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Abstract We give a bundle method for minimizing the sum of two convex func-
tions, one of them being known only via an oracle of arbitrary accuracy. Each iteration
involves solving two subproblems in which the functions are alternately represented
by their linearizations. Our approach is motivated by applications to nonlinear multi-
commodity flow problems. Encouraging numerical experience on large scale problems
is reported.
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1 Introduction

We give a bundle method for the structured convex minimization problem

θ∗ := inf{ θ(·) := σ(·)+ π(·) }, (1.1)

where σ : R
m → (−∞,∞] and π : C → R are closed proper convex functions, and

C := dom σ := {u : σ(u) < ∞} is the effective domain of σ . Such problems may
appear via duality when the primal has a certain structure. For instance, consider the
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60 K. C. Kiwiel

two equivalent minimization problems

f∗ := inf{ f (Ax) : x ∈ X } = inf{ f (y) : y = Ax, x ∈ X }, (1.2)

where X ⊂ R
n and A is an m × n matrix. For the Lagrangian L(x, y; u) := f (y)+

〈u, Ax − y〉, minimization over (x, y) ∈ X × R
m yields (1.1) as a dual problem with

σ(u) := f ∗(u) := supy{〈u, y〉 − f (y)} and π(u) := sup{〈−AT u, x〉 : x ∈ X}.
(1.3)

We assume that σ is “simple” in the sense that minimizing σ plus a separable con-
vex quadratic function is “easy”. On the other hand, π is known only via an oracle,
which at any query point u ∈ C delivers an affine minorant of π (e.g., 〈−Ax, ·〉 for a
possibly inexact maximizer x in (1.3)).

Our method is an approximate version of the proximal point algorithm [18,21]
which generates a sequence

ûk+1 = arg min σ(·)+ π(·)+ 1
2tk

| · −ûk |2 for k = 1, 2, . . . , (1.4)

starting from a point û1 ∈ C , where | · | is the Euclidean norm and tk > 0 are step-
sizes. It combines two basic ideas: bundling from the proximal bundle methods [7,9,
Sect. XV.3], and their extensions [12,13] to inexact oracles, and alternating linear-
ization (AL for short) from [11,13,16]. Here bundling means replacing π in (1.4)
by its polyhedral model π̌k ≤ π derived from the past oracle answers. Since the
resulting subproblem may still be too difficult, we follow the AL approach in which
a subproblem involving the sum of two functions (here σ and π̌k) is replaced by two
subproblems in which the functions are alternately represented by linear models. Thus,
(1.4) is replaced by the two easier subproblems

ǔk+1 := arg min σ̄k−1(·)+ π̌k(·)+ 1
2tk

| · −ûk |2, (1.5)

uk+1 := arg min σ(·)+ π̄k(·)+ 1
2tk

| · −ûk |2. (1.6)

The first subproblem (1.5) employs a linearization σ̄k−1 ≤ σ obtained at the pre-
vious iteration. Its solution yields by the usual optimality condition a linearization
π̄k ≤ π̌k which may a posteriori replace π̌k in (1.5) without changing its optimal value
and solution. Similarly, the solution of (1.6) provides a linearization σ̄k ≤ σ which
may a posteriori replace σ in (1.6).

Our method coincides with that of [13] in the special case of σ being the indicator
function iC of C (iC (u) = 0 if u ∈ C,∞ otherwise). Then uk+1 in (1.6) is the projec-
tion onto C of ûk − tk∇π̄k ; this projection is straightforward if the set C is “simple”.
For more difficult cases, it is crucial to allow for approximate solutions in (1.6). We
show (cf. Sect. 4.2) that such solutions can be obtained by solving the Fenchel dual
of (1.6) approximately; this is conceptually related to the use of Fenchel’s duality in
[7, Proposition XV.2.4.3 and p. 306].
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An alternating linearization bundle method for convex optimization 61

For dual applications, we restrict our attention to the setup of (1.2)–(1.3) with f
closed proper convex and X compact and convex (since other examples of [16] could
be treated in similar ways). As in [13], even when the dual has no solutions, our method
can still asymptotically find επ -optimal primal solutions, where επ is an upper bound
on the oracle’s errors; in fact only the asymptotic oracle errors matter, as discussed in
[13, Sect. 4.2].

Actually, our theoretical contributions outlined above were motivated by applica-
tions to nonlinear multicommodity flow problems (NMFP for short); more concretely,
by the good experimental results of [1], where the analytic center cutting plane method
(ACCPM for short) exploited “nice” second-order properties of σ . This gave tremen-
dous improvements over an earlier version of ACCPM [6] which used a first-order
oracle for σ . We show that our method can exploit such properties as well, obtaining
significant speedups with respect to standard bundle on most instances used in [1].
The alternative approach of [17] for adapting standard bundle to NMFP is promising,
but has not been tested on large instances (see Sect. 8.3 for rough comparisons with
our AL). Finally, we note that the ballstep subgradient method of [14] is quite efficient
only for fairly low accuracy requirements.

As for the state-of-the-art in NMFP, we refer the reader to [1] for the developments
subsequent to the review of [19].

The paper is organized as follows. In Sect. 2 we present our method. Its conver-
gence is analyzed in Sect. 3. Useful modifications, including approximate solutions of
(1.6), are given in Sect. 4. Application to the Lagrangian relaxation of (1.2) is studied
in Sect. 5. Specializations to NMFP are given in Sect. 6. Implementation issues are
discussed in Sect. 7. Numerical benchmarks on the instances of [1] and comparisons
with standard bundle and the method of [17] are given in Sect. 8.

2 The alternating linearization bundle method

We first explain our use of approximate objective values in (1.5), (1.6). Our method
generates a sequence of trial points {uk}∞k=1 ⊂ C at which the oracle is called. We
assume that for a fixed accuracy tolerance επ ≥ 0, at each uk ∈ C the oracle delivers
an approximate value πk

u and an approximate subgradient gk
π of π that produce the

approximate linearization of π :

πk(·) := πk
u + 〈gk

π , · − uk〉 ≤ π(·) with πk(u
k) = πk

u ≥ π(uk)− επ . (2.1)

Thus πk
u ∈ [π(uk)− επ , π(uk)], whereas gk

π lies in the επ -subdifferential of π at uk

∂επ π(u
k) :=

{
gπ : π(·) ≥ π(uk)− επ + 〈gπ , · − uk〉

}
.

Then θk
u := σ k

u + πk
u is the approximate value of θ at uk , where σ k

u := σ(uk).
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At iteration k ≥ 1, the current prox (or stability) center ûk := uk(l) ∈ C for some
k(l) ≤ k has the value θk

û := θ
k(l)
u (usually θk

û = mink
j=1 θ

j
u ); note that, by (2.1),

θk
û ∈ [θ(ûk)− επ , θ(û

k)]. (2.2)

If πk
û < π̄k(ûk) in (1.6) due to evaluation errors, the predicted descent

vk := θk
û −

[
σ

(
uk+1

)
+ π̄k

(
uk+1

)]
(2.3)

may be nonpositive; hence, if necessary, tk is increased and (1.5)–(1.6) are solved
again until vk ≥ |uk+1 − ûk |2/2tk as in [12,13,15]. A descent step to ûk+1 := uk+1 is
taken if

θk+1
u ≤ θk

û − κvk (2.4)

for a fixed κ ∈ (0, 1). Otherwise, a null step ûk+1 := ûk occurs; then π̄k and the new
linearization πk+1 are used to produce a better model π̌k+1 ≥ max{π̄k, πk+1}.

Specific rules of our method will be discussed after its formal statement below.

Algorithm 2.1

Step 0 (Initiation). Select u1 ∈ C , a descent parameter κ ∈ (0, 1), a stepsize bound
tmin > 0 and a stepsize t1 ≥ tmin. Call the oracle at u1 to obtain π1

u and
g1
π of (2.1). Set π̄0 := π1 by (2.1), and σ̄0(·) := σ(u1) + 〈p0

σ , · − u1〉 with
p0
σ ∈ ∂σ(u1). Set û1 := u1, θ1

û := θ1
u := σ 1

u + π1
u with σ 1

u := σ(u1), i1
t :=

0, k := k(0) := 1, l := 0 (k(l)− 1 will denote the iteration of the lth descent
step).

Step 1 (Model selection). Choose π̌k : R
m → R convex and such that

max{π̄k−1, πk} ≤ π̌k ≤ π. (2.5)

Step 2 (Solving theπ -subproblem). Find ǔk+1 of (1.5) and the aggregate linearization
of π̌k

π̄k(·) := π̌k(ǔ
k+1)+ 〈pk

π , · − ǔk+1〉 with pk
π := (ûk − ǔk+1)/tk − pk−1

σ .

(2.6)

Step 3 (Solving the σ–subproblem). Find uk+1 of (1.6) and the aggregate linearization
of σ

σ̄k(·) := σ(uk+1)+ 〈pk
σ , · − uk+1〉 with pk

σ := (ûk − uk+1)/tk − pk
π .

(2.7)
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An alternating linearization bundle method for convex optimization 63

Compute vk of (2.3), and the aggregate subgradient and linearization error
of θ

pk := (ûk − uk+1)/tk and εk := vk − tk |pk |2. (2.8)

Step 4 (Stopping criterion). If max{|pk |, εk} = 0, stop (θk
û ≤ θ∗).

Step 5 (Noise attenuation). If vk < −εk , set tk := 10tk, i k
t := k and go back to

Step 2.
Step 6 (Oracle call). Call the oracle at uk+1 to obtain πk+1

u and gk+1
π of (2.1).

Step 7 (Descent test). If the descent test (2.4) holds with θk+1
u := σ(uk+1) + πk+1

u ,
set ûk+1 := uk+1, θk+1

û := θk+1
u , i k+1

t := 0, k(l + 1) := k + 1 and increase

l by 1 (descent step); otherwise, set ûk+1 := ûk, θk+1
û := θk

û , and i k+1
t := i k

t
(null step).

Step 8 (Stepsize updating). If k(l) = k+1 (i.e., after a descent step), select tk+1 ≥ tmin;
otherwise, either set tk+1 := tk , or choose tk+1 ∈ [tmin, tk] if i k+1

t = 0.
Step 9 (Loop). Increase k by 1 and go to Step 1.

Several comments on the method are in order. Step 1 may choose the simplest model
π̌k = max{π̄k−1, πk}. More efficient choices are discussed in [13, Sect. 4.4] and [15,
Sect. 2.3]. For polyhedral models, Step 2 may use the QP methods of [3,8,10], which
can handle efficiently sequences of subproblems (1.5).

We now use the relations of Steps 2 and 3 to derive an optimality estimate, which
involves the aggregate linearization θ̄k := σ̄k + π̄k and the optimality measure

Vk := max
{
|pk |, εk + 〈pk, ûk〉

}
. (2.9)

Lemma 2.2 (1) The vectors pk
π and pk

σ of (2.6) and (2.7) are in fact subgradients:

pk
π ∈ ∂π̌k(ǔ

k+1) and pk
σ ∈ ∂σ(uk+1), (2.10)

and the linearizations π̄k and σ̄k of (2.6) and (2.7) provide the minorizations

π̄k ≤ π̌k, σ̄k ≤ σ and θ̄k := π̄k + σ̄k ≤ θ. (2.11)

(2) The aggregate subgradient pk of (2.8) and the linearization θ̄k above satisfy

pk = pk
π + pk

σ = (ûk − uk+1)/tk, (2.12)

θ̄k(·) = θ̄k(u
k+1)+ 〈pk, · − uk+1〉. (2.13)

(3) The predicted descent vk of (2.3) and the aggregate error εk of (2.8) satisfy

vk = θk
û − θ̄k(u

k+1) = tk |pk |2 + εk and εk = θk
û − θ̄k(û

k). (2.14)
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(4) The aggregate linearization θ̄k is expressed in terms of pk and εk as follows:

θk
û − εk + 〈pk, · − ûk〉 = θ̄k(·) ≤ θ(·). (2.15)

(5) The optimality measure Vk of (2.9) satisfies Vk ≤ max{|pk |, εk}(1 + |ûk |) and

θk
û ≤ θ(u)+ Vk (1 + |u|) for all u. (2.16)

(6) We have vk ≥ −εk ⇔ tk |pk |2/2 ≥ −εk ⇔ vk ≥ tk |pk |2/2. Moreover, vk ≥
εk,−εk ≤ επ and

vk ≥ max
{
tk |pk |2/2, |εk |

}
if vk ≥ −εk, (2.17)

Vk ≤ max
{
(2vk/tk)

1/2, vk

} (
1 + |ûk |

)
if vk ≥ −εk, (2.18)

Vk < (2επ/tk)1/2
(
1 + |ûk |) if vk < −εk . (2.19)

Proof (1) Let φk
π , φ

k
σ denote the objectives of (1.5), (1.6). By (2.6), the optimality

condition 0 ∈ ∂φk
π (ǔ

k+1) for (1.5) with ∇σ̄k−1 = pk−1
σ by Step 0 and (2.7), i.e.,

0 ∈ ∂φk
π (ǔ

k+1) = ∂π̌k(ǔ
k+1)+ pk−1

σ + (ǔk+1 − ûk)/tk = ∂π̌k(ǔ
k+1)− pk

π ,

and π̄k(ǔk+1) = π̌k(ǔk+1) yield pk
π ∈ ∂π̌k(ǔk+1) and π̄k ≤ π̌k . Similarly, by

(2.7),

0 ∈ ∂φk
σ (u

k+1) = pk
π + ∂σ(uk+1)+ (uk+1 − ûk)/tk = ∂σ(uk+1)− pk

σ

(using ∇π̄k = pk
π ) and σ̄k(uk+1) = σ(uk+1) give pk

σ ∈ ∂σ(uk+1) and σ̄k ≤ σ .
Combining both minorizations, we obtain that π̄k + σ̄k ≤ π̌k + σ ≤ θ by (2.5)
and (1.1).

(2) Use the linearity of θ̄k := π̄k + σ̄k , (2.6), (2.7) and (2.8).
(3) Rewrite (2.3), using the fact that θ̄k(ûk) = θ̄k(uk+1)+ tk |pk |2 by (2).
(4) We have θk

û − εk = θ̄k(ûk) by (3), θ̄k is affine by (2) and minorizes θ by (1).
(5) Using the Cauchy–Schwarz inequality in the definition (2.9) gives

Vk ≤ max{|pk |, εk + |pk ||ûk |} ≤ max{|pk |, εk} + |pk ||ûk |
≤ max{|pk |, εk}

(
1 + |ûk |

)
.

Since |a||b| + c ≤ max{|a|, c}(1 + |b|) for any scalars a, b, c, in (2.15) we have

−〈pk, u〉 + εk + 〈pk, ûk〉 ≤ |pk ||u| + εk + 〈pk, ûk〉
≤ max{|pk |, εk + 〈pk, ûk〉}(1 + |u|).
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An alternating linearization bundle method for convex optimization 65

(6) The equivalences follow from the expression of vk = tk |pk |2 + εk in (3); in
particular, vk ≥ εk . Next, by (2.14), (2.11) and (2.2), we have

−εk = θ̄k(û
k)− θk

û ≤ θ(ûk)− θk
û ≤ επ .

Finally, to obtain the bounds (2.17)–(2.19), use the equivalences together with the
facts that vk ≥ εk,−εk ≤ επ and the bound on Vk from assertion (5). 
�

The optimality estimate (2.16) justifies the stopping criterion of Step 4: Vk = 0
yields θk

û ≤ inf θ = θ∗; thus, the point ûk is επ -optimal, i.e., θ(ûk) ≤ θ∗ + επ by
(2.2). If the oracle is exact (επ = 0), we have vk ≥ εk ≥ 0 by Lemma 2.2(6), and
Step 5 is redundant. When inexactness is discovered at Step 5 via vk < −εk and the
stepsize tk is increased, the stepsize indicator ik

t �= 0 prevents Step 7 from decreasing
tk after null steps until the next descent step occurs (cf. Step 6). At Step 6, we have
uk+1 ∈ C and vk > 0 (by (2.17), since max{|pk |, εk} > 0 at Step 4), so that ûk+1 ∈ C
and θk+1

û ≤ θk
û .

3 Convergence

With Lemma 2.2 replacing [13, Lemma 3.2], it is easy to check that the convergence
results of [13, Sect.3] will hold once we prove [13, Lemma 3.2] for our method. To
this end, as usual, we assume that the oracle’s subgradients are locally bounded:

{gk
π } is bounded if {uk} is bounded. (3.1)

Further, as in [13], we assume that the model subgradients pk
π in (2.10) satisfy

{pk
π } is bounded if {uk} is bounded. (3.2)

Remark 3.1 Note that (3.1) holds if C = R
m or if π can be extended to become finite-

valued on a neighborhood of C , since gk
π ∈ ∂επ π(uk) by (2.1), whereas the mapping

∂επ π is locally bounded on C in both cases [7, Sect. XI.4.1]. As discussed in [13,
Remark 4.4], typical models π̌k satisfy condition (3.2) automatically when (3.1) holds.

A suitable modification of the proof of [13, Lemma 3.2] follows.

Lemma 3.2 Suppose there exists k̄ such that for all k ≥ k̄, only null steps occur and
Step 5 doesn’t increase tk . Then Vk → 0.

Proof Let φk
π and φk

σ denote the objectives of subproblems (1.5) and (1.6). First,
using partial linearizations of these subproblems, we show that their optimal values
φk
π (ǔ

k+1) ≤ φk
σ (u

k+1) are nondecreasing and bounded above for k ≥ k̄.
Fix k ≥ k̄. By the definitions in (1.5) and (2.6), we have π̄k(ǔk+1) = π̌k(ǔk+1) and

ǔk+1 = arg min
{
φ̄k
π (·) := π̄k(·)+ σ̄k−1(·)+ 1

2tk
| · −ûk |2

}
(3.3)
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from ∇φ̄k
π (ǔ

k+1) = 0. Since φ̄k
π is quadratic and φ̄k

π (ǔ
k+1) = φk

π (ǔ
k+1), by Taylor’s

expansion

φ̄k
π (·) = φk

π (ǔ
k+1)+ 1

2tk
| · −ǔk+1|2. (3.4)

Similarly, by the definitions in (1.6) and (2.7), we have σ̄k(uk+1) = σ(uk+1),

uk+1 = arg min
{
φ̄k
σ (·) := π̄k(·)+ σ̄k(·)+ 1

2tk
| · −ûk |2

}
, (3.5)

φ̄k
σ (·) = φk

σ (u
k+1)+ 1

2tk
| · −uk+1|2. (3.6)

Next, to bound the objective values of the linearized subproblems (3.3) and (3.5) from
above, we use the minorizations π̄k ≤ π and σ̄k−1, σ̄k ≤ σ of (2.11) for θ := π + σ :

φk
π (ǔ

k+1)+ 1
2tk

|ǔk+1 − ûk |2 = φ̄k
π (û

k) ≤ θ(ûk), (3.7a)

φk
σ (u

k+1)+ 1
2tk

|uk+1 − ûk |2 = φ̄k
σ (û

k) ≤ θ(ûk), (3.7b)

where the equalities stem from (3.4) and (3.6). Due to the minorization σ̄k−1 ≤ σ ,
the objectives of (3.3) and (1.6) satisfy φ̄k

π ≤ φk
σ . On the other hand, since ûk+1 =

ûk, tk+1 ≤ tk (cf. Step 7), and π̄k ≤ π̌k+1 by (2.5), the objectives of (3.5) and the next
subproblem (1.5) satisfy φ̄k

σ ≤ φk+1
π . Altogether, by (3.4) and (3.6), we see that

φk
π

(
ǔk+1

)
+ 1

2tk
|uk+1 − ǔk+1|2 = φ̄k

π

(
uk+1

)
≤ φk

σ

(
uk+1

)
, (3.8a)

φk
σ

(
uk+1

)
+ 1

2tk
|ǔk+2 − uk+1|2 = φ̄k

σ

(
ǔk+2

)
≤ φk+1

π

(
ǔk+2

)
. (3.8b)

In particular, the inequalitiesφk
π (ǔ

k+1) ≤ φk
σ (u

k+1) ≤ φk+1
π (ǔk+2) imply that the non-

decreasing sequences {φk
π (ǔ

k+1)}k≥k̄ and {φk
σ (u

k+1)}k≥k̄ , which are bounded above

by (3.7) with ûk = ûk̄ for all k ≥ k̄, must have a common limit, say φ∞ ≤ θ(ûk̄).
Moreover, since tk ≤ tk̄ for all k ≥ k̄, we deduce from the bounds (3.7)–(3.8) that

φk
π

(
ǔk+1

)
, φk

σ

(
uk+1

)
↑ φ∞, ǔk+2 − uk+1 → 0, (3.9)

and the sequences {ǔk+1} and {uk+1} are bounded. Then the sequences {gk
π } and {pk

π }
are bounded by (3.1) and (3.2).

We now show that the approximation error ε̄k := πk+1
u −π̄k

(
uk+1

)
vanishes. Using

the form (2.1) of πk+1, the minorization πk+1 ≤ π̌k+1 of (2.5), the Cauchy–Schwarz
inequality, and the optimal values of subproblems (1.5) and (1.6) with ûk = ûk̄ for
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An alternating linearization bundle method for convex optimization 67

k ≥ k̄, we estimate

ε̄k := πk+1
u − π̄k

(
uk+1

)
= πk+1

(
ǔk+2

)
− π̄k

(
uk+1

)
+ 〈gk+1

π , uk+1 − ǔk+2〉
≤ π̌k+1

(
ǔk+2

)
− π̄k

(
uk+1

)
+ |gk+1

π ||uk+1 − ǔk+2|
= φk+1

π

(
ǔk+2

)
− φk

σ

(
uk+1

)
+Δk

u +Δk
σ + |gk+1

π ||uk+1 − ǔk+2|, (3.10)

where Δk
u := |uk+1 − ûk̄ |2/2tk − |ǔk+2 − ûk̄ |2/2tk+1 and Δk

σ := σ k+1
u − σ̄k

(
ǔk+2

)
;

in fact, Δk
σ = −〈pk

σ , ǔk+2 − uk+1〉 by (2.7). To see that Δk
u → 0, note that

|ǔk+2 − ûk̄ |2 = |uk+1 − ûk̄ |2 + 2〈ǔk+2 − uk+1, uk+1 − ûk̄〉 + |ǔk+2 − uk+1|2,

|uk+1 − ûk̄ |2 is bounded, ǔk+2 −uk+1 → 0 by (3.9), and tmin ≤ tk+1 ≤ tk for k ≥ k̄ by
Step 7. These properties also give Δk

σ → 0, since by (2.7) and the Cauchy–Schwarz
inequality,

|Δk
σ | ≤ |pk

σ ||ǔk+2 − uk+1| with |pk
σ | ≤ |uk+1 − ûk̄ |/tk + |pk

π |,

where {pk
π } is bounded. Hence, using (3.9) and the boundedness of {gk+1

π } in (3.10)
yields limk ε̄k ≤ 0. On the other hand, ε̄k = θk+1

u − θ̄k(uk+1) from σ̄k(uk+1) = σ k+1
u

in (2.7), while for k ≥ k̄ the null step condition θk+1
u > θk

û − κvk gives

ε̄k =
[
θk+1

u − θk
û

]
+

[
θk

û − θ̄k

(
uk+1

)]
> −κvk + vk = (1 − κ)vk ≥ 0

by (2.14), where κ < 1 by Step 0; we conclude that ε̄k → 0 and vk → 0. Finally,
since vk → 0, tk ≥ tmin (cf. Step 7) and ûk = ûk̄ for k ≥ k̄, we have Vk → 0 by
(2.18). 
�

Our principal result on the asymptotic objective value θ∞
û := limk θ

k
û follows.

Theorem 3.3 (1) We have θk
û ↓ θ∞

û ≤ θ∗, and additionally limk Vk = 0 if θ∗>−∞.

(2) θ∗ ≤ limk θ(û
k) ≤ limk θ(ûk) ≤ θ∞

û + επ .

Proof Use the proof of [13, Theorem 3.5], with obvious modifications. 
�

4 Modifications

4.1 Looping between subproblems

To obtain a more accurate solution to subproblem (1.4) with π replaced by π̌k , we
may cycle between subproblems (1.5) and (1.6), updating their data as if null steps
occured without changing the model π̌k . Specifically, for a given subproblem accuracy
threshold κ̌ ∈ (0, 1), suppose that the following step is inserted after Step 5.
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68 K. C. Kiwiel

Step 5′ (Subproblem accuracy test). If

σ(uk+1)+ π̌k

(
uk+1

)
> θk

û − κ̌vk, (4.1)

set σ̄k−1(·) := σ̄k(·), pk−1
σ := pk

σ and go back to Step 2.
The main aim of this modification is to avoid “unnecessary” null steps. Namely,

if the test (4.1) holds with κ̌ ≤ κ and the oracle is exact enough to deliver πk+1
u ≥

π̌k(uk+1), then the descent test (2.4) can’t hold and a null step must occur, which is
bypassed by Step 5′.

When the oracle is expensive, the optional use of Step 5′ with κ̌ ∈ [κ, 1) gives room
for deciding whether to continue working with the current model π̌k before calling the
oracle.

Convergence for this modification can be analyzed as in [13, Remark 4.1]. Omitting
details for brevity, here we just observe that for the test (4.1) written as (cf. (2.14))

ε̌k := π̌k

(
uk+1

)
− π̄k

(
uk+1

)
> (1 − κ̌)vk,

the ε̌k above may play the role of ε̄k in (3.10).

4.2 Solving the σ -subproblem approximately

For a given tolerance κN ∈ (0, 1 − κ), suppose Step 3 is replaced by the following.

Step 3′ (Solving the σ -subproblem approximately). Find a linearization σ̄k ≤ σ s.t.

φk
π (ǔ

k+1) ≤ φ̄k
σ (u

k+1), (4.2)

σ(uk+1)− σ̄k(u
k+1) ≤ κNvk, (4.3)

for uk+1 given by (3.5) and vk by (2.14). Set pk and εk by (2.8), and pk
σ := ∇σ̄k .

Before discussing implementations, we show that Step 3′ does not spoil conver-
gence. In Sect. 2, σ̄k(uk+1) replaces σ(uk+1) in (2.3), (2.7) and (2.10). In Sect. 3, it
suffices to validate Lemma 3.2.

Lemma 4.1 Lemma 3.2 still holds for Step 3 replaced by Step 3′ above.

Proof We only sketch how to modify the proof of Lemma 3.2. First, referring to
(3.5) instead of (1.6), replace φk

σ by φ̄k
σ throughout, and (3.8a) by (4.2). Second, let

Δk
σ := σ̄k(uk+1)− σ̄k(ǔk+2) in (3.10). Third, by (4.3), the null step condition yields

σ̄k(u
k+1)+ πk+1

u > θk
û − κvk + σ̄k(u

k+1)− σ(uk+1) ≥ θk
û − κ̃vk

for κ̃ := κ + κN < 1, and hence

ε̄k = σ̄k(u
k+1)+ πk+1

u − θ̄k(u
k+1) > (1 − κ̃)vk ≥ 0,

so that the proof may finish as before. 
�
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Step 3′ can be implemented by solving the Fenchel dual of (1.6) approximately.
Indeed, using the representation σ(·) = supz{〈z, ·〉 − σ ∗(z)} in (1.6), consider the
Lagrangian

L(u, z) := 〈z, u〉 − σ ∗(z)+ π̄k(u)+ 1
2tk

|u − ûk |2, (4.4)

and associate with each dual point z ∈ dom σ ∗ the following quantities:

ū(z) : = arg minu L(u, z) = ûk − tk
(

pk
π + z

)
, (4.5)

σ̄ (·; z) : = 〈z, ·〉 − σ ∗(z), (4.6)

ε(z) : = σ(ū(z))− σ̄ (ū(z); z) = σ(ū(z))+ σ ∗(z)− 〈z, ū(z)〉, (4.7)

v(z) : = θk
û − [ π̄k(ū(z))+ σ̄ (ū(z); z) ] , (4.8)

where ū(z) is the Lagrangian solution (with pk
π = ∇π̄k), σ̄ (·; z) is the linearization of

σ, ε(z) is its linearization error at ū(z), and v(z) is the predicted descent. Maximizing
L(ū(z), z) or minimizing w(z) = −L(ū(z), z) leads to the following dual problem:

w∗ := minz

{
w(z) := σ ∗(z)+ tk

2 |pk
π + z|2 − 〈z, ûk〉 − π̄k(û

k)
}
, (4.9)

with a unique solution z∗ giving u∗ := ū(z∗) such that u∗ ∈ ∂σ ∗(z∗), z∗ ∈ ∂σ(u∗)
and

σ(u∗)+ σ ∗(z∗)− 〈z∗, u∗〉 = 0; (4.10)

not suprisingly, u∗ is the exact solution of (1.6) and z∗ is the corresponding pk
σ in

(2.7). Note that (4.9) can be restricted to the set D := dom ∂σ ∗ := {z : ∂σ ∗(z) �= ∅},
which contains z∗.

Now, suppose we have a method for solving (4.9) with the following properties:

(1) It starts from the point z1 := pk−1
σ ∈ D such that σk−1(·) = 〈z1, ·〉 − σ ∗(z1);

thus, by (3.3), (3.4) and (4.4)–(4.6), w(z1) = −φk
π (ǔ

k+1) from w(z1) =
−L(ū(z1), z1).

(2) It generates points zi ∈ D with w(zi ) ≤ w(z1) such that zi → z∗, σ ∗(zi ) →
σ ∗(z∗) and σ(ū(zi )) → σ(u∗), where ū(zi ) → u∗ by (4.5).

Then ε(zi ) → 0 by (4.7) and (4.10), whereas v(zi ) → v(z∗) by (4.8). Thus, if
v(z∗) > 0, we will eventually have ε(zi ) ≤ κNv(zi ). Then the method may stop with
uk+1 := ū(zi ), vk := v(zi ), σ̄k(·) := σ̄ (·; zi ) and pk

σ := zi to meet the requirements
of Step 3′, with (4.2) following from −φ̄k

σ (u
k+1) = w(zi ) ≤ w(z1) = −φk

π (ǔ
k+1);

see (1) above and (3.5).
As for the assumptions in (2) above, note that σ ∗(zi ) → σ ∗(z∗) if σ ∗ is continuous

on D := dom ∂σ ∗ (e.g., in Sect. 6.3). Similarly, σ(ū(zi )) → σ(u∗) holds if σ is
continuous on dom ∂σ and ū(zi ) ∈ dom ∂σ for large i .
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5 Lagrangian relaxation

We now consider the application of our method to (1.2) treated as the primal problem

ϕ∗ := sup {ϕ(y) := − f (y)} s.t. ψ(x, y) := y − Ax = 0, x ∈ X, (5.1)

assuming that f is closed proper convex and the set X �= ∅ is compact and convex.
In view of (1.3) and (2.1), suppose that, at each uk ∈ C , the oracle delivers

gk
π := −Axk and πk(·) := 〈−Axk, ·〉 for some xk ∈ X. (5.2)

For simplicity, let Step 1 retain only selected past linearizations for its kth model

π̌k(·) := max
j∈Jk

π j (·) with k ∈ Jk ⊂ {1, . . . , k}. (5.3)

Then (see (2.10) and [13, Sect. 4.4]) there are convex weights νk
j ≥ 0 such that

(π̄k, pk
π , 1) =

∑

j∈ Ĵk

νk
j (π j , g j

π , 1) with Ĵk := { j ∈ Jk : νk
j > 0}, (5.4)

and for convergence it suffices to choose Jk+1 ⊃ Ĵk ∪{k +1}. Using these weights and
(2.7), we may estimate a solution to (5.1) via the aggregate primal solution (x̂ k, ŷk):

x̂ k :=
∑
j∈Jk

νk
j x j and ŷk := pk

σ . (5.5)

We first derive useful expressions of ϕ(ŷk) and ψ(x̂ k, ŷk).

Lemma 5.1 We have x̂k ∈ X, ϕ(ŷk) = θk
û − εk − 〈pk, ûk〉 and ψ(x̂ k, ŷk) = pk.

Proof First, x̂ k ∈ co{x j } j∈ Ĵk
⊂ X, π̄k(·) = 〈−Ax̂k, ·〉 and pk

π = −Ax̂k by convexity

of X , (5.2), (5.4) and (5.5). Then pk = ŷk − Ax̂k = ψ(x̂ k, ŷk) by (2.12), (5.1) and
(5.5). Next, by [20, Theorem 23.5], the inclusion ŷk := pk

σ ∈ ∂σ(uk+1) of (2.10) with
σ := f ∗ in (1.3) yields σ(uk+1) = 〈uk+1, ŷk〉 − f (ŷk); thus ϕ(ŷk) := − f (ŷk) =
σ̄k(0) by (5.1) and (2.7). Since π̄k(0) = 0 in (2.11), (2.15) gives σ̄k(0) = θ̄k(0) =
θk

û − εk + 〈pk, ûk〉, as required. 
�
In terms of the optimality measure Vk of (2.9), Lemma 5.1 says that

x̂ k ∈ X with ϕ(ŷk) ≥ θk
û − Vk, |ψ(x̂ k, ŷk)| ≤ Vk . (5.6)

We now show that {(x̂ k, ŷk)} has cluster points in the set of επ -optimal solutions
of (5.1)

Zεπ := {
(x, y) ∈ X × R

m : ϕ(y) ≥ ϕ∗ − επ , ψ(x, y) = 0
}
, (5.7)
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unless ϕ∗ = −∞, i.e., the primal problem is infeasible. Note that (5.2) with X compact
and (5.4) yield (3.1)–(3.2), as required for Theorem 3.3.

Theorem 5.2 Either θ∗ = −∞ and θk
û ↓ −∞, in which case the primal problem

(5.1) is infeasible, or θ∗ > −∞, θk
û ↓ θ∞

û ∈ [θ∗ −επ , θ∗], limk θ(ûk) ≤ θ∞
û +επ and

limk Vk = 0. In the latter case, let K ⊂ N be a subsequence such that Vk K
→ 0. Then:

(1) {(x̂ k, ŷk)}k∈K is bounded and all its cluster points lie in the set X × R
m.

(2) Let (x̂∞, ŷ∞) be a cluster point of the sequence {(x̂ k, ŷk)}k∈K . Then (x̂∞, ŷ∞) ∈
Zεπ .

(3) dZεπ ((x̂
k, ŷk)) := inf(x,y)∈Zεπ |(x̂ k, ŷk)− (x, y)| K

→ 0.
(4) If επ = 0, then θk

û ↓ θ∗, ϕ(ŷk) K
→ ϕ∗ = θ∗, and ψ(x̂ k, ŷk) K

→ 0.

Proof The first assertion follows from Theorem 3.3 (since θ∗ = −∞ implies primal
infeasibility by weak duality). In the second case, using θk

û ↓ θ∞
û ≥ θ∗−επ and Vk K

→
0 in the bounds of (5.6) yields limk∈K ϕ(ŷ

k) ≥ θ∗ − επ and limk∈K ψ(x̂ k, ŷk) = 0.

(1) By (5.6), {x̂ k} lies in the compact X , and {ŷk}k∈K is bounded by (5.1), (5.6).
(2) We have x̂∞ ∈ X, ϕ(ŷ∞) ≥ θ∗ − επ and ψ(x̂∞, ŷ∞) = 0 by closedness of ϕ

and continuity of ψ . Since θ∗ ≥ ϕ∗ by weak duality (cf. (1.1), (1.3), (5.1)), we
get ϕ(ŷ∞) ≥ ϕ∗ − επ . Thus (x̂∞, ŷ∞) ∈ Zεπ by the definition (5.7).

(3) This follows from (1), (2) and the continuity of the distance function dZεπ .
(4) In the proof of (2), θ∗ ≥ ϕ∗ ≥ ϕ(ŷ∞) ≥ θ∗ yields ϕ∗ = ϕ(ŷ∞) = θ∗,

and for K ′ ⊂ K such that ŷk
K ′→ ŷ∞ we have ϕ(ŷ∞) ≥ limk∈K ′ ϕ(ŷk) ≥

limk∈K ′ ϕ(ŷk) ≥ θ∗, i.e., ϕ(ŷk) K ′→ ϕ∗. So considering convergent subsequences
in (1) gives ϕ(ŷk) K

→ ϕ∗. 
�

6 Application to multicommodity network flows

6.1 The nonlinear multicommodity flow problem

Let (N ,A) be a directed graph with N := |N | nodes and m := |A| arcs. Let E ∈
R

N×m be its node-arc incidence matrix. There are n commodities to be routed through
the network. For each commodity i there is a required flow ri > 0 from its source
node oi to its sink node di . Let si be the supply N -vector of commodity i , having com-
ponents sioi = ri , sidi = −ri , sil = 0 if l �= oi , di . Our nonlinear multicommodity
flow problem (NMFP for short) is:

min f (y) :=
m∑

j=1

f j (y j ) (6.1a)

s.t. y =
n∑

i=1

xi , (6.1b)

xi ∈ Xi := { xi : Exi = si , 0 ≤ xi ≤ x̄i }, i = 1 : n, (6.1c)

where each arc cost function f j is closed proper convex, y is the total flow vector, xi

is the flow vector of commodity i , and x̄i is a fixed positive vector of flow bounds.
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Our assumptions seem to be weaker than those used in the literature. We add that
if dom f ∗ ⊂ R

m+, then the bounds x̄i are not needed in (6.1c): Even if they are absent,
our algorithm will proceed as if we had x̄i j = ri for all i and j ; cf.[14, Sect. 7.2].

6.2 Primal recovery

We may treat problem (6.1) as (5.1) with Ax = ∑n
i=1 xi , X = ∏n

i=1 Xi , and the oracle
solving shortest path problems to evaluate π(uk) = −∑n

i=1 min{〈uk, xi 〉 : xi ∈ Xi }
at each uk . Thus the results of Sect. 5 hold. Yet, as in [14, Sect.7.3], for stopping
criteria it is useful to employ another aggregate solution (x̂ k, y̆k) with x̂ k given by
(5.5) and

y̆k := Ax̂k =
n∑

i=1

x̂ k
i , (6.2)

which satisfies the constraints of (6.1). Thus f (y̆k) ≥ f∗, where the optimal value
f∗ of (6.1) satisfies − f∗ = ϕ∗ ≤ θ∗ by weak duality. Hence, if the oracle is exact,
θk

û ≥ θ∗ implies that the method may stop when f (y̆k)+ θk
û ≤ ε for a given tolerance

ε > 0, in which case (x̂ k, y̆k) is an ε-solution of (6.1). This stopping criterion will be
met for some k under conditions similar to those in [14, Proposition 7.1].

Proposition 6.1 Suppose problem (6.1) is feasible and has a unique optimal total
flow y∗ (e.g., f is strictly convex on R

m+ ∩ dom f ) that satisfies y∗ ∈ [0, c) ⊂ dom f
for some c ∈ R

m+. Further, let επ = 0 (i.e., the oracle is exact), and let K ⊂ N

be a subsequence such that Vk K
→ 0. Then y̆k

K
→ y∗, f (y̆k) K

→ f∗ = −θ∗ and
f (y̆k)+ θk

û K
→ 0.

Proof By Theorem 5.2(3) and the uniqueness of y∗, ŷk
K
→ y∗. Hence y̆k

K
→ y∗

from ŷk − y̆k = ψ(x̂ k, ŷk) K
→ 0 (cf.Theorem 5.2(4)), where y̆k ≥ 0 by (6.2)

with x̂ k ∈ X (Lemma 5.1). Consequently, y∗ ∈ [0, c) gives y̆k ∈ [0, c) for all
large k ∈ K . Since each function f j in (6.1a) is continuous on dom f j ⊃ [0, c j ),
we have f (y̆k) K

→ f (y∗) = f∗. The conclusion follows from Theorem 5.2(4) with
θ∗ = ϕ∗ = − f∗. 
�

An extension to the case where some arc costs are linear follows.

Proposition 6.2 Let problem (6.1) be feasible. Suppose that the first m̆ components
of any optimal total flow y∗ are unique (e.g., f j are strictly convex on R

m+ ∩ dom f j

for j ≤ m̆) and satisfy y∗
j ∈ [0, c j ) ⊂ dom f j for some c j > 0, whereas the costs f j

are linear for j > m̆. Further, let επ = 0 (i.e., the oracle is exact), and let K ⊂ N be
a subsequence such that Vk K

→ 0. Then y̆k
j K
→ y∗

j for j ≤ m̆, f (y̆k) K
→ f∗ = −θ∗ and

f (y̆k)+ θk
û K

→ 0.

Proof The proof of Proposition 6.1 gives ŷk
j , y̆k

j K
→ y∗

j and f j (ŷk
j ), f j (y̆k

j ) K
→ f j (y∗

j )

for j ≤ m̆, since ŷk ∈ dom f by (5.6). For j > m̆, f j (y j ) = α j y j for some α j ∈ R;

123



An alternating linearization bundle method for convex optimization 73

thus σ j (u j ) := f ∗
j (u j ) = i{α j }(u j ). Then uk+1

j = ûk
j = α j in (1.6) yields pk

j = 0 in

(2.8), soψ j (x̂ k, ŷk) = 0 by Lemma 5.1; since ŷk − y̆k = ψ(x̂ k, ŷk), we have ŷk
j = y̆k

j

for j > m̆. Therefore, by (6.1a), f (y̆k) = f (ŷk) + ∑
j≤m̆[ f j (y̆k

j ) − f j (ŷk
j )], where

the sum vanishes as k K
→ ∞; Theorem 5.2(4) with ϕ := − f gives the conclusion.


�

6.3 Specific arc costs

For specific arc costs, as in [1,14], we shall consider Kleinrock’s average delays

f j (y j ) :=
⎧⎨
⎩

∞ if y j ≥ c j ,

y j/(c j − y j ) if y j ∈ [0, c j ),

y j/c j if y j < 0,
(6.3a)

f ∗
j (u j ) :=

{(√
c j u j − 1

)2 if u j ≥ 1/c j ,

∞ if u j < 1/c j ,
(6.3b)

with arc capacities c j > 0, the BPR (Bureau of Public Roads) nonlinear delays

f j (y j ) :=
{
α j y j + β j y

γ j
j if y j ≥ 0,

α j y j if y j < 0,
(6.4a)

f ∗
j (u j ) :=

{
γ j −1
γ j
(u j − α j )

γ j /(γ j −1)/(β jγ j )
1/(γ j −1) if u j ≥ α j ,

∞ if u j < α j ,
(6.4b)

with parameters α j ≥ 0, β j > 0, γ j ≥ 2, as well as BPR linear delays with α j ≥ 0:

f j (y j ) := α j y j for all y j , (6.5a)

f ∗
j (u j ) :=

{
0 if u j = α j ,

∞ if u j �= α j .
(6.5b)

Our costs are linearly extrapolated versions of the “standard” costs used in [14],
where f j (y j ) is set to ∞ for y j < 0, so that f ∗

j (u j ) becomes 0 instead of ∞ for
u j < f ′

j (0). Note that the value of f j at y j < 0 does not matter for (6.1), where the con-
straints yield y j ≥ 0. Further, if (6.1) is feasible, the assumptions of Propositions 6.1
and 6.2 hold for our Kleinrock and nonlinear BPR costs, and for a mixture of our non-
linear and linear BPR costs, respectively. Finally, since dom σ = dom f ∗ ⊂ R

m+ for
our costs, the oracle has to solve shortest path problems with nonnegative arc lengths
uk only; hence, we may assume that επ = 0.

6.4 Solving the σ -subproblem for specific arc costs

We now specialize the results of Sect. 4.2 with σ ∗ := f for the costs of Sect. 6.3. Since
σ ∗ is separable, we may handle (4.9) by solving m one-dimensional subproblems to
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determine components of an approximate solution, say z̃. Thus we need a stopping
criterion for each subproblem. To this end, we replace the criterion ε(zi ) ≤ κNv(zi )

by ε(z̃) ≤ κN v̄(z̃) for

v̄(z) := σ k
û − σ̄ (ûk; z)+ tk |pk

π + z|2 = v(z)−
[
πk

û − π̄k(û
k)

]
, (6.6)

where the second equality follows from (4.5), (4.6) and (4.8) with θk
û = σ k

û + πk
û .

Moreover, σ k
û − σ̄ (ûk; z) ≥ 0 yields v̄(z) ≥ 0, whereas by the results of Sect. 4.2,

v̄(z) = 0 only if z = z∗ = −pk
π ; since checking if v̄(−pk

π ) = 0 is easy, we may
assume that v̄(z∗) > 0. Finally, v̄(z) ≤ v(z) from επ = 0. The resulting “natural”
subproblem criteria are discussed below.

To simplify notation, we assume m = 1, drop the subscript j in (6.3)–(6.5) and let
t := tk in (4.5). We first consider the Kleinrock and nonlinear BPR costs in (6.3)–(6.4).
For finding an approximate solution z̃, we exploit the following properties:

• f (z) = f ′(0)z for z ≤ 0 with f ′(0) ≥ 0;
• f ′′(z) > 0 for z > 0 in F := dom f = (−∞, c), with c := ∞ in the BPR case;
• σ ∗ = f is continuous on F with dom ∂σ ∗ = F ;
• σ := f ∗ is continuous on dom σ = [ f ′(0),∞) with dom ∂σ = dom σ ;
• w′(z) = f ′(z)− ū(z) and w′′(z) = f ′′(z)+ t for z ∈ F in (4.9) by (4.5).

If w′(0) ≥ 0, then z̃ := −w′(0)/t is optimal (w′(z̃) = 0), ε(z̃) = 0 and ū(z̃) =
f ′(0).

If w′(0) < 0, then z∗ ∈ (0,−w′(0)/t), since for z ≥ −w′(0)/t, f ′(z) > f ′(0)
yields

w′(z) = f ′(z)− ū(z) > f ′(0)− ū(z) = w′(0)+ t z ≥ 0.

Further, z∗ ∈ (0, zup) for zup := min{−w′(0)/t, c} from z∗ ∈ F , and ū(z) ∈ dom σ

for z ∈ (0, zup), since ū(z) > f ′(0) if z < −w′(0)/t . These properties and the
results of Sect. 4.2 yield the following. Suppose we minimize w over (0, zup) via a
descent method, starting from z1 := pk−1

σ if pk−1
σ ∈ (0, zup) or any z1 ∈ (0, zup)

otherwise, which generates points zi ∈ (0, zup) such that zi → z∗. Then ε(zi ) → 0
and v̄(zi ) → v̄(z∗) > 0 in (6.6) imply that we will eventually have ε(zi ) ≤ κN v̄(zi ),
in which case the method may stop with z̃ := zi .

Next, for the linear BPR costs in (6.5) withw′(z) = f ′(0)− ū(z), z̃ := −w′(0)/t is
optimal (w′(z̃) = 0), ε(z̃) = 0 and ū(z̃) = f ′(0) (as in the case of w′(0) ≥ 0 above).

For m > 1, expressing ε(z) in (4.7), w(z) in (4.9) and v̄(z) in (6.6) as sums of
ε j (z j ), w j (z j ) and v̄ j (z j ) respectively over j = 1, . . . ,m, for each j we may find z̃ j

as above so that ε j (z̃ j ) ≤ κN v̄ j (z̃ j ), andw(z̃) ≤ w(pk−1
σ ); since v̄(z) ≤ v(z) in (6.6),

we also have ε(z̃) ≤ κNv(z̃). Thus, as in Sect. 4.2, we may set uk+1 := ū(z̃), vk :=
v(z̃), σ̄k(·) := σ̄ (·; z̃) and pk

σ := z̃.
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7 Implementation issues

We now describe the main issues in our implementation of each step of Algorithm 2.1
for the network applications of Sect. 6. We also highlight aspects where our imple-
mentation could be improved; this is left for future work.

7.1 Initial settings

In the Kleinrock case of (6.3), the initial u1
j := (1 − ρ∗)−2/c j for all j , with ρ∗ := 1

4

estimating the maximum traffic intensity max j y∗
j /c j as in [5,14]; then p0

σ := ∇σ(u1).

In the BPR case of (6.4)–(6.5), u1
j := α j for all j , and we let p0

σ := 0.
As usual in bundle methods, we use the descent parameter κ = 0.1 in (2.4). We

set the initial stepsize to t1 := 1, corresponding to the inverse of the initial proximal
coefficient of [1], and let tmin := 10−20t1.

7.2 Subproblem solution

For the models π̌k of (5.3), subproblem (1.5) is solved by the QP routine of [10].
This routine has at least two drawbacks. First, being designed for bound-constrained
problems, it employs data structures that are not efficient in the unconstrained case.
Second, its linear algebra is behind the current state of the art; it could benefit from
tuned versions of Lapack like the Matlab implementation of [1].

The one-dimensional subproblems of Sect. 6.4 are solved for the tolerance κN =
10−3 by Newton’s method with Armijo’s backtracks for a descent tolerance of 10−6,
where at each iteration the initial unit stepsize is reduced if necessary to 0.9 times the
maximum feasible stepsize, and the stepsize is divided by 2 for each Armijo’s failure.
This works quite well, but implementations based on self-concordant ideas (as in [1])
could be more efficient.

The looping Step 5′ of Sect. 4.1 employs the tolerance κ̆ = 0.2, but the number of
loops at any iteration is limited to 30.

7.3 Shortest-path oracle

Let S ≤ n be the number of common sources (different source nodes) in (6.1). To
evaluate π(uk+1), we call S times subroutine L2QUE of [4], which finds shortest paths
from a given source to all other nodes. We chose L2QUE simply because it performed
well in our earlier work [14]; most probably, faster routines exist.

7.4 Termination criterion

In view of Sect. 6.2, we stop when the relative optimality gap is small enough:

γ k
rel :=

(
f k
up − f k

low

)
/max{ f k

low, 1} ≤ εopt, (7.1)
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where εopt = 10−5 as in [1], whereas f k
up and f k

low are the best upper and lower bounds

on f∗ obtained so far. Specifically, f k
low := − min j≤k+1 θ

j
u , whereas f k

up is the mini-

mum of f (y̆ j ) over iterations j ≤ k, j = 10, 20, . . . , at which f (y̆ j ) is computed.
A more frequent computation of f (y̆ j ) could save work on small instances.

7.5 Stepsize updating

Our implementation of Step 8 uses the following procedure, in which γ k
rel is the gap of

(7.1), γk := f k
up − f k

low is the absolute gap, lk is the number of loops made on iteration
k, and nk counts descent or null steps since the latest change of tk , with n1 := 1.

Procedure 7.6 (Stepsize updating)

(1) Set tk + 1 := tk .
(2) If ûk+1 = ûk or lk > 0 go to (5).
(3) If nk ≥ 10, or vk < γk/2 and γ k

rel ≤ 0.01, set tk+1 := 2tk .
(4) Set nk+1 := max{nk + 1, 1}. If tk+1 �= tk , set nk+1 := 1. Exit.
(5) If i k+1

t = 0, nk ≤ −10, and either vk > γk/2 or γ k
rel > 0.01, set tk+1 :=

max{tk/5, tmin}. Set nk+1 := min{nk − 1,−1}. If tk+1 �= tk , set nk+1 := −1.
Exit.

The counter nk introduces some inertia, which smooths out the stepsize updat-
ing. In general, tk should be increased (respectively decreased) if “too many” descent
(respectively null) steps are occuring, but vk should be of order γk , since descent steps
with vk � γk bring little. Of course, our procedure is just an example and there is still
room for improvement.

8 Numerical illustrations

To get a feeling for the practical merits and drawbacks of our approach, we first
benchmark our AL implementation on the test problems of [1].

8.1 Test problems of Babonneau and Vial

We used the four sets of test problems of [1]. Their features are given in Table 1, where
N is the number of nodes, m is the number of arcs, n is the number of commodities,
S is the number of common sources, and f Kleinrock∗ and f BPR∗ are the optimal values
of (6.1) for the Kleinrock and BPR costs respectively, with relative optimality gaps of
at most 10−5. Table 1 corrects some values of [1, Table 2]; see [2] and below.

For the first two sets of planar and grid problems1, the cost functions are generated
as in [1, Sect. 8.1]; we add that problem planar150 is missing in [1].

The third set of telecommunication problems includes a corrected version of prob-
lem ndo22 [2]; the BPR costs are generated as in [1].

1 Available at http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html.
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Table 1 Test problems of Babonneau and Vial

Problem N m n S f Kleinrock∗ f BPR∗

Planar problems

planar30 30 150 92 29 40.5668 4.44549 × 107

planar50 50 250 267 50 109.478 1.21236 × 108

planar80 80 440 543 80 232.321 1.81906 × 108

planar100 100 532 1,085 100 226.299 2.29114 × 108

planar150 150 850 2,239 150 715.309 5.27985 × 108

planar300 300 1,680 3,584 300 329.120 6.90748 × 108

planar500 500 2,842 3,525 500 196.394 4.83309 × 109

planar800 800 4,388 12,756 800 354.008 1.16952 × 109

planar1,000 1,000 5,200 20,026 1,000 1,250.92 3.41859 × 109

planar2,500 2,500 12,990 81,430 2,500 3,289.05 1.23827 × 1010

Grid problems

grid1 25 80 50 23 66.4002 8.33599 × 105

grid2 25 80 100 25 194.512 1.72689 × 106

grid3 100 360 50 40 84.5618 1.53241 × 106

grid4 100 360 100 63 171.331 3.05543 × 106

grid5 225 840 100 83 236.699 5.07921 × 106

grid6 225 840 200 135 652.877 1.05075 × 107

grid7 400 1,520 400 247 776.566 2.60669 × 107

grid8 625 2,400 500 343 1,542.15 4.21240 × 107

grid9 625 2,400 1,000 495 2,199.83 8.36394 × 107

grid10 625 2,400 2,000 593 2,212.89 1.66084 × 108

grid11 625 2,400 4,000 625 1,502.75 3.32475 × 108

grid12 900 3,480 6,000 899 1,478.93 5.81488 × 108

grid13 900 3,480 12,000 900 1,760.53 1.16933 × 109

grid14 1,225 4,760 16,000 1,225 1,414.39 1.81297 × 109

grid15 1,225 4,760 32,000 1,225 1,544.15 3.61568 × 109

Telecommunication problems

ndo22 14 22 23 5 103.412 1.86767 × 103

ndo148 61 148 122 61 151.926 1.40233 × 105

904 106 904 11,130 106 33.4931 1.29197 × 107

Transportation problems

Sioux-Falls 24 76 528 24 600.679 4.23133 × 106

Winnipeg 1,067 2,836 4,344 135 1,527.41 8.25673 × 105

Barcelona 1,020 2,522 7,922 97 845.872 1.22856 × 106

Chicago-sketch 933 2,950 93,135 386 614.726 1.67484 × 107

Chicago-region 12,982 39,018 2,296,227 1,771 3,290.49 2.58457 × 107

Philadelphia 13,389 40,003 1,149,795 1,489 2,557.42 2.24926 × 108

123



78 K. C. Kiwiel

The fourth set of transportation problems2 uses original BPR costs, and Kleinrock
costs generated as in [1]. To clarify the description of [1], we add that in the Kleinrock
case the demands are divided by 2 for Sioux-Falls, 2000 for Winnipeg, 5100 for Bar-
celona, 2.5 for Chicago-sketch, 6 for Chicago-region, and 7 for Philadelphia. We also
observe that although [1, Table 2] gives wrong Kleinrock values for Chicago-sketch,
Chicago-region and Philadelphia, their entries in [1, Table 5] are apparently correct.
In contrast, for the BPR versions of Barcelona and Philadelphia, [1, Table 6] must be
corrected as in [2].

8.2 Numerical results for the test problems of Babonneau and Vial

Tables 2 and 3 give our results for the problems of Sect. 8.1. In these tables,

• k and l are the numbers of iterations and descent steps respectively;
• Sigma is the average number of subproblems solved at Step 3 per iteration;
• Newton is the average number of Newton’s iterations for the one-dimensional sub-

problems solved approximately at Step 3 (cf. Sect. 7.2);
• CPU is the total CPU time in seconds;
• %Si is the percentage of CPU time spent on the subproblems of Step 3;
• %Or is the percentage of CPU time spent in the shortest-path oracle.

We used a Dell M60 notebook (Pentium M 755 2 GHz, 1.5 GB RAM) under MS
Windows XP and Fortran 77, with SPECint2000 of 1541 and SPECfp2000 of 1088.
Our machine was comparable with that of [1] (Pentium 4 2.8 GHz, 2 GB RAM, with
SPECint2000 of 1254 and SPECfp2000 of 1327). Yet we refrain from comparing the
CPU times, as they could depend on many other factors. Here our main message is
that AL can solve all the instances of [1] in reasonable time.

Table 4 gives our results for standard bundle (cf. Sect. 8.3). In this table,

• TSB/AL is the ratio of the CPU times of standard bundle (SB for short) and AL,
with the times increased to 0.1 if necessary.

Moreover, to avoid too long run times, we imposed an iteration limit of 9,999 (thus
TSB/AL does not mean much for runs with k = 9, 999), and skipped some largest
instances. AL is significantly faster than SB on all but the smallest instances.

8.3 Numerical comparisons with disaggregate bundle

For comparing AL with SB and the method of [17] we also used the small and medium
sized test problems of [17] with Kleinrock costs. Their features are given in Table 5;
problems p1 and p4 are called ndo22 and ndo148 in Table 1.

Standard bundle replaces (1.5)–(1.6) by the single subproblem

uk+1 := arg min
{
σ̌k(u)+ π̌k(u)+ 1

2tk
|u − ûk |2 : u ∈ C

}
, (8.1)

2 Available at http://www.bgu.ac.il/bargera/tntp/.
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Table 2 Peformance of AL for
Kleinrock costs

Problem k l Sigma Newton CPU %Si %Or

planar30 125 62 4.7 1.9 0.1 60 0

planar50 214 73 3.2 2.2 0.2 31 10

planar80 308 80 3.0 2.2 0.6 28 28

planar100 312 75 3.9 2.4 0.8 24 28

planar150 979 95 1.7 2.1 12.2 3 17

planar300 303 84 6.4 2.7 4.7 27 46

planar500 253 77 8.3 2.6 9.7 23 55

planar800 341 82 7.7 2.7 28.1 16 69

planar1000 648 104 4.1 3.0 74.8 8 73

planar2500 1,530 103 2.5 2.6 1,092.1 2 86

grid1 92 65 8.2 2.3 0.1 40 0

grid2 185 62 2.9 2.4 0.0 50 50

grid3 222 74 6.7 2.2 0.4 37 13

grid4 247 79 5.3 2.7 0.4 45 30

grid5 290 82 5.5 2.3 1.3 35 19

grid6 453 89 2.9 2.5 2.4 15 28

grid7 646 98 3.0 2.4 8.4 12 33

grid8 940 102 2.1 2.3 21.0 7 41

grid9 900 99 2.2 2.4 24.4 7 48

grid10 730 100 2.8 2.7 22.1 9 54

grid11 424 85 5.6 3.3 14.1 18 52

grid12 458 96 5.8 3.4 27.0 17 59

grid13 423 94 6.4 3.7 26.1 18 58

grid14 470 106 7.1 3.9 49.5 17 63

grid15 451 102 7.7 4.1 49.7 19 62

ndo22 374 290 9.5 1.9 0.1 38 0

ndo148 91 56 2.7 2.0 0.0 33 0

904 216 57 8.3 3.0 1.5 45 16

Sioux-Falls 300 61 2.8 2.5 0.1 11 11

Winnipeg 1,149 303 4.6 1.8 104.4 4 11

Barcelona 3044 314 5.4 1.7 397.6 3 6

Chicago-sketch 280 80 8.8 2.4 13.3 19 62

Chicago-region 303 73 7.7 2.1 901.0 4 88

Philadelphia 433 89 8.4 3.2 1431.3 5 85

where σ̌k ≤ σ is a polyhedral approximation built from linearizations obtained from a
first-order oracle for σ similarly to π̌k ≤ π . Since σ(u) = ∑m

j=1 f ∗
j (u j ) for f ∗

j given
by (6.3), constructing an exact first-order oracle for σ is simple. Further, given an
integer nσ ≤ m, we may treat σ as the sum of nσ functions, say σ = ∑nσ

i=1 σi , where

σ1(u) = ∑�m/nσ �
j=1 f ∗

j (u j ), etc., using a richer model σ̌k := ∑nσ
i=1 σ̌ik in (8.1), where

each σ̌ik ≤ σi stems from past linearizations delivered by an oracle for σi . Of course,
richer models may speed up convergence, but the QP work in solving (8.1) may grow.
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Table 3 Peformance of AL for
BPR costs

Problem k l Sigma Newton CPU %Si %Or

planar30 75 69 1.3 1.1 0.0 66 33

planar50 105 64 1.4 1.3 0.0 66 33

planar80 150 59 1.1 1.3 0.2 8 73

planar100 108 44 1.4 1.3 0.2 20 54

planar150 194 52 1.1 1.5 0.9 12 67

planar300 97 31 1.3 1.2 1.4 8 86

planar500 50 23 1.7 1.0 3.3 4 92

planar800 108 33 1.9 1.2 25.4 2 94

planar1000 209 41 1.4 1.3 32.6 2 88

planar2500 264 52 1.3 1.6 411.8 0 97

grid1 48 29 3.6 2.2 0.0 100 0

grid2 61 27 1.7 2.2 0.0 100 0

grid3 43 23 2.5 1.3 0.0 25 50

grid4 59 26 1.8 2.2 0.1 77 11

grid5 86 28 2.1 1.7 0.3 38 38

grid6 150 33 2.0 2.0 0.6 44 33

grid7 108 31 2.1 2.3 1.0 34 50

grid8 143 36 1.6 2.3 2.3 25 56

grid9 183 37 1.7 2.4 4.0 16 62

grid10 200 34 2.3 2.5 5.5 19 59

grid11 120 32 4.2 3.2 4.1 36 49

grid12 122 31 5.8 3.4 8.8 38 48

grid13 140 30 5.5 3.6 10.1 39 50

grid14 111 28 8.0 4.0 15.9 43 46

grid15 115 26 8.0 4.3 16.9 44 47

ndo22 11 8 2.2 2.2 0.0 0 0

ndo148 14 11 2.4 2.1 0.0 0 100

904 116 32 1.2 2.8 0.5 32 57

Sioux-Falls 105 37 6.3 2.6 0.1 85 0

Winnipeg 127 31 8.4 1.8 4.5 51 39

Barcelona 92 24 14.3 3.0 5.6 74 18

Chicago-sketch 129 32 7.0 2.2 7.2 34 57

Chicago-region 300 51 3.6 2.6 891.0 5 89

Philadelphia 671 62 2.7 1.9 3,239.7 2 94

Since our AL is implemented on top of SB, they share the same QP routine, pri-
mal recovery, etc. In particular, SB uses the descent test (2.4) with κ = 0.1 and
vk := θk

û −[σ̌k(uk+1)+ π̌k(uk+1)], and the stopping criterion (7.1) with εopt = 10−5.
The Newton-cutting-plane (NCP for short) method of [17] replaces (8.1) by

ūk+1 := arg min
{
σ̄k(u)+ π̌k(u)+ 1

2 |u − ûk |2Hk
: u ∈ C

}
, (8.2)
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Table 4 Peformance of standard bundle

Problem Kleinrock costs BPR costs

k CPU %Or TSB/AL k CPU %Or TSB/AL

planar30 333 0.6 0 5.6 291 0.2 4 2.2

planar50 553 2.0 7 9.9 103 0.3 11 2.7

planar80 1,498 5.9 17 9.8 218 1.8 12 9.2

planar100 2,210 10.6 19 13.3 113 0.9 14 4.5

planar150 3,435 54.3 15 4.5 890 38.1 8 42.3

planar300 3,870 153.1 18 32.6 234 37.6 7 26.9

planar500 4,613 1,183.2 8 122.0 151 80.3 11 24.3

planar800 5,630 2,132.3 14 75.9 307 569.7 11 22.4

planar1000 9,999a 2,709.8 31 36.2 578 1,365.4 5 41.9

planar2500 9,999a 13,399.5 46 12.3 – – – –

grid1 184 0.1 0 1.0 50 0.0 0 1.0

grid2 134 0.1 0 1.0 56 0.0 0 1.0

grid3 1,150 5.7 4 14.3 59 0.2 6 1.6

grid4 1,189 3.8 10 9.6 60 0.2 4 2.4

grid5 1,729 32.1 6 24.7 72 1.0 9 3.2

grid6 2,127 30.8 11 12.8 105 1.7 6 2.9

grid7 4,712 226.7 9 27.0 85 4.9 7 4.9

grid8 9,691 1,502.6 6 71.6 119 25.0 4 10.9

grid9 6,705 965.6 9 39.6 139 34.2 5 8.6

grid10 9,999a 1,383.1 12 62.6 135 39.3 5 7.1

grid11 5,008 700.4 12 49.7 94 32.3 5 7.9

grid12 9,999a 2,782.7 13 103.1 81 74.5 3 8.5

grid13 6,983 2,061.8 12 79.0 91 85.9 3 8.5

grid14 8,582 5,157.5 11 104.2 75 169.7 2 10.7

grid15 9,999a 6,049.1 11 121.7 73 162.0 3 9.6

ndo22 727 0.2 0 1.6 22 0.0 100 1.0

ndo148 218 0.2 17 2.3 36 0.0 0 1.0

904 2,030 87.5 3 58.3 1,504 285.9 1 571.8

Sioux-Falls 860 0.3 11 3.5 117 0.1 9 1.0

Winnipeg 9,999a 1,247.9 8 12.0 443 140.9 4 31.3

Barcelona 9,999a 1,031.7 8 2.6 2,743 2,541.3 1 453.8

Chicago-sketch 9,999a 4,971.6 6 373.8 490 217.9 7 30.3
a Failure to obtain required accuracy

where σ̄k(·) := σ(ûk)+ 〈σ ′(ûk), · − ûk〉 is the linearization of σ at ûk and | · |Hk :=
〈Hk ·, ·〉1/2 is the norm generated by a symmetric positive definite matrix Hk which
approximates the Hessian σ ′′(ûk). Exploiting the structure of π = ∑n

i=1 πi with
πi (·) = − minxi ∈Xi 〈·, xi 〉, NCP employs the disaggregated model π̌k := ∑n

i=1 π̌ik

with π̌ik(·) = maxk
j=1〈g j

π i , ·〉 and g j
π i ∈ ∂πi (u j ). For the search direction dk :=

ūk+1 − ûk , a backtracking search finds a stepsize tk ∈ (0, 1] and a point uk+1 :=
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Table 5 Test problems of
Lemaréchal et al. Problem N m n S f Kleinrock∗

p1 14 22 23 5 103.4120

p2 19 68 30 15 8.994992

p3 60 280 100 48 53.08077

p4 61 148 122 61 151.9269

p5 20 64 133 20 39.63546

p6 122 332 162 45 276.3214

p7 100 600 200 88 84.96748

p8 30 72 335 20 36.45172

p9 21 68 420 21 68.83896

p10 100 800 500 99 139.0965

p11 67 170 761 20 109.8956

p12 34 160 946 34 19.56668

p13 300 2,000 1,000 293 304.3895

p14 48 198 1,583 47 135.4632

p15 81 188 2,310 66 41.79184

p16 122 342 2,881 102 242.7148

ûk + tkdk such that either ûk+1 := uk+1 if θ is reduced significantly or ûk+1 := ûk ;
see [17] for details.

Table 6 gives the AL and NCP results for the problems of Table 5. In this table,

• #Or is the number of oracle calls made by NCP from [17, Table 1];
• TNC/AL is the ratio of the CPU times of NCP from [17, Table 1] and our AL, with

our times increased to 0.01 if necessary.

As for CPU comparisons, [17] used a desktop PC (Xeon 2.4 GHz 2 cores, 1.5 GB
RAM) under Linux, CPLEX 10.0 for solving QPs and C for the shortest path computa-
tion via Dijkstra’s method, with SPECint2000 of 2564 and SPECfp2000 of 2522. Thus
our machine was about twice slower, but the QP and shortest-path solvers were differ-
ent. In CPU times, AL is substantially faster than NCP on most instances. Here two
points should be noted. First, NCP’s CPU times would probably change substantially
with the use of a specialized QP solver such as [3,8,10]. Second, without implement-
ing primal recovery, NCP had to rely on an “artificial” stopping criterion instead of
(7.1), possibly spending more work than necessary to meet (7.1) with εopt = 10−5.

Table 7 reports the SB results for several values of the disaggregation parameter
nσ (the oracle percentages %Or were marginal: at most 16 for nσ = 1, and 3 for
nσ = 20). Clearly, AL is much faster than SB in CPU times. This is mostly due to SB
spending more time on its QP subproblems, since the iteration counts do not increase
so much except for problems p15 and p16. Note that increasing nσ may help for some
problems (e.g., p15 and p16), but not for others (e.g., p13).

The interested readers might compare our results with those given in [17] for two
other standard bundle variants using nσ = m or 1, as well as full disaggregation for
π just like NCP; neither variant was competitive with NCP.
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Table 6 Peformance of AL and NCP for small and medium Kleinrock problems

Pb AL NCP

k l Sigma Newton CPU %Si %Or k #Or CPU TNC/AL

p1 374 290 9.5 1.9 0.06 33 0 12 100 0.03 0.5

p2 40 34 2.5 1.7 0.00 0 0 5 11 0.02 2.0

p3 92 57 2.3 1.2 0.11 0 54 7 102 0.20 1.8

p4 91 56 2.7 2.0 0.10 49 10 7 15 1.07 10.7

p5 88 54 5.1 2.1 0.07 28 14 7 15 0.35 5.0

p6 139 99 1.7 1.4 0.11 36 18 9 99 0.61 5.5

p7 92 56 4.0 1.1 0.16 6 43 7 103 0.78 4.9

p8 104 41 20.6 1.8 0.10 29 0 7 111 0.13 1.3

p9 112 59 13.9 2.7 0.06 66 0 7 15 5.62 93.7

p10 174 65 4.1 0.9 0.44 20 38 10 314 9.60 21.8

p11 86 57 3.3 2.0 0.05 79 0 8 141 4.84 96.8

p12 83 47 10.1 1.6 0.06 66 33 5 11 1.03 17.2

p13 208 65 4.6 1.1 2.61 13 59 11 330 73.37 28.1

p14 167 67 3.1 1.9 0.14 64 14 9 89 13.09 93.5

p15 119 37 22.8 1.3 0.24 33 16 3 7 2.44 10.2

p16 310 211 4.8 1.3 0.55 20 41 9 82 311.85 567.0

Table 7 Peformance of disaggregate bundle for small and medium Kleinrock problems

Pb nσ = 1 nσ = 3 nσ = 5 nσ = 10 nσ = 20

k CPU k CPU k CPU k CPU k CPU

p1 727 0.1 71 0.0 47 0.0 33 0.0 21 0.0

p2 118 0.1 96 0.1 112 0.2 87 0.2 70 0.2

p3 180 0.5 235 1.4 224 2.3 233 2.9 181 3.2

p4 218 0.2 169 0.4 150 0.5 166 1.0 136 1.4

p5 149 0.1 197 0.3 166 0.3 132 0.4 105 0.3

p6 334 0.9 302 1.5 320 2.0 330 2.8 261 3.6

p7 294 2.4 305 5.0 298 11.4 315 13.1 275 12.7

p8 546 0.4 244 0.3 149 0.3 80 0.3 84 0.3

p9 276 0.1 265 0.3 238 0.4 185 0.6 161 0.6

p10 390 6.4 378 15.0 471 22.5 386 27.4 399 38.3

p11 147 0.2 180 0.7 172 1.0 163 1.5 129 2.0

p12 386 0.6 436 1.7 320 1.9 216 1.9 159 1.7

p13 479 36.3 567 73.2 588 101.7 507 264.3 673 380.8

p14 262 0.6 272 1.1 269 1.3 307 1.9 277 2.8

p15 5,610 31.4 4,962 57.8 3,153 41.2 1,320 22.0 501 10.4

p16 3,282 21.0 2,559 31.5 1,010 21.3 1,424 31.3 520 18.4
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