nodes)

Instance Relative gap closed
by branching [%]

Nodes processed Solution time Average integer
infeasibilities per
node

Simple disj. MIG disj. Simple disj. MIG disj. Simple disj. MIG disj. Simple disj. MIG disj.

10teams 100 100 119 65 2,485.7 1,346.4 143 71.5

a1c1s1 18.31 19.23 2,000 2,000 6,358.8 6,642.7 162.1 81.1

aflow30a 68.4 68.7 2,000 2,000 472.9 478.2 25.2 12.6

aflow40b 54.5 49 2,000 2,000 3,357.5 3,128.2 37.1 18.6

arki001 69.03 95.58 2,000 2,000 1,843.1 1,451.3 42 21

bell3a 87.1 87.1 2,000 2,000 79.3 75 1.1 0.6

bell3b 99.7 99.9 2,000 2,000 84.4 73 5.8 2.9

bell4 99.9 100 2,000 939 89.7 23.3 12.4 6.2

bell5 98 100 2,000 613 77.8 21.6 3.1 1.6

blend2 100 100 1,171 591 66 30 4.5 2.3

bm23 100 100 137 113 5.2 2.2 3.9 2

cap6000 78.1 78.1 2,000 2,000 681.9 724.9 3 1.5

danoint 24.4 16.5 2,000 2,000 3,964.9 5,640.5 30.5 15.3

dcmulti 100 100 626 627 41.8 21.5 6.3 3.2

egout 99.3 100 2,000 202 79.5 1.5 5.2 2.6

fiber 76 100 2,000 179 341.1 28.8 35.7 17.9

fixnet3 42.9 42.9 2,000 2,000 357.6 318.9 58.7 29.4

fixnet4 39.6 38.3 2,000 2,000 383 366.2 61.9 31

fixnet6 42.3 43.8 2,000 2,000 353.9 360.1 51.4 25.7

flugpl 100 100 1,152 55 43.5 0.2 3.6 1.8

gen 100 100 169 37 14.6 4 9.9 5

gesa2 87.3 99.7 2,000 2,000 790.9 522.2 49.8 24.9

gesa2_o 87.3 99 2,000 2,000 818.4 566.5 61.8 30.9

gesa3 100 100 1,085 858 310.2 280.2 31.6 15.8

gesa3_o 100 100 1,122 1,124 396.4 288.7 46.8 23.4

gt2 100 100 2,000 47 84.9 0.6 8.7 4.4

harp2 56.9 41.7 2,000 2,000 466.3 449.2 25.6 12.8

khb05250 100 100 829 823 57.5 26.3 9.1 4.6

l152lav 100 100 123 76 54.8 33.4 40.2 20.1

lp4l 100 100 46 46 8.1 8.7 23.3 11.7

lseu 85.3 100 2000 1,961 77.2 68.4 6 3

manna81 4.5 100 2,000 273 53,475 1,315.6 804.8 402.4

markshare1 0 0 2,000 2,000 75.4 69.9 6 3

markshare2 0 0 2,000 2,000 77.2 72.1 7 3.5

mas74 35.7 36 2,000 2,000 95.3 92 11.9 6

mas76 38.1 39.6 2,000 2,000 91.1 78.5 10.6 5.3
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Table 7 continued

Instance Relative gap closed
by branching [%]

Nodes processed Solution time Average integer
infeasibilities per
node

Simple disj. MIG disj. Simple disj. MIG disj. Simple disj. MIG disj. Simple disj. MIG disj.

misc01 100 100 153 169 8.2 5.6 12.4 6.2

misc02 100 100 17 15 0.8 0.3 8.5 4.3

misc03 100 100 185 313 14 13.9 14 7

misc04 100 100 6 6 2.8 2.6 3 1.5

misc05 100 100 78 88 5.1 3.8 7.9 4

misc06 100 100 21 20 3.9 3.1 5 2.5

misc07 70.1 53.6 2,000 2,000 372 465 21.3 10.7

mkc 83.1 97.7 2,000 2,000 5,519 40,373.8 87.5 43.8

mod008 78 100 2,000 525 82.3 10.6 5 2.5

mod010 100 100 14 13 4.7 4.6 24 12

mod011 78.3 97.4 2,000 2,000 5,743.9 8,403.7 14.5 7.3

mod013 100 100 208 111 9.1 1.1 3.4 1.7

modglob 63.3 66.3 2,000 2,000 159.2 113.3 19.8 9.9

nsrand-ipx 37.4 54.4 2,000 2,000 6,229.3 3,731.1 64.7 32.4

nw04 100 100 66 3 161.6 13.6 10.9 5.5

opt1217 5.2 25.4 2,000 2,000 217.3 169.1 28.7 14.4

p0033 100 100 226 51 9.5 0.7 2.7 1.4

p0040 100 100 22 2 0.9 0 2.9 1.5

p0201 100 100 112 90 9.8 4.9 19.3 9.7

p0282 100 100 91 156 4.8 4 9.8 4.9

p0291 100 100 34 14 1.5 0.2 3.9 2

p0548 100 100 2,000 221 160.6 11.7 25.7 12.9

p2756 66.8 89.2 2,000 2,000 1,225.1 1,104.2 89.6 44.8

pipex 100 100 682 154 26.6 4.1 4.4 2.2

pk1 28.1 25 2,000 2,000 94.1 89.6 14 7

pp08a 46.7 48.8 2,000 2,000 149.5 99.9 39.5 19.8

pp08aCUTS 60.6 63.7 2,000 2,000 253.1 218.1 33.1 16.6

qiu 88.4 89.5 2,000 2,000 2,460.7 2,615.9 21.7 10.9

qnet1 100 100 36 412 21.8 208.5 29.3 14.7

qnet1_o 100 100 177 460 41.3 119 8.4 4.2

rgn 100 100 1,290 1,286 55.4 41.7 4.1 2.1

roll3000 45.79 71.22 2,000 2,000 11,901.8 12,317.4 149.4 74.7

rout 60.3 73.7 2,000 2,000 506.9 368.8 31.1 15.6

sample2 100 100 96 106 3.9 0.6 4.5 2.3

sentoy 100 100 183 175 7.3 6.8 4.9 2.5

set1al 26.3 26.3 2,000 2,000 868.8 908.5 183.3 91.7

set1ch 33.7 33.9 2,000 2,000 702.3 727.3 117.6 58.8

set1cl 26.2 26.2 2,000 2,000 871.8 903.5 186.4 93.2
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Table 7 continued

Instance Relative gap closed
by branching [%]

Nodes processed Solution time Average integer
infeasibilities per
node

Simple disj. MIG disj. Simple disj. MIG disj. Simple disj. MIG disj. Simple disj. MIG disj.

stein15 100 100 75 112 3 1.3 6.4 3.2

stein27 100 80 1,966 2,000 91.1 53.5 9 4.5

stein45 62.5 50 2,000 2,000 246.6 316.9 30.3 15.2

stein9 100 100 13 11 0.5 0 3.6 1.8

swath 10.83 37.3 2,000 2,000 4,184.3 6,819 47.4 23.7

timtab1 36.4 42.9 2,000 2,000 324.9 381.6 107.4 53.7

timtab2 23.81 24.23 2,000 2,000 837.7 1,278.8 202.5 101.3

tr12-30 10.1 10.1 2,000 2,000 2,208.2 2,261.1 329.7 164.9

vpm1 47.8 100 2,000 381 99.4 10.6 12.7 6.4

vpm2 60.1 76.4 2,000 2,000 149.9 127.5 20.9 10.5

tion, gendi achieves this result with a smaller number of visited nodes, 15% smaller
on average. The larger efficiency of branching on MIG disjunctions is evident from
the ratios of gap closed per node by gendi and gap closed per node by simdi for all
instances. The geometric mean of these ratios is 1.58.

Not only does gendi close more gap but it is faster. The solution time per node of
gendi is in fact 10% smaller than that of simdi, on average. (These results exclude the
solution time of the root relaxation.) This may sound surprising. Adding branching
constraints to the formulation should increase the solution time per LP subproblem.
A more detailed look shows that this is indeed the case. Recall that we perform strong
branching at each node in this experiment. This means that, at each node, we solve two
LP subproblems for each integer infeasibility, i.e., for each integer variable x j that has
a fractional value x̄ j in the optimal basic solutions x̄ of the node LP subproblem. As
expected, the solution time per subproblem of gendi is significantly larger than that of
simdi (11.7 vs. 6.0 ms on average; the difference is statistically significant with 95%
confidence, p-vaule=0.024). However, the average number of subproblems per node
that gendi solves is significantly less than that of simdi (65.6 vs. 93.7 subproblems
per node on average; the difference is statistically significant with 95% confidence,
p-value=0.042).

The last observation is important in itself. Fewer strong-branching subproblems per
node means that the optimal basic solutions of the node LP subproblems tend to have
fewer integer infeasibilities, hence fewer MIG disjunctions are available to choose
from. Table 7 shows the average number of infeasibilities per node. The number of
LP subproblems solved at each node is double that number.

In order to perform a more detailed analysis of the results of this experiment, we
partition the test instances into three sets: those solved by both algorithms, those which
cannot be solved by either algorithm in 2,000 nodes, and those solved by only one of
the algorithms.

123



Branching on general disjunctions 427

4.3.1 Instances solved by both methods

Thirty-three instances are solved by both algorithms in less than two thousand nodes.
We compare the size of the branching tree and the solution time of both algorithms.
Branching on MIG disjunctions performs much better than branching on variables on
both metrics. Gendi enumerates a smaller number of nodes in 21 cases while simdi
dominates in 10 cases. We test the hypothesis that the number of nodes processed
by gendi is no less than that processed by simdi (paired t-test). The hypothesis is
rejected with more than 90% confidence (p-value = 0.07). The ratios of processed
nodes by gendi and simdi vary between 0.045 and 11. Their geometric mean is 0.69.

Not only does branching on general disjunctions require less enumeration but it
is significantly faster. Recall that we are not using a state-of-the-art implementation
of variable branching here but instead an implementation that chooses the branching
variable based on full strong branching. In this context, faster branching essentially
means that the LP subproblems have optimal basic solutions with fewer integer infea-
sibilities. Thirty of these instances were solved faster by gendi and only three were
solved faster by simdi. Gendi is 40% faster on average. The ratios of solution time per
node by gendi and simdi vary between 0.1 and 1.9, and their geometric mean is 0.61.
A hypothesis test shows that the mean of this ratio is smaller than one, with 99.9%
confidence (p-value=1.2e-4).

Some of the instances for which branching on general disjunctions is much more
efficient than branching on variables are flugpl and nw04, where gendi needs only
5% of the nodes enumerated by simdi, as well as p0040 (9%), gen (22%), p0033
(23%), and pipex (23%). Instances for which simdi clearly dominates are qnet1
and qnet1_o, where simdi enumerated only 9% and 40% of the number of nodes
visited by gendi, respectively.

4.3.2 Instances solved by only one of the methods

One instance, stein27, is solved by simdi in 1966 nodes but cannot be solved by
gendi in 2,000 nodes. Gendi closes only 80% of the integrality gap.

On the other hand, ten instances are solved by gendi but cannot be solved by simdi.
In many cases, the difference in performance is striking. Instance gt2 is solved by
gendi in 47 nodes. Simdi manages to close the integrality gap in 2,000 nodes but
cannot prove optimality. Gendi solves fiber, vpm1 and mod008 in 179, 273, and
525 nodes resp., while 2,000 processed nodes by simdi close 76%, 48%, and 78% of
the gap, resp. Most impressively, gendi solves instance manna81 in 273 nodes and
22 min while simdi closes only 4.5% of the gap in 2,000 nodes and 15 h.

These results clearly support our previous observation that branching on MIG dis-
junctions closes a larger amount of gap per branching.

4.3.3 Instances not solved by any method

Forty instances cannot be solved in two thousand nodes by either of the algorithms.
Branching on MIG disjunctions performs better on these instances as well. We mea-
sure the performance of both methods by the amount of integrality gap closed after
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Table 8 Extreme cases of
outperformance in terms of
integrality gap closed

Instance Gap closed by Gap closed by
Simdi (%) Gendi (%)

opt1217 5 25

swath 11 37

roll3000 46 71

nsrand-ipx 37 54

harp2 57 42

misc07 70 54

danoint 24 17

2,000 branchings. Branching on MIG disjunction closes a larger amount of gap in 25
cases while branching on variables is more efficient in 7 cases. The mean ratio of the
gap closed by gendi and simdi is 1.12 (geometric mean). The range of these ratios is
0.68 to 4.88. Simdi is faster on most of these instances. The solution time per node is
practically equal for both algorithms, on average. The mean ratio of the solution time
per node of gendi and simdi is 1.01. The extreme cases when one of the algorithms
closes significantly more gap than the other are shown in Table 8.

For this subset of larger and more difficult instances, we again observe that branch-
ing on general disjunctions causes fewer integer infeasibilities in the node subprob-
lems. For each instance, we computed the ratio of the number of strong branching
subproblems solved per node by gendi and simdi. The geometric mean of these ratios
over all instances is 0.78 (with a range of 0.26 to 1.47), showing that branching on
general disjunctions is associated with about 22% decrease in the number of integer
infeasibilities per node, compared with branching on variables.

The results of this experiment confirm that branching on MIG disjunctions is signif-
icantly more efficient than branching on variables in a branch-and-bound algorithm,
when strong branching is performed at every node. We observe that branching on
MIG disjunctions closes more gap per branching and that it is usually no slower than
branching on variables.

4.4 Cut-and-branch

Above, we applied strong branching on all candidate variables or disjunctions. This
approach allowed us to make a rigorous and fair comparison of the strength of these
branching objects. Clearly, exhaustive strong branching is not an efficient solution
technique for general MILP problems. Below, we suggest a more practical version
of the algorithm where strong branching is performed only on ten candidates: the
ten most fractional variables or the ten MIG disjunctions with greatest depth. This
strategy for variable branching is not state-of-the art: We use it here because it can be
implemented very similarly for simple and MIG disjunctions and therefore allows us
to make a direct comparison. We test the performance of this approach in a cut-and-
branch framework.

We make two minor modifications to the algorithm for branching on general dis-
junctions in order to make it more practical. The first aims at avoiding an unnecessary
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increase in the size of the subproblems and the second aims at avoiding numerical
problems. First, when the π vector of a disjunction is a singleton, we branch on that
variable instead of adding explicit constraints of the type x j ≤ �x̄ j� or x j ≥ �x̄ j�+1.
Second, we do not consider dense disjunctions for branching. We define dense dis-
junctions to be those whose vector π ∈ Z

n has support of cardinality greater than
max(10, 0.1n). If all generated disjunctions at a node are dense, we branch on vari-
ables instead.

The limit on the solution time is 2 h. Our goal is to compare the tree size and the
running time. For the instances not solved to optimality, the amount of gap closed
is compared. We also compute the increase in computing time caused by branching
on general disjunctions by computing the ratio of the average solution time per node
required by the two different branching schemes. For simplicity, we continue calling
both algorithms simdi and gendi regardless of the modifications we introduce in this
section. Detailed results from this experiment are presented in Table 9.

Out of the 84 test instances, simdi and gendi solved an equal number: 63. Overall,
the difference in the performance of both algorithms is smaller than that observed in
the previous experiments. The reason is the addition of aggressive cut generation at the
root that closes about 60% of the integrality gap, on average. This leaves less work for
the branching phase, hence the smaller difference between the two tested algorithms.
Nevertheless, branching on general disjunctions significantly outperforms branching
on variables for a number of instances, leading to orders of magnitude improvement
in the solution time and the number of processed nodes. Most importantly, gendi is
clearly more efficient on the most difficult instances that cannot be solved within the
time limit of 2 h.

The solution time per node is about 9% larger when branching on MIG disjunctions,
computed as a geometric mean of the ratios of time per node by gendi to time per
node by simdi over all test instances. This contrasts our observations from the previous
experiments where gendi was usually no slower than simdi. The reason most likely is
the increased size of the subproblems due to adding explicit branching disjunctions to
the formulation in gendi. Sometimes these rows are dense, which affects the solution
time adversely. In the previous experiments, all or much of the branching occurred at
the top 10–20 levels of the branching trees where the number of rows added by gendi
is relatively small. As branching proceeds to the deeper levels, the contribution of the
MIG branching disjunctions to the size of the subproblems becomes more significant.
This effect can be mitigated by restricting branching on MIG disjunction to the top n
levels, e.g., n = 15, and proceeding with branching on variables at the deeper levels.
This would exploit the greater power of MIG disjunctions in closing integrality gap at
the most important nodes close to the root while minimizing the computational burden
of adding many rows to the formulation.

The larger computational time per node is offset by the larger amount of gap closed
per node by branching on MIG disjunctions: 65% larger, computed as a geometric
mean of the ratios of gap closed per node. This allows gendi to outperform simdi on
the most difficult instances.

We proceed with detailed analysis of the results of this experiment partitioning the
instances in three sets.

123



430 M. Karamanov, G. Cornuéjols

Table 9 Comparison of the gap closed, the number of processed nodes, and the solution time when branch-
ing on single variables and on MIG disjunctions (Cut-and-branch. Two hours limit on the solution time)

Instance Relative gap
closed by
cuts [%]

Relative gap closed
by branching [%]

Nodes processed Solution time

Simple disj. MIG disj. Simple disj. MIG disj. Simple disj. MIG disj.

10teams 100 0 0 16 19 7,200 7,200

a1c1s1 54.40 3.27 2.76 15,257 14,823 7,200 7,200

aflow30a 50 50 36.2 19,741 60,993 2,370.6 7,200

aflow40b 42.5 10.8 11.3 7,819 7,210 7,200 7,200

arki001 52.59 1.36 11.14 47,562 27,953 7,200 7,200

bell3a 70.3 29.7 29.7 10,220 9,928 17.5 17.6

bell3b 77.8 22.2 22.2 8,192 5,780 28.3 15

bell4 92.6 7.4 7.4 329,481 2,591 2,392.8 9.6

bell5 90.6 9.4 9.4 594,806 1,366 895.3 2.5

blend2 29.3 70.7 70.7 1,159 1,174 14.3 17.5

bm23 33.4 66.6 66.6 149 104 0.3 0.3

cap6000 63 37 19.9 7,901 8,225 929.4 7,200

danoint 1 20.2 10.9 18,292 5,098 7,200 7,200

dcmulti 76.5 23.5 23.5 58 41 4.4 3.3

egout 100 0 0 7 4 0.2 0.2

fiber 95.3 4.7 4.7 644 171 31.7 12.8

fixnet3 99.9 0.1 0.1 9 9 1.4 1.5

fixnet4 90.5 9.5 9.5 123 517 39.4 81.2

fixnet6 83.8 16.2 16.2 562 1,639 89.8 215.5

flugpl 14.4 85.6 85.6 1,122 26 1 0.1

gen 100 0 0 1 1 0.2 0.2

gesa2 98 2 2 189 110 9.1 8.2

gesa2_o 92.9 7.1 7.1 28,315 14,092 1717.4 1,547.1

gesa3 77.5 22.5 22.5 58 62 6 7.6

gesa3_o 69.7 30.3 30.3 130 230 14 31.4

gt2 99.9 0.1 0.1 23 58 0.4 0.6

harp2 63.5 11.1 8.6 98,893 37,860 7,200 7,200

khb05250 99.6 0.4 0.4 7 7 0.9 0.9

l152lav 37.5 62.5 62.5 711 308 44.6 39.9

lp4l 100 0 0 2 2 0.7 0.7

lseu 75.8 24.2 24.2 422 415 1.3 1.4

manna81 100 0 0 1 1 0.5 0.4

markshare1 0 0 0 1,080,390 615,114 7,200 7,200

markshare2 0 0 0 1,066,636 619,146 7,200 7,200

mas74 8.9 80.2 74.4 1,348,963 1,282,589 7,200 7,200

mas76 13.2 86.8 86.8 136,806 195,978 709.4 1,144.2
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Table 9 continued

Instance Relative gap
closed by cuts
[%]

Relative gap closed
by branching [%]

Nodes processed Solution time

Simple disj. MIG disj. Simple disj. MIG disj. Simple disj. MIG disj.

misc01 5.7 94.3 94.3 162 167 1.1 1

misc02 20 80 80 26 23 0.3 0.2

misc03 16.4 83.6 83.6 203 349 2.6 4.2

misc04 83.8 16.2 16.2 6 7 1.8 2

misc05 51.6 48.4 48.4 61 84 2.3 2.6

misc06 74.6 25.4 25.4 7 13 0.7 1.2

misc07 0.7 99.3 99.3 12,610 18,605 1,450.7 2,421.6

mkc 43.9 1 11.2 46,257 8,531 7,200 7,200

mod008 86.7 13.3 13.3 614 272 6.5 4.4

mod010 100 0 0 1 1 1.6 1.7

mod011 48.3 34.3 34.9 2,810 2,843 7,200 7,200

mod013 73.2 26.8 26.8 90 119 0.9 1

modglob 67.2 32.8 32.8 48,578 51,301 1,664.4 2,093.7

nsrand-ipx 70.8 2.5 5 18,196 11,663 7,200 7,200

nw04 98.6 1.4 1.4 7 3 185.8 184.2

opt1217 50.2 0 0 349,705 349,689 7,200 7,200

p0033 100 0 0 1 1 0.1 0.1

p0040 100 0 0 1 1 0 0

p0201 58.4 41.6 41.6 103 100 4 3.7

p0282 97.5 2.5 2.5 115 41 1.6 1.1

p0291 99.6 0.4 0.4 13 9 0.4 0.3

p0548 94.3 4.1 5.7 436,999 50 7,200 2

p2756 97.8 2.2 2.2 8,643 204 420.1 12.5

pipex 57 43 43 515 241 1 0.6

pk1 0 100 100 138,520 221,848 4,094.3 5,999.1

pp08a 90.5 9.5 9.5 1,707 2,259 52.7 96.3

pp08aCUTS 80.2 19.8 19.8 1,187 1,994 41.7 94.6

qiu 7.8 92.2 92.2 10,031 11,768 3,671.8 4,297.9

qnet1 67 33 33 376 274 648.1 806.9

qnet1_o 75.1 24.9 24.9 633 763 572.7 1,033.3

rgn 75 25 25 816 902 3.4 4.1

roll3000 75.69 2.10 5.56 17,355 8,503 7,200 7,200

rout 9.2 75 90.8 163,940 17,967 7,200 1,082.5

sample2 40.8 59.2 59.2 93 71 0.4 0.5

sentoy 27.2 72.8 72.8 203 129 0.4 0.4

set1al 100 0 0 9 9 0.5 0.5

set1ch 90.9 1.7 4 75,867 63,463 7,200 7,200

set1cl 100 0 0 1 1 0.1 0.1
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Table 9 continued

Instance Relative gap
closed by cuts
[%]

Relative gap closed
by branching [%]

Nodes processed Solution time

Simple disj. MIG disj. Simple disj. MIG disj. Simple disj. MIG disj.

stein15 0 100 100 76 115 0.5 1

stein27 0 100 100 2,088 3,855 33.5 89.6

stein45 0 100 100 25,034 50,926 1,350.7 4,112.5

stein9 100 0 0 1 1 0 0

swath 32.28 3.02 3.15 21,186 16,298 7,200 7,200

timtab1 41.8 10 9.7 446,549 201,471 7,200 7,200

timtab2 33.69 2.92 4.10 138,659 55,279 7,200 7,200

tr12-30 93.3 0.7 1.9 40,481 30,145 7,200 7,200

vpm1 91.3 8.7 8.7 1,021 701 21.1 19.5

vpm2 77.2 22.8 22.8 5,437 20,196 120.6 591.9

4.4.1 Instances solved by both methods

Sixty-one instances are solved by both methods within the 2 h limit. The average inte-
grality gap closed by cuts for these instances is 68%. The remaining 32% are closed
by branching. All these instances are solved to completion, therefore we compare the
number of nodes processed by the two algorithms.

Fourteen of the instances are solved in less than ten nodes by both simdi and gen-
di. Most of them are practically solved by cuts and the others require only a few
branchings in order to close the small remaining integrality gap. We exclude these
easy instances from further analysis.

Out of the remaining 47 instances, 24 are solved in fewer nodes by simdi while
gendi is more efficient for 23 instances. The extreme cases are bell4, bell5,
flugpl, and p2756 where gendi needs 0.23%, 0.79%, 2.3%, and 2.4%, resp., of
the nodes that simdi requires to solve the problems. At the other extreme are instances
fixnet4 and vpm2 which simdi solves in 24% and 27%, resp., of the nodes gendi
requires. A careful look at the ratios of nodes processed by gendi and simdi on a
particular instance shows that gendi usually outperforms simdi with a much larger
margin. The geometric mean of the ratios for the 45 analyzed instances is 0.71. The
range of the ratio is from 0.0023 to 4.20.

These results show that on the set of relatively easier instances, branching on gen-
eral disjunctions typically outperforms branching on variables about half the time but
when it does, the difference is often significant, while simdi outperforms gendi by a
smaller margin.

4.4.2 Instances solved by only one of the methods

Two instances are solved by gendi but not solved by simdi within 2 h. Gendi solves
instance p0548 in 2 s and 50 nodes while simdi cannot solve it in 2 h and 437,000
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nodes. Instance rout is solved in 18 min and 18,000 nodes by gendi and cannot be
solved in 160,000 nodes and 2 h by simdi.

Two other instances are solved by simdi but not solved by gendi within 2 h. Instance
aflow30a takes 40 min and 20,000 nodes with simdi but more than 60,000 nodes
with gendi. Instance cap6000 requires 15 min and 7,900 nodes with simdi. Gendi
cannot solve it in 2 h and 8,200 nodes.

4.4.3 Instances not solved by either method

Twenty instances are not solved by either method within the time limit. We compare the
gap closed by the two algorithms in the 2-h interval of time. Neither of the algorithms
closes any gap by branching for five instances: 10teams, liu, markshare1,
markshare2, and opt1217. For the remaining 15 instances, comparing the gap
closed in the branching phase of cut-and-branch shows that gendi closes 63% more
gap than simdi, on average. This number is computed as a geometric mean of the
ratios of gap closed by gendi and simdi.

In addition, gendi achieves this larger improvement in gap closed by processing
significantly fewer nodes than simdi. Gendi visits 58% of the nodes that simdi visits
in the 2-h solution time. As we discussed, the reason is likely the larger computational
time per subproblem due to the numerous added MIG disjunctions. Comparing the
ratios of gap closed per node shows that a single branching on MIG disjunctions closes
2.8 times more gap than a branching on variables, on average, for these 15 instances.
This observation emphasizes the large potential of branching on general disjunctions.

Simdi was more efficient in five cases while gendi closed more gap than simdi in
ten cases. For example, on instance mkc gendi closes 11.2 times more gap than sim-
di while processing only 18% of the nodes simdi processes. On instance arki001,
gendi closes 8.2 times more gap in 60% of the nodes. Overall, gendi closes at least
twice as much gap as simdi for six instances while simdi is never twice as good
as gendi. The best case relative performance of simdi are instances danoint and
harp2, for which it closes 1.85 and 1.3 times more gap than gendi, respectively. It
is important to note that in the same time it processes 3.6 and 2.6 times more nodes,
resp.

The results of the last experiment show that branching on MIG disjunctions con-
vincingly outperforms branching on variables in a cut-and-branch framework that
combines aggressive cut generation and strong branching on ten branching objects.
In particular, when applied to the most difficult instances in the test set, branching on
general disjunctions closes significantly more gap than branching on variables for the
same time interval. It also closes much more gap per processed node than branching
on variables does. These conclusions confirm the large potential of branching on MIG
disjunctions that we observed in the other experiments.

We designed our experiments in a way that allows a direct comparison between
branching on general disjunctions and branching on variables. The algorithms we
tested do not pretend to compete with the best current algorithms for solving MILP
problems. Using cut-and-branch with aggressive strong branching at every node is not
the most efficient algorithm for general MILP. This is evident from the comparison
with other research and commercial codes shown in Table 10. The source of data for
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Table 10 Comparison of solution Time (in seconds) by simdi, gendi, and other MILP Solversa, b

Instance Simdi Gendi CBC GLPK MINTO SYMPHONY SCIP-S SCIP-L SCIP-C CPLEX

10teams 7,200c 7,200c 375 7,200c 7,200c 7,200c 1,307 5,048 39 5

cap6000 929 7,200c 126 7,200c 780 7,200c 60 479 42 22

markshare1 7,200c 7,200c 7,200c 227 7,200c 7,200c 903 1,334 11 14

markshare2 7,200c 7,200c 7,200c 7,200c 7,200c 7,200c 832 7,200c 805 39

mas74 7,200c 7,200c 7,200c 7,200c 7,200c 7,200c 2,105 7,200c 1,530 1,522

mas76 709 1,144 1,603 7,200c 7,200c 4,878 220 604 185 149

misc07 1,451 2,422 657 98 424 861 66 103 71 11

mod011 7,200c 7,200c 802 7,200c 3,750 1,218 1,383 1,882 300 94

nw04 186 184 76 717 7,200c 845 4,093 3,232 326 26

pk1 4,094 5,999 3,607 7,200c 7,200c 3,140 158 820 197 86

qiu 3,672 4,298 4,374 7,200c 800 5,779 424 1,800 197 37

a The following MILP solvers have been used:
– CBC 1.00: http://www.coin-or.org/projects/Cbc.xml
– GLPK 4.9: http://www.gnu.org/software/glpk/glpk.html
– MINTO 3.1: http://www.coral.ie.lehigh.edu/minto/
– SYMPHONY 5.1a: http://www.coin-or.org/projects/SYMPHONY.xml
– SCIP 0.81: http://www.scip.zib.de/
– CPLEX 10.0: http://www.ilog.com/products/cplex/ (Parameters: mipgap = 0, absmipgap = 1e-9)

CBC, SYMPHONY, and MINTO use Clp as an LP solver. SCIP uses Soplex (SCIP-S), Clp (SCIP-L), or Cplex
(SCIP-C) as an LP solver
b Source of data: [26]
c The solver could not solve the instance in the alloted 2-h time

this table is a comparison of optimization software on a set of benchmark instances
provided by Mittelmann [26] and published on 1/23/2006—approximately the time
when our version of BCP was downloaded and our experiments conducted. We used
Cplex 9.0 while Table 10 contains Cplex 10.0 solution times. The hardware platform
on which those tests were performed is comparable to ours: 3.2 GHz Intel Pentium 4
CPU, with 4 GB RAM, running Linux OS. The tested solvers were run for 2 h with
default settings.

5 Conclusion

In this paper, we propose a procedure for branching on general disjunctions as part of
a branch-and-cut algorithm for solving Mixed Integer Linear Programming problems.
The procedure is independent of the instance characteristics and can be applied to any
MILP.

We discuss the relation between branching disjunctions and intersection cuts and
show that branching on general disjunctions can close more gap than adding the cor-
responding intersection cut, implying that branching cannot be substituted by cutting
planes. We propose to use the distance cut off by the intersection cut as a measure
of quality of the disjunction. This measure can be used for pre-selection of the most
promising disjunctions before strong branching.
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We test these ideas in experiments with 84 test instances from the literature, com-
paring branching on variables with branching on general disjunctions. We observe
that on average the effect of branching on general disjunctions is: (1) a smaller tree
size for the instances solved to optimality, and (2) a larger amount of gap closed for
the other instances. The test results indicate that the proposed procedure outperforms
regular branching on variables for most instances.

We also observe that, in addition to the larger amount of gap closed, branching on
general disjunctions results in only one feasible child more often than branching on
variables does (with the same branching rules applied). This is an interesting side effect
that decreases the tree size further. In our implementation, we select ten disjunctions
for strong branching and sometimes more than one produces an infeasible child. One
could add all these disjunctive inequalities, which are valid for PI , as cuts instead of
adding just one through branching. This will decrease the search space at the child
node. We have not implemented this idea.

Another interesting observation about our implementation of branching on general
disjunctions is that it tends to produce LP subproblems with fewer integer infeasibili-
ties than those produced by branching on variables.

We obtain an efficient algorithm by considering only a specific class of disjunc-
tions—those defining mixed integer Gomory cuts—instead of searching the whole set
of split disjunctions. This approach can be extended to disjunctions defining other clas-
ses of split cuts, such as lift-and-project, reduce-and-split, and mixed integer rounding
cuts. The advantages of branching on variables and on general disjunctions can be com-
bined in one algorithm. One idea is to branch on general disjunctions close to the root
and branch on variables at the deeper levels. Another approach would be to generate
disjunctions and identify fractional variables simultaneously, and let strong branching
choose the branching object among them. Some research in this direction has been
initiated [14]. More studies would be fruitful on criteria for evaluating disjunctions.
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