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Abstract The main goal of this article is to present several new results on the max-
imality of the composition and of the sum of maximal monotone operators in Banach
spaces under weak interiority conditions involving their domains. Direct applications
of our results to the structure of the range and domain of a maximal monotone oper-
ator are discussed. The last section of this note studies continuity properties of the
duality product between a Banach space X and its dual X∗ with respect to topologies
compatible with the natural duality (X × X∗, X∗ × X).
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1 Introduction

A flourishing literature on the topic of calculus rules for maximal monotone opera-
tor has recently appeared, the trend being the use of convex analysis in the attempt
of solving the celebrated Rockafellar Conjecture on the sum of maximal monotone
operators under minimal constraints qualification conditions (see [1,2,16,18,21–25]).

The use of convex function representations of monotone operators, discovered by
Fitzpatrick [5] and rediscovered by Martínez-Legaz–Théra [9] and Burachik–Svaiter
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e-mail: zalinesc@uaic.ro
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266 M. D.Voisei, C. Zălinescu

[3], first showed its usefulness in the context of reflexive Banach spaces. This approach
allowed that several results on maximal monotone operators be re-obtained such as
those referring to the characterization of maximality (see [19]), the maximality of
the sum of monotone operators or of the composition of a monotone operator with a
continuous linear operator (see [11,12,20,27]), and new results to be found such as
the result on the bounded Hausdorff convergence of the sum of maximal monotone
operators (see [13]).

It was hoped that the use of convex representations for monotone operators would
provide a solution of the Rockafellar Conjecture in the context of non-reflexive Banach
spaces. This direction has already been exploited leading to additional conditions under
which this conjecture holds (see [2,21–25]).

The objective of this note is to obtain general criteria for the maximality of the
composition and of the sum of maximal monotone operators in general Banach spaces
using a 1-dimensional subspace idea of Voisei (see [24, Theorem 5.9]) and based on
a construction used by Penot and Zălinescu [12] under the reflexivity assumption and
by Voisei and Zălinescu [25] under stronger representability conditions.

The plan of this paper is as follows. In Sect. 2, the main notions and results on maxi-
mal monotone operators and their convex representations in locally convex spaces are
presented. The framework of this section was motivated by the facts that several results
on monotone operators known in the context of Banach spaces hold in locally convex
spaces and that, generally, the natural duality (X × X∗, X∗ × X) of a Banach space
X comes from a non-Banach space topology, namely, when X × X∗ is endowed with
the non-barreled weak × weak-star topology. Section 3 contains our calculus rules for
maximal monotone operators in the context of a Banach space under relative interiority
conditions together with a comparison of our results with several recently published
results on this topic. Section 4 deals with several equivalent conditions for the conti-
nuity of the coupling function of X × X∗ with respect to topologies compatible to the
natural duality (X × X∗, X∗ × X). For example the continuity of the coupling function
with respect to the Mackey topology for the natural duality is equivalent to the reflex-
ivity of X , while the continuity of the coupling function with respect to the product of
the strong and bounded weak-star topologies translates into X is finite dimensional.

2 Main notions

Throughout this section, if not otherwise explicitly mentioned, (X, τ ) is a separated
locally convex space, X∗ is its topological dual endowed with the weak-star topology
w∗, and the topological dual of (X∗, w∗) is identified with X . The weak topology w
on X is also considered. For x ∈ X and x∗ ∈ X∗ we set 〈x, x∗〉 := x∗(x).

For a subset A of X we denote by int A, cl A (or clτ A when we wish to emphasize
on the topology τ ), aff A and conv A the interior, the closure, the affine hull and the
convex hull of A, respectively; moreover core A (or Ai ) and i A are the algebraic inte-
rior and the relative algebraic interior (or intrinsic core) of A, while ic A := i A if aff A
is closed and ic A := ∅ otherwise; in particular, if core A �= ∅ then ic A = core A.
If A, B ⊂ X we set A + B := {a + b | a ∈ A, b ∈ B} with the convention
A + ∅ := ∅ + A := ∅.
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Maximal monotonicity criteria for the composition 267

We consider the class Λ(X) of proper convex functions f : X → R := R ∪
{−∞,+∞} and the class Γτ (X) (or simply Γ (X)) of those functions f ∈ Λ(X)
which are τ -lower semicontinuous (lsc for short). Recall that f is proper if dom f :=
{x ∈ X | f (x) < ∞} is nonempty and f does not take the value −∞.

To f : X → R we associate its convex hull conv f : X → R and its (τ -)lsc convex
hull cl conv f : X → R (clτ conv f when we wish to put emphasis on the topology
τ ) defined by

(conv f )(x) := inf{t ∈ R | (x, t) ∈ conv(epi f )},
(cl conv f )(x) := inf{t ∈ R | (x, t) ∈ cl conv(epi f )},

where epi f := {(x, t) ∈ X × R | f (x) ≤ t} is the epigraph of f .
The conjugate of f : X → R with respect to the dual system (X, X∗) is given by

f ∗ : X∗ → R, f ∗(x∗) := sup{〈x, x∗〉 − f (x) | x ∈ X}. (1)

The conjugate f ∗ is a weakly-star (or w∗−) lsc convex function. For the proper
function f : X → R we define the subdifferential of f at x by

∂ f (x) := {x∗ ∈ X∗ | 〈x ′ − x, x∗〉 ≤ f (x ′)− f (x) ∀x ′ ∈ X},

for x ∈ dom f and ∂ f (x) := ∅ for x �∈ dom f . Recall that NC = ∂ιC is the normal
cone of C , where ιC is the indicator function of C ⊂ X defined by ιC (x) := 0 for
x ∈ C and ιC (x) := ∞ for x ∈ X\C .

When X∗ is endowed with the topologyw∗ (or with any other locally convex topol-
ogy σ such that (X∗, σ )∗ = X ), in other words, if we take conjugates for functions
defined in X∗ with respect to the dual system (X∗, X), then f ∗∗ = ( f ∗)∗ = cl conv f
whenever cl conv f (or equivalently f ∗) is proper.

For f, g : E → R we set [ f ≤ g] := {x ∈ E | f (x) ≤ g(x)}; the sets [ f = g],
[ f < g], and [ f > g] are defined similarly.

Let Z := X × X∗. Consider the coupling function

c : Z → R, c(z) := 〈x, x∗〉 for z := (x, x∗) ∈ Z .

It is known that the topological dual of (Z , τ ×w∗) can be (and will be) identified
with Z by the coupling

z · z′ := 〈z, z′〉 := 〈x, x ′∗〉 + 〈x ′, x∗〉 for z = (x, x∗), z′ = (x ′, x ′∗) ∈ Z .

With respect to the natural dual system (Z , Z) induced by the previous coupling,
the conjugate of f : Z → R is denoted by

f � : Z → R, f �(z) = sup{z · z′ − f (z′) | z′ ∈ Z},

and f �� = clτ×w∗ conv f whenever f � (or clτ×w∗ conv f ) is proper.
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Whenever X is a normed vector space, besides X∗ we consider the bi-dual X∗∗.
We identify X with the linear subspace J (X) of X∗∗, where J : X → X∗∗ is the
canonical injection: 〈x∗, J x〉 := 〈x, x∗〉 for x ∈ X and x∗ ∈ X∗, and we denote J x
by x̂ or simply by x . In this case Z = X × X∗ is seen as a normed vector space with

the norm ‖z‖ :=
(

‖x‖2 + ‖x∗‖2
)1/2

for z := (x, x∗) ∈ Z . Its topological dual Z∗ is

identified with X∗ × X∗∗ by the coupling

〈(x, x∗), (y∗, y∗∗)〉 :=〈x, y∗〉+〈x∗, y∗∗〉, (x, x∗)∈ X × X∗, (y∗, y∗∗)∈ X∗×X∗∗.

In this context, for f : Z → R, the conjugate f ∗ : Z∗ → R is given by (1) while for
f � : Z → R one has

f �(x, x∗) = f ∗(x∗, J x) = f ∗(x∗, x) ∀(x, x∗) ∈ Z . (2)

Note that ( f �)∗(x∗, x) = f ��(x, x∗) = f (x, x∗) when f : X × X∗ → R is a
proper convex τ × w∗–lsc function.

We consider the following classes of functions:

F := F(Z) := { f ∈ Λ(Z) | f ≥ c},
R := R(Z) := Γτ×w∗(Z) ∩ F(Z),
D := D(Z) := { f ∈ R(Z) | f � ≥ c}.

If no confusion can occur, the multifunction (or operator) T : X ⇒ X∗ will be
identified with its graph

gph T := {(x, x∗) ∈ X × X∗ | x∗ ∈ T (x)} ⊂ Z;

as usual, the domain and the image of T are the sets

dom T := {x ∈ X | T (x) �= ∅} = PrX (T ), Im T :=
⋃

x∈X

T (x) = PrX∗(T ),

where PrX and PrX∗ are the projections of Z onto X and X∗, respectively. When
S : X ⇒ X∗, the multifunction (S + T ) : X ⇒ X∗ is defined by (S + T )(x) :=
S(x)+ T (x).

The multifunction T : X ⇒ X∗ is said to be monotone if c(z − z′) ≥ 0 for all
z, z′ ∈ T and maximal monotone if T is monotone and maximal in the sense of inclu-
sion. In other terms, T is maximal monotone if T is monotone and any element z ∈ Z
which is monotonically related to (m.r.t. for short) T , that is, c(z − z′) ≥ 0 for every
z′ ∈ T , belongs to T . The classes of monotone and maximal monotone operators
T : X ⇒ X∗ are denoted by M(X) and M(X), respectively. It is well known that

M f := [ f = c] = {z ∈ Z | f (z) = c(z)} ∈ M(X) ∀ f ∈ F
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Maximal monotonicity criteria for the composition 269

(see e.g. [11]). It was practically proved by Fitzpatrick [5, Theorem 2.4] that

f ∈ F �⇒ [ f = c] ⊂ [ f � = c], (3)

from which, it follows that

[ f = c] = [ f � = c] ∀ f ∈ D. (4)

We say that T is representable if T = M f for some f ∈ R; in this case f is called
a representative of T . We denote by RT the class of representatives of T . We say
that T is dual-representable if T = M f for some f ∈ D; in this case f is called a
d-representative of T . We denote by DT the class of d-representatives of T .

Whenever T : X ⇒ X∗ is representable, T (x) is w∗-closed and convex and
T −1(x∗) is τ -closed and convex for all x ∈ X and x∗ ∈ X∗. Indeed, if T = M f for
some f ∈ R then

T (x) = {x∗ ∈ X∗ | f (x, x∗) ≤ c(x, x∗)} = [ f (x, ·)− c(x, ·) ≤ 0],

isw∗-closed and convex because f (x, ·)−c(x, ·) is convex andw∗–lsc. The assertion
about T −1(x∗) follows similarly.

We associate to T : X ⇒ X∗ the functions cT , ψT , ϕT : Z → R defined by

cT := c + ιT , ψT := cl τ×w∗ conv cT , ϕT := c�
T = ψ�

T .

The τ×w∗–lsc functions ϕT andψT were first introduced in [5] and [21], respectively;
ϕT is called the Fitzpatrick function of T and we call ψT the Penot function of T .

Notice that, as observed in [24, Remark 3.6], if f ∈ DT , that is, T is dual-
representable with f a d-representative of T , then

ϕT ≤ f ≤ ψT , ϕT ≤ f � ≤ ψT . (5)

In fact,

[ f ∈ R, A ⊂ [ f = c]] �⇒ ϕA ≤ f, f � ≤ ψA;

in particular,

f ∈ R �⇒ ϕ[ f =c] ≤ f, f � ≤ ψ[ f =c]. (6)

Indeed, take f ∈ R and A ⊂ [ f = c]. Hence f ≤ cA, and so f ≤ ψA; it follows that
f � ≥ ψ�

A = ϕA. Taking (3) into account we have A ⊂ [ f � = c], whence f � ≤ cA,
f � ≤ ψA, and f = f �� ≥ c�

A ≥ ϕA.
From the definition of ϕT one has (as observed in [23, Proposition 2])

T ⊂ [dom T × X∗] ∪ [X × Im T ] ⊂ [ϕT ≥ c]. (7)
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Moreover, as observed in several places (see e.g. [11,23]), for T ⊂ X × X∗ we have

T ∈ M(X) ⇐⇒ conv cT ≥ c ⇐⇒ T ⊂ [ϕT = c] ⇐⇒ T ⊂ [ϕT ≤ c], (8)

T ∈ M(X) ⇒ T ⊂ [ψT = c] ⊂ [ϕT = c], (9)

T representable ⇒ T monotone, (10)

and

T ∈ M(X) ⇐⇒ T = [ϕT ≤ c] ⇐⇒ [ϕT ∈ R and T = [ϕT = c]] ⇐⇒ ϕT ∈ RT .

(11)

Moreover,

T ∈ M(X) ⇐⇒ conv cT ≥ c ⇐⇒ ψT = cl τ×w∗ conv cT ≥ c ⇐⇒ ψT ≥ ϕT .

(12)

Indeed, for T = ∅ one has ψT = conv cT = ∞, ϕT = −∞, and so (12) holds. Let
T be nonempty. Assume that T is monotone, i.e., for every z, z′ ∈ T , c(z − z′) ≥ 0,
or equivalently c(z) ≥ z · z′ − c(z′). Taking the supremum with respect to z′ ∈ T we
get c(z) ≥ ϕT (z) for every z ∈ T , that is cT ≥ ϕT on Z . Since ϕT is τ × w∗–lsc
convex this implies ψT = clτ×w∗ conv cT ≥ ϕT on Z . From the Fenchel inequality
we have that ψT (z)+ϕT (z) ≥ z · z = 2c(z) for z ∈ Z . Hence ψT ≥ c on Z whenever
ψT ≥ ϕT on Z . Since ψT ≤ conv cT , this yields conv cT ≥ c on Z if ψT ≥ c. If
conv cT ≥ c, by (8), one gets T ∈ M(X).

From (11) and (12) we obtain that each maximal monotone operator T : X ⇒ X∗
is dual-representable, a d-representative being ϕT (or ψT ). Indeed, if T ∈ M(X) we
have ψT = ϕ�

T ≥ c (by (12)) and ϕT = ψ�
T ≥ c (by (11)), and so ϕT , ψT ∈ DT .

An operator T ⊂ Z is called of negative infimum type on Z (NI for short) if ϕT ≥ c
on Z . Let us note that this notion is different from the original definition given by S.
Simons (see [16, Definiton 25.5] or [18, Definition 36.2]) in the sense that the original
NI definition translates in our context as T is of NI type in Z∗.

The following result was established by Voisei [21, Theorems 2.2, 2.3] when X is
a Banach space, but the same proof works for X a separated locally convex space. We
give a proof for completeness.

Theorem 1 Let T ⊂ X × X∗. Then

(i) T is representable if and only if T ∈ M(X) and T = [ψT = c], that is,
ψT ∈ RT ;

(ii) T ∈ M(X) if and only if T is representable and T is of negative infimum type.

Proof (i) The implication “⇐” is obvious from (12). Assume that f ∈ R is a
representative of T . Then T = [ f = c] ∈ M(X) and c ≤ f ≤ ψT . From (9)
we get T ⊂ [ψT = c] ⊂ [ f = c] = T , and so T = [ψT = c].

(ii) The implication “⇒” follows from (11). Assume that T is representable and
NI. Then ϕT ≥ c and T = [ψT = c]. By (10), (12) and (4) we have that
T = [ϕT = c] and the conclusion follows from (11). ��
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Maximal monotonicity criteria for the composition 271

The simplest examples of NI operators are those with full domain or range. Indeed,
if dom T = X or Im T = X∗ then by (7) we get ϕT ≥ c on Z .

A commonly used method (which was first used in [21]) to prove that an operator T
is of NI type is to show that whenever (x, x∗) is m.r.t. T then x ∈ dom T or x∗ ∈ Im T
or, in other words, PrX [ϕT ≤ c] ⊂ dom T or PrX∗ [ϕT ≤ c] ⊂ Im T imply that T is
NI. Here we use a similar argument for Theorem 4 below.

Theorem 2 Let T ⊂ X × X∗. Then T ∈ M(X) if and only if every representative of
T is a d-representative of T .

Proof If T is maximal monotone and f ∈ R with [ f = c] = T , from (6), (11) and
(12) we have that f ∈ DT . Conversely, because, by Theorem 1(i), ψT is a represen-
tative of T , it becomes a d-representative of T which means that ϕT ≥ c, that is, T is
NI. The conclusion follows from Theorem 1(ii). ��

It has been observed above that every maximal monotone operator is dual-
representable with d-representatives ϕT or ψT . Also, it has been noted in several
places that, in the context of reflexive spaces, the notions of maximal monotonic-
ity and dual-representability coincide (see for instance [11], [12, Proposition 2.3]).
It remains an open problem whether every dual-representable operator is maximal
monotone in the non-reflexive Banach space settings.

3 Maximality criteria for the composition and the sum

First we recall the general construction used in [20,25]. For X,Y locally convex spaces
and F ⊂ X × Y × X∗ × Y ∗ we define

G := G(F) := {(x, x∗) ∈ X × X∗ | ∃y∗ ∈ Y ∗ : (x, 0, x∗, y∗) ∈ F}.

The following lemma will be needed in the sequel; it was stated in [25, Lemma 13]
and extends slightly [20, Lemma 5.3 (b)].

Lemma 1 Let X,Y be locally convex spaces.

(i) If F ∈ M(X × Y ) and Y0 ⊂ Y is a closed linear subspace such that

F(x, y) = F(x, y)+ {0} × Y ⊥
0 ∀(x, y) ∈ X × Y, (13)

then PrY (dom ϕF ) ⊂ y + Y0 for every y ∈ PrY (F).

(ii) If F ∈ M(X × Y ), then PrY (dom ϕF ) ⊂ aff(PrY (F)).

We used the notation A⊥ := {x∗ ∈ X∗ | 〈x, x∗〉 = 0 ∀x ∈ A} (for A ⊂ X ).
Also, we use the notation ri A for the topological interior of A with respect to aff A :=
cl(aff A); thus ri A is empty if aff A is not closed and one always has ri A ⊂ ic A. In the
sequel, we use the facts that for C convex with icC nonempty, we have aff C = aff(icC)
and,

icC ⊂ A ⊂ C �⇒ [aff C = aff A and icC = ic A]. (14)
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The next result corresponds to Lemmas 3.2, 3.3 and Proposition 3.4 in [12]; its
proof follows the line of the proofs of the mentioned results.

Theorem 3 Let X,Y be Banach spaces and F ∈ M(X × Y ).

(i) If f ∈ RF , 0 ∈ ic(PrY (dom f �)) and g : X × X∗ → R is given by

g(x, x∗) := inf{ f �(x, 0, x∗, y∗) | y∗ ∈ Y ∗}, (x, x∗) ∈ X × X∗, (15)

then

g�(u, u∗) = min{ f (u, 0, u∗, v∗) | v∗ ∈ Y ∗} ∀ (u, u∗) ∈ X × X∗, (16)

and g� is a representative of G(F).

(ii) If F is dual-representable and f ∈ DF is such that 0 ∈ ic(PrY (dom f )) and
0 ∈ ic(PrY (dom f �)), then G(F) is dual-representable and g defined by (15) is
a d-representative of G(F).

(iii) If F ∈ M(X × Y ) is such that 0 ∈ ic(conv(PrY (F))) and f ∈ RF , then G(F)
is dual-representable and g defined by (15) is a d-representative of G(F).

(iv) If X is reflexive, F ∈ M(X × Y ) and f ∈ RF then

ic(PrY (dom f )) = ic(PrY (dom ϕF )) = ic(conv(PrY (F)))

= ic(PrY (F)) = ri(PrY (F)). (17)

Furthermore, if 0 ∈ ic(PrY (F)), or equivalently 0 ∈ ic (PrY (dom f )), then G(F) ∈
M(X).

Proof (i) The proof is the same as that of [12, Lemma 3.2]; just observe that this
time the graph of C : X × X∗ ⇒ X × Y × X∗ × X∗ given by

C(x, x∗) := {x} × {0} × {x∗} × Y ∗, (x, x∗) ∈ X × X∗,

is a closed linear subspace and C∗(x∗, y∗, x∗∗, y∗∗) = {(x∗, x∗∗)} if y∗∗ = 0,
C∗(x∗, y∗, x∗∗, y∗∗) = ∅ otherwise.

Notice that g(x, x∗) = inf{ f �(u, v, u∗, v∗) | (u, v, u∗, v∗) ∈ C(x, x∗)} for
(x, x∗) ∈ X × X∗ and

dom f � − Im C = X × PrY (dom f �)× X∗ × Y ∗,

from which 0 ∈ ic(dom f � − Im C); by the fundamental duality formula (see e.g.
[26, Theorem 2.8.6(v)]) we get

g∗(u∗, u∗∗) = min{( f �)∗(u∗, v∗, u∗∗, 0) | v∗ ∈ Y ∗)} ∀(u∗, u∗∗) ∈ X∗ × X∗∗.
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For u∗∗ = u ∈ X and u∗ ∈ X∗ we get (see (2))

g�(u, u∗) = g∗(u∗, u) = min{( f �)∗(u∗, v∗, u, 0) | v∗ ∈ Y ∗}
= min{ f ��(u, 0, u∗, v∗) | v∗ ∈ Y ∗} = min{ f (u, 0, u∗, v∗) | v∗ ∈ Y ∗},

which makes g� a representative of G since f is a representative of F .

(ii) The conclusion follows from (i) applied to f �.
(iii) Because f ∈ RF , by Theorem 2 we obtain that f is a d-representative of F ,

and so, by (5), we have that ϕF ≤ f ≤ ψF . It follows that

F ⊂ conv F ⊂ domψF ⊂ dom f ⊂ dom ϕF ,

whence

PrY (F) ⊂ PrY (conv F) = conv(PrY (F))

⊂ PrY (domψF ) ⊂ PrY (dom f ) ⊂ PrY (dom ϕF ). (18)

This yields

aff(PrY (F)) = aff(PrY (conv F)) ⊂ aff(PrY (domψF ))

⊂ aff(PrY (dom f )) ⊂ aff(PrY (dom ϕF )) ⊂ aff (PrY (F)), (19)

the last inclusion being obtained using Lemma 1(ii).
Because 0 ∈ ic(PrY (conv F)), aff(PrY (conv F)) = aff(PrY (F)) is closed, and so

all inclusions in (19) become equalities. Hence

ic(PrY (F)) ⊂ ic(PrY (conv F)) ⊂ ic(PrY (domψF ))

⊂ ic(PrY (dom f )) ⊂ ic(PrY (dom ϕF )). (20)

Because f � is also a representative of F , (20) also holds for f replaced by
f �. Hence 0 ∈ ic(PrY (dom f )) and 0 ∈ ic(PrY (dom f �)). The conclusion follows
using (ii).

(iv) As in (iii), (18) and (19) hold. Let us prove that

ic(PrY (dom ϕF )) ⊂ PrY (F). (21)

Observe first that if 0 ∈ ic(PrY (dom ϕF )), then from (i) applied for f = ψF we obtain
that G(F) is dual-representable in the reflexive space X , with a d-representative given
by

g�(u, u∗) = min{ψF (u, 0, u∗, v∗) | v∗ ∈ Y ∗}, (u, u∗) ∈ X × X∗,

123
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since g ≥ c and g�� = g ≥ c. Therefore, by [12, Proposition 2.3], G(F) is max-
imal monotone. Hence G(F) is non-empty, and so 0 ∈ PrY (F). Similarly, if y ∈
ic(PrY (dom ϕF )) then 0 ∈ ic(PrY (dom ϕF ′)), where F ′ := F − (0, y, 0, 0) is maxi-
mal monotone. By the previous case it follows that 0 ∈ PrY (F ′), that is, y ∈ PrY (F).
Hence (21) holds.

Assume now that ic(PrY (dom ϕF )) �= ∅. Then, by (21),

aff(PrY (dom ϕF )) = aff(ic(PrY (dom ϕF ))) ⊂ aff(PrY (F)).

Since aff(PrY (dom ϕF )) is closed, we obtain again that all inclusions in (19) are in fact
equalities. Taking into account (18) and (21) we obtain that the first three equalities in
(17) hold; the last one follows from the fact that ri(PrY (dom ϕF )) = ic(PrY (dom ϕF ))

(see [26, Proposition 2.7.2]).
To complete the proof it is sufficient to observe that when ic(PrY (F)), or

ic(PrY (conv F)), or ic(PrY (dom f )) is nonempty then ic(PrY (dom ϕF )) is nonempty.
In the first two cases we obtain that aff(PrY (F)) is closed, and so, as seen

above, (20) holds; hence ic(PrY (dom ϕF )) is nonempty. Assume now that the set
ic(PrY (dom f )) is nonempty. Then aff(PrY (dom f )) is closed. From (19) we obtain
that aff(PrY (dom f )) = aff(PrY (dom ϕF )) is closed, and so, from (18), we get
ic(PrY (dom ϕF )) �= ∅. As seen above ic(PrY (dom ϕF )) �= ∅ implies that G(F) is
maximal monotone. ��

For F : X × Y ⇒ X∗ × Y ∗ and A : X → Y a continuous linear operator, we
consider FA : X × Y ⇒ X∗ × Y ∗ defined by

gph FA := {(x, y, x∗, y∗)∈ X × Y × X∗ × Y ∗ | (x∗ − A�y∗, y∗)∈ F(x, Ax + y)},

where A� : Y ∗ → X∗ is the adjoint of A, or FA(x, y) = B�F B(x, y)with B(x, y) :=
(x, y + Ax) for (x, y) ∈ X × Y .

Since B : X × Y → X × Y is an isomorphism of normed vector spaces (with
B�(x∗, y∗) = (x∗ + A�y∗, y∗)), if F is dual-representable, (maximal) monotone
then FA is dual-representable, (maximal) monotone. Moreover, if f is a (d-) represen-
tative of F then f A := f ◦ L is a (d-) representative of FA, where L := B × (B−1)�.
Using the previous result for FA we get the next two consequences; note that we need
the reflexivity of X in order to apply Theorem 3(iv).

Corollary 1 Assume that X,Y are Banach spaces with X reflexive, F ∈ M(X × Y ),
A ∈ L(X,Y ) and f ∈ RF . Then

ic{y − Ax | (x, y) ∈ dom F} = ic{y − Ax | (x, y) ∈ conv(dom F)}
= ic{y − Ax | (x, y) ∈ PrX×Y (dom f )}
= ri({y − Ax | (x, y) ∈ dom F}).

Assume that 0 ∈ ic{y − Ax | (x, y) ∈ PrX×Y (dom f )} (or equivalently 0 ∈ ic{y −
Ax | (x, y) ∈ dom F}). Then the multifunction G(FA) whose graph is {(x, x∗) ∈
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X × X∗ | ∃y∗ ∈ Y ∗ : (x∗ − A�y∗, y∗) ∈ F(x, Ax)} is maximal monotone with a
representative g : X × X∗ → R given by

g(x, x∗) = min{ f (x, Ax, x∗ − A�y∗, y∗) | y∗ ∈ Y ∗}, (x, x∗) ∈ X × X∗.

Corollary 2 Assume that X,Y are Banach spaces with X reflexive, M ∈ M(X) with
representative f , N ∈ M(Y ) with representative g, and A ∈ L(X,Y ). Then

ic(dom N − A(dom M)) = ic(conv(dom N − A(dom M)))

= ic(PrY (dom g)− A(PrX (dom f )))

= ri (dom N − A(dom M)) .

If, in addition, 0 ∈ ic(dom N − A(dom M)) then M + A�N A is maximal monotone
with a representative given by

h : X × X∗ →R, h(x, x∗) := inf{ f (x, x∗ − A�y∗)+ g(Ax, y∗) | y∗ ∈ Y ∗}, (22)

and the infimum in the expression of h is attained.

The maximal monotonicity of A�N A when X,Y are Banach spaces with X reflex-
ive and 0 ∈ core (Im A + conv(dom N )) is obtained in [1, Theorem 5.5] (see also [11,
Theorem 14] and [27, Theorem 7]).

Taking X an arbitrary reflexive space, gph M = {0}× X∗ and A = 0 in Corollary 2
we get the next result that covers [17, Theorem 2.2] which states that int(dom N ) =
int (PrY (dom ϕN )) and [14, Theorem 1] which states that cl(dom N ) is convex when
the interior of conv(dom N ) is nonempty. It is known that for an operator which is
maximal monotone locally the closure of its domain is convex (see [16, Theorem 26.3]
or [18, Theorem 44.2]); in fact we shall prove in Corollary 5 below that N ∈ M(Y ) is
maximal monotone locally whenever ic(dom N ) �= ∅.

Corollary 3 Let Y be a Banach space and N ∈ M(Y ). If g is a representative of N
then

ri (dom N ) = ic(dom N ) = ic(conv(dom N )) = ic(PrY (dom g)). (23)

In particular ic(dom N ) is convex; moreover, if ic(dom N ) is nonempty then
cl(dom N ) is convex, too.

Proof As mentioned above, (23) follows from Corollary 2 taking gph M = {0} × X∗
and A = 0. From (23) it is clear that ic(dom N ) is convex. Assume that ic(dom N ) �= ∅.
Using again (23) we get

∅ �= ic(PrY (dom g)) ⊂ dom N ⊂ PrY (dom g).

Hence cl(dom N ) = cl (PrY (dom g)), and so cl(dom N ) is convex. ��
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Remark 1 When X,Y are Banach spaces, A : X → Y is a continuous linear opera-
tor, and f, g are representatives for the operators M ∈ M(X) and N ∈ M(Y ) with
0 ∈ ic(conv(dom N − A(dom M))), applying Theorem 3(iii) for FA we obtain that h
defined by (22) has

h�(x, x∗)=min
{

f �(x, x∗− A�y∗)+g�(Ax, y∗) | y∗ ∈ Y ∗} , ∀(x, x∗) ∈ X × X∗,

and M + A�N A admits h� as a d-representative, in particular, M + A�N A is dual-
representable and has w∗-closed values.

When applied for the sum, that is, X = Y and A = IdX , Corollary 2 reduces to a
known criterion for the maximality of the sum in reflexive spaces. However, using an
idea of Voisei [24], we can obtain criteria for the maximality of the composition and
sum in general Banach spaces.

Theorem 4 Let X,Y be Banach spaces, let A : X → Y be a continuous linear opera-
tor and N ∈ M(Y ). Assume that 0 ∈ ic(Im A−conv(dom N )) and ic(conv(dom N )) �=
∅ (or, equivalently, 0 ∈ ic(Im A − PrY (dom ϕN )) and ic(PrY (dom ϕN )) �= ∅). Then
A�N A ∈ M(X). In particular the conclusion holds if Im A ∩ core(conv(dom N )) �=
∅.

Proof First let us recall that for convex subsets C, D of a real linear space we have
that

i C �= ∅, i D �= ∅ �⇒ i (C − D) = i C − i D

(for a complete proof see [28, Lemma 2(iii)]).
Without loss of generality we assume that 0 ∈ ic(dom N ) = ic(PrY (dom ϕN )) (see

Corollary 3 for the last equality). Otherwise, since ic(conv(dom N )) = ic(dom N ) =
i (dom N ) �= ∅, i (Im A) = Im A and

0 ∈ ic(Im A − conv(dom N )) = i (Im A − conv(dom N ))

= Im A − i (dom N ) = Im A − ic(dom N ),

we can take x ∈ X such that Ax ∈ ic(dom N ) = ic(conv(dom N )); then, for gph N ′ :=
gph N −(Ax, 0), we have 0 ∈ ic(dom N ′) and gph(A�N ′ A) = gph(A�N A)−(x, 0).

By Remark 1 we have that S := A�N A is representable. By Theorem 1(ii) (or [21,
Theorem 2.3]), it is sufficient to show that S is NI, that is, ϕS ≥ c. Let z0 := (x0, x∗

0 ) ∈
X × X∗ be such that ϕS(z0) ≤ c(z0). If y0 := Ax0 = 0, then x0 ∈ dom S, and so
ϕS(z0) ≥ c(z0) by (7) (or [23, Proposition 2]). Let y0 �= 0 and take T : R → Y ,
T (t) := t y0 for t ∈ R. Then T �(y∗) = 〈y0, y∗〉, for every y∗ ∈ Y ∗. As noticed
above, i (Im T − conv(dom N )) = Im T − i (conv(dom N )). Since Im T is finite-
dimensional and aff(conv(dom N )) (= aff(dom N )) is a closed linear subspace of Y ,
it follows that aff(Im T − conv(dom N )) (= Im T − aff(dom N )) is closed, and so
0 ∈ ic(conv(dom N ) − Im T ). By Corollary 2 with M = 0 we obtain that T �N T is
maximal monotone.
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Consider y∗
0 ∈ Y ∗ such that t∗0 := 〈x0, x∗

0 〉 = 〈y0, y∗
0 〉. Let (t, t∗) ∈ T �N T , that

is t∗ = 〈y0, y∗〉 for some y∗ ∈ N (t y0) = N (A(t x0)). Because z0 is monotonically
related to S, A�y∗ ∈ S(t x0), and 〈x0, A�y∗

0 − x∗
0 〉 = 0, we have

(1 − t)(t∗0 − t∗) = 〈y0 − t y0, y∗
0 − y∗〉 = 〈x0 − t x0, A�y∗

0 − A�y∗〉
= 〈x0 − t x0, x∗

0 − A�y∗〉 ≥ 0.

Hence (1, t∗0 ) is monotonically related to T �N T , and so (1, t∗0 ) ∈ T �N T . Therefore,

1 ∈ dom(T �N T ), that is, y0 ∈ dom N , or, equivalently, x0 ∈ dom S. Again, by (7) (or
[23, Proposition 2]), ϕS(z0) ≥ c(z0). Hence ϕS ≥ c, and so S is maximal monotone.

��
Corollary 4 Let X be a Banach space and M, N ∈ M(X). If ic(dom M), ic(dom N )
are nonempty and

0 ∈ ic(dom M − dom N ), (24)

then M + N is maximal monotone. In particular, if core(dom M)∩ core(dom N ) �= ∅
then M + N is maximal monotone.

Proof Apply the preceding theorem for A replaced by the linear operator X � x →
(x, x) ∈ X × X and for N replaced by X × X � (x, x ′) ⇒ M(x)× N (x ′) ⊂ X∗ × X∗.

��
By Corollary 3 condition core(dom M) ∩ core(dom N ) �= ∅ is equivalent to each

one of the following: core(conv(dom M)) ∩ core(conv(dom N )) �= ∅, int(dom M) ∩
int(dom N ) �= ∅, core(PrY (dom ϕM )) ∩ core(PrY (dom ϕN )) �= ∅.

The most general results for the maximality of M + N when M, N ∈ M(X) with
X a reflexive Banach space states that the interiority condition (24) implies the maxi-
mality of M + N . Apparently, this condition is not sufficient when X is non-reflexive,
leading to additional conditions to be considered.

Assume that M, N ∈ M(X) and X is a Banach space. We list the main additional
conditions in the literature under which the Rockafellar Conjecture holds in connection
and in comparison to our interiority conditions.

In [23, Theorem 2] one has: if (24) is verified and dom M , dom N are closed and
convex then M + N ∈ M(X). This results extends [21, Theorem 1.1] in which con-
dition (24) is replaced by 0 ∈ core(dom M − dom N ). In [24, Theorem 5.13(β)] one
has: if (24) is verified and gph M, gph N are convex then M + N ∈ M(X). This
result extends [22, Theorem 1] in which the condition gph M, gph N are convex is
replaced by gph M, gph N are linear spaces; of course, in this case (24) is equivalent
to dom M − dom N is closed.

In [2, Theorem 10] one has int(dom M) ∩ int(dom N ) �= ∅ while in [24, Theo-
rem 5.13(γ )] one has core(dom M) ∩ core(dom N ) �= ∅. These are clearly particular
cases of Corollary 4.

Therefore our additional interiority conditions improve upon all known interiority
conditions needed for the chain and the sum rule for maximal monotone operators to
hold.
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Recall that an operator M : X ⇒ X∗ is called maximal monotone locally (or of
type (FPV)) if for every open convex set U ⊂ X with U ∩ dom M �= ∅ and every
(x, x∗) ∈ (U × X∗)\ gph M there exists (u, u∗) ∈ gph M ∩ (U × X∗) =: gph MU

such that 〈x − u, x∗ − u∗〉 < 0, or equivalently

[ϕMU ≤ c] ∩ (U × X∗) ⊂ M. (25)

The convexity of cls(Im M) for M ∈ M(X) is not necessarily fulfilled even under
strong additional conditions (such as coercivity, full-space domain, etc.; see e.g. [7]).
However, the additional interiority condition ic(conv(dom M)) �= ∅, guarantees the
convexity of clw∗(Im M) as we shall see in our next result. The following corol-
lary improves upon the result [6, Proposition 1.4] which was stated for operators
M ∈ M(X) with dom M = X .

Corollary 5 Let X be a Banach space and M ∈ M(X) with ic(conv(dom M)) �= ∅.
Then M is maximal monotone locally and clw∗(Im M) is convex.

Proof The condition ic(conv(dom M)) �= ∅ allows the use of Corollary 4 for M and
NC with C ⊂ X a closed convex set such that M ∩ int C �= ∅ to get that M + NC is
maximal monotone; then from [16, Theorem 26.1] or [18, Theorem 44.1] we find that
M is maximal monotone locally.

We give an alternative proof for getting M maximal monotone locally. Let U ⊂ X
be an open convex set such that U ∩dom M �= ∅. Then for K ⊂ U a nonempty closed
convex set we have

ϕM+NK (x, x∗) ≤ ϕMU (x, x∗) ∀(x, x∗) ∈ K × X∗. (26)

Indeed, since for x, u ∈ K and v∗ ∈ NK (u) we have 〈x − u, v∗〉 ≤ 0, we get

ϕM+NK (x, x∗) = sup{〈x, u∗ + v∗〉 + 〈u, x∗〉 − 〈u, u∗ + v∗〉 | u ∈ K ∩ dom M,

u∗ ∈ M(u), v∗ ∈ NK (u)}
= sup{〈x, u∗〉 + 〈u, x∗〉 − 〈u, u∗〉 + 〈x − u, v∗〉 | u ∈ K ∩ dom M,

u∗ ∈ M(u), v∗ ∈ NK (u)}
≤ sup{〈x, u∗〉 + 〈u, x∗〉 − 〈u, u∗〉 | u ∈ K ∩ dom M, u∗ ∈ M(u)}
≤ sup{〈x, u∗〉 + 〈u, x∗〉 − 〈u, u∗〉 | u ∈ U ∩ dom M, u∗ ∈ M(u)}
= ϕMU (x, x∗).

Let ( x, x∗) ∈ [ϕMU ≤ c] ∩ (U × X∗). Take a closed convex K ⊂ U whose interior
contains x and intersects dom M . We know from Corollary 4 that M + NK is maximal
monotone and from (26) we find

( x, x∗) ∈ [ϕMU ≤ c] ∩ (K × X∗) ⊂ [ϕM+NK ≤ c] = M + NK .

Since NK ( x ) = {0} this yields (x, x∗) ∈ M . Therefore (25) holds and M is maximal
monotone locally.
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To prove that clw∗(Im M) is convex it suffices to show that conv(Im M) ⊂
clw∗(Im M). To this end we adapt the proof in [6, Proposition 1.4]. Assume, by con-
tradiction, that conv(Im M)\ clw∗(Im M) �= ∅. Without loss of generality (doing a
translation if necessary), we may assume that 0 ∈ conv(Im M)\ clw∗(Im M), that is,

0 =
n

∑

i=1

ti u
∗
i , u∗

i ∈ M(ui ), ti ≥ 0 for 1 ≤ i ≤ n,
n

∑

i=1

ti = 1, (27)

and there is ε > 0 and x1, x2, . . . , xm ∈ X such that the weak ∗ neighborhood of zero

V := Vx1,x2,...,xm ;ε := {x∗ ∈ X∗ | |〈x j , x∗〉| < ε ∀ j, 1 ≤ j ≤ m} ⊂ X∗

does not intersect Im M . Without any loss of generality we assume that x1 ∈
ic(dom M).

Let F = span{u1, u2, . . . , un, x1, x2, . . . , xm} and A : F → X defined by A(x) :=
x for x ∈ F .

Because F ∩ ic(dom M) �= ∅ and F = Im A is finite dimensional, as in the proof of
Theorem 4, we obtain that 0 ∈ ic(Im A−dom M). Therefore, by the same Theorem 4,
MF = A�M A : F ⇒ F∗ is maximal monotone; recall that F∗ = {x∗|F | x∗ ∈ X∗}.
Since (MF )

−1 is maximal monotone and F∗ is finite dimensional (hence reflexive),
by the first part we have that clF∗(Im MF ) = clF∗(dom(MF )

−1) is convex. (Here
clF∗ stands for the closure of subsets in F∗.)

Using (27) we get 0∈conv(Im MF )⊂clF∗(Im MF ). Setting VF :={x∗|F | x∗∈V },
we have that VF is a neighborhood of 0 in F∗, and so VF ∩Im MF �= ∅, or equivalently
V ∩ M(F) �= ∅. This yields the contradiction V ∩ Im M �= ∅. Hence conv(Im M) ⊂
clw∗(Im M) and consequently clw∗(Im M) is convex. ��

As seen in the proof of Theorem 4 the condition ic(dom N ) �= ∅, or more precisely
0 ∈ ic(dom N ) was essentially used to show that S := A�N A is maximal monotone
in the very particular case X = R. One can ask if only the condition 0 ∈ dom N or
0 ∈ i (dom N ) is sufficient for the same conclusion under the assumption that X = R.

The condition 0 ∈ dom N is sufficient for dim Y = 1 but not sufficient for dim Y ≥
2. Indeed, if dim Y = 1 then A is either 0 or an isomorphism. In the second case it is
clear that S ∈ M(X), while in the first case gph S = R × {0}.

Take Y = R
2 and N = ∂ f , where f (y1, y2) := max{1−√

y1, |y2 − 1|} for (y1, y2)

∈ [0,∞[×R and f (y1, y2) := ∞ otherwise ( f coincides, up to a translation, with the
function given in [15, p. 218]). We have that dom N = ([0,∞[ × R)\({0} × ]0, 2[).
Hence (0, 0) ∈ dom N . For A : R → R

2 defined by At := (0, 2t) for each t ∈ R, we
have that dom S = R\]0, 1[. Hence S is not maximal monotone because the interior
of its domain is not convex.

Of course the conditions 0 ∈ i (dom N ) and 0 ∈ ic(dom N ) are equivalent if dim
Y < ∞. If dim Y = ∞ the condition 0 ∈ i (dom N ) is not sufficient to get S ∈ M(R).
For this take T : �2 → �2 defined by T

(

(xn)n≥1
) := (

(n−1xn)n≥1
)

. It is clear that T is
a positive self-adjoint and one-to-one continuous linear operator; hence T is maximal
monotone. Take N = T −1, that is, gph N = {(x, T x) | x ∈ �2}; hence N ∈ M(�2).
Of course, dom N = Im T is a dense linear subspace of �2, and so 0 ∈ i (dom N ).
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Take x ∈ �2\ dom N and A : R → �2 with At := t x for t ∈ R. Since t x ∈ dom N iff
t = 0, we find gph S = {(0, 0)}, thus S is not maximal monotone.

4 Appendix

Several results concerning monotone operators and their representative functions
would have simpler proofs if the coupling function c were continuous with respect
to s × τ , where τ is a locally convex topology on X∗ such that (X∗, τ )∗ = X and s
denotes the strong topology on X . Notice that Penot [10, Proposition 6] proved that
X is finite dimensional if c is s × w∗ continuous.

For a Banach space X , a natural question is whether there is a topology τ on X∗
with (X∗, τ )∗ = X , such that c is continuous on X × X∗ endowed with the s × τ

topology.
If such a topology exists then c is also continuous with respect to s × τ ∗

M , where
τ ∗

M is the Mackey topology on X∗ with respect to the duality (X∗, X). Recall that the
Mackey topology on X∗ has for a base of neighborhoods of 0 the family

{C0 | C ∈ Kw} with Kw := {C ⊂ X | C w-compact, convex, and balanced},

where C0 := {x∗ ∈ X∗ | 〈x, x∗〉 ≤ 1 ∀x ∈ C}. Another attractive topology on X∗,
compatible with the duality (X∗, X), is the bounded weak-star topology bw∗ which
has for a base of neighborhoods of 0 the family

{C0 | C ∈ Ks} with Ks := {C ⊂ X | C s-compact, convex, and balanced}

(see [4,8]). Our goal in the following results is to characterize the Banach spaces for
which c is s × τ ∗

M or s × bw∗ continuous.

Proposition 1 Let X be a Banach space.

(i) There exists a norm-bounded τ ∗
M -neighborhood of 0 in X∗ iff X is reflexive.

(ii) There exists a norm-bounded bw∗-neighborhood of 0 in X∗ iff X is finite-
dimensional.

Proof When X is reflexive the Mackey topology τ ∗
M coincides with the strong

topology, therefore the converse implication in (i) is clear. Similarly if X is
finite-dimensional the converse in (ii) is straightforward.

For the direct implication in (i), assume that there exists a norm-bounded τ ∗
M−neigh-

borhood of 0 in X∗. Then UX∗ := {x∗ ∈ X∗ | ‖x∗‖ ≤ 1} is a τ ∗
M -neighborhood of

0, and so there exists C ∈ Kw such that C0 ⊂ UX∗ . Hence UX ⊂ C00 = C , where
UX := {x ∈ X | ‖x‖ ≤ 1}. Because UX is weakly closed, it follows that UX is weakly
compact, and so X is reflexive.

A similar argument works for the direct implication in (ii) with C replaced
by K ∈ Ks ; then UX ⊂ K , and so UX is strongly compact, making X finite-
dimensional. ��
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Theorem 5 Let X be a Banach space.

(i) The following statements are equivalent: (a) X is reflexive, (b) c is s × τ ∗
M con-

tinuous, (c) c is bounded above on a nonempty s × τ ∗
M -open set, (d) c is bounded

below on a nonempty s × τ ∗
M -open set.

(ii) The following statements are equivalent: (a) X is finite dimensional, (b) c is
s × bw∗ continuous, (c) c is bounded above on a nonempty s × bw∗-open set,
(d) c is bounded below on a nonempty s × bw∗-open set.

Proof In both assertions (i), (ii) the implications (a) ⇒ (b) ⇒ (c) ⇔ (d) are obvious.

(i) (c) ⇒ (a) Assume that (c) is verified. Then there exist x ∈ X , x∗ ∈ X∗, ρ,m > 0,
and C ∈ Kw such that

c(x + x, x∗ + x∗) ≤ m,

for all x ∈ ρUX and x∗ ∈ C0. It follows that

〈x, x∗ + x∗〉 + 〈x, x∗ + x∗〉 ≤ m, ∀x ∈ ρUX , ∀x∗ ∈ C0,

so after passing to supremum for x ∈ ρUX we get

ρ
∥

∥x∗∥
∥ − ρ

∥

∥x∗∥
∥ + 〈x, x∗〉 − ∣

∣〈x, x∗〉∣∣ ≤ ρ
∥

∥x∗ + x∗∥
∥ + 〈x, x∗〉 + 〈x, x∗〉 ≤ m,

ρ
∥

∥x∗∥
∥ ≤ m + ρ

∥

∥x∗∥
∥ + ∣

∣〈x, x∗〉∣∣ =: m′

for all x∗ ∈ C0. Therefore, C0 is a norm-bounded τ ∗
M -neighborhood of 0 in X∗.

According to Proposition 1 X is reflexive.
The implication (c) ⇒ (a) in (ii) follows a similar argument. ��

Corollary 6 Let X be a Banach space. Then X is reflexive if one of the following
conditions holds:

(i) there exists h : X × X∗ → R such that h ≥ c and h is s × τ ∗
M -continuous at

some (x, x∗) ∈ dom h,
(ii) there exists a convex function h : X × X∗ → R with h ≥ c and (x, x∗) ∈ dom h

with h(x, ·) τ ∗
M -continuous at x∗ and h(·, x∗) s-continuous at x,

(iii) there exists a locally convex barreled topology τB on X × X∗ such that (X ×
X∗, τB)

∗ = X∗ × X.

Proof If (i) holds then from h ≥ c and h is s × τ ∗
M -continuous at (x, x∗) we obtain

that c is bounded above on an s × τ ∗
M -open neighborhood of (x, x∗). The conclusion

follows immediately from Theorem 5(i).
Assume that (ii) holds. If we replace h by g(x, x∗) = h(x + x, x∗ + x∗)−〈x, x∗〉−

〈x, x∗〉 − 〈x, x∗〉 for (x, x∗) ∈ X × X∗, we may assume without loss of generality
that (x, x∗) = (0, 0). Therefore, there exist M, r > 0 and V a τ ∗

M -neighborhood of 0
in X∗ such that

h(x, 0) ≤ M, h(0, x∗) ≤ M ∀x ∈ rUX , ∀x∗ ∈ V .
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We have

〈x, x∗〉 ≤ h(x, x∗) ≤ 1
2 h(2x, 0)+ 1

2 h(0, 2x) ≤ M, ∀x ∈ r
2UX , ∀x∗ ∈ 1

2 V,

that is, c is bounded above in an s × τ ∗
M -neighborhood of 0 in X × X∗; hence X is

reflexive by Theorem 5(i).
Suppose (iii) holds. Then

τB ≺ τM ≺ sX×X∗ ,

where τM = s × τ ∗
M denotes the Mackey topology on X × X∗ relative to the natural

duality and sX×X∗ stands for the strong topology on X × X∗. The identity mapping
I : (X × X∗, sX×X∗) → (X × X∗, τB) is continuous and surjective. Using [26,
Theorem 1.3.7] we obtain that I is an open mapping and so τB = τM = sX×X∗ ,
whence τ ∗

M = s. ��
Acknowledgments The authors would like to thank one anonymous referee for his/her careful reading
and useful remarks.
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