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Abstract Second-order stochastic dominance (SSD) is widely recognised as an
important decision criterion in portfolio selection. Unfortunately, stochastic domi-
nance models are known to be very demanding from a computational point of view.
In this paper we consider two classes of models which use SSD as a choice crite-
rion. The first, proposed by Dentcheva and Ruszczyński (J Bank Finance 30:433–451,
2006), uses a SSD constraint, which can be expressed as integrated chance constraints
(ICCs). The second, proposed by Roman et al. (Math Program, Ser B 108:541–569,
2006) uses SSD through a multi-objective formulation with CVaR objectives. Cutting
plane representations and algorithms were proposed by Klein Haneveld and Van der
Vlerk (Comput Manage Sci 3:245–269, 2006) for ICCs, and by Künzi-Bay and Mayer
(Comput Manage Sci 3:3–27, 2006) for CVaR minimization. These concepts are taken
into consideration to propose representations and solution methods for the above class
of SSD based models. We describe a cutting plane based solution algorithm and outline
implementation details. A computational study is presented, which demonstrates the
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effectiveness and the scale-up properties of the solution algorithm, as applied to the
SSD model of Roman et al. (Math Program, Ser B 108:541–569, 2006).

Mathematics Subject Classification (2000) 90C15 Stochastic programming ·
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1 Introduction

The model of choice among random variables is a crucial issue in portfolio selection.
Mean-risk models are convenient from a computational point of view and have an
intuitive appeal. In their traditional form, however, they use only two (or a few) sta-
tistics to characterize the portfolio return distribution, and thus may ignore important
information. Stochastic dominance, in contrast, takes into account the entire distri-
bution of a random variable. It is considered to be a formal approach for comparing
random variables; in particular, second-order stochastic dominance (SSD) is widely
recognised as an important criterion of choice in portfolio selection.

New portfolio-optimization models which apply the concept of second-order sto-
chastic dominance were proposed by [2], and by [36]. Dentcheva and Ruszczyński
consider a second-order stochastic dominance constraint that can be expressed as a
finite set of integrated chance constraints (ICC). Roman, Darby-Dowman, and Mitra
introduce a uniform dominance concept, and formulate multi-objective Conditional
Value-at-Risk (CVaR) minimization problems. These authors present their respec-
tive formulations as linear programming (LP) problems by introducing new variables
which represent positive parts in the formulation of integrated chance constraints and
CVaR, respectively. In this paper we introduce the term lifting representations for the
linear programming problems that result from such formulations, as these transfor-
mations ‘lift’ the feasible sets of the problems into higher dimensional spaces. The
resulting LP problems are very large, and their solution presents a computational
challenge. Dentcheva and Ruszczyński exploit special structure of these problems:
they adapt the Regularized Decomposition Method of [39] to the duals. The formu-
lation proposed by Roman, Darby-Dowman, and Mitra, although powerful from a
modeling point of view, could be solved in realistic time only for a limited number
of scenarios. Dentcheva [1] has suggested a reformulation of the above problem as
a two-stage stochastic program such that the computational scale up limitations can
be addressed by applying a decomposition algorithm. Lim et al. [21] have proposed
solution methods for CVaR minimization problems with large numbers of scenarios
using non-differentiable optimization.

In this paper we propose cutting-plane methods to address the computational diffi-
culty of processing this class of models based on second-order stochastic dominance.
We consider methodological aspects of chance-constrained programming and the min-
imization of CVaR; we show important connections with the second-order stochastic
dominance models. Klein Haneveld and Van der Vlerk [15] proposed a cutting-plane
representation of integrated chance constraints, and [18] proposed a cutting-plane
representation of CVaR. Based on their respective cutting-plane representations, these
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Processing second-order stochastic dominance models 35

authors developed cutting-plane methods for the solution of integrated-chance-con-
strained problems and CVaR minimization problems, respectively. They found that
solution methods which exploit cutting-plane representations produce better results
than direct methods based on lifting representations. For large test problems, the former
approach was found to be 1–2 orders of magnitude faster than the latter. Moreover,
the former approach has much better scale-up properties for the processing of models
of increasing size.

The interested reader may find further models and methods involving ICC and
CVaR in [30] and [13].

In this paper we focus on adapting the cutting-plane representation of Künzi-Bay
and Mayer to the model proposed by [36]. We present algorithmic description, imple-
mentation details, and a computational study that demonstrates the effectiveness of
this approach: problems with thousands of scenarios were solved in seconds.

The paper is organised as follows. In Sect. 2, we review portfolio models which use
SSD. In Sect. 3 we review cutting-plane based solution methods that are applicable
to this class of problems. In Sect. 4 we describe a cutting-plane approach adapted to
the model proposed by [36]. A computational study is presented in Sect. 5. Results
are summarized, conclusions drawn, and further research directions are outlined in
Sect. 6.

2 Portfolio selection using second-order stochastic dominance

Let n denote the number of assets available for investment at the beginning of a fixed
time period. A portfolio x = (x1, . . . , xn)

T represents the fractions of the initial cap-
ital invested in the different assets (x j = w j/w where w j is the capital invested in
asset j and w is the total amount of capital to be invested, j = 1 . . . n). Let X ⊂ R

n

denote the set of the feasible portfolios. Such a feasible set is often simply defined
by the requirement that the weights must sum to 1 and short selling is not allowed:

X = {(x1, . . . , xn)/
n∑

j=1
x j = 1, x j ≥ 0,∀ j ∈ {1, . . . , n}}. We consider here a more

general case and assume that X is a bounded convex polyhedron.
Let the random vector R = (R1, . . . , Rn)

T denote the returns of the different assets
at the end of the investment period. The return of a portfolio x is the random variable
Rx = RT x.

The problem of choosing between portfolios is thus a problem of choosing between
random variables (with larger outcomes preferred). The criterion by which one random
variable is considered “better” than another random variable is specified by models of
choice, or models of preference. Specifying such a model of choice is a crucial issue
in portfolio selection.

Mean-risk models have been widely used in portfolio selection, since their introduc-
tion in the early fifties [23]. In their traditional form, they describe random variables
(and portfolios) by using two scalars: the expected value, or the “mean”, and a “risk”
value. Preference is then defined using a trade-off between the mean where a larger
value is desirable, and risk, where a smaller value is desirable. Various risk measures
have been proposed in the literature, see for example [9,23,27,28,34,35]. Mean-risk
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models are convenient from a computational point of view and have an intuitive appeal.
However, they use only two (or a few) statistics to characterize a distribution, and
thus may ignore important information. One way of improvement is to apply mean-
risk models in interactive decision-support frameworks: [16] and independently [22]
observe that portfolio optimization with multiple risk-constraints for different time
frames and at different confidence levels allows the shaping of distributions according
to the decision maker’s preferences. Another approach is to construct mean-risk that
are consistent with expected utility maximization / stochastic dominance; this has been
the research subject of several recent papers [27–29,44].

Stochastic dominance provides a completely different approach, since it takes into
account the entire distribution of a random variable. It is closely connected to the
expected utility theory [24] but it eliminates the need to explicitly specify a util-
ity function. With stochastic dominance, random variables are ordered by pointwise
comparison of functions constructed from their distribution functions.

The concept of stochastic dominance, that is, stochastic ordering of random vari-
ables, was inspired by earlier work in the theory of majorization [12]. In economics,
stochastic dominance was introduced in the 1960s; [31] considered the first order
stochastic dominance relation and demonstrated the connection to utility functions.
Second order stochastic dominance was brought to economics by [11] and third order
stochastic dominance by [41]. The interested reader may find a detailed discussion in
[42] and a survey in [20].

Of particular importance in portfolio selection is the second-order stochastic dom-
inance (SSD), as this relates to models of risk-averse preferences. We introduce these
concepts below.

Consider two random variables Rx and Ry (they may represent the returns of two
portfolios x and y) with cumulative distribution functions Fx and Fy respectively. It
is known (see, for example [42]) that the three statements below are equivalent:

(a) F (2)x (t) ≤ F (2)y (t), ∀t ∈ R.

where: F (2)x (t) =
t∫

−∞
Fx (u) du, ∀t ∈ R.

(b)

E ([t − Rx ]+) ≤ E
([t − Ry]+

)
, ∀t ∈ R (1)

(where [t − Rx ]+ = max{t − Rx , 0})
(c) E (U (Rx )) ≥ E

(
U (Ry)

)
, for any increasing and concave (integrable) utility

function U .

If the relations above hold, Rx is said to (weakly) dominate Ry with respect to second
order stochastic dominance (SSD). This dominance is denoted by Rx �SSD Ry . The
corresponding strict dominance relation 	SSD is defined in the usual way: Rx 	SSD Ry

if and only if Rx �SSD Ry and Ry 
�SSD Rx .
A portfolio x is said to dominate (or be preferred to) another portfolio y with respect

to SSD if Rx �SSD Ry , where Rx and Ry are the (random) returns of portfolios x and
y respectively. A similar notation is used for the decision vectors x and y: x �SSD y.
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Processing second-order stochastic dominance models 37

A portfolio x� is said to be SSD-efficient if there is no feasible portfolio x ∈ X
such that x 	SSD x�.

It is known that increasing and concave utility functions express the preference of
risk-averse investors [7,8]. This underlines the importance of second-order stochastic
dominance, since risk aversion is the observed economic behavior; yet, practical appli-
cation of SSD as a criterion of choice proves to be difficult. Generally, comparing two
random variables with respect to SSD involves an infinite number of comparisons, as
set out in (1). Few models that use SSD have been proposed in the literature; they use
additional assumptions in order to be computationally tractable; even so, their com-
putational difficulty is remarkable. In the rest of this section, we review two recently
proposed portfolio selection models that use SSD.

In the practice of portfolio selection, it is usual to assume that the asset returns
have a discrete joint distribution, described by realizations under S states of the world
(these states of the world are obtained through scenario generation or finite sampling
of historical data). This is also the assumption made in this paper. Let r(1), . . . , r(S)

denote the realizations of the return vector R, occurring with probabilities p1, . . . , pS ,
respectively. Denote by ri j be the return of asset j under scenario i, i ∈ {1, . . . , S}, j ∈
{1, . . ., n}. Thus, r(i) = (ri1, . . . , rin),∀i ∈ {1, . . ., S}. The random variable Rx =
RT x representing the return of portfolio x is finitely distributed over {r (1)x , . . ., r (S)x },
where r (i)x = r(i) T x = x1ri1 + · · · + xnrin is the portfolio return under scenario
i,∀i ∈ {1, . . ., S}.

2.1 Portfolio optimization with SSD constraints

Dentcheva and Ruszczyński [2] consider a reference return Ŵ ; this may be, for exam-
ple, the return of a reference portfolio, say an index. They propose the following
portfolio-optimization model:

max f (x)

such that x ∈ X, (2)

RT x �SSD Ŵ ,

where f is a concave function. In particular, f (x) := E
(
RT x

) = R
T

x can be used.
Thus, only portfolios whose return dominate the reference return with respect to SSD
are considered.

In general, a SSD-constraint RT x �SSD Ŵ can be expressed by a continuum of con-
straints, in the form of (1). These authors observe that, in case Ŵ has a finite discrete
distribution with realizations ŵ(�) (� = 1, . . . , L), then RT x �SSD Ŵ is equivalent to
the finite set of constraints

E
(
[ŵ(�) − RT x]+

)
≤ E

(
[ŵ(�) − Ŵ ]+

)
(� = 1, . . . , L). (3)

The relations (3) are then transformed into a set of linear constraints by introducing
variables yi� to represent the shortfall of the portfolio return below ŵ(�) in scenario
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i : yi� = [ŵ(�) − r(i) T x]+ (i = 1, . . . , S, � = 1, . . . , L). They formulate the lifting
representation of the SSD-constrained problem (2):

max f (x)

such that x ∈ X,

yi� ≥ 0, yi� ≥ ŵ(�) − r(i) T x (i = 1, . . . , S, � = 1, . . . , L), (4)
S∑

i=1

pi yi� ≤ E
(
[ŵ(�) − Ŵ ]+

)
(� = 1, . . . , L).

The above problem has a specific structure. For such specific problems, these authors
have developed a duality theory in which the dual objects are utility functions. Based
on this duality theory, they construct a dual problem for (4) that consists of the minimi-
zation of a weighted sum of polyhedral convex functions. Domains, function values,
subgradients are computable. The authors adapted the Regularized Decomposition
method of [39] to these special dual problems. The authors implemented this method,
and report favorable performance. A problem with 719 real-world assets was solved
using 616 possible realizations of their joint return rates.

2.2 Multi-objective formulation and SSD efficient portfolios

Roman et al. [36] propose a multi-objective model whose Pareto optimal solutions1

are SSD-efficient portfolios. (The origin of this multi-objective formulation can be
traced back to the work of [25,26].) A specific solution is chosen by considering a
reference return Ŵ . The return distribution of this chosen portfolio comes close to, or
emulates, the reference return Ŵ in a uniform sense, as explained below.

Given a random wealth W , let Tailα(W ) (0 < α ≤ 1) denote the unconditional
expectation of the least α ∗ 100% outcomes of W . This is a heuristic definition and
further clarification is needed taking into consideration ‘probability atoms’ in the
distribution of W . For a formal definition quantile functions can be used. The first
quantile function F (−1)

W (α) := inf{t |FW (t) ≥ α} is the generalised inverse of the
cumulative distribution function FW of W . The second quantile function is defined as
F (−2)

W (α) := ∫ α
0 F (−1)

W (β)dβ. (with F (−2)
W (0) as 0.)

Ogryczak and Ruszczyński [29] prove that the second quantile function F (−2)
W (α) is

the convex conjugate of the second performance function F (2)W (t) := ∫ t
−∞ FW (u)du =

E ([t − W ]+). Formally,

F (−2)
W (α) = sup

t∈R

{
αt − F (2)W (t)

}
(5)

holds for 0 ≤ α ≤ 1. Theory of convex conjugacy can be found in [32]. Ogryczak and
Ruszczyński [29] show that, due to the properties of convex conjugacy, F (−2)

W (α) =

1 For a multi-objective model, a feasible solution is Pareto optimal if there is no other feasible solution that
would improve on all objective functions, with at least one strict inequality.
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Processing second-order stochastic dominance models 39

αE(W |W ≤ t) holds for FW (t) = α. Thus the second quantile function has the heu-
ristic meaning of unconditional tail expectation, justifying the definition Tailα(W ) :=
F (−2)

W (α).
Rockafellar and Uryasev [34,35] establish a risk measure whose optimization re-

sults in convex problems. Given a random loss M and a probability 0 ≤ β < 1,
the quantity CVaRβ(M), i.e. β-CVaR, is the conditional mean value of the worst
(1 −β)× 100% losses. This definition requires further clarification respecting proba-
bility atoms. Rockafellar and Uryasev [34,35] give a definition that ‘splits’ probability
atoms and results in a coherent risk measure - see also the summary in [33]. They
establish the minimization rule

CVaRβ(M) = min
u∈R

{

u + 1

1 − β
E ([M − u]+)

}

(6)

that facilitates the solution of optimization problems involving the CVaR risk measure.
Loss can be considered as shortage relative to a benchmark wealth. (This is the

wealth that we intend to accumulate, a parameter to be set by the decision maker.) In
this paper we set the benchmark wealth to 0, hence we have M = −W . It is easily
seen that the definition of the second quantile function is compatible with the CVaR
definition of Rockafellar and Uryasev, and from (5) and (6) we have

Tailα(W ) = −α CVaR1−α(−W ) (0 < α ≤ 1). (7)

Ogryczak and Ruszczyński [29] proved that the second-order dominance relation
W �SSD W ′ between random variables W and W ′ is equivalent to

Tailα(W ) ≥ Tailα(W
′) (0 < α ≤ 1). (8)

Roman et al. [36] use the equally probable scenarios assumption (p1 = · · · = pS =
1/S): the asset return vector R and the reference return Ŵ have discrete finite distri-
butions, each with S equally probable outcomes. This assumption is quite natural in
scenario generation or in sampling of historical data. (Moreover, it is not restrictive as
any discrete finite distribution can be approximated using equally probable scenarios.)

Under the equiprobability assumption, the characterization of second-order sto-
chastic dominance in the form of (8) requires only a finite number of inequalities.
Namely, let W and W ′ be the random variables to compare; W �SSD W ′ is equivalent
to

Tail i
S
(W ) ≥ Tail i

S
(W ′) holding for i = 1, . . . , S. (9)

It is clear that, in the case of a random variable W with equally probable outcomes

Tail i
S
(W ) =

i∑

j=1

1

S
w< j> (i = 1, . . . , S), (10)
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where w<1> ≤ · · · ≤ w<S> denote the ordered outcomes of W , each occurring with
probability 1/S.

Thus, under the equiprobability assumption, comparing random variables with re-
spect to SSD reduces to comparing their cumulated outcomes.

The SSD efficient portfolios are Pareto optimal solutions of the following multi-
objective model:

max
(

Tail 1
S

(
RT x

)
, . . . , Tail i

S

(
RT x

)
, . . . , Tail S

S

(
RT x

))

such that x ∈ X. (11)

The reference-point method of [43] is used in order to choose a particular SSD
efficient solution: the portfolio whose return distribution comes close to (tracks) the
reference return Ŵ . This is done by solving a single objective optimization problem,
as described below.

A reference point is defined as

τ̂ = (̂τ1, . . . , τ̂S) :=
(

Tail 1
S

(
Ŵ

)
, . . . ,Tail S

S

(
Ŵ

) )
.

The multi-objective problem (11) is reduced to a single objective maximization prob-
lem; the objective function is a concave achievement function �τ̂ whose arguments
are the components of the objective in (11).

The simplest achievement function is

�τ̂ (τ1, . . . , τS) := min
1≤i≤S

(τi − τ̂i ). (12)

(A more sophisticated approach is to replace the term τi − τ̂i in (12) with a partial
achievement function for each component i . The i th partial achievement function is
a concave monotone increasing function of τi that takes the value 0 for τi = τ̂i .
Moreover, a term ε

∑S
i=1(τi − τ̂i ) with a small positive ε is usually added to ensure

Pareto-efficiency of the optimal solution.)
Using the above achievement function, the single-objective optimization problem

takes the form

max �τ̂

(
Tail 1

S

(
RT x

)
, . . . ,Tail S

S

(
RT x

))

such that x ∈ X. (13)

Denoting byϑ = min
1≤i≤S

(Tail i
S

(
RT x

)−τ̂i ) the worst partial achievement, the above

problem is written as:

max ϑ

such that ϑ ∈ R, x ∈ X

ϑ ≤ Tail i
S

(
RT x

)
− τ̂i (i = 1, . . . , S). (14)
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To express the quantities Tail i
S
(RT x), [36] use the CVaR-optimization formula (6).

For the case when the random loss has a discrete finite distribution, [34,35] proposed
transforming (6) into a linear programming problem by introducing new variables to
represent positive parts. This is a lifting representation. Given a portfolio x , the random
loss is the negative of the portfolio return RT x. Hence the CVaR is the optimal value
of the following problem (we substituted t for −u) :

CVaRβ
(
−RT x

)
= min −t + 1

1 − β

S∑

j=1

1

S
d j

such that t ∈ R,

d j ≥ −r( j) T x + t, d j ≥ 0 ( j = 1, . . . , S). (15)

The lifting representation (15) and the formula (7) can then be used to compute the
quantities Tail i

S
(RT x) (i = 1, . . . , S) as optimal values of maximization problems.

In the i th problem, the new variables are ti , di1, . . . , di S ∈ R:

Tail i
S

(
RT x

)
= 1

S
max i ti −

S∑

j=1

di j

such that ti ∈ R,

−ti + di j ≥ −r( j) T x, di j ≥ 0 ( j = 1, . . . , S). (16)

Using representation (16), [36] formulate the achievement-maximization problem (13)
as a linear programming problem, with variables ϑ, x, zi (i = 1, . . . , S), ti (i =
1, . . . , S), di j (i, j = 1, . . . , S):

max ϑ

such that x ∈ X

zi − τ̂i ≥ ϑ, for i = 1 . . . S
(17)

zi = 1

S

⎛

⎝i ti −
S∑

j=1

di j

⎞

⎠ , for i = 1 . . . S

ti −
n∑

j=1

x jri j ≤ di j , for i, j = 1 . . . S

di j ≥ 0, for i, j = 1 . . . S.

Due to lifting representation, a large number of new constraints and variables is
introduced. (The number of new constraints and variables is in the order of S2.)

These authors implemented the method outlined above, and made extensive test-
ing on problems with 76 real-world assets using 132 possible realizations of their
joint return rates. The modelling capability of their approach proved to be powerful;
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however, the model could only be solved for a limited number of scenarios (less than
600), due to its size.

Remark 1 To be more precise, in [36] an additional term ε
∑S

i=1(zi − τ̂i ), with ε
an arbitrarily small positive number, is added to the objective function in (17). This
term is added to ensure the SSD efficiency of the portfolio obtained, in case that the
maximization of the worst partial achievement has non-unique optimal solutions.

The model described above is never infeasible, and its optimal solution is a SSD-
efficient portfolio, irrespective of the reference return chosen by the decision maker.

The approach allows the decision maker to set and tune components of the reference
return directly. (Hence the reference return may not be the return distribution of some
feasible portfolio, but just composed of “desirable”, “ideal” outcomes.) When solving
the resulting LP, the sign of the optimal value distinguishes which type of reference
has been used. There are three possible types of reference returns:

Type I : a reference return Ŵ that is not SSD efficient. In this case, the optimum
is strictly positive, and the optimal portfolio has a return distribution that
improves on Ŵ (until SSD-efficiency is obtained).

Type II : a reference return that is SSD efficient. In this case, the optimum is zero,
and the optimal solution is a portfolio whose return distribution is exactly
the reference return.

Type III : a reference return Ŵ that is unattainable (for example, when some of its
components are too high and no feasible portfolio could have such a return
distribution). In this case, the optimum is strictly negative, and the opti-
mal solution is an SSD-efficient portfolio whose return comes closest, in
a uniform sense, to Ŵ .

The model can thus be used for checking SSD efficiency of a given distribution.

Remark 2 Obviously, the reference return introduced by the user plays an important
role in choosing the solution. The most common situation is type I, since usually the
return of an index is used as a reference return; thus, there is a similarity with the
model of Dentcheva and Ruszczyński.

There are also important differences between the models of [2] and [36]. The former
model, while improving on a benchmark, is not guaranteed to improve until SSD effi-
ciency; it could still result in dominated solutions. Moreover, there is (theoretically)
the possibility that the constraint set has no feasible solution.

3 Cutting-plane based representations and solution methods

3.1 Integrated chance constraints

The constraints appearing in the SSD-formulation (3) have the form

E

([
h − RT x

]

+

)

≤ γ, (18)
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Processing second-order stochastic dominance models 43

where h, γ are given numbers. Constraints of this type were introduced by [14], and are
called Integrated Chance Constraints (ICCs). Klein Haneveld and Van der Vlerk [15]
proposed a cutting-plane representation of ICCs. The constraint (18) is represented in
the form

∑

j∈J
p j

(
h − r( j) T x

)
≤ γ holding for each subset J ⊂ {1, . . . , S}. (19)

Based on this representation, [15] also develop a cutting-plane method. We outline
this method as applied to the expectation-maximization problem

max R
T

x

such that x ∈ X, (20)

E

([
h − RT x

]

+

)

≤ γ,

where X is a convex bounded polyhedron.
Using the cutting-plane representation, problem (20) takes the form:

max R
T

x

such that x ∈ X, (21)

ψ(x) ≤ 0,

with the constraint function

ψ(x) := max
J ⊂{1,...,S}

∑

j∈J
p j

(
h − r( j) T x

)
− γ. (22)

A sequence of iterates x1, . . . , xκ ∈ X is computed; at each iterate xι, a linear function
l�ι is constructed:

l�ι (x) :=
∑

j∈Jι
p j

(
h−r( j) T x

)
− γ with Jι :=

{
1 ≤ j ≤ S

∣
∣
∣h − r( j) T xι > 0

}
.

It is easily seen that this function satisfies

l�ι (x) ≤ ψ(x) (x ∈ R
n) and l�ι (xι) = ψ(xι).

In words, the graph of l�ι is a supporting hyperplane to the epigraph of ψ at the point
(xι, ψ(xι)).

Remark 3 Restricting the above graph and epigraph to the space of the x-vectors, we
can say: if the level set {x |ψ(x) ≤ 0} is not empty, and ψ(xι) > 0, then the hyper-

plane
{

x | l�ι (x) = 0
}

separates the level set from xι. Hence the above cutting-plane

method can be viewed as constructing a cutting-plane model of the level set. In the
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forthcoming overview, however, we prefer viewing the method as constructing a cut-
ting-plane model of the function ψ , because such view will allow the application of
constrained convex programming methods. In “Appendix A.” we consider applying
the Constrained Level Method of [19] to the problem (21).

A cutting-plane model of ψ is constructed as

ψκ(x) := max
1≤ι≤κ l�ι (x). (23)

The next iterate xκ+1 will be an optimal solution of the model problem

max R
T

x

such that x ∈ X, (24)

ψκ(x) ≤ 0.

The method stops if the model problem becomes infeasible, or if the current iterate
becomes a feasible solution of the original problem (i.e., ψ(xκ+1) ≤ 0 holds).

Klein Haneveld and Van der Vlerk [15] observe that the procedure stops in finitely
many steps. They implemented the method and their test results show that only a small
fraction of the possible 2S cuts needs to be generated. They found that for a fixed dimen-
sion n, the average number of cuts (slowly) increases with the number S of scenarios.

These authors also formulated the lifting representation of problem (20) by intro-
ducing new variables y j to represent

[
h − r( j) T x

]
+ ( j = 1, . . . , S):

max R
T

x

such that x ∈ X,
(25)

y j ≥ 0, y j ≥ h − r( j) T x ( j = 1, . . . , S),
S∑

j=1

p j y j ≤ γ.

They solved this problem with a benchmark interior-point solver, and compared results
with their cutting-plane representation approach. On smaller problem instances, the
cutting-plane algorithm could not beat the interior-point solver. However, the cutting-
plane representation approach proved much faster on larger instances.
Using this cutting-plane representation of ICCs, the SSD-constrained portfolio-opti-
mization model (2) can be formulated as

max f (x)

such that x ∈ X, (26)
∑

j∈J�
p j

(
h� − r( j) T x

)
≤ γ� (J� ⊂ {1, . . . , S}, � = 1, . . . , L) ,

where h� = ŵ(�) and γ� = E
([ŵ(�) − Ŵ ]+

)
(� = 1, . . . , L).
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If f (x) = E
(
RT x

) = R
T

x, then the cutting-plane method of [15] can be eas-
ily adapted to problem (26). (The feasibility cuts can be applied independently for
� = 1, . . . , L).

3.2 Conditional value-at-risk

Künzi-Bay and Mayer [18] proposed the following cutting-plane representation of
CVaRβ (0 ≤ β < 1):

CVaRβ
(
−RT x

)
= min z + 1

1 − β
v

such that z, v ∈ R,
∑

j∈J
p j

(
−r( j) T x − z

)
≤ v (J ⊂ {1, . . . , S}) . (27)

The cut belonging to the empty set J = ∅ just prescribes the non-negativity of v.
(This representation even allows a random benchmark wealth that we assume to be 0,
hence the loss is expressed by −RT x.)

The representation (27) is the CVaR-analogue of the representation (19) of [15].
The two approaches employ the same idea, originally developed by Klein Haneveld
and Van der Vlerk, as indicated in the References. Künzi-Bay and Mayer [18] obtained
the CVaR representation (27) independently, by considering the (single-stage) CVaR-
minimization problem as a two-stage stochastic programming problem. They found
that the second-stage problems have a special structure and that their duals can be
solved explicitly. These authors also did extensive testing, and their results confirm
the effectiveness of the cutting-plane approach. (The two computational studies actu-
ally complement each other: [15] employ the cutting-plane model of a constraint
function, while [18] employ the cutting-plane model of the objective function.)

Using the above cutting-plane representation, a CVaR-minimization problem takes
the form:

min z + 1

1 − β
ϕ(x, z) such that x ∈ X, z ∈ R, (28)

where X is a convex bounded polyhedron, and the objective function is

ϕ(x, z) := max
J ⊂{1,...,S}

∑

j∈J
p j

(
−r( j) T x − z

)
. (29)

For the minimization of CVaR in one-stage stochastic problems, [18] devel-
oped a special cutting-plane method. They construct a sequence of iterates
(x1, z1) , . . . , (xκ , zκ ) ∈ X × R. At each iterate (xι, zι), they construct a linear func-
tion lι as
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lι(x, z) :=
∑

j∈Jι
p j

(
−r( j) T x − z

)
with Jι :=

{
1 ≤ j ≤ S

∣
∣
∣−r( j) T xι − zι > 0

}
.

It is easily seen that this function satisfies

lι(x, z) ≤ ϕ(x, z) (x ∈ R
n, z ∈ R) and lι(xι, zι) = ϕ(xι, zι).

In words, the graph of lι is a supporting hyperplane to the epigraph of ϕ at the point
((xι, zι) , ϕ (xι, zι)). A cutting-plane model of ϕ is constructed as

ϕκ(x, z) := max
1≤ι≤κ lι(x, z). (30)

The next iterate (xκ+1, zκ+1) is an optimal solution of the problem

min z + 1

1 − β
ϕκ(x, z) such that x ∈ X, z ∈ R. (31)

The method stops if ϕκ(xκ+1, zκ+1) = ϕ(xκ+1, zκ+1) holds, i.e., in the current iterate,
the model function value coincides with the original objective value.

The above procedure finds an optimal solution in a finite number of steps.
Künzi-Bay and Mayer [18] implemented their method and solved several CVaR-

minimization test problems with their experimental solver called CVaRMin. They also
solved the test problems with general-purpose LP solvers. These solvers were used to
solve LP-equivalent problems constructed using the lifting representation (15). (The
lifting representation contains the constraints describing feasible portfolios, and 2S
additional constraints. These are individual constraints for each scenario, as opposed
to the aggregate cuts that appear in the cutting-plane representation (27).) Addition-
ally, they also solved the test problems in two-stage recourse forms, by employing a
benchmark stochastic solver. Their experimental results show the clear superiority of
the solver CVaRMin in case of CVaR-problems. For the largest test problems, CVaR-
Min was by at least one order of magnitude faster than either of the other solvers
involved. They also propose a version of the method that finds an ε-optimal solution
with a prescribed stopping tolerance ε > 0.

Remark 4 A cutting-plane scheme for optimization of (SSD-compatible) coherent
risk measures that involve p-order moments of loss distributions is discussed in [17].

4 The proposed algorithm

In this section we adapt the cutting-plane representation of CVaR (27) to the model
proposed by [36], described in Sect. 2.2.

In the present application we assume p1 = · · · = pS = 1/S and only consider con-
fidence levels β = S−i

S (i = 1, . . . , S). Let us substitute these into (27). Moreover,
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let us introduce a new variable ν := z + 1
1−β v = z + S

i v instead of v. We get:

CVaR S−i
S

(
−RT x

)
= min ν

such that z, ν ∈ R,

1

i

∑

j∈J

(
−r( j) T x

)
−

( |J |
i

− 1

)

z ≤ ν (J ⊂ {1, . . . , S}) ,

(32)

where |J | denotes the cardinality of the set J .
Fábián [4] proposed a simplified version of the cutting-plane representation (27)

for single-stage models. Fábián observes that under the present conditions, only sets
J of cardinality |J | = i need to be considered in the i th problem (i = 1, . . . , S).
Hence the coefficient of z is 0 in the constraints of (32). It follows that

CVaR S−i
S

(
−RT x

)
= max

1

i

∑

j∈J
−r( j) T x

such that J ⊂ {1, . . . , S}, |J | = i. (33)

Using (7) and (33) we get the following cutting-plane representation for Tail i
S
(i =

1, . . . , S):

Tail i
S

(
RT x

)
= 1

S
min

∑

j∈J
r( j) T x

such that J ⊂ {1, . . . , S}, |J | = i. (34)

Remark 5 Equality (34) clearly follows from (10). We went through the steps (32) -
(33) in order to show that the cutting-plane representation (34) is a special form of rep-
resentation (27). Hence a cutting-plane method using (34) inherits the computational
properties of the method proposed by [18].

In contrast to the lifting representation (16), the cutting-plane representation (34)
introduces no additional variables. Using (34), the achievement-maximization prob-
lem (13) can be re-formulated to:

max ϑ

such that ϑ ∈ R, x ∈ X, (35)

ϑ + τ̂i ≤ 1

S

∑

j∈Ji

r( j) T x for each Ji ⊂ {1, . . . , S}, |Ji | = i,

where i = 1, …, S.
No additional variables are introduced in the above formulation. Theoretically an astro-
nomical number of cuts are required, but in practice only a few of them are needed.
The problem can be solved by the following cutting-plane method:
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0. Initialize.
Set the stopping tolerance ε > 0.
The initial cutting-plane model contains the constraints x ∈ X , and a single cut
that we select arbitrarily as, e.g.,

ϑ + τ̂1 ≤ 1

S
r(1) T x.

(This cut belongs to the set J1 = {1}. It is added to make the objective function of
the model problem finite.)
1. Solve the model.
Let (ϑ�, x�) be an optimal solution of the current cutting-plane model.
Let w�< j�1> ≤ · · · ≤ w�< j�S> denote the ordered outcomes of the current portfo-
lio return W � = RT x�.
Let J �

i := {
j�1 , . . . , j�i

}
(i = 1, . . . , S).

2. Check for optimality
If

ϑ� + τ̂i ≤ 1

S

∑

j∈J �
i

r( j) T x� + ε holds for each i = 1, . . . , S, (36)

then x� is an ε-optimal solution; stop.
If some of the above inequalities are not satisfied, then consider the violations

ϑ� + τ̂i − 1

S

∑

j∈J �
i

r( j) T x� (i = 1, . . . , S).

Let ı̂ (1 ≤ ı̂ ≤ S) denote the index that maximizes violation.
3. Append cuts
Append the following cut to the model:

ϑ + τ̂ı̂ ≤ 1

S

∑

j∈J �
ı̂

r( j) T x.

Repeat from step 1.

Remark 6 The cutting plane representation (35) slightly deviates from the model pro-
posed by [36], where a regularization term is added to the objective function, as
described in Remark 1. Thus, solving the cutting plane representation (35) may still,
theoretically, result in a SSD dominated solution. (If (35) has a unique optimal solu-
tion (ϑ�, x�), then x� is a SSD efficient portfolio. However, in the case of multiple
optimal solutions, some of them may represent portfolios that are dominated with
respect to SSD.) In its present form, the representation and the algorithm proposed
only guarantees to improve on the reference return with respect to SSD (if possible).
However, our numerical experiments show that, in practice, the representation (35)
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usually leads to the same solution, as the representation proposed by [36]. (For small
datasets, the model has been solved using both the cutting-plane representation and
the lifting representation with regularization. In all instances, both representations led
to the same solutions, that is, SSD efficient portfolios).

In the “Appendix” we propose enhancements and extensions to the approach de-
scribed above, both from the solution method and the modeling point of view. The
Level Method of [19] is suggested as an alternative to the cutting plane method for
solving (35). A possible application to multi-objective models with variance taken
into account is also suggested.

5 Computational study

5.1 Scope and implementation issues

In [36], the model described in Sect. 2.2 was tested on a data set of 132 historical
monthly returns of 76 stocks (all the stocks that belonged to the FTSE 100 index
during the period January 1993–December 2003). The returns of the 132 time peri-
ods were considered as equally probable scenarios for the next time period (January
2004). Tests were made with different types of reference returns. Powerful modelling
capabilities were demonstrated by in-sample and out-of-sample analysis of the return
distributions of the optimal portfolios. Unfortunately, using the lifting representation,
only models of relatively small scenario sizes (less than 500 scenarios) could be solved
in a realistic time.

Here, we solve this model using the cutting plane representation (35) instead of
the lifting representation. We implement the algorithm described in Sect. 4. However,
in the optimality check of step 2, we use a relative tolerance instead of the absolute
tolerance of (36). Hence we check whether

ϑ� + τ̂i ≤ (1 + ε)
1

S

∑

j∈J �
i

r( j) T x� (i = 1, . . . , S)

holds. Accordingly, we only add cuts where the relative violations are significant. The
use of relative tolerances is justified from a decision maker’s point of view. More-
over we found this approach more effective. We test the scale-up properties of this
approach.

The method was implemented using the AMPL modelling system [10] and the
AMPL COM Component Library [40], integrated with C functions. Under AMPL we
use the FortMP solver. FortMP was developed at Brunel University and NAG Ltd by
[3], the project being co-ordinated by E.F.D. Ellison.

In our cutting-plane system, cut generation is implemented in C, and cutting-plane
model problem data are forwarded to AMPL in each iteration. Hence the bulk of the
arithmetic computations is done in C, since the number of scenarios is typically large
as compared to the number of assets. Moreover, our test results imply that acceptable
accuracy can be achieved by a relatively small number of cuts in the master problem.
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Table 1 Type I reference
return; numbers of iterations

Column headers show the
stopping tolerances. Row
headers show the numbers of the
scenarios

1e–04 1e–05 1e–06 1e–07

5,000 26 26 19 19

7,000 22 23 23 18

10,000 25 28 28 28

Table 2 Type I reference;
optimal objective values
obtained with different stopping
tolerances

1e–04 1e–05 1e–06 1e–07

5,000 0.005506 0.005734 0.005734 0.005734

7,000 0.005508 0.005506 0.005506 0.005506

10,000 0.005719 0.005715 0.005715 0.005715

Table 3 Type II reference;
numbers of iterations

1e–04 1e–05 1e–06 1e–07

5,000 9 6 6 6

7,000 9 9 9 9

10,000 6 6 6 6

Hence the sizes of the master problems do not directly depend on the number of
scenarios.

Our tests were run on a Windows XP machine with Intel CPU T2250 @ 1.73 GHz
and 2 GB RAM.

5.2 Test problems and test results

We generated large scenario sets using the Geometric Brownian Motion, which is
well accepted in finance for modelling asset prices, see e.g., [38]. The parameters for
scenario generation were derived from the historical dataset used by [36], described
in Sect. 5.1. We generated scenario sets containing 5,000, 7,000 and 10,000 scenarios,
respectively. (A single scenario describes returns for the 76 component stocks and also
for the reference return.)

We solved the achievement-maximization problem with the 3 types of reference
return described in [36] and summarized in Remark 1, Sect. 2.2 of this paper.

The problems were solved with different values for the relative stopping tolerance
(1e-04, 1e-05, 1e-06, and 1e-07). In all these cases, the models were solved in less
than 10 s. Thus, the superiority and effectiveness of the cutting plane approach (as
compared to the lifting representation) is obvious.

Our test results are summarized in Tables 1, 2, 3, 4, 5. In these tables, column headers
display the stopping tolerances, and row headers display the numbers of scenarios.

Type I is a reference return distribution that is not SSD efficient. To illustrate this
case, we chose as reference the return distribution of the FTSE100 index. (Indeed,
this benchmark distribution is not SSD efficient, since a strictly positive optimum is
obtained; the optimal portfolio has a return distribution that dominates the reference
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Table 4 Type III reference;
numbers of iterations

1e–04 1e–05 1e–06 1e–07

5,000 12 14 19 20

7,000 12 14 16 18

10,000 14 16 19 21

Table 5 Type III reference; optimal objective values

1e–04 1e–05 1e–06 1e–07

5,000 −6.166302035 −6.210836095 −6.211805798 −6.211895451

7,000 −7.911551621 −7.968123422 −7.976466103 −7.977045489

10,000 −8.897442933 −9.068657844 −9.072698606 −9.073370813

with respect to SSD.) The number of cuts required to reach near-optimality are pre-
sented in Table 1. The optimal objectives obtained are presented in Table 2. In this
case, stopping tolerances of 1e-05, 1e-06 and 1e-07 resulted exactly the same solution.
The stopping tolerance 1e-04 resulted a fractionally different solution.

Type II is a reference return distribution that is efficient with respect to SSD. In this
case, the optimal objective value is zero and the model finds a portfolio whose return
distribution is exactly the reference. To illustrate this case, we chose as reference the
return distribution of the stock with the highest expected return. (This distribution is
chosen only for demonstrative purposes. The optimal portfolio consists of the single
stock used for creating the reference. It is obviously not desirable, due to lack of
diversification.) The number of cuts required to reach near-optimality are presented in
Table 3. In all cases, the optimal objective values are zero, and the optimal solutions
are the same.

Type III is a reference return that is not attainable, in the sense that there is no
feasible portfolio whose return distribution is this reference, or dominates this ref-
erence with respect to SSD. In this case, the optimal objective is negative and the
model finds a portfolio whose return distribution comes uniformly close to the refer-
ence. For illustrating this case, we chose the reference vector τ̂ composed of the best
individual tails. More precisely, in the case of S scenarios, we solved S optimization
problems; in the i th problem we maximize Tail i

S
and set τ̂i equal to the optimum

obtained, (i = 1, . . . , S). The reference τ̂ = (̂τ1, . . . , τ̂S) is obviously unattainable.
The number of cuts required to reach near-optimality are presented in Table 4. The
optimal objective values are presented in Table 5.

Running times largely depend on the type of the reference distribution used. For the
10, 000-scenario problems, running times were as follows. Type-I problems: 9–10 s,
Type-II problems: 4–5 s, Type-III problems: 6–8 s. We found that considering a certain
reference distribution type, the time of single iteration is a slightly increasing function
of the number of the scenarios.

In the present computational setup, processing times of the cutting-plane model
problems make the dominant part of the total running time. (In an earlier implemen-
tation, cut generation was also done in AMPL, and it took the dominant part of the
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Table 6 Type I reference;
in-sample performances of P1
and the FTSE 100 index:
statistics of their return
distribution

P1 is the portfolio obtained with
our model, 10,000 scenarios;
reference = return distribution
of FTSE 100 index

P1 FTSE 100 Index

Mean 0.0105 0.0034

SD 0.0033 0.0018

Minimum −0.0001 −0.0034

Maximum 0.0224 0.0102

Kurtosis −0.0523 −0.0263

Skewness 0.0119 0.0100

Range 0.0225 0.0136

total time. The present C implementation of cut generation is more efficient.) We note
that the processing time of a cutting-plane model problem includes the time used by
AMPL to read model and data, generate the problem, and run the solver (FortMP).
Also there is some overhead introduced by invoking AMPL through COM.

Remark 7 As it can be seen from Tables 1 and 3, the number of iterations required to
solve a problem sometimes decreases with smaller tolerance. This curious behavior is
due to our use of relative tolerances: when a tighter tolerance is prescribed, we may in
an early iteration add a certain cut that greatly helps in the solution process. Applying
a slacker tolerance, on the other hand, we may not add this certain cut, because it is
not violated significantly with respect to the slack tolerance.

We also solved the hardest, Type I-reference distribution problems with the tight
absolute stopping tolerance of 1e-8. (In this experiment, we used the method as de-
scribed in Sect. 4; and did not apply relative tolerances as described in Sect. 5.1.) For
each scenario set, the optimal objective values coincided with the respective values
given in the last columns of Table 2 (up to the first 7 digits given in Table 2). However,
the number of iterations and the running times were about 3 times larger with the tight
absolute tolerance, justifying our approach of using relative stopping tolerances as
described in Sect. 5.1.

Remark 8 In our type-III test problems, the reference tails are composed of the best
individual tails of the different assets. Hence the reference vector τ̂ gets ‘stronger’ as
the sample size increases. This is the explanation of the large decreases inside columns
of Table 5.

Although the present paper concerns cutting plane representations and an effective
solution algorithm, we wish to highlight the power of the SSD model under con-
sideration. A full treatment (considering a limited number of scenarios) is given in
[36]. We consider the type I benchmark (in our example, the return distribution of
the FTSE100 index), 10,000 scenarios and a tolerance level of 1e-07. The portfolio
obtained as a solution of our model is denoted by P1. Its return distribution strictly
dominates the index with respect to SSD. The statistics of the return distributions of
P1 and of FTSE100 are presented in Table 6. The statistics are clearly better in the
case of P1: higher expected return, higher minimum, higher maximum. The standard
deviation and the range are also higher, but, in this case, it is not a drawback, since
it involves ‘spread’ at higher return levels: the range for the possible returns of P1 is
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Table 7 Type I reference;
out-of-sample performances of
P1 and the FTSE 100 index:
statistics of their series of return
values for the 10 months
following the date of selection
(January–October 2004)

P1 FTSE 100 Index

Mean 0.0189 0.0057

SD 0.0270 0.0225

Minimum −0.0044 −0.0278

Maximum 0.0801 0.0355

‘shifted upwards’. This underlines again the difference between our approach and a
classical approach like the mean-variance model.

The out-of-sample performance of P1 and FSTE100 index is analyzed over the 10
historical time periods following the date of selection (January–October 2004). The
statistics of the out-of-sample returns are presented in Table 7. The out-of-sample
performance of P1 is obviously better.

6 Discussion

In this paper we have proposed cutting-plane representations and solution methods
which dramatically improve the computational performance of decision models based
on second-order stochastic dominance. The methods are particularly suitable for two
recently proposed portfolio optimization models. The first model due to [2] has a SSD
constraint that can be expressed as a set of integrated chance constraints. The second
model proposed by [36] uses minimization of CVaR at multiple confidence levels.
In their original form, both models were reduced to LPs by introducing additional
variables. This approach has severe limitations in respect of the computational scale
up properties. Thus, even problems with a reasonable number of assets are difficult to
solve when the number of scenarios is large.

Cutting plane representations of ICCs and CVaR were recently proposed by [15]
and [18], respectively. In our proposed method we have adapted the representations
and solution techniques proposed by these authors to the portfolio optimization models
based on SSD.

We have focused on adapting the cutting-plane representation of [18] to the model
proposed by [36]; we have presented algorithmic description, implementation details,
and a computational study that demonstrates effectiveness of this approach. Problems
with 10,000 scenarios were solved within 30 s.

In “Appendix A” we suggest possible enhancements and extensions of the work
presented in this paper.
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Appendix A: Extensions and other applications

A.1 The level methods

In Sects. 3.1 and 3.2, we described specialized cutting-plane methods for solving the
cutting-plane representation problems (21) (of ICC) and (28) (of CVaR).

As an alternative to these cutting-plane methods, we propose solving the cutting-
plane representation problems (21) and (28) by the Constrained Level Method of [19].
This is a bundle-type method.

In the case of ICC models, it can solve problems more general than (21): it can
maximize a concave objective function instead of the present linear objective. Hence
the Constrained Level Method can handle the SSD-constrained portfolio-optimization
model in the general form (2) proposed by Dentcheva and Ruszczyński.

Lemaréchal, Nemirovskii, and Nesterov prove the following efficiency estimate:
To obtain an ε-optimal solution, the Constrained Level Method performs no more than

c

(
D�

ε

)2

ln

(
D�

ε

)

(37)

iterations, where D is the diameter of the feasible polyhedron X,� is a common
Lipschitz constant of the objective and constraint functions, and c is a constant that
depends only on the parameters of the method.

In the case of unconstrained minimization models, Lemaréchal, Nemirovskii, and
Nesterov prove the following efficiency estimate: to obtain an ε-optimal solution, the
(unconstrained) Level Method performs no more than

c′
(

D�

ε

)2

(38)

iterations, where D is the diameter of the feasible polyhedron X,� is a Lipschitz con-
stant of the objective function, and c′ is a constant that depends only on the parameters
of the method.

Lemaréchal, Nemirovskii, and Nesterov report on successful application of the
above methods to a variety of problems. Their experimental results suggest much
better practical behavior than the above estimates.

Fábián and Szőke [5] experimented with variants of the Level Methods adapted
for the solution of stochastic programming problems. Their test results are favorable.
They found that for a fixed stopping tolerance ε, the required number of steps does
not depend on the number S of the scenarios.

In the unconstrained case, [5] solved problems with increasing accuracy, and found
that the number of steps required to find an ε-optimal solution, grew in propor-
tion with log 1/ε. This suggest a much better practical behavior than the theoretical
estimate (38).
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Remark 9 If we use the Level Method for the portfolio selection model proposed by
[36], then we can handle general concave partial achievement functions instead of the
simplest achievement function (12).

A.2 Multi-objective models with variance

Roman et al. [37] proposed and studied portfolio optimization models which take into
account both variance and CVaR. This approach represents a compromise between
regulators’ requirements for short tails and classical fund managers’ requirements
for small variance. A portfolio is characterized with 3 items of data: expected yield,
variance, and CVaR. An approximation of the 3-dimensional efficient frontier is con-
structed. (In making the final choice, the decision maker plays a key role.) The authors
tested the model on real-life data. Several levels of expected yield were considered;
and for each level, five portfolios were selected from the mean/variance/CVaR effi-
cient frontier: the minimum variance portfolio, the minimum CVaR portfolio, and
three intermediate ones. The selected portfolios were then tested. Both in-sample
and out-of-sample analysis shows that the performance of intermediate portfolios are
superior.

The multi-objective model described in Sect. 2.2 can be extended to take into
account variance as well. Given a portfolio x, let us consider the achievement function
value

�τ̂

(
Tail 1

S

(
rT x

)
, . . . , Tail S

S

(
rT x

) )

as an efficiency measure of x. (The achievement function �τ̂ was defined in (12)).
We can characterize a portfolio with 2 items of data: variance and the above effi-
ciency measure. Applying the cutting-plane approach of Sect. 3.2, we can construct
an approximation of the 2-dimensional efficient frontier.

A.3 Two-stage SP recourse models

We can easily formulate two-stage extensions of the SSD-models described in Sect. 2:
Suppose we have two time-periods, and we can rebalance our portfolio at the begin-
ning of each period. Let us compare benchmark yield and portfolio yield at the end of
the second time period.

For the 2-stage extension of the SSD-constrained problem described in Sect. 2.1,
[6] proposed a dual decomposition scheme and a solution method. Variance terms are
included in the objective function following the ideas of [37]. Besides the economic
advantages observed by Roman et al., the variance terms yield a technical advantage:
They make the objective function strictly convex, and hence enable solution of the
primal problem through a dual approach.

We plan to develop a solution method for the 2-stage extension of the multi-objec-
tive problem described in Sect. 2.2.
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