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Abstract Disjunctive cuts for Mixed-Integer Linear Programs (MIPs) were
introduced by Egon Balas in the late 1970s and have been successfully exploited
in practice since the late 1990s. In this paper we investigate the main ingredients of
a disjunctive cut separation procedure, and analyze their impact on the quality of the
root-node bound for a set of instances taken from MIPLIB library. We compare alterna-
tive normalization conditions, and try to better understand their role. In particular, we
point out that constraints that become redundant (because of the disjunction used) can
produce over-weak cuts, and analyze this property with respect to the normalization
used. Finally, we introduce a new normalization condition and analyze its theoretical
properties and computational behavior. Along the way, we make use of a number of
small numerical examples to illustrate some basic (and often misinterpreted) disjunc-
tive programming features.
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206 M. Fischetti et al.

1 Introduction

We consider the Mixed-Integer Linear Program (MIP)

min{cx : Ax ≥ b, x j integer for all j ∈ J } (1)

with bounds on x (if any) included in Ax ≥ b, where A is a given m × n matrix and
J ⊆ {1, . . . , n}. For technical reasons, we assume w.l.o.g. that the system Ax ≥ b
implies (or contains explicitly) the trivial inequality 0x ≥ −1, in the sense that this
latter inequality can be obtained as a nonnegative combination of the rows of Ax ≥ b.
(For problems with at least one bounded variable, the trivial inequality can always
be obtained by adding the bound constraints on a single variable, say x j ≥ L B j and
−x j ≥ −U B j , and dividing the resulting inequality by U B j − L B j > 0.)

Let x∗ denote an optimal solution of the continuous relaxation min{cx : x ∈ P}
where P := {x ∈ R

n : Ax ≥ b}. We are given a disjunction of the form

πx ≤ π0 OR πx ≥ π0 + 1 (2)

such that (π, π0) is integer, π j = 0,∀ j �∈ J and πx∗ − π0 = η∗, with η∗ ∈ ]0, 1[.
In this paper we are interested in deriving the “strongest” (in some sense to be

discussed later) disjunctive cut γ x ≥ γ0 violated by x∗, according to the classical
approach of Balas [2]. (Disjunctive cuts which can be derived by imposing a single
disjunction such as (2) on a polyhedron P are also known as split cuts; see Cook et al.
[15].) To this end, let us denote by P0 (respectively, P1) the polyhedron obtained from
P by imposing the additional restriction πx ≤ π0 (resp., πx ≥ π0 + 1). By Farkas
Lemma, the validity of γ x ≥ γ0 for P0 and for P1, and hence for conv(P0 ∪ P1), can
always be certified by means of nonnegative multipliers (u, u0, v, v0) associated with
the inequalities defining P0 and P1 according to the following scheme:

P0 P1
(u) Ax ≥ b (v) Ax ≥ b
(u0) −πx ≥ −π0 (v0) πx ≥ π0 + 1

A most-violated disjunctive cut can therefore be found by solving the following
Cut Generating Linear Program (CGLP) that determines the Farkas multipliers so as
to maximize the violation with respect to the given point x∗:

(CGLP) min γ x∗ − γ0 (3)

γ = u A − u0π (4)

γ = vA + v0π (5)

γ0 = ub − u0π0 (6)

γ0 = vb + v0(π0 + 1) (7)

u, v, u0, v0 ≥ 0. (8)

123



On the separation of disjunctive cuts 207

Note that, according to Farkas Lemma, (6) and (7) defining γ0 should be relaxed
into ≤ inequalities. However, it is not difficult to see that, due to the (possibly implicit)
presence of the trivial inequality 0x ≥ −1, one can always require that equality holds
in both cases.

By construction, any feasible CGLP solution with negative objective function value
corresponds to a violated disjunctive cut. However, as stated, the feasible CGLP set is
a cone and needs to be truncated so as to produce a bounded LP in case a violated cut
exists. This crucial step will be addressed in the next section.

Usually, the CGLP is projected onto the support of x∗. Given a variable xk restricted
to be nonnegative and such that x∗

k = 0, it is well known [5] that one can project xk

away. (Of course, variables with nonzero lower bound can be shifted, while variables
at the upper bound can be complemented.) More precisely, one can avoid considering
the CGLP constraints associated with γk and neglect the constraint xk ≥ 0 in both
P0 and P1. The resulting (reduced) CGLP is then solved and the cut coefficient γk is
derived afterwards by solving the trivial lifting problem

min{γk : γk = u Ak − u0πk = vAk + v0πk, u, v ≥ 0}, (9)

where the Farkas multipliers u and v are fixed as in the optimal solution of the
reduced CGLP apart from those related to the previously neglected bound constraint
xk ≥ 0.

In practice, disjunction (2) is typically elementary, i.e., it involves only one integer
variable—for 0-1 ILPs, it reads x j ≤ 0 OR x j ≥ 1, with x∗

j fractional. As such, the
disjunctive cut only exploits the integrality requirement on a single variable and can
be improved easily by an a posteriori cut strengthening procedure, such as the one
proposed by Balas and Jeroslow [6]. Such a strengthening can be also seen as finding
the best disjunction for the given set of multipliers.

Recently, Balas and Perregaard [8] developed an elegant and efficient way of solving
the CGLP by making pivot operations in the “natural” tableau involving the original
x variables only (plus surplus variables), which represents a crucial speed-up in the
implementation of the method.

In this paper we investigate computationally the main ingredients of a disjunctive
cut separation procedure, and analyze their impact on the overall performance at the
root node of the branching tree. To be more specific, we consider a testbed of MIPs
taken from MIPLIB library [11]. For each instance, we solve the root-node LP relax-
ation and generate 10 rounds of disjunctive cuts computed according to alternative
strategies. In each round, a violated disjunctive cut is generated for each fractional LP
components x∗

j , by exploiting the disjunction x j ≤ 
x∗
j � OR x j ≥ 
x∗

j � + 1. In order
to limit possible side effects, no a posteriori cut strengthening procedure is applied,
unless otherwise stated.

The paper is organized as follows. In Sect. 2 we compare classical normalization
conditions used to truncate the CGLP cone, and try to better understand their role. In
Sect. 3 we characterize weak rays/vertices of the CGLP leading to dominated cuts and
we propose a practical heuristic method to strengthen them. In Sect. 4 we show that
using redundant constraints in the CGLP can lead to very weak cuts, and we analyze
such an issue with respect to the normalization used. Finally, in Sect. 5 we introduce
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208 M. Fischetti et al.

a new normalization which is particularly suited for set-covering type problems and
we analyze its theoretical properties and computational behavior.

2 The role of normalization

In order to truncate the CGLP cone one can introduce a suitable cut normalization
condition expressed as a linear (in)equality. A possible normalization, called trivial in
the sequel, is as follows:

u0 + v0 = 1. (10)

One of the most widely-used (and effective) truncation condition, called the Standard
Normalization Condition (SNC) in the following, reads instead:

m∑

i=1

ui +
m∑

i=1

vi + u0 + v0 = 1. (11)

This latter condition was proposed in Balas [1] and investigated (among others) by
Ceria and Soares [13], and by Balas and Perregaard [7,8].

The choice of the normalization condition turns out to be crucial for an effective
selection of a “strong” disjunctive cut in that it affects heavily the choice of the opti-
mal CGLP solution. Balas and Perregaard [8] showed that the well-known Gomory
Mixed-Integer (GMI) cut [19] is a basic solution of the CGLP when either the SNC
or the trivial normalization is applied. Our first result is to prove that this solution
is indeed optimal when the trivial normalization (10) is used. We start with a useful
lemma.

Lemma 1 Let x∗ ∈ P and let (γ, γ0, u, v, u0, v0) be a feasible solution of the CGLP.
Then valid upper bounds on the cut violation can be computed as follows:

UB1: γ0 − γ x∗ ≤ u0η
∗

UB2: γ0 − γ x∗ ≤ v0(1 − η∗)
UB3: γ0 − γ x∗ ≤ (u0 + v0) (1 − η∗) η∗.

Proof Because of (4) and (6), γ x∗ − γ0 = u(Ax∗ − b) − u0(πx∗ − π0) ≥ −u0η
∗.

Analogously, from (5) and (7) we obtain γ x∗−γ0 = v(Ax∗−b)+v0(πx∗−π0−1) ≥
−v0(1−η∗). Adding up the two inequalities above weighed by 1−η∗ and η∗, respec-
tively, one gets the claimed UB3 bound. �

Given a vertex x∗ of P and the associated basis, the next theorem shows how to
compute a solution of the CGLP whose violation is equal to bound UB3 above—for
any given disjunction (2). Moreover, as shown in [7,8], for an appropriate choice of a
non-elementary disjunction this CGLP solution yields precisely a GMI cut associated
with the optimal LP tableau. As a consequence of Lemma 1, this easily-computable
cut has a violation that is optimal among the cuts with constant u0 + v0, i.e., when the
trivial normalization (10) is imposed. Note, however, that this is not necessarily the
case when a different normalization (in particular, the SNC one) is applied.
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On the separation of disjunctive cuts 209

For any vector v, let operator [v]+ take the maximum between the argument and
zero (componentwise); thus, v ≡ [v]+ − [−v]+ with [v]+ ≥ 0 and [−v]+ ≥ 0.

Theorem 2 Assume w.l.o.g. that rank(A) = n. Given a vertex x∗ of P, let the system
Ax ≥ b be partitioned into Bx ≥ bB and N x ≥ bN , where Bx∗ = bB and B is an
n × n nonsingular matrix. Let (u B, vB) and (uN , vN ) denote the Farkas multipliers
associated with the rows of B and N, respectively. For a given disjunction (2) with
η∗ = πx∗−π0 ∈ [0, 1], let u∗

0 = 1−η∗, v∗
0 = η∗, u∗

N = v∗
N = 0, u∗

B = [π B−1]+ and
v∗

B = [−π B−1]+, while γ ∗ and γ ∗
0 are defined through (4) and (6), respectively. Then

(γ ∗, γ ∗
0 , u∗, v∗, u∗

0, v
∗
0) is an optimal CGLP solution w.r.t. the trivial normalization

(10).

Proof We first prove feasibility. Consistency between (4) and (5) requires u∗ A −
u∗

0π = v∗ A + v∗
0π , i.e., u∗

B − v∗
B = (u∗

0 + v∗
0)π B−1 = π B−1, which follows

directly from the definition of u∗
B and v∗

B . Analogously, consistency between (6) and
(7) requires (u∗

B − v∗
B)bB = (u∗

0 + v∗
0)π0 + v∗

0 , i.e., π B−1bB = π0 + v∗
0 . This latter

equation is indeed satisfied because B−1bB = x∗ and v∗
0 = η∗ = πx∗ − π0. As to

optimality, we observe that u∗
0 + v∗

0 = 1 holds by definition. Because of (4) and (6),
γ x∗−γ0 = u∗(Ax∗−b)−u∗

0(πx∗−π0) = u∗
B(Bx∗−bB)+u∗

N (N x∗−bN )−u∗
0η

∗ =
0 + 0 − (1 − η∗)η∗, hence the cut violation attains bound UB3 of Lemma 1. �

The theorem above shows that, in case the trivial normalization is adopted, the
CGLP can be solved in a closed form for any vertex x∗. Moreover, with this nor-
malization, in all optimal CGLP solutions the slack constraints receive a null Farkas
multiplier, i.e., only tight constraints play a role in the cut derivation. This is an unnec-
essary restriction that can actually lead to weak cuts, as computationally shown in the
sequel.

The first set of experiments we designed was aimed at evaluating the actual practical
impact of different normalization conditions. In particular, we compared the SNC nor-
malization (11) with the alternative trivial normalization (10) by warm starting each
CGLP with the basic feasible solution from Theorem 2. (The Balas and Perregaard [8]
technique working on the original tableau and the solution of CGLP by using the GMI
as a warm start, are equivalent procedures.) Moreover, unless explicitly stated, the
CGLP is projected onto the support of x∗, possibly after complementing and shifting
variables at their bound.

The outcome of our experiments is given in Table 1. As already mentioned, we
applied 10 rounds of cuts. At each round, a cut was generated from each fractional
variable. No a-posteriori cut strengthening was applied. As usual, the CGLP is solved
projected on the x∗ support. Instances denoted as “∗” are neglected in the average com-
putations. The table reports (i) the number of separated cuts, (ii) the quality of the lower
bound (i.e., percentage gap closed at the root node) and (iii) the average cardinality of
the support of vector u + v, denoted as S(u, v) := {i ∈ {1, . . . , m} : ui + vi > 0} (|S|
for short), i.e., how many constraints are actually used, on average, to generate a cut.

Table 1 shows clearly that normalizations (11) and (10) yield quite different results.
As a matter of fact, the dual support of cuts separated with (11) is much sparser
(i.e., less constraints are used in the cut derivation) and the quality of final bound is
significantly improved. To get more insights on the different behaviors of (11) and
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Table 1 Trivial versus SNC normalization

Instance Trivial normalization (GMI) SNC normalization

# cuts %gap |S| # cuts %gap |S|
bell3a 137 70.74 59.49 71 70.74 43.72

bell5 202 28.18 31.20 178 94.29 11.75

blend2 156 28.73 11.70 192 30.51 8.10

flugpl 93 15.15 7.57 92 18.36 5.85

gt2 191 98.71 14.52 196 93.46 10.28

lseu 152 32.94 14.34 196 41.33 9.17
∗markshare1 68 0.00 1.00 74 0.00 1.39

mod008 104 12.09 10.40 139 17.05 12.41

p0033 103 58.33 5.72 113 67.86 4.81

p0201 574 18.58 56.03 767 93.82 13.43

rout 445 8.52 135.39 434 24.26 68.07
∗stein27 235 0.00 19.74 252 0.00 6.53

vpm1 255 36.95 9.03 263 55.84 5.39

vpm2 424 42.08 71.72 403 74.96 17.27

avg. 236.333 37.583 35.593 253.667 56.873 17.521

(10), for instance p0201 we provide a full picture of the main differences between
the separated inequalities.

Figures 1, 2 and 3 report, for each iteration, the dual bound reached after adding the
cuts, the average density of the cuts (i.e., the number of nonzero coefficients), and the
average cardinality of S(u, v). Figure 4 reports, for each k = 1, . . . , 10, the number
of separated cuts having “rank” k. Here, we use a relaxed definition of rank, namely
we compute the rank rnk(γ, γ0) of a cut γ x ≥ γ0 as

rnk(γ, γ0) := 1 + max
i∈S(u,v)

rnk(ai , bi ),
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Fig. 1 SNC versus GMI: dual bound for instance p0201
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Fig. 2 SNC versus GMI: average cut density for instance p0201
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Fig. 3 SNC versus GMI: average cardinality of S(u, v) for instance p0201
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Fig. 4 SNC versus GMI: cut rank for instance p0201
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where rnk(ai , bi ) is the rank of constraint ai x ≥ bi (constraints in the original for-
mulation are defined to be of zero rank). (Note that this way of computing the rank
provides just an upper bound on the definition of Chvátal rank [14].)

2.1 Why does SNC normalization work so well?

A careful analysis of the computational results in Table 1 and Figs. 1, 2, 3 and 4 reveal
a very (tricky but) important feature of the SNC scheme that improves significantly its
performance. Indeed, it turns out that the use of the SNC normalization (11) enforces
the following very nice properties:

1. The norm of the separated cuts tends to become smaller and smaller as a result of
the small multipliers used for the newly generated cuts (that is, in turn, a conse-
quence of having limited the multiplier sum to 1). This means that the separated
cuts inserted in the LP are automatically scaled so as to have “small coefficients”.
Therefore, in the subsequent iterations these cuts would need big Farkas multipli-
ers to become relevant, a situation that is, however, penalized by the normalization
condition itself. As a consequence, the normalization penalizes implicitly the rank
of the cuts to be generated, because high-rank cuts will be “expensive” in terms
of multiplier sum, hence low-rank cuts tend to be separated at each step.

2. Since low-rank cuts are preferred and since the original (rank-0) inequalities are
generally sparse, the separated cuts tend to remain sparse; this is also a conse-
quence of the fact that the SNC normalization tends to reduce the sum of the
components of the Farkas multiplier vector and hence it increases the sparsity of
its support, so a small number of constraints are typically used in the disjunctive
cut derivation.

The trivial normalization (10), instead, takes care only of the Farkas multipliers u0
and v0 associated with the disjunction. Indeed, as shown in Sect. 2, only constraints
which are tight at x∗ are used in the cut derivation, thus the rank of the cuts increases
very quickly, basically at each iteration. Moreover, all other constraint multipliers are
not penalized, hence (i) several constraints are used in the cut derivation, thus cuts
increase their density, and (ii) Farkas multipliers can assume huge values, thus the
subsequent cut lifting procedure may produce very weak coefficients for the variables
outside the support of x∗.

In the SNC normalization case the coefficient lifting is not an issue. Indeed, since all
the constraint multipliers in the SNC normalization are penalized and each multiplier
tends to be small, the coefficient lifting of the variables outside the support of x∗—to
be performed afterwards—is “safe”, i.e., also the coefficients of these variables remain
under control.

2.2 Nothing is perfect!

Although it produced good results in the experiments reported in Table 1, there are
cases where normalization (11) may lead to very weak disjunctive cuts.
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On the separation of disjunctive cuts 213

Table 2 “Classical” SNC approach versus “Bad scaled” SNC approach

Instance “Classical” SNC “Bad scaled” SNC

# cuts %gap |S| # cuts %gap |S|
bell3a 71 70.74 43.72 69 70.74 44.32

bell5 178 94.29 11.75 214 88.83 17.47

blend2 192 30.51 8.10 166 28.91 11.71

flugpl 92 18.36 5.85 90 15.40 7.40

gt2 196 93.46 10.28 184 93.42 17.22

lseu 196 41.33 9.17 137 38.58 10.88
∗markshare1 74 0.00 1.39 206 0.00 14.60

mod008 139 17.05 12.41 104 3.90 10.21

p0033 113 67.86 4.81 94 57.09 6.40

p0201 767 93.82 13.43 610 49.91 45.72

rout 434 24.26 68.07 435 13.03 152.66
∗stein27 252 0.00 6.53 248 0.00 22.39

vpm1 263 55.84 5.39 244 47.59 8.50

vpm2 403 74.96 17.27 420 54.39 22.27

avg. 253.667 56.873 17.521 230.583 46.816 29.563

Bad scaling. A bad feature of the SNC normalization is its dependency on the relative
scaling of the constraints, in the sense that the relative size of the Farkas multipliers
(whose sum is fixed to 1) depends on the relative size of the coefficients of the cor-
responding constraints. Indeed, it is easy to see that the multiplication by a positive
factor φ of the i-th constraint in the system Ax ≥ b implies that the corresponding
ui and vi multipliers are divided by φ, which in turn is equivalent to use a coefficient
1/φ (instead of 1) in the normalization condition (11). Thus, the scaled constraint is
“cheaper” if one interprets the right hand side of (11) as a resource.

The following experiment clearly demonstrates this unstable behavior: we ran the
CGLP code with the classical SNC normalization condition, as in Table 1, but we just
multiplied by 1,000 each disjunctive cut before its addition to the current LP. At first
glance, one could guess that this “innocent change” would not have any impact on
the overall performance, but the actual results reported in Table 2 show that this is
definitely not the case.

As explained, multiplying by 1,000 the generated cuts is equivalent to divid-
ing by 1,000 the coefficient of the corresponding Farkas multipliers ui and vi in
the normalization condition, so we actually weaken the penalty on the choice ui +
vi > 0 that leads to low-rank sparse cuts. In other words, the scaling operation
interferes with the nice SNC tendency of producing low-rank cuts, and the over-
all performance deteriorates significantly, as shown in detail for problem p0201 in
Figs. 5, 6, 7, and 8. (Incidentally, the above discussion shows the importance of “small
implementation details” when evaluating the performance of a method—two appar-
ently equivalent implementations of precisely the same idea lead to very different
outcomes.)
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Fig. 5 “Classical” SNC versus “Bad scaled” SNC: dual bound for instance p0201
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Fig. 6 “Classical” SNC versus “Bad scaled” SNC: average cut density for instance p0201
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Fig. 7 “Classical” SNC versus “Bad scaled” SNC: average cardinality of S(u, v) for instance p0201
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Fig. 8 “Classical” SNC versus “Bad scaled” SNC: cut rank for instance p0201

A bad example. Even for toy instances, the CGLP can have a hard time in finding a
good disjunctive cut. This is illustrated by the following simple 2-dimensional case,
where the optimal CGLP solution may correspond to a very weak cut.

Example 1 Consider the simple ILP

whose continuous relaxation, depicted in Fig. 9, has one of the constraints, namely (a5),
scaled by a parameter k > 0: The optimal solution of the LP relaxation is x∗ = ( 1

2 , 1)

and three cuts can be derived from disjunction x1 ≤ 0 OR x1 ≥ 1, namely:

(c1) 2x2 ≤ 1, corresponding to the basic solution of the CGLP (u1, v2, u0, v0), of
value z1 = − 2

11 , optimal for k ≤ 8;
(c2) −x1+4x2 ≤ 1, corresponding to the basic solution of the CGLP (u3, v2, u0, v0),

of value z2 = − 1
6 , never optimal.

(c3) −x1+2x2 ≤ 1, corresponding to the basic solution of the CGLP (u1, v5, u0, v0),
of value z3 = − k

4+5k , optimal for k ≥ 8.

So, depending on the value of k, the optimal CGLP solution gives weak cuts, either
(c1) or (c3), whereas the facet-defining cut (c2) will never be selected. �

Note that the redundant (with respect to P) constraint (a5) is only used in the above
example to show dependency on scaling. In fact, such a constraint can be removed
without making cut (c2) optimal.
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x2 y*

(c1)

(c3)

(c2)

1/2 1

1/2
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Fig. 9 Example 1 depicted

2.3 Comments

The examples above show clearly the following fact: even if the solution of the
CGLP is a vertex, the corresponding disjunctive cut can be very weak. At first glance,
this may be seen as a counter-intuitive result as one would expect that CGLP
vertices correspond to facets of conv(P0 ∪ P1). This is, however, not the case, as
discussed e.g. in Balas and Perregaard [7], since the CGLP is not defined in the
“natural” reverse polar space (γ, γ0) but in an enlarged space involving the Farkas
variables explicitly. As a matter of fact, in the extended space (γ, γ0, u, v, u0, v0)

there are several rays/vertices whose projection in the (γ, γ0) space is nonextremal,
therefore the corresponding cut can be obtained as the sum of other valid cuts and
hence is dominated. By using software PORTA [16] we can get a clear picture of the
situation in Example 1. In the natural polar space (γ, γ0), the projected CGLP cone
has only 4 extreme rays that correspond to the facets of conv(P0 ∪ P1). In space
(γ, γ0, u, v, u0, v0), instead, the CGLP cone has 117 extreme rays that correspond to
117 vertices once normalization (11) is applied. Only 6 of these vertices correspond
to violated constraints, and 3 of them correspond to the cuts depicted in Fig. 9. So,
most CGLP vertices in the (γ, γ0, u, v, u0, v0) space correspond to very weak cuts,
and the cut separation procedure can be in trouble in returning a facet-defining cut
even in this toy example. As mentioned above, this is essentially due to the fact that
the cut is separated in the extended space (γ, γ0, u, v, u0, v0), where a dominated cut
could turn out not to be dominated in terms of the multipliers used for its generation.
For instance, 3 extreme rays of the CGLP cone for Example 1 are reported below.

γ1 γ2 γ0 u1 u2 u3 u4 u5 u6 u7 v1 v2 v3 v4 v5 v6 v7 u0 v0
(r1) 1 −4 −1 0 0 1 0 0 0 0 0 2 0 0 0 0 0 7 5
(r2) −1 0 −1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
(r3) 0 −4 −2 1 0 0 0 0 0 0 0 2 0 0 0 0 0 4 4

In the (γ, γ0) space, the third constraint is clearly dominated as it is just the sum of
the previous ones, but there is no way to obtain ray r3 as conic combination of rays r1
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On the separation of disjunctive cuts 217

and r2 in the extended space, because of the Farkas components. The above drawback
is even more evident in a slight modification of Example 1 where constraint (a3) is
replaced by the constraint 4x1 + 4x2 ≥ 3, thus getting P0 = ∅. Hence, x1 ≥ 1 itself
is a valid cut, but not the best one for the corresponding CGLP.

3 Weak CGLP rays/vertices and dominated cuts

The previous examples show that some rays/vertices of the CGLP lead to weak cuts
and should not be used. In the next section, we formally characterize those rays/verti-
ces which correspond to cuts that are trivially dominated by other cuts associated with
solutions of the same CGLP (Sect. 3.1). In Sect. 3.2, we give a heuristic procedure
to strengthen cuts associated with dominated rays/vertices, whose practical effect is
computationally investigated in Sect. 3.3.

3.1 Characterization

The first step to characterize weak rays/vertices is the following definition.

Definition 3 (Strictly dominated cuts) Let γ̃ x ≥ γ̃0 be a cut valid for conv(P0 ∪ P1)

but not for P . If there exists another cut γ x ≥ γ 0 valid for conv(P0 ∪ P1) such that
{x ∈ P : γ x ≥ γ 0} � {x ∈ P : γ̃ x ≥ γ̃0}, then the cut γ̃ x ≥ γ̃0 is said to be strictly
dominated w.r.t. P .

Note that, in the above definition, the domination of cut γ̃ x ≥ γ̃0 only depends on
a single other cut (γ x ≥ γ 0).

Lemma 4 Let γ̃ x ≥ γ̃0 be a valid cut for conv(P0 ∪ P1) such that P̃ := {x ∈ P :
γ̃ x ≥ γ̃0} � P, and assume P̃ full dimensional. If there exists another cut γ x ≥ γ 0
valid for conv(P0 ∪ P1) and such that γ̃ = γ + μA, γ̃0 = γ 0 + μb for a certain
μ ∈ R

m+\{0}, then γ̃ x ≥ γ̃0 is strictly dominated w.r.t. P.

Proof Define P := {x ∈ P : γ x ≥ γ 0}. By definition, x ∈ P and γ x ≥ γ 0 imply
γ̃ x ≥ γ̃0, hence P ⊆ P̃ . We need to show that the above inclusion is always strict.
Indeed, let F̃ := {x ∈ P : γ̃ x = γ̃0} denote the face of P̃ induced by γ̃ x ≥ γ̃0,
and consider any given h ∈ {1, . . . , m} such that μh > 0. Since P̃ is full dimen-
sional, there exists x̂ ∈ F̃ such that ah x̂ > bh (otherwise γ̃ x ≥ γ̃0 would be a
positive multiple of ah x ≥ bh , impossible since we are assuming P̃ � P). Hence
γ x̂ − γ 0 = (γ̃ x̂ − γ̃0) − μ(Ax̂ − b) ≤ −μh(ah x̂ − bh) < 0, i.e., x̂ ∈ P̃\P . �

For any feasible solution (γ, γ0, u, v, u0, v0) of (4)–(8), we denote by S(u) := {i ∈
{1, . . . , m} : ui > 0} and S(v) := {i ∈ {1, . . . , m} : vi > 0} the support of vectors
u and v, respectively. It is not difficult to show that in any extreme ray of (4)–(8)
yielding a cut nonvalid for P , both u0 and v0 are strictly positive, while S(u) and
S(v) are disjoint. This property is also inherited by the vertices of the CGLP with
normalization (11) (see, Balas and Perregaard [8]). We next give a characterization of
the extreme rays/vertices of the CGLP that lead to strictly dominated cuts according
to Definition 3.
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Theorem 5 Assume conv(P0 ∪ P1) full dimensional. Let (γ̃ , γ̃0, ũ, ṽ, ũ0, ṽ0) be an
extreme ray of the CGLP cone (4)–(8) corresponding to a cut γ̃ x ≥ γ̃0 nonvalid
for P. Then γ̃ x ≥ γ̃0 is strictly dominated w.r.t. P if and only if there exists a feasible
solution (γ̃ , γ̃0, û, v̂, û0, v̂0) of (4)–(8) such that S(û) ∩ S(v̂) �= ∅.

Proof We first prove the if condition. Given a feasible solution (γ̃ , γ̃0, û, v̂, û0, v̂0) of
(4)–(8) such that S(û) ∩ S(v̂) �= ∅, define μ = min{û, v̂} (componentwise) and note
that μi > 0 for any i ∈ S(û) ∩ S(v̂). Then, define u = û − μ ≥ 0, v = v̂ − μ ≥
0, γ = γ̃ − μA, γ 0 = γ̃0 − μb. Since (γ , γ 0, u, v, û0, v̂0) is a feasible solution of
(4)–(8), the cut γ x ≥ γ 0 is valid for conv(P0 ∪ P1) and dominates γ̃ x ≥ γ̃0 w.r.t.
P from Lemma 4. Concerning the only if condition, assume γ̃ x ≥ γ̃0 to be strictly
dominated w.r.t. P by γ x ≥ γ 0, and let (γ , γ 0, u, v, u0, v0) be a feasible solution of
(4)–(8) yielding the dominating cut. Then, there exist μ ∈ R

m+ \ {0} and μ0 > 0 such
that γ̃ = μA + μ0γ , γ̃0 = μb + μ0γ 0. Hence (γ̃ , γ̃0, û, v̂, û0, v̂0) is a feasible solu-
tion of (4)–(8) yielding the dominated cut, where û = μ + μ0u, v̂ = μ + μ0v, û0 =
μ0u0, v̂0 = μ0v0 and S(û) ∩ S(v̂) �= ∅. �
Corollary 6 Let (γ, γ0, u, v, u0, v0) be an optimal solution of the CGLP with normal-
ization (11), yielding a cut violated by x∗ (i.e., γ x∗ −γ0 < 0). Then S(u)∩ S(v) = ∅.

Note that the above corollary holds even if the CGLP cone is truncated with a more
general normalization than (11), e.g., the one to be discussed in Sect. 5.

3.2 Strengthening

Theorem 5 above suggests a way to strengthen disjunctive cuts arising from weak
rays/vertices of the CGLP. Let us assume to be given a vertex (γ̃ , γ̃0, ũ, ṽ, ũ0, ṽ0) of
the CGLP associated with a valid disjunction (2) and truncated by any normalization,
e.g., (10) or (11). Consider the following LP:

max 1T μ (12)

γ̃ = (u + μ)A − u0π (13)

γ̃ = (v + μ)A + v0π (14)

γ̃0 = (u + μ)b − u0π0 (15)

γ̃0 = (v + μ)b + v0(π0 + 1) (16)

u, v, μ, u0, v0 ≥ 0, (17)

where (γ̃ , γ̃0) is fixed. Assuming conv(P0 ∪ P1) to be full dimensional, it is not dif-
ficult to see that the above LP is always bounded and the optimal solution value is
greater than 0 if and only if γ̃ x ≥ γ̃0 is strictly dominated w.r.t. P . Moreover, in this
case any optimal solution (u, v, u0, v0, μ) of (12)–(17) yields a valid cut γ x ≥ γ 0
for conv(P0 ∪ P1), computed as γ = u A − u0π = vA + v0π, γ 0 = ub − u0π0 =
vb + v0(π0 + 1), which strictly dominates γ̃ x ≥ γ̃0 w.r.t P . However, the LP (12)–
(17) involves three sets of Farkas multipliers and might be quite time consuming in
practice.
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A practical heuristic way to look for a dominating cut is based on the following Cut
Dominating LP (CDLP), using only two sets of Farkas multipliers:

(CDLP) max z =
∑

i∈S(̃v)

ui +
∑

i∈S(̃u)

vi (18)

γ̃ = u A − u0π (19)

γ̃ = vA + v0π (20)

γ̃0 = ub − u0π0 (21)

γ̃0 = vb + v0(π0 + 1) (22)

u, v, u0, v0 ≥ 0. (23)

Let us assume the above CDLP to be bounded and consider an optimal solution
(u∗, v∗, u∗

0, v
∗
0) of value z∗, yielding the same cut γ̃ x ≥ γ̃0 as (̃u, ṽ, ũ0, ṽ0). For

any α ∈ [0, 1], the convex combination of (u∗, v∗, u∗
0, v

∗
0) and (̃u, ṽ, ũ0, ṽ0)

û = αũ + (1 − α)u∗, v̂ = αṽ + (1 − α)v∗,
û0 = αũ + (1 − α)u∗

0, v̂0 = αṽ0 + (1 − α)v∗
0 ,

(24)

still yields cut γ̃ x ≥ γ̃0. However, in case z∗ > 0 we have S(û) ∩ S(v̂) �= ∅, i.e., we
have obtained the same cut from two sets of nondisjoint multipliers. Hence, a valid
disjunctive cut γ x ≥ γ 0 which dominates γ̃ x ≥ γ̃0 w.r.t. P can be computed through
Theorem 5 as:

μ = min{û, v̂}, u = û − μ, v = v̂ − μ,

u0 = û0, v0 = v̂0,

γ = u A − u0π, γ = vA + v0π,

γ 0 = ub − u0π0, γ 0,= vb + v0(π0 + 1).

(25)

Clearly, the dominance might be not strict if conv(P0 ∪ P1) is not full dimensional.

3.3 Empirical analysis

In order to understand how much we can improve on the disjunctive cuts obtained
by solving the CGLP with SNC, we performed the following experiment. For any
violated cut γ̃ x ≥ γ̃0 separated by solving the CGLP with SNC normalization (11),
we try to strengthen it by solving the corresponding CDLP (18)–(23). If z∗ > 0, then
we compute the new dominating cut γ x ≥ γ 0 by using (24), with α = 1/2, and (25),
and we replace the original cut γ̃ x ≥ γ̃0 by the dominating one. Otherwise, if either
z∗ = 0 or CDLP turns out to be unbounded, we keep the original cut γ̃ x ≥ γ̃0.

The computational results reported in Tables 3 and 4 compare the cuts obtained by
using the SNC normalization with those strengthened through the additional solution
of the CDLP. In order to get a better understanding of the impact of the strength-
ening, we first solved both CGLP and CDLP without the projection onto the support
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Table 3 SNC Normalization versus SNC Normalization + CDLP

Instance SNC normalization SNC normalization + CDLP

# cuts %gap Time # cuts # dom # unb %gap Time

bell3a 71 70.74 0.1 71 19 14 70.74 0.4

bell5 188 94.12 0.5 186 11 125 94.31 1.2

blend2 197 30.49 4.7 210 54 2 32.72 12.0

flugpl 93 18.34 0.1 91 26 0 18.36 0.1

gt2 218 94.13 1.2 200 141 1 94.49 2.8

lseu 171 42.46 0.5 191 68 4 42.51 0.7
∗markshare1 77 0.00 0.1 75 0 75 0.00 0.2

mod008 107 15.46 3.9 112 27 0 15.84 6.0

p0033 116 57.25 0.1 106 55 8 57.30 0.2

p0201 692 92.53 46.4 750 38 622 98.97 70.3

rout 349 29.46 80.5 351 159 142 30.93 118.1
∗stein27 251 0.00 0.6 248 21 0 0.00 1.3

vpm1 267 50.62 2.3 275 8 115 59.91 5.9

vpm2 390 74.73 7.5 397 84 130 75.71 14.5

avg. 238.250 55.861 12.317 245.000 57.649 19.350

No projection (and no Balas–Jeroslow strengthening)

Table 4 SNC normalization versus SNC normalization + CDLP

Instance SNC normalization SNC normalization + CDLP

# cuts %gap Time # cuts # dom # unb %gap Time

bell3a 71 70.74 0.1 69 11 23 70.74 0.2

bell5 172 96.16 0.3 179 38 63 96.16 0.7

blend2 215 33.45 0.7 225 77 30 33.66 5.1

flugpl 92 18.36 0.1 90 29 0 18.59 0.1

gt2 151 96.19 0.2 157 50 55 96.19 0.7

lseu 179 81.09 0.2 171 9 135 86.04 0.4
∗markshare1 80 0.00 0.0 80 3 46 0.00 0.1

mod008 100 31.46 0.1 98 46 9 36.33 0.2

p0033 104 70.98 0.1 113 14 71 75.85 0.2

p0201 669 100.00 10.9 674 1 663 100.00 17.0

rout 603 47.91 38.0 613 6 600 49.50 55.7
∗stein27 251 0.00 0.5 252 14 0 0.00 1.1

vpm1 298 57.88 1.2 255 25 23 58.97 2.1

vpm2 400 75.11 4.0 401 133 29 75.76 6.0

avg. 254.500 64.944 4.658 253.75 66.483 7.367

CGLP and CDLP solved projected onto the x∗ support. Balas–Jeroslow strengthening applied before and
after CDLP
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of x∗ (Table 3). Indeed, solving the problem on the complete model guarantees that the
strengthened cut dominates the original one – strict domination in the full dimensional
case. Since the computing time in the complete variable space is not negligible, we
also solved the problem in the projected space (Table 4). However, a domination on
the support might not correspond to a dominated cut once the cut is lifted outside the
support. In fact, a cut which is stronger in the support might be weaker overall. Hence,
to limit such a phenomenon, in the experiments in Table 4 we strengthen the cut by
the Balas-Jeroslow procedure [6] before defining and solving the CDLP. Of course,
both the original and the dominating cuts are also strengthened afterwards.

Tables 3 and 4 report the number of separated cuts, the percentage gap closed
(within ten rounds) and the computing time spent on separation (expressed in seconds
on an Intel Pentium M 1.86 GHz processor). In addition, for the strengthened version
of the cuts we also report how many times the CDLP returns z∗ > 0 (column ‘# dom’)
and the number of times in which CDLP was instead unbounded (column ‘# unb’).
Separation time of the strengthened version includes CGLP solution time.

Both Tables 3 and 4 show that the CDLP is indeed effective at changing the dis-
junctive cuts obtained using the SNC normalization. In general, the procedure is com-
putationally rather cheap and allows an improvement in the %gap closed which is
sometimes non-negligible.

Of course, the same CDLP can be constructed and solved to strengthen a disjunc-
tive cut obtained by using any normalization, e.g., the trivial one (10). Indeed, we
also tested it to strengthen classical GMIs. Due to the lack of space we do not report
full tables of results but the improvement in the %gap closed goes from 46.463% to
49.428% with an additional time of 4.250 CPU seconds on average. This improvement
is obtained with the same setting of Table 4 above, i.e., with both CGLP and CDLP
solved projected onto the x∗ support and Balas-Jeroslow strengthening applied before
and after CDLP solution.

4 Redundancy hurts

Loosely speaking, a redundant constraint for a polyhedron is a constraint whose
removal does not enlarge the polyhedron itself. By Farkas lemma, a constraint ai x ≥ bi

is said to be redundant for P = {x ∈ R
n : Ax ≥ b} if there exist δ ≥ 0 and λI ∈ R

m−1+
such that ai = λI AI and λI bI = bi + δ, where AI (resp., bI ) denotes the subma-
trix of A (resp., subvector of b) induced by the row index set I = {1, . . . , m}\{i}.
Redundancy is strict if δ > 0.

In the attempt to find a way to get rid of the “weak vertices” in the CGLP, we looked
for more combinatorial properties. A more careful analysis of Example 1 reveals a
more general property that allows one to classify as “bad” certain constraints. Indeed,
consider the role of constraint (a1) with respect to the left-branch polytope P0. This
constraint is clearly redundant for P0 (note that this is not the case if the original P is
considered). However, if constraint (a1) participates with a positive multiplier to the
definition of the disjunctive cut whereas constraint (a3) does not (i.e., if u1 > 0 and
u3 = 0), then the cut itself has to be valid for the point x1 = 0, x2 = 1/2 and cannot
be “pushed” any further inside P0. This is precisely what happens for the weak cuts
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(c3) and (c1), that cannot be supporting for P0 precisely because of the bad choice
u1 > 0.

The role of redundancy is formally stated as follows.

Proposition 7 If a constraint that is strictly redundant for P0 (resp. P1) is used in the
cut derivation with a nonzero multiplier, then the resulting disjunctive cut is nonsup-
porting in P0 (resp. P1).

Proof Let (γ̃ , γ̃0, ũ, ũ0, ṽ, ṽ0) be a feasible solution of the CGLP, with ũi > 0, and
assume that constraint i is strictly redundant for P0. Then there exists (λ, λ0, δ) ∈
R

m+1+ , with δ > 0 such that ai = λI AI − λ0π and bi = λI bI − λ0π0 − δ. By using
(4) and (6), we get

γ̃ = ũ I AI + ũi ai − ũ0π = (̃uI + ũiλI )AI − (̃u0 + ũiλ0)π

γ̃0 = ũ I bI + ũi bi − ũ0π0 = (̃uI + ũiλI )bI − (̃u0 + ũiλ0)π0 − ũiδ.

Thus, for each x ∈ P0 we have γ̃ x − γ̃0 = (̃uI + ũiλI )(AI x −bI )− (̃u0 + ũiλ0)(πx −
π0) + ũiδ ≥ ũiδ > 0, and this shows that cut γ̃ x ≥ γ̃0 is nonsupporting in P0. In the
same way it can be shown that if vh > 0 for a constraint h strictly redundant for P1,
then the cut γ̃ x ≥ γ̃0 does not support P1. �

By definition, a redundant constraint for P0 or P1 can be obtained as a conic com-
bination of other constraints. If the sum of the multipliers in the conic combination is
greater than 1, then using a redundant constraint is cheaper [with respect to normaliza-
tion (11)] than using the constraints that generate it, hence a redundant constraint can
in fact be preferred by the CGLP. This is formally proved by the following theorem
dealing with redundancy for P0 (the case dealing with P1 being perfectly analogous).

Theorem 8 Assume that constraint ai x ≥ bi is redundant for P0 as conic combina-
tion of AI x ≥ bI ,−πx ≥ −π0 with multipliers (λI , λ0) ∈ R

m+, and let (γ , γ 0, u, u0,

v, v0) be a feasible solution of the CGLP with normalization (11), such that γ x∗ < γ 0
and ui > 0. Then there exist θ > 0 and a feasible solution (γ̃ , γ̃0, ũ, ũ0, ṽ, ṽ0) of the
CGLP with normalization (11) such that ũi = 0, γ̃ := γ /θ, γ̃0 = γ 0/θ, γ x∗ − γ 0 =
θ(γ̃ x∗ − γ̃0), and θ > 1 if and only if 1λI + λ0 > 1.

Proof Since (γ , γ 0, u, u0, v, v0) is feasible for the CGLP with normalization (11),
writing ai x ≥ bi in terms of the multipliers (λI , λ0) one gets

γ = (uI + uiλI )AI − (u0 + uiλ0)π = vA + v0π

γ 0 = (uI + uiλI )bI − (u0 + uiλ0)π0 = vb + v0(π0 + 1)

while from the normalization condition 1u + 1v + u0 + v0 = 1 one obtains

θ := 1(uI + uiλI ) + (u0 + uiλ0) + 1v + v0,

which is then simplified as θ = 1 + ui (1λI + λ0 − 1).
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Since cut γ x ≥ γ 0 is violated, one must have u0 + v0 > 0, hence θ > 0 holds.
Therefore, one can define the nonnegative quantities ũ I := (uI + uiλI )/θ, ũi =
0, ũ0 := (u0 + uiλ0)/θ, ṽ = v/θ, ṽ0 = v0/θ, γ̃ := γ /θ, γ̃0 = γ 0/θ , thus getting a
feasible solution of the CGLP satisfying (11) and such that γ x∗ − γ 0 = θ(γ̃ x∗ − γ̃0).
Moreover, being ui > 0, one has θ > 1 if and only if 1λ + λ0 > 1. �

The above theorem shows that redundant constraints do not introduce new cuts, but
just scaled copies of already-existing cuts that may have a better objective function
(violation). Loosely speaking, redundant constraints can “trick” normalization (11),
in the sense that they can create vertices of the CGLP corresponding to scaled copies
of cuts that are strictly dominated but more attractive (i.e., with a better objective
function value) than the dominating ones.

A natural way to cope with redundancy is to just eliminate the redundant constraints
from the CGLP, or equivalently to fix their Farkas multipliers to zero. In Example 1, the
CGLP without redundant constraints has only 9 extreme rays and 9 vertices (instead
of 117), and only one of them corresponds to a violated constraint – namely, the facet-
defining cut (c2). At a first glance, this example seems to suggest that only strictly
redundant (i.e., nonsupporting) constraints should be avoided in the cut generation.
However, redundant constraints should be avoided even in case they are supporting,
as shown by the example below.

Example 2 For the simple ILP

min −x1 −2x2 +10x3
(a1) 4x1 −4x2 ≥ −2
(a2) −2x1 −2x2 −x3 ≥ −3
(a3) 3x1 −2x2 −x3 ≥ −1
(a4) x1 ≥ 0
(a5) x2 ≥ 0
(a6) x3 ≥ 0

only two cuts violated by the optimal solution of the LP relaxation x∗ = ( 1
2 , 1, 0) can

be derived from disjunction x1 ≤ 0 OR x1 ≥ 1, namely:

(c1) 2x2 ≤ 1, corresponding to the basic solution of the CGLP (u1, v2, v6, u0, v0),
of value z1 = − 2

13 (optimal);
(c2) 2x2 + x3 ≤ 1, corresponding to the basic solution of the CGLP (u3, v2, v6, u0,

v0), of value z2 = − 1
7 (nonoptimal).

Conv(P0 ∪ P1) has 6 vertices, namely V1 = (0, 0, 0), V2 = (0, 1
2 , 0), V3 = (0, 0, 1),

V4 = ( 3
2 , 0, 0), V5 = (1, 1

2 , 0), and V6 = (1, 0, 1). In the reverse polar space (γ, γ0),
the projected CGLP cone has only 5 extreme rays that correspond to the facets of
conv(P0 ∪ P1). In space (γ, γ0, u, v, u0, v0), instead, the CGLP cone has 33 extreme
rays that correspond to 33 vertices once normalization (11) is applied. In the optimal
basis, constraint (a1) (which is redundant but supporting for P0) is used with u1 > 0,
and the corresponding cut (c1) supports both P0 and P1 in V2 and V5, respectively, but
it is not facet-defining. The CGLP without redundant constraints (in particular without
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(a1)) has only 10 extreme rays and 10 vertices (instead of 33), and only one of them
corresponds to a violated constraint—namely, the facet-defining cut (c2). Note that
cut (c2) dominates cut (c1) and is facet-defining since it supports conv(P0 ∪ P1) in the
3 affinely independent vertices V2, V3, and V5. For illustration purposes, 3 extreme
rays r1–r3 and a nonextremal direction α of the CGLP cone are reported below.

γ1 γ2 γ3 γ0 u1 u2 u3 u4 u5 u6 v1 v2 v3 v4 v5 v6 u0 v0
(r1) 0 −2 −1 −1 0 0 1 0 0 0 0 1 0 0 0 0 3 2
(r2) 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
(α) 0 −2 0 −1 0 0 1 0 0 1 0 1 0 0 0 1 3 2
(r3) 0 −2 0 −1 1/2 0 0 0 0 0 0 1 0 0 0 1 2 2

The weak cut (c1) is strictly dominated w.r.t. P by (c2), as the vector α is just the
sum of the extreme rays r1 and r2, the latter corresponding to the original constraint
x3 ≥ 0. However, the redundant constraint (a1) creates an extremal copy of the weak
cut – the extreme ray r3 – which turns out to be the optimal vertex once normalization
(11) is applied. �

The previous discussion shows that extreme rays of the CGLP cone in the extended
space (γ, γ0, u, v, u0, v0) may be nonextremal when projected onto the (γ, γ0) space,
and redundant constraints can add to the cone several extreme-rays corresponding to
very weak cuts. The SNC normalization (11) simply maps extreme rays to vertices,
and creates a possibly “wrong” ranking among the vertices. Unfortunately, as far as we
know no normalization equation is able to truncate the CGLP cone so as to guarantee
that an optimal CGLP vertex in the extended space remains a vertex when projected
in the (γ, γ0) space. For instance, consider normalizations of the form

γ (q − x∗) = 1, (26)

which have been deeply investigated in Bonami [12]. Balas and Perregaard [7] proved
that, if q ∈ conv(P0 ∪ P1), then the CGLP truncated with (26) has a finite optimum
and that there exists an optimal vertex of the resulting polyhedron in the extended
space whose projection in the natural reverse polar space (γ, γ0) remains extremal.
However, this does not imply that any optimal vertex in the extended space is a vertex
in the projected space – hence even normalization (26) could not help in finding a
facet-defining cut.

Example 3 (Example 2 continued) Consider again the simple ILP discussed in Exam-
ple 2. If the corresponding CGLP cone is truncated with normalization (26), with
q = (0, 0, 0), the resulting polyhedron has 60 extreme rays and 20 vertices. As before,
only two vertices correspond to violated cuts, namely:

i) the basic solution (u1, v2, v6, u0, v0), of value z1 = − 1
2 (optimal), corresponding

to the weak cut (c1);
ii) the basic solution (u3, v2, v6, u0, v0), of value z2 = − 1

2 (optimal), corresponding
to the facet-defining cut (c2).

So, the separation procedure could select the weak cut (c1), since the choice of q
makes (c1) and (c2) completely equivalent in terms of objective function. �
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4.1 Empirical analysis

In a preliminary set of experiments we eliminated redundant constraints in a trivial
way (i.e., by solving LPs) before solving the CGLP. To get a clearer picture, we did not
project the separation problem onto the support of x∗ since such a projection makes
the definition of what is redundant and what is not less clear. In summary, the results
show that removing redundant constraints is indeed very useful. More precisely, we
report an average improvement in the percentage gap closed of around 2.5%, and only
for two problems, namely bell5 and gt2, the “Classical” SNC is slightly better than
the “No redundancy” SNC version, while for some single problems the improvement
is substantial, up to 13% for instance p0033.

However, a more meaningful experiment implies projecting the separation problem
onto the support of x∗ which has of course the advantage of dealing with a problem of
smaller size. On the other hand, according to our experience the projection can enlarge
the set of redundant constraints in a way that decreases the positive effects associated
with their removal. A possible explanation of this behavior is that projection may hide
the redundancy of some bound constraints, hence weakening the final disjunctive cut.
Indeed, consider a variable xk restricted to being nonnegative and such that x∗

k = 0.
If xk is projected away with the aim of computing coefficient γk afterwards through
(9), then we lose any control on the Farkas variables associated with the constraint
xk ≥ 0, say ui(k) and vi(k). In fact, if it happens that constraint xk ≥ 0 is redundant, it
is very useful to keep explicitly constraints γk = u Ak − u0πk = vAk + v0πk in the
CGLP and to impose the additional requirement ui(k) = 0 and/or vi(k) = 0.

As the above property seems to be crucial for the variable bounds, we defined an
extended support of x∗ by avoiding projecting away any variable whose bound condi-
tion is (tight in x∗ and) redundant. The results when using the support and the extended
support are given in Table 5.

The table reports the same figures as Table 1, plus a column which indicates the
average percentage of the x variables which are kept in the (extended) support (column
‘% supp’). The first part of the table shows that the gain due to the redundancy removal
is lost if the CGLP is projected onto the x∗ support (the average gap closed of 56.873%
deteriorates to 54.269%), thus confirming our intuition about the smaller precision of
the redundancy test in such a case. However, the situation is totally recovered using the
extended support, as shown in the second part of the table. Indeed, the percentage value
56.873 improves to 58.793, and the average size of the support does not increase much
(from 50.268 to 53.529%). The only large increase in the size of the CGLP arises for
problem rout, which is in fact a very instructive case: the “Classical” SNC closed
24.26% of the gap, the “No redundancy” SNC version on the support closes only
6.56%, while in the extended support the situation is totally recovered (and improved)
with 30.88% gap closed. For such a particular instance the extended support size is
substantially different from the support size, namely 69.46% with respect to 42.19%.
Our interpretation is the following: in order to forbid the use of some variable bounds
in the derivation of the cut we have to enlarge the support considerably (half of the
projected variables are re-inserted) with the overall effect of generating much stronger
cuts.
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Table 5 “Classical” SNC versus “No redundancy” SNC with cuts separated projected on the support

Instance “Classical” SNC “No redundancy” support

# cuts %gap %supp |S| # cuts %gap %supp |S|
bell3a 71 70.74 69.25 43.72 88 70.74 69.32 44.82

bell5 178 94.29 72.69 11.75 207 94.62 72.88 13.32

blend2 192 30.51 53.06 8.10 200 30.99 53.54 10.84

flugpl 92 18.36 86.11 5.85 93 18.94 86.11 5.89

gt2 196 93.46 18.30 10.28 191 94.13 18.14 10.58

lseu 196 41.33 29.44 9.17 191 40.16 27.08 12.28
∗markshare1 74 0.00 11.94 1.39 130 0.00 13.39 2.56

mod008 139 17.05 4.51 12.41 136 17.70 4.42 12.17

p0033 113 67.86 55.76 4.81 106 70.32 55.76 5.74

p0201 767 93.82 45.02 13.43 873 81.59 43.43 25.83

rout 434 24.26 42.19 68.07 355 6.56 38.11 58.23
∗stein27 252 0.00 93.70 6.53 252 0.00 93.70 6.68

vpm1 263 55.84 62.14 5.39 275 50.18 62.25 6.30

vpm2 403 74.96 64.74 17.27 377 75.30 65.08 18.10

avg. 253.667 56.873 50.268 17.521 257.667 54.269 49.677 18.675

Instance “Classical” SNC “No redundancy” ext. support

# cuts %gap %supp |S| # cuts %gap %supp |S|
bell3a 71 70.74 69.25 43.72 54 70.74 65.61 44.60

bell5 178 94.29 72.69 11.75 180 94.29 71.64 11.99

blend2 192 30.51 53.06 8.10 193 30.53 53.99 8.34

flugpl 92 18.36 86.11 5.85 93 18.86 86.29 5.95

gt2 196 93.46 18.30 10.28 187 93.88 20.00 13.10

lseu 196 41.33 29.44 9.17 178 43.45 29.41 9.08
∗markshare1 74 0.00 11.94 1.39 77 0.00 12.59 1.69

mod008 139 17.05 4.51 12.41 157 19.13 5.85 14.43

p0033 113 67.86 55.76 4.81 146 70.29 58.84 5.89

p0201 767 93.82 45.02 13.43 769 100.00 48.93 13.39

rout 434 24.26 42.19 68.07 353 30.88 69.46 140.29
∗stein27 252 0.00 93.70 6.53 251 0.00 93.61 7.13

vpm1 263 55.84 62.14 5.39 259 57.63 65.18 6.60

vpm2 403 74.96 64.74 17.27 373 75.84 67.15 17.71

avg. 253.667 56.873 50.268 17.521 245.167 58.793 53.529 24.281

5 An effective (and fast) normalization for set covering

As shown in the previous sections, the standard normalization has the main advantage
of generating low-rank inequalities, which is in general a desirable property. As a mat-
ter of fact, it has been recently showed that rank-1 inequalities on general disjunctions
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are able to close a large portion of the integrality gap (see, e.g., Fischetti and Lodi
[18], Balas and Saxena [9], Dash, Günlük and Lodi [17]). When normalization (11)
is applied, the norm of the separated cuts tends to be smaller with respect to the con-
straints used for their generation, and small-norm constraints are implicitly penalized
by the normalization itself. Thus, high-rank constraints are selected in the cut deriva-
tion only if needed, hence generating weak cuts does not hurt the overall separation
procedure in that these cuts are less likely to be used in the next iterations. However,
as stated in Sect. 4, the standard normalization creates a ranking among the CGLP
vertices which depends on the scaling of the constraints, i.e., the overall separation
procedure is heavily affected by the scaling of the constraints in the original formu-
lation. To overcome the latter drawback, one can replace the standard normalization
with the following Euclidean Normalization (EN):

m∑

i=1

‖ai‖ui +
m∑

i=1

‖ai‖vi + ‖π‖u0 + ‖π‖v0 = 1, (27)

where ‖t‖ denotes the Euclidean norm of vector t .

Lemma 9 Let Ãx ≥ b̃ be a scaled copy of system Ax ≥ b where, for all i ∈
{1, . . . , m}, ãi := ai/Ki and b̃i := bi/Ki , with Ki > 0. For any solution of the
CGLP with normalization (27) corresponding to a cut γ x ≥ γ0, there exists a solu-
tion of the CGLP associated with the system Ãx ≥ b̃, still with normalization (27),
corresponding to the same cut.

Proof Let (γ, γ0, u, v, u0, v0) be a solution of the CGLP with (27), and for all i ∈
{1, . . . , m} define ũi = Ki ui and ṽi = Kivi . From (4), we obtain

γ = u A − u0π =
m∑

i=1

ui ai − u0π =
m∑

i=1

(Ki ui )(ai/Ki ) − u0π = ũ Ã − u0π.

Analogously, from (5) we get γ = ṽ Ã + v0π and from (6)–(7) we have γ0 = ũb̃ −
u0π0 = ṽb̃+v0(π0 +1). Hence (γ, γ0, ũ, ṽ, u0, v0) is a feasible solution of the CGLP
associated with system Ãx ≥ b̃ yielding the same cut as (γ, γ0, u, v, u0, v0). Since
‖̃ai‖ũi +‖̃ai ‖̃vi = ‖ai‖ui +‖ai‖vi ∀ i ∈ {1, . . . , m}, then (γ, γ0, ũ, ṽ, u0, v0) fulfills
normalization (27) as well. �
The above lemma shows that the CGLP with Euclidean normalization is not affected
by scaling issues. Moreover, the CGLP with (27) is the same as the CGLP with the
standard normalization for a system Ãx ≥ b̃ where all the constraints have been
scaled in order to have Euclidean norm equal to 1 (i.e., ‖̃ai‖ = 1 ∀ i ∈ {1, . . . , m}).
By replacing normalization (11) with (27) we are losing the implicit penalization of
high-rank inequalities hidden in the standard normalization. However, the Euclidean
normalization associates penalties with the Farkas multipliers which are in some way
related to the structure of the corresponding constraints instead of being all equal to 1
without any distinction.
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Unfortunately, normalization (27) is not likely to work well in all cases. For exam-
ple, consider a constraint ai x ≥ bi having both positive and negative coefficients, say
ai j > 0 and aik < 0, and assume the nonnegative variables x j and xk are nonbasic
(cut coefficients γ j and γk do not affect violation). The effect of the Farkas multipliers
ui and vi on the strength of the cut coefficients γ j and γk is not univocal: a large value
of the Farkas multipliers ui or vi would lead to a weak (resp. strong) cut coefficient γ j

(resp. γk). Hence, associating a penalty ||ai || with constraint ai in the normalization
might not be the right choice.

On the other hand, for constraints with nonnegative coefficients only, the Euclidean
norm of a constraint is likely to give a reliable measure on how bad it is to use its
associated Farkas multipliers ui and vi . In particular, the Euclidean Normalization
seems to be particularly suited for Set Covering problems. Indeed, set covering con-
straints have nonnegative coefficients only, and this property is known to be inherited
by nontrivial valid inequalities, including the disjunctive cuts we can separate through
our procedure. This implies that weighing a constraint by means of its norm has a
more direct impact on the cut density, and gives a sensible indication for nonbasic
variables.

Finally, note that it is not necessary to solve the CGLP in the lifted space to use
normalization EN. This has been recently shown by Balas and Bonami [4], who imple-
mented our normalization on the original tableau by adapting the approach of Balas
and Perregaard [8], thus proving that EN might be used within a fast implementation.

We performed a set of computational experiments on a test-bed of Set Covering
instances taken from the OR–Library [10], and the results are reported in Table 6. The
improvement in the percentage gap closed by EN w.r.t. SNC is quite substantial as it
ranged from 2.38% to 4.19%, with an average of 3.12%.

Figures 10 and 11 describe the behavior of the two normalizations on the particular
instance scpnre5.

Table 6 SNC normalization versus Euclidean normalization on SCP instances

Instance SNC normalization Euclidean normalization

# cuts %gap |S| # cuts %gap |S|
scpnre1 904 13.67 89.22 951 17.35 93.62

scpnre2 963 9.38 95.42 997 12.51 98.14

scpnre3 923 15.14 91.41 944 18.13 92.82

scpnre4 878 13.25 85.99 897 15.70 87.82

scpnre5 889 16.84 87.77 935 21.03 91.16

scpnrf1 678 10.23 67.75 682 12.62 67.77

scpnrf2 655 9.62 65.42 689 12.90 68.50

scpnrf3 586 12.08 58.34 617 15.58 60.93

scpnrf4 664 10.21 66.35 692 12.59 68.91

scpnrf5 661 8.63 66.05 700 11.85 69.70

avg. 780.100 11.905 77.372 810.400 15.026 79.937
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Fig. 10 SNC versus Euclidean normalization: average cut density for instance scpnre5
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Fig. 11 SNC versus Euclidean normalization: cut rank for instance scpnre5

One can observe that the considerably higher rank of the cuts generated using the
Euclidean normalization with respect to those obtained through SNC (see Fig. 11) does
not correspond at all to denser cuts. Indeed, the former cuts are consistently sparser
than the latter (Fig. 10). (Cuts generated using SNC are fully dense: the number of
variables of the instance is 5,000 and the number of nonzero coefficients is almost
always close to 5,000 too.)

Natural questions concern the effectiveness of the Euclidean Normalization (27)
on the MIPLIB instances [11] used in the previous sections and, in addition, what
happens when redundant constraints are removed. Due to the lack of space, we do not
report the associated tables but the results show an overall (minor) improvement of
the % gap closed with respect to SNC from 56.873 to 57.063%. Such an improvement
becomes slightly larger once the redundant constraints are removed, namely from
58.793 to 60.014%. These results refer to the separation performed by projecting the
CGLP onto the support (or the extended support in the case the redundant constraints
are removed) of x∗.
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