
Math. Program., Ser. A (2011) 130:1–32
DOI 10.1007/s10107-009-0299-0

FULL LENGTH PAPER

New geometry-inspired relaxations and algorithms
for the metric Steiner tree problem

Deeparnab Chakrabarty · Nikhil R. Devanur ·
Vijay V. Vazirani

Received: 7 May 2008 / Accepted: 13 July 2009 / Published online: 15 August 2009
© Springer and Mathematical Programming Society 2009

Abstract Determining the integrality gap of the bidirected cut relaxation for the
metric Steiner tree problem, and exploiting it algorithmically, is a long-standing open
problem. We use geometry to define an LP whose dual is equivalent to this relaxation.
This opens up the possibility of using the primal-dual schema in a geometric setting
for designing an algorithm for this problem. Using this approach, we obtain a 4/3
factor algorithm and integrality gap bound for the case of quasi-bipartite graphs; the
previous best integrality gap upper bound being 3/2 (Rajagopalan and Vazirani in On
the bidirected cut relaxation for the metric Steiner tree problem, 1999). We also obtain
a factor

√
2 strongly polynomial algorithm for this class of graphs. A key difficulty

experienced by researchers in working with the bidirected cut relaxation was that any
reasonable dual growth procedure produces extremely unwieldy dual solutions. A new
algorithmic idea helps finesse this difficulty—that of reducing the cost of certain edges
and constructing the dual in this altered instance—and this idea can be extracted into
a new technique for running the primal-dual schema in the setting of approximation
algorithms.

Work supported by NSF Grant CCF-0728640. Preliminary version of this work appeared in the Thirteenth
Conference on Integer Programming and Combinatorial Optimization (IPCO), May 26–28, 2008.

D. Chakrabarty (B)
Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada
e-mail: deepc@math.uwaterloo.ca

N. R. Devanur
Microsoft Research, Redmond, USA
e-mail: ndevanur@gmail.com

V. V. Vazirani
College of Computing, Georgia Tech, Atlanta, USA
e-mail: vazirani@cc.gatech.edu

123

2 D. Chakrabarty et al.

Mathematics Subject Classification (2000) 90C05 · 05C85

1 Introduction

Some of the major open problems left in approximation algorithms are centered around
LP-relaxations which researchers believe have not been fully exploited algorithmically,
i.e., the best known algorithmic result does not match the best known lower bound
on their integrality gaps. One of them is the bidirected cut relaxation for the metric
Steiner tree problem [9] and this is the main focus of our paper.

The integrality gap of the bidirected cut relaxation is believed to be very close to
1; the best lower bound known on the gap is 8/7, due to Goemans [11] and Skutella
[17]. On the other hand, the known upper bound is the same as the weaker undirected
cut relaxation which is 2 by a straightforward 2-factor algorithm for it. The only algo-
rithmic results using the bidirected relaxation that we are aware of are: a 6/5 factor
algorithm for the class of graphs containing at most 3 required vertices [11] and a
factor 3/2 algorithm for the class of quasi-bipartite graphs, i.e., graphs that do not
have edges connecting pairs of Steiner vertices [19].

In this paper, we use geometry to develop a new way of lower bounding the cost
of the optimal Steiner tree. The best such lower bound can be captured via an LP,
which we call the simplex-embedding LP. A short description of this LP is that it
is an �1-embedding of the given metric on a simplex, maximizing a linear objective
function. Interestingly enough, the dual of the simplex-embedding LP is a relaxation
of the metric Steiner tree problem having the same integrality gap as the bidirected
cut relaxation.

We believe our geometric approach would open up new ways to use the primal-dual
schema for the bidirected cut relaxation. In this paper we exhibit progress made for the
class of quasi-bipartite graphs – graphs in which the set of Steiner vertices are stable.
In particular, we describe one dual growing procedure (the Embed algorithm in Sect.
4) which helps us prove the following property about the bidirected cut relaxation in
quasi-bipartite graphs: If the minimum spanning tree is the optimum Steiner tree, then
the LP relaxation is exact (Theorem 4.1). Based on a modification of this algorithm, in
Sect. 5 we design a primal-dual 3/2-approximate algorithm for quasi-bipartite graphs
matching the previous known bounds by [18,19]. However, our algorithms runs in
nearly linear time while the previous algorithms were weakly polynomial.

A second key feature of our paper is the new algorithmic idea of reduced costs. We
show that modifying the problem instance by reducing costs of certain edges and then
running the primal-dual schema allows us to obtain provably better upper bounds on
the integrality gap of the relaxation for quasi-bipartite graphs. We use this idea first to
get a simple and fast algorithm which proves an upper bound of

√
2 on the integrality

gap for quasi-bipartite graphs. Using another way of reducing costs, we improve the
upper bound to 4/3. This algorithm (similar to the algorithm in [18,19]) doesn’t run in
strongly polynomial time, unlike the

√
2 algorithm. We believe each of our algorithms

demonstrates geometric and algorithmic ideas which could be insightful for studying
the bidirected cut relaxation in general graphs.

We also give a second geometric LP in which Steiner vertices are not constrained
to be on the simplex but are allowed to be embedded “above” the simplex. Again, the

123

New geometry-inspired relaxations and algorithms 3

dual of this LP is a relaxation of the metric Steiner tree problem. We show that on any
instance, the integrality gap of this latter LP is at most that of the bidirected relaxation.
It turns out that this LP is in fact exact for Goemans’ 8/7 example. However, there
are examples for which the gap is 8/7 even for this relaxation. Could it be that this
relaxation has a strictly smaller integrality gap than the bidirected cut relaxation?

1.1 Related work

Historically, the idea of using an extra vertex to get a shorter tree connecting three
points on the plane goes back to Torricelli and Fermat in the seventeenth century. The
Euclidean Steiner tree problem, in its full generality, was first defined by Gauss in
a letter to his student, Schumacher. This problem was made popular by the book of
Courant and Robbins [8], who attributed it to the nineteenth century geometer, Steiner.
The rich combinatorial structure of this problem was explored by many researchers;
e.g., see the books by Hwang et al. [13] and Ivanov and Tuzhilin [14].

The use of the bidirected cut relaxation for the Steiner tree problem goes back to
Edmonds [9] who showed the relaxation is exact for the the case of spanning trees.
Wong [22] used this relaxation to study the Steiner arborescence problem, and Chopra
and Rao [6,7] studied the properties of facets of the polytope defined by the relaxa-
tion. Goemans and Myung [10] study various undirected equivalent relaxations to the
bidirected cut relaxation.

The bidirected cut relaxation has interesting structural properties which have been
exploited in diverse settings. Let α denote the integrality gap of this relaxation. Jain and
Vazirani [15] use this LP for giving a factor 2 budget-balanced group-strategy-proof
cost-sharing method for the Steiner tree game; Agarwal and Charikar [1] prove that
for the problem of multi-casting in undirected networks, the coding gain achievable
using network coding is precisely equal to α. The latter result holds when restricted to
quasi-bipartite networks as well. Consequently, for these networks, the previous best
bound was 3/2 [19], and our result improves it to 4/3.

The best approximation algorithms for the Steiner tree problem is due to Robins
and Zelikovsky [20]. The authors prove a guarantee of 1.55 for general graphs and
also show that when restricted to the quasi-bipartite case, the ratio is 1.28. However,
it is not clear if these results would imply an upper bound on the integrality gap of
the bidirected cut relaxation. Very recently, Konemann et al. [17] introduced another
LP relaxation for the minimum Steiner tree problem which they show is as tight as
the bidirected cut relaxation, and showed that the algorithm of Robins and Zelikovsky
can be interpreted as a primal-dual algorithm on their LP. However, even their inter-
pretation does not prove any upper bound on the integrality gap of their relaxation
as they also compare with the optimum Steiner tree and not the optimum LP solu-
tion. Nevertheless, they show upper bounds for their relaxation for a larger class of
graphs called b-quasi-bipartite graphs.1 We stress that their LP seems quite different
from ours – while we have variables for edges of the tree, they maintain variables and

1 A graph is b-quasi-bipartite if on deleting all required vertices, the largest size of any component is at
most b.

123

4 D. Chakrabarty et al.

constraints for special sub-trees called full components much in the spirit of [20]. It is
an interesting question to study the relationship between their LP and ours.

2 Preliminaries

Let G = (V, E) be an undirected graph with edge costs c : E → Q+. Let R ⊆ V
denote the set of required vertices. These are also called terminals and we use both
terms interchangeably. The vertices in S = V \ R are called Steiner vertices. The
Steiner tree problem is to find the minimum cost tree connecting all the required ver-
tices and some subset of Steiner vertices. The edge costs can be extended to all pairs
of vertices such that they satisfy triangle inequality (simply define the cost of (u, v) to
be the cost of the shortest path from u to v). This version is called the metric Steiner
tree problem. The two versions are equivalent.

We abuse notation and denote both the optimum Steiner tree and its cost as O PT .
Also, given a set of vertices X , we denote the minimum spanning tree on X and its
cost as M ST (X; c) or simply as M ST (X) when c is clear from the context.

Let U := {U � V : U ∩ R �= ∅ and U ∩ R �= R} denote the subsets of V which
contain at least one required vertex but not all. Let δ(U) denote the edges with exactly
one end point in U . Note that any Steiner tree would use at least one edge in δ(U).
This motivates the following undirected cut relaxation of the Steiner tree problem:

min

{∑
e∈E

c(e)xe : x(δ(U)) ≥ 1, ∀U ∈ U; x ≥ 0

}

The MST on R is known (see for instance [12]) to be within factor 2 of the fractional
optimum of this LP, so this relaxation has an integrality gap of at most 2. However
the integrality gap can be arbitrarily close to 2 even when the set of Steiner vertices
is empty. The example is that of an n-cycle with each edge having cost 1 where all
vertices are required. The optimal Steiner (spanning in this case) has value n−1 while
the solution giving xe = 1/2 on all edges is a valid solution of cost n/2.

2.1 The bidirected cut relaxation

Edmonds [9] introduced the following stronger relaxation called the bidirected cut
relaxation.2 Fix an arbitrary required vertex r as root. Now replace each undirected
edge (u, v) with two directed arcs [u, v] and [v, u], each of cost c(u, v) (hence the
name: bidirected). We will use square brackets to denote arcs and parantheses for
undirected edges. Call the set of arcs
E . Call a subset U valid if it contains the root
but not all the required vertices. Let U := {U � V : U ∩ R �= R and r ∈ U } denote
the family of valid sets. The observation now is that if the edges of any Steiner tree are
directed to point away from the root, then at least one arc in this directed arborescence

2 Actually, Edmonds was concerned only with the spanning tree problem, however the generalization to
the Steiner tree problem is natural.

123

New geometry-inspired relaxations and algorithms 5

must be in the cut set δ+(U) of arcs going out of U . This gives the bidirected cut
relaxation for the minimum Steiner tree problem.

min

⎧⎨
⎩

∑
[u,v]∈
E

c([u, v])x[u,v] : x
(
δ+(U)

) ≥ 1, ∀U ∈ U; x ≥ 0

⎫⎬
⎭ (BCR)

The above description of the LP seems to be dependent on the choice of the root r .
However, it is known (see for instance [10]) that the choice of the root doesn’t affect
the value of the LP. We denote the optimum of the above LP on a graph G as BC R(G).

Observe that the bidirected cut relaxation is stronger than the undirected cut relax-
ation. To see this note that any solution to LP(BCR) corresponds to a solution to the
undirected cut relaxation: for every undirected edge add the variables on its two corre-
sponding arcs. Edmonds [9] showed that the bidirected cut relaxation is exact for the
MST problem, i.e., the integrality gap of the relaxation is 1 for spanning tree instances.
In fact, in Sect. 4 we will prove a stronger statement—we will show the integrality
gap is 1 in quasi-bipartite graphs where the spanning tree is the optimal Steiner tree.

For Steiner trees however, no upper bound better than 2 (which is implied by the
undirected cut relaxation) is known on the integrality gap of LP(BCR). Nevertheless, it
is believed to be strictly better. Goemans [11] showed an example where the gap is 8/7,
which is the largest known lower bound on the integrality gap. The only algorithmic
results using the bidirected relaxation that we are aware of prior to our work are: a 6/5
factor algorithm for the class of graphs containing at most 3 required vertices [11] and
a factor 3/2 algorithm by Rajagopalan and Vazirani [19] for the class of quasi-bipartite
graphs, i.e., graphs that do not have edges connecting pairs of Steiner vertices.

A graph is called quasi-bipartite if there are no edges between any two Steiner ver-
tices.3 The class of quasi-bipartite graphs is a non-trivial class for the bidirected cut
relaxation. In fact, recently Skutella (as reported by Konemann et.al. [17]) exhibited a
quasi-bipartite graph on 15 vertices for which the integrality gap of the bidirected cut
relaxation is 8/7. Moreover, the best known hardness results for the Steiner tree prob-
lem in this class of graphs is quite close to that known in general graphs (128

127 vs. 96
95) [4].

The bidirected cut relaxation has interesting structural properties which have been
exploited in diverse settings. Jain and Vazirani [15] use this LP for giving a factor 2
budget-balanced group-strategy-proof cost-sharing method for the Steiner tree game.
Let α denote the integrality gap of this relaxation. Agarwal and Charikar [1] prove that
for the problem of multi-casting in undirected networks, the coding gain achievable
using network coding is precisely equal to α. The latter result holds when restricted to
quasi-bipartite networks as well. Consequently, for these networks, the previous best
bound was 3/2 [19], and our result improves it to 4/3.
Organization: In Sect. 3 we show the geometric theorem giving the lower bound,
and other results relevant to it. In Sect. 4, we demonstrate a dual-growing embedding
procedure for quasi-bipartite graphs. In Sects. 5, 6 and 7 we give our 3/2,

√
2 and 4

3
factor primal-dual approximation algorithms respectively.

3 In the original graph G and not in its metric completion.

123

6 D. Chakrabarty et al.

3 A geometric lower bound and its consequences

We first present a special case of the geometric theorem, for the sake of ease of presen-
tation. Let �k be the unit simplex in Rk+, that is, �k := {x ∈ Rk+ :

∑
i∈[k] x(i) = 1},

where x(i) is the i th coordinate of x . The corners of �k are the unit vectors in Rk+
and we denote the set of k points as R. Let T be a tree whose vertices are R and a
finite set S of points from �k which are not the corners. For any vertex v ∈ R ∪ S
of T , let degT (v) denote the degree of the vertex in the tree T . Define the distance
between two points to be half the �1-distance, also called the variational distance;
for any two points x, y ∈ �k , d(x, y) := 1

2

∑k
i=1 |x(i) − y(i)|. (The half is so that

two corners are at a distance of 1). For any edge e = (x, y), let d(e) := d(x, y). Let
d(T) :=∑

e∈T d(e). Then

Theorem 3.1 d(T) ≥ k − 1.

Note that if the set S were empty, that is T was simply a spanning tree of R, then the
above relation holds with equality since any two corners are at a distance of 1. One way
to interpret the above theorem is that Steiner points from the simplex don’t improve
upon the MST with respect to the variational distance of the corners of the simplex.
This we believe is somewhat counter-intuitive, since in most geometric spaces, the
Steiner points do improve upon the MST. What is special here is the �1-distance, and
the location of the required vertices (they are the corners) on the simplex.

Proof Let R = {e1, e2, . . . , ek} be the unit vectors in Rk . The proof follows by a
counting argument. For every edge (x, y) in T , and i ∈ [k], note that either x is on
the unique path from y to ei in T or y is on the unique path from x to ei . In the first
case we say x is nearer to ei than y. If x is nearer to ei than y, then we lower bound
|x(i)− y(i)| by x(i)− y(i), otherwise we lower bound by y(i)− x(i). Thus,

d(T) = 1

2

∑
(x,y)∈E

∑
i∈[k]
|x(i)− y(i)| ≥ 1

2

∑
(x,y)∈E

∑
i∈[k]

sgni (x, y) · (x(i)− y(i)),

where sgni (x, y) is 1 if x is nearer to ei than y in T , and −1 otherwise.
Note that in the summation, the coefficient of x(i) gets a contribution +1 for all

of its neighbors in T except possibly the unique neighbor on the path from x to ei ,
from which it gets a contribution of −1. (We say possibly because if x were ei itself,
then there is no neighbor on the path from x to ei). Thus, the coefficient of x(i) is
1
2 (degT (x)− 2) if x �= ei and 1

2 (degT (x)) if x = ei .
Therefore,

d(T) ≥ 1

2

∑
x∈T,i∈[k]

(degT (x)− 2) x(i)+ 1

2

∑
i∈[k]

2ei (i)

= 1

2

∑
x∈T

(degT (x)− 2)+
∑
i∈[k]

1

= k − 1.

123

New geometry-inspired relaxations and algorithms 7

where the equality in the second line holds because
∑

i∈[k] x(i) = 1 and the last
equality follows from the fact that in a tree

∑
x∈T degT (x) = 2|V (T)| − 2. �

The general theorem allows two concessions on the location of the points: first, the
points need not be on the unit simplex but rather on a λ-simplex; second, the set R
need not be the corners of the λ-simplex.

The λ-simplex in k dimensions denoted as �
(λ)
k is defined as the set of points in

Rk+ whose coordinates sum up to λ, for some parameter λ > 0. That is, �
(λ)
k := {x ∈

Rk :∑i∈[k] x(i) = λ}. Let R = {z1, z2, . . . , zk} be a (ordered) set of k points in �
(λ)
k .

Define γ (R) := (
∑

i∈[k] zi (i)−λ). Let T be any tree whose vertices are R and a finite

set S of other points in �
(λ)
k . Let d() be the variational distance defined above. Then,

Theorem 3.2 d(T) ≥ γ (R).

Note that when R is the set of corners of a unit simplex, the above implies
Theorem 3.1.

Proof Let R′ := {e1, . . . , ek} be the corners of the λ-simplex. From T , construct the
tree T ′ with vertices v(T ′) = V (T) ∪ R′ and edges E(T ′) = E(T) ∪ {(ei , zi) : i =
1 . . . k}.

Note that the distance between zi and ei is d(ei , zi) = λ − zi (i). By scaling.
Theorem 3.1 can be easily modified to give d(T ′) ≥ (k − 1) · λ. Thus,

d(T) = d(T ′)−
∑
i∈[k]

(λ− zi (i)) ≥ (k − 1) · λ−
∑
i∈[k]

(λ− zi (i)) = γ (R)

�

3.1 A lower bound on O PT

Theorem 3.2 can be used to get a lower bound on the minimum Steiner tree of any
graph G = (R∪ S, E). Given G, suppose |R| = k and R = [k]. Embed the vertices of
the graph onto the λ-simplex in k dimensions using z : V → �

(λ)
k . Call an embedding

z valid if for all edges (u, v) ∈ E , c(u, v) ≥ d(zu, zv). Henceforth, we will abuse
notation and d(u, v) to denote d(zu, zv) and d(T) to denote

∑
(u,v)∈E(T) d(zu, zv).

Let z(R) := {z1, . . . , zk} be the embedding of the vertices in R. Henceforth, we will
use γ (z) to denote γ (z(R)).

Now given any valid embedding z, Theorem 3.2 gives a lower bound on the cost
of any Steiner tree T of G since c(T) ≥ d(T) ≥ γ (z). In particular we have the
following minimax inequality lower bounding the optimum Steiner tree.

O PT ≥ max{γ (z) : z is a valid embedding }.

123

8 D. Chakrabarty et al.

The above maximum can be obtained by solving the following linear program
which we call the simplex-embedding LP.

max

⎧⎨
⎩γ (z) =

∑
i∈[k]

zi (i)− λ : (SimpEmb)

∑
i∈k

zv(i) = λ, ∀v ∈ V ;

zv(i)− zu(i) ≤ di (u, v) ∀i ∈ [k], (u, v) ∈ E;
zu(i)− zv(i) ≤ di (u, v), ∀i ∈ [k], (uv) ∈ E;
1

2

∑
i∈[k]

di (u, v) ≤ c(u, v), ∀(u, v) ∈ E;

zv(i), di (u, v) ≥ 0, ∀v ∈ V, i ∈ [k], (u, v) ∈ E

⎫⎬
⎭

Given input graph G, let SE(G) denote the maximum of the above LP. The above
discussion implies the following theorem.

Theorem 3.3 Given any graph G, O PT ≥ SE(G).

Remark 1 We should remark that the idea of embedding vertices of a graph onto a
simplex to get a relaxation is not new. Calinescu et al. [2] use a similar LP relaxation
for the multiway cut problem. In the multiway cut problem we are given a graph G
and a set of terminals R with costs on edges and the goal is to find a minimum cost set
of edges whose removal separates each pair of terminals. If |R| = k then an equivalent
formulation would be to embed the vertices onto the corners of a k-dimensional unit
simplex so that the total weighted (weighted by costs of edges) distance (half �1 dis-
tance) between endpoints of edges is minimized. The relaxation is obtained by letting
the points embed anywhere on the simplex. Calinescu et al. [2] obtain a 3/2 − 1/k
factor approximation algorithm for the problem which was improved to 1.3438−o(k)

by Karger et al. [16].

On the face of it the [2] relaxation seems similar to the one described above. How-
ever there are key differences. Firstly, the relaxation of [2] is a primal LP relaxation
while ours is a dual relaxation. Moreover, in the [2] relaxation the terminals always
embed to the corners of the simplex; we need to be able to embed the terminals away
from the corners. Arguably, with the idea of vertices being embedded to simplex
being given, theirs seems to be a natural relaxation while ours crucially depends on
Theorem 3.2 which we believe is non-trivial. Nevertheless, there could be a duality
between the two LP relaxations, however it is not clear how one would try to achieve
it. We also mention that [3] prove that the [2] relaxation is strictly stronger than the
bidirected relaxation for the multiway cut, while in the next section we show that the
above relaxation is equivalent to the bidirected cut relaxation for Steiner trees.

We end this remark by stating that the special case of Theorem 3.3 where only one
Steiner vertex is allowed in the tree was essentially proved by [2]. We point out that

123

New geometry-inspired relaxations and algorithms 9

this follows simply from by writing out the expression for the half �1 distance for the k
terminals and the single Steiner point and generalizing to more than one Steiner point
needs the counting argument.

3.2 Connections to the bidirected cut relaxation

We now show that for any graph G and cost vectors c, the optimum of the simplex
embedding LP equals the optimum of the bidirected cut LP described in Sect. 2. The
proof uses the following dual of the simplex-embedding LP. We have a variable xuv for
every edge (u, v), variables fi ([u, v]) and fi ([v, u]) for each i ∈ [k] and (u, v) ∈ E ;
and variable αv for every vertex v. Apart from the free αv’s, every other variable is
non-negative. Below, we multiply each of the constraints and the objective value by
2.

SE(G) = min

⎧⎨
⎩

∑
(u,v)∈E

c(u, v)xuv : (SE-Dual)

xuv ≥ fi ([u, v])+ fi ([v, u]), ∀i ∈ [k], (u, v) ∈ E;∑
v:(u,v)∈E

(fi ([u, v])− fi ([v, u])) ≥ α(u), ∀i ∈ [k], u ∈ V \ i;
∑

v:(i,v)∈E

(fi ([i, v])− fi ([v, i])) ≥ α(i)+ 2, ∀i ∈ [k];
∑

v

α(v) = −2;

fi ([u, v]), fi ([v, u]), xuv ≥ 0, ∀(u, v) ∈ E, i ∈ [k]
⎫⎬
⎭

To interpret LP(SE-Dual), one can think of xuv as capacity of edge (u, v). There are
k circulations— fi for every required vertex i each satisfying the capacity constraint
and moreover, the supplies (excess flows) for fi at every vertex v is α(v) (it could be
negative) except at the vertex i , where it is α(i)+ 2. These are the supply constraints.
The last equality constraint implies the total supplies sum up to zero, as it should be
in a circulation.4

Before going on to describe the equivalence of LP(BCR) and LP(SE-Dual), we
show a direct proof that LP(SE-Dual) is a relaxation of the minimum Steiner tree
problem giving an alternate proof of Theorem 3.3.
Alternate proof of Theorem 3.3: Given any Steiner tree T , consider the follow-
ing solution to LP(SE-Dual): xuv = 1 for all (u, v) ∈ E(T), and 0 for all other
edges; α(v) = degT (v) − 2 for all v ∈ V (T) and 0 for all other vertices. Note that

4 Note that the constraint of the LP’s only imply that the supplies are at least α(v) or α(i)+ 2. Since the
sum of supplies adds up to 0 and the sum of the α(v)’s equals −2, all these inequalities are actually tight.

123

10 D. Chakrabarty et al.

∑
v α(v) = −2 and

∑
(u,v)∈E c(u, v)xuv is the cost of the tree. It remains to define

the circulations. For required vertex i , consider the unique out-tree rooted at i formed
by directing all edges of T away from i . For every edge (u, v) in T , let fi ([u, v]) = 1
if (u, v) is directed from u to v in the out-tree, or fi ([v, u]) = 1 if the arc is oriented
otherwise. All other arcs carry 0 circulation. Note that for any vertex v in the tree other
than i , the total flow coming in is 1, and flow going out is degT (v)−1; while for i , the
total flow going out is degT (i). Thus the circulation satisfies the supply constraints.
This shows that LP(SE-Dual) is a relaxation of the minimum Steiner tree problem.

�

We now go on to show the equivalence between LP(SE-Dual) and LP(BCR). In

[10], Goemans and Myung provide two vertex weighted relaxations which are equiv-
alent to the bidirected cut relaxation. Although our relaxation is different, our proof
of equivalence follows on similar lines.

Theorem 3.4 Given any graph G, SE(G) = BC R(G).

Proof We show there exists a feasible solution to LP (BCR) of value � if and only
if there exists a feasible solution to LP (SE-Dual) of value �. Recall that LP(BCR)
(with root r ∈ R) was the following:

min

⎧⎨
⎩

∑
[u,v]∈
E

c([u, v])y[u,v] : y(δ+(U)) ≥ 1, ∀U ∈ U; y ≥ 0

⎫⎬
⎭

LP (BCR) ≥ LP (SE-Dual): Let {y[u,v]}[u,v]∈
E be a feasible solution of LP (BCR)
of cost � with root r . The corresponding solution to LP (SE-Dual) is as follows:
xuv := y[u,v] + y[v,u] and α(v) is the supply at vertex v which is the difference of the
outgoing y[v,u]’s and the incoming y[u,v]’s, except at r where α(r) is the supply−2.
That is,

α(v) =

⎧⎪⎨
⎪⎩

∑
u:(u,v)∈E

(y[v,u] − y[u,v]) if v �= r∑
u:(u,v)∈E

(y[v,u] − y[u,v])− 2 if v = r

Note that
∑

v α(v) = −2.
Now we describe the circulations. The circulation fr corresponding to r just mimics

the y[u,v]’s. That is fr ([u, v]) := y[u,v] and fr ([v, u]) := y[v,u], for all edges (u, v).
To get the circulations corresponding to another required vertex j , we use the fact that
the minimum r- j cut (w.r.t. capacities y) in the digraph with arc set
E and capacities
y[u,v]’s is at least 1 since the solution is feasible for LP (BCR). This implies there is
a standard flow gr j from r to j in this digraph. The flow f j is found by subtracting
2gr j from fr .

To be precise, for each edge (u, v) we set

f j ([u, v]) := max[0, fr ([u, v])− 2gr j ([u, v])] +max[0, 2gr j ([v, u])− fr ([v, u])]

123

New geometry-inspired relaxations and algorithms 11

and

f j ([v, u]) := max[0, fr ([v, u])− 2gr j ([v, u])] +max[0, 2gr j ([u, v])− fr ([u, v])]

It is easy to check that f j satisfies the constraints of LP(SE-Dual). Since gr j increases
the supply of j by 2 and decreases that of i by 2, the supply constraints are guaranteed.
The capacity constraints are guaranteed by noting

f j ([u, v])+ f j ([v, u]) ≤ max[(fr ([u, v])+ fr ([v, u])), (fr ([u, v])
− fr ([v, u])+ 2gr j ([v, u]))]

both of which are less than y[u,v] + y[v,u] = xuv . Thus the solution is feasible for
LP(SE-Dual) and is of value �.

LP(SE-Dual) ≥ LP(BCR): Let ({x}, { fi }, {α}) (respectively over edges, arcs and
vertices) be a solution to LP (SE-Dual). Without loss of generality, by adding cir-
culations if necessary, we can assume for all edges (u, v), and i we have xuv =
fi ([u, v])+ fi ([v, u]). For LP(BCR), let r be the chosen root. Then the solution is: for
all edges (u, v), y[u,v] := fr ([u, v]) and y[v,u] := fr ([v, u]) To see feasibility for LP
(BCR), we must show across any cut S separating r and a required vertex j , we have∑
[u,v]∈δ+(S) fr ([u, v]) ≥ 1. To see this, consider the flow gr j : the difference between

fr and f j . To be precise:

gr j ([u, v]) = max[0, fr ([u, v])− f j ([u, v])] +max[0, f j ([v, u])− fr ([v, u])]

Observe that the supply of the flow gr j on every vertex other than r or j is 0 and
on r is 2 and j is −2. This is because the supplies of fr and f j match on every
vertex other than r and j where they differ by 2. Thus it is a standard flow from r to
j of value 2, implying across any cut S as above,

∑
[u,v]∈δ+(S) gr j ([u, v]) ≥ 2. The

proof ends by noting for any arc [u, v], gr j ([u, v]) ≤ 2 fr ([u, v]), because each term
in the above definition of gr j , is less than fr ([u, v]). The second term is less since
fr ([u, v])+ fr ([v, u]) = xuv ≥ f j ([v, u]). �

What the above theorem shows is that the LP(SimpEmb) can be interpreted as a
geometric dual to the bidirected cut relaxation. In Section 4 we explain how we design
algorithms using the primal-dual schema with this new geometric dual.

3.3 A stronger LP relaxation

Note that in LP(SE-Dual), the α(v)’s are free variables. This is because the interpreta-
tion of α(v) as degT (v)− 2 implies that for leaves α(v) could be negative. However,
in any optimal Steiner tree, no Steiner vertex would be a leaf. Therefore, we could
add the constraint (α(v) ≥ 0, ∀v ∈ S), and the new relaxation, call it LP(SE-Dual2),
would still be a feasible relaxation for the minimum Steiner tree problem.

123

12 D. Chakrabarty et al.

min

⎧⎨
⎩

∑
(u,v)∈E

c(u, v)xuv : (SE-Dual2)

xuv ≥ fi ([u, v])+ fi ([v, u]), ∀i ∈ [k], (u, v) ∈ E;∑
v:(u,v)∈E

(fi ([u, v])− fi ([v, u])) ≥ α(u), ∀i ∈ [k], u ∈ V \ i;
∑

v:(i,v)∈E

(fi ([i, v])− fi ([v, i])) ≥ α(i)+ 2, ∀i ∈ [k];
∑

v

α(v) = −2;

fi ([u, v]), fi ([v, u]), xuv ≥ 0, ∀(u, v) ∈ E, i ∈ [k];
α(v) ≥ 0, ∀v ∈ S } (1)

The corresponding change in the simplex-embedding LP is that for the Steiner ver-
tices, the equality constraint

∑
i∈[k] zv(i) = λ is relaxed to an inequality constraint∑

i∈[k] zv(i) ≥ λ. Call this new LP, LP(SimpEmb2). In other words, the Steiner ver-
tices are allowed to embed “above” the simplex. It is not too hard to extend Theorem
3.2 to capture this as well.

It is clear that the optimum value of LP(SimpEmb2) is at least that of LP(SimpEmb)
and thus it gives as good a lower bound. In fact, the following example in Fig. 1 shows
that on some instances the former is strictly better, and thus LP(SE-Dual2) is strictly
a better relaxation than LP(SE-Dual) and also by Theorem 3.4, better than LP(BCR).

Nevertheless, the example of Skutella which shows a gap of 8/7 for the bidirected
cut relaxation can be shown to also give the same gap for LP(SE-Dual2). We provide
Skutella’s example and integrality gap of 8/7 for the stronger LP in Appendix A.
Henceforth, in the remainder of the paper we will investigate LP(SimpEmb) and thus
all our results will imply results for the bidirected cut relaxation.

4

44

88

8 8

8
88

8 8

8

888 8

4

4

Above the Simplex EmbeddingOn the Simplex Embedding

(8,8,0)

(0,8,8)

(8,8,8)

(8,0,8)

(0,0,16)(0,16,0)

(16,0,0)

(5,5,5)

(1,7,7)

(7,7,1) (7,1,7)

(0,0,15)(0,15,0)

(15,0,0)

444

8

4

88

8

Fig. 1 In the figure, black vertices are required and white ones are Steiner. Integrality gap of the bidirected
cut relaxation for the graph is known to be 16/15 (due to Goemans, as reported in Chap 23 of [21]). The
middle figure shows an embedding on the 15-simplex attaining a value of 30. The figure to the right shows
how we can get a higher value of 32 if we allow Steiner vertices to move above the 16-simplex. Note that
the Steiner vertex at the center is not on the 16-simplex

123

New geometry-inspired relaxations and algorithms 13

3.4 Primal-Dual schema with the geometric dual

All the algorithms we give for the minimum Steiner tree problem fall in the following
primal-dual schema: we construct a Steiner tree T and a feasible embedding z of the
vertices of the graph onto a λ-simplex; moreover we prove c(T) ≤ ρ · γ (z), and thus
get a ρ-approximation for the Steiner tree problem as well as an upper bound on the
integrality gap of LP(SE-Dual) and LP(BCR).

In the remainder of the paper we restrict ourselves to the special class of graphs
called quasi-bipartite graphs. Such graphs do not have Steiner-Steiner edges. The best
known upper bound on the integrality gap of LP(BCR) on such graphs was 3/2 [19].

For such graphs, we first describe the dual growing procedure, Embed, which gives
us a feasible embedding of vertices. Embed has the property that on quasi-bipartite
graphs, if the MST on the required vertices is the optimal Steiner tree, then it returns
an embedding z such that γ (z) equals the cost of the MST on terminals. Otherwise, it
returns a Steiner vertex v such that M ST (R ∪ v) < M ST (R).

The Embed algorithm stops after returning the first Steiner vertex. In fact, one can
extend Embed to obtain more Steiner vertices, however a natural extension to do so
doesn’t give good enough dual—that is, there is an example where the natural dual
growing procedure stops with a dual which is around 1/2 the cost of the optimal
tree. For details, refer Sect. 5. In Sect. 5, we show how to modify Embed and give
a primal-dual algorithm achieving the upper bound of 3/2 for quasi-bipartite graphs.
The algorithm can be made to run in (almost) linear time. We note that Rizzi’s [18]
algorithm runs in time O(n2T (n, m) log2 cmax) where T (n, m) is the time taken to
compute an MST in a n-vertex, m-edge graph, while cmax is the maximum cost of an
edge.

In Sects. 6 and 7, we use Embed in rounds (with a processing step before each
round) to get

√
2 and 4

3 factor approximations respectively for quasi-bipartite graphs.
The
√

2 algorithm runs in strongly polynomial time, while the 4/3 algorithm takes the
same time as Rizzi’s algorithm.

4 The EMBED algorithm

In this section, we describe the dual growing procedure Embed which given a quasi-
bipartite graph G and a cost function c does the following.

Case 1: If M ST (R) is the optimal Steiner tree, then it returns a feasible embedding
z such that γ (z) = M ST (R). Note, in this case, M ST (R) = O PT = BC R, since
M ST (R) ≥ O PT ≥ BC R ≥ γ (z).

Case 2: Or, returns a Steiner vertex v whose addition strictly helps the MST on R,
that is, M ST (R ∪ v) < M ST (R). We say that Embed crystallizes5 v.

The following theorem is immediate.

5 The notation of crystallizing is from [19]; they also define a process called crystallization to find ‘useful’
Steiner vertices.

123

14 D. Chakrabarty et al.

Theorem 4.1 Given a quasi-bipartite instance G, if the addition of no Steiner vertex
reduces the cost of M ST (R), then M ST (R) = BC R(G). In particular the integrality
gap for the instance is 1.

Note that the theorem implies the following important property about the bidirected
cut relaxation for quasi-bipartite graphs: If the minimum spanning tree is optimal, then
the relaxation is exact. We are now ready to describe Embed.

The following is a continuous description of the algorithm, which can be easily
discretized. The algorithm has a notion of time. Time starts at t = 0 and increases at
unit rate. At any time t , all required vertices are on the t-simplex, all Steiner vertices
are below the t-simplex (sum of coordinates is less than t). The algorithm maintains
a set of terminal-terminal edges T , which form a forest at any time t . Let K denote a
connected component of required vertices formed with the edges of T and K denote
the set of all connected components. At time t = 0, the algorithm starts with T = ∅

and the components are singleton required vertices. All vertices start at the origin at
t = 0. Before describing how the embedding at time t is formed, we make a few
definitions.

Definition 1 At any point of time, d(u, v) be the half-�1 distance between zu and zv ,
that is, d(u, v) := 1

2

∑
i |zu(i) − zv(i)|. Let d+({u, v}) := ∑

i∈Xu
(zu(i) − zv(i)),

where Xu are the coordinates in which u dominates v. That is, Xu := {i : zu(i) ≥
zv(i)}. Note that d+ takes an ordered pair of vertices.

Claim 4.2 If u and v are both on a λ-simplex (for some λ > 0), then d+({u, v}) =
d+({v, u}) = d(u, v).

Proof Note by definition, d(u, v) = 1
2 (d+({u, v}) + d+({v, u})). Also, if u, v are

both on the λ-simplex we get d+({u, v}) = ∑
i∈Xu

zu(i) − ∑
i∈Xu

zv(i) = λ −∑
i∈Xv

zu(i)− (λ−∑
i∈Xv

zv(i)) =∑
i∈Xv

zv(i)−∑
i∈Xv

zu(i) = d+({v, u}).
�

Definition 2 Given a vertex v and a component K , let d(v, K) := minu∈K d(u, v).
Similarly, let d+({v, K }) := minu∈K d+({v, u}) and d+({K , v}) := minu∈K d+
({u, v}). For any two components K , L ∈ K, let c(K , L) := minu∈K ,v∈L c(u, v). An
edge (u, v) is tight if d(u, v) = c(u, v).

Definition 3 A Steiner vertex v links to a component K if there exists i ∈ K so that
d+({i, v}) = c(i, v). The edge (i, v) is called a link of v to K .

We first give the intuition of the algorithm. At time t = 0 all vertices are embedded
to the origin of Rk+. Note that we are in k-dimensions and thus we correspond every
coordinate to a required vertex. As time moves on, required vertices increase their
respective coordinates till some edge goes tight in which case the vertices merge to
form components and their coordinate increases are “coupled”. Steiner vertices v stay
at the origin till some required vertex i goes “far enough” so that d+({i, v} = c(i, v).
We use the d+() distance rather than the d() since the Steiner vertices are not on the
simplex, but below it. Recall that when on the simplex (Claim 4.2), the two distances
match. The algorithm goes on till either all the required vertices merge into a single

123

New geometry-inspired relaxations and algorithms 15

component (Case 1), or a Steiner vertex hits the simplex (Case 2). We now give the
details of the algorithm.

Algorithm 1 Embed
Required vertices: For each component K and required vertex i ∈ K , the algorithm increases the j th
coordinate of i at rate 1/|K |, for each j ∈ K . Clearly, this will keep required vertex i on the t-simplex.
When an edge (i, j) goes tight, the algorithm merges the components containing i and j and adds (i, j)
to T . It is instructive to note that when restricted to only required vertices, this actually mimics Kruskal’s
MST algorithm.
Steiner vertices: For each Steiner vertex v, the algorithm increases its coordinates depending on the
components it has linked to. For each component K that v is linked to, the coordinates zv(i) for all i ∈ K
increase at rate 1/|K |. Thus, henceforth d+({i, v}) remains the same for all terminals i ∈ K . Note that
at t = 0, the Steiner vertex is linked to no component and remains at the origin till t = c(i, v), where i is
the closest terminal to v. Also note that if a Steiner vertex v is linked to exactly one component K , then
rate of growth of zv(i) equals that of zi (i), for all i ∈ K .

The algorithm terminates if the number of components becomes 1 (Case 1) or a Steiner vertex v hits the
simplex, that is

∑k
j=1 zv(j) = t , and is linked to more than one component (Case 2). In Case 1, the

algorithm runs the following projection step.

Projection Step: If Case 1 happens at time t = λ, for every Steiner vertex v and coordinate j , zv(j) :=
zv(j) λ∑

i zv(i) . Note that each Steiner vertex is projected on to the λ-simplex. The coordinates of the

required vertices are kept the same.

The embedding procedure is described in Algorithm 1. The example in Fig. 2
illustrates the algorithm on a graph with three required vertices.

We now show Algorithm 1 satisfies the conditions mentioned at the beginning of
the section. In Case 1, the algorithm returns a tree T and embedding z. The way the
required vertices are moved, it is clear that terminals stay on the t-simplex and no
terminal-terminal edge is over tight. Steiner vertices always stay below the t-simplex
– if they hit the t-simplex since we are in Case 1 there is exactly one component
to which it is linked and thus due to the movement of the terminals, the Steiner
remains on a t-simplex throughout. To see that terminal-Steiner edges are not over
tight, note that before the projection step, we have for every terminal i and every
Steiner vertex v, d+({i, v}) ≤ c(i, v) (otherwise v links to the component contain-
ing i). After projection step, the coordinates of the Steiner vertex only increase, which
means d+({i, v}) only decreases. Moreover, since v is on the simplex, we have (by
Definition 1) d+({i, v}) = d(i, v) and thus d(i, v) ≤ c(i, v).

We now need to show that tree T has cost γ (z). In fact we prove something stronger.
Given any connected component K , denote the restriction of T to K as T [K].
Lemma 4.3 At any instant of time t, for any connected component K ,
c(T [K]) =∑

i∈K zi (i)− t .

Proof At time t = 0, the lemma holds vacuously. Since the quantity
∑

i∈K zi (i)
increases at the same rate as time, we need to prove the lemma only in the time
instants when two components merge. Suppose K , K ′ merge at time instant t due to
edge (i, j) which comes in the tree, with i ∈ K , j ∈ K ′. Note d(i, j) = c(i, j) = t .

123

16 D. Chakrabarty et al.

(1,1,0) (0.5,3.5,0)

(3.5,0.5,0)

(0,0,4)

(3,0,0)

(0,3,0)

(0,0,3)

(0,0,2)

(0,2,0)

(2,0,0)

(0,0,5)

Dual = 8
t = 5

Dual = 7
t = 4

Dual = 6
t = 3

Dual = 4
 t = 2

v

yx

z

66
4

22
3

(1.5,1.5,0)

(2,2,1)

(1,4,0)

(4,1,0)

Fig. 2 Snapshots of the running of Embed on the graph above at times t = 2, 3, 4, 5. At time t = 2, the
Steiner vertex v links to the required vertices x and y, and increases its x and y coordinates at rate 1. At
time t = 3, x, y merge. The edge (x, y) goes into Remove(v). At time t = 4, v links to z, and moves in
the zth coordinate as well. At t = 5, it hits the 5-simplex, terminating the algorithm. The tree shown with
dotted lines pays exactly for the dual and is cheaper than the MST

So for the new connected component K ∪ K ′,
∑

i∈K∪K ′ zi (i) − t = ∑
i∈K zi (i) −

t +∑
i∈K ′ zi (i)− t + t = c(T [K])+ c(T [K ′])+ c(i, j) = c(T [K ∪ K ′]). �

Thus, we have established correctness if we are in Case 1.

In Case 2, when v hits the simplex (suppose at time t = λ), the algorithm returns
v as the Steiner vertex helping the minimum spanning tree. Since v hits the simplex
there must be at least two components to which it is linked to. Suppose they are
K̂1, . . . , K̂r̂ with r̂ ≥ 2. Let P̂ = ⋃r̂

�=1 K̂� be the vertices of K�’s. We now show
M ST (P ∪ v) < M ST (P̂) which will imply M ST (R ∪ v) < M ST (R) by extending
the MST to all required vertices.

With each Steiner vertex v, we associate a subset of edges Remove(v) of T . Sup-
pose v is linked to K and K ′ and these merge at time t , due to edge (i, j), i ∈ K and
j ∈ K ′. At this point, (i, j) is added to the set Remove(v). Thus, a Steiner vertex
may have more than one link into the same component, but for each extra link, there
is an edge in Remove(v). At any instant of time, let v be linked to K1, . . . , Kr , let
P := ⋃r

�=1 K� and let Tv be the tree formed by adding all the links incident at v

to
⋃r

�=1 T [K�] and deleting Remove(v). The proof of the following lemma is very
similar to that of Lemma 4.3.

Lemma 4.4 At any instant of time, c(Tv) =∑
i∈P zi (i)−∑

i∈P zv(i).

Proof At time t = 0, the lemma holds vacuously. Since the quantity
∑

i∈P zv(i)
increases precisely at the rate

∑
i∈P zi (i), we need only check the lemma when v

123

New geometry-inspired relaxations and algorithms 17

links to a new component K . Suppose this happens at time t . This means, there is a
terminal j ∈ K with c(v, j) = t . Note that

∑
i∈K zi (i) = t , by the way required

vertices move. Thus the increase in both left-hand side and right-hand side is t , and
thus equality holds. �

Hence at time t = λ, when v hits the simplex,
∑

i∈P̂ zv(i) = λ, and so c(Tv) =∑
i∈P̂ zi (i) − λ. From the proof of Lemma 4.3, we have that the RHS is at most

M ST (P̂) with equality iff all the vertices of P̂ are in a single component. Since
r̂ ≥ 2, we see that v improves the MST. Thus, we have proved the following theorem.

Theorem 4.5 Given a quasi-bipartite graph G, the algorithm Embed either returns
a terminal spanning tree T and feasible embedding z with c(T) = M ST (R) = γ (z);
or returns a Steiner vertex v with M ST (R ∪ v) < M ST (R).

Remark Note that the above algorithm and analysis do not use the fact the cost satisfies
triangle inequality. We would need this for our algorithms in Sects. 6 and 7 to work.

5 A 3
2 -factor approximation algorithm

The dual growing procedure Embed suggests the following primal-dual algorithm: At
each step, maintain the connected components of T ; when a Steiner vertex v hits the
simplex, merge all the components v was linked to by adding v and the various links
connected to it to T and continue the dual growing procedure.

However, as the example in Fig. 3 suggests, such an algorithm cannot give anything
better than a factor 2.

The above example suggests a shortcoming of the Embed procedure: it grows the
coordinates of all the Steiner vertices, although any optimum Steiner tree contains at
most one Steiner vertex of degree larger than 2. To be precise, the k vertices at the
bottom increases the coordinates of all the � Steiner vertices at a very high rate (at
rate k), although only one of them is useful for connecting the k terminals.

The main idea behind the 3/2-factor algorithm is that it uses Embed to recognize
useful (degree ≥ 3) Steiner vertices early (not wait till they hit the simplex) and on
recognizing such a vertex, merge the components linked to the vertex so that these
components do not raise the coordinates of other Steiner vertices.

...

...
Kl,k}

Fig. 3 In the above graph, the black vertices are terminals and the white vertices are Steiner. There are
� Steiner vertices connected to k terminals via a complete bipartite graph K�,k . Think of � � k � 1.
There are � other terminals forming a perfect matching with the l Steiner vertices. Each edge is of length 1.
Note that the optimum Steiner tree costs at least 2�. In the procedure Embed, all the Steiner vertices hit the
t-simplex simultaneously at time t = 1 + 1

k . Subsequently, no more dual can be grown and thus the total
dual obtained is (k + �− 1)(1+ 1/k) ∼ k + �

123

18 D. Chakrabarty et al.

In short, the algorithm runs Embed until some Steiner vertex is linked to three
distinct connected components. If that is the case, it merges all the components, and
adds the Steiner vertex and the three links to the tree. The idea is that this Steiner
vertex should be helpful. With this modification, we see that if some Steiner vertex
hits the simplex, it must do so being connected to at most two components. In this
case, the algorithm merges these components, adds the Steiner vertex and the (possibly
two) links to the tree, and continues. The algorithm terminates when there is a single
component.

The algorithm maintains a set of edges and vertices, T , which is initialized to
E(T) = ∅ and V (T) = R. At every time instant t , the algorithm maintains a family
of connected components K of T ; and an embedding z : V → Rk+ of the vertices. We
emphasize that components in K contain Steiner vertices unlike those in Embed. At
time t = 0, all the vertices of the graph are embedded at the origin. Time increases
at rate 1. We state the algorithm formally in Algorithm 2 Smart- Embed. We use the
Definitions 1, 2 and 3 from Sect. 4.

It is clear that the algorithm returns a Steiner tree T in the end. Moreover, the
feasibility of the embedding returned by Embed also implies the feasibility of the
embedding z returned by Smart- Embed. We finish the section with the following
theorem which shows that the tree is within 3/2 of the optimal.

Theorem 5.1 The algorithm Smart- Embed returns a tree T and a feasible embed-
ding z, with c(T) ≤ 3

2γ (z).

Proof We show that at any time t , for any connected component K we have c(T [K]) ≤
3
2 (

∑
i∈K∩R zi (i) − t). Henceforth, we abuse notation and denote c(T [K]) by c(K).

The proof follows by induction on the size of K . Moreover it is enough to check that
the inequality is preserved after every merge step as between merge steps both sides
of the inequality remain unchanged.

Suppose at time t , a merging of type 1 occurs: components K and L merge into
one component, and the edge (u, v) is added to T . Therefore, we have c(K) ≤
3
2 (

∑
i∈K∩R zi (i)−t) and c(L) ≤ 3

2 (
∑

i∈L∩R zi (i)−t). The cost of the new component
(K ∪ L) increases by the cost of the edge (u, v). Note that by definition, c(u, v) = t .
That is,

c(K ∪ L) = c(K)+ c(L)+ t ≤ 3

2

(∑
i∈K∩R

zi (i)− t

)
+ 3

2

(∑
i∈L∩R

zi (i)− t

)
+ t

≤ 3

2

⎛
⎝ ∑

i∈(K∪L)∩R

zi (i)− t

⎞
⎠ (2)

Suppose at time t , a merging of type 2 occurs: the Steiner vertex v hits the sim-
plex. First observe that there are exactly 2 components v is linked to. The algorithm
maintains that a Steiner vertex is linked to at most 2 components. Moreover, if there
is only 1 component v is linked to, the rate of growth of sum of its coordinates is the
same as that for the terminals and the Steiner vertex won’t hit the simplex.

123

New geometry-inspired relaxations and algorithms 19

Algorithm 2 Smart- Embed
Component Vertices: For each component K ∈ K, and for each terminal i ∈ K ∩ R, the algorithm
increases the i th coordinate of every vertex v ∈ K (required or Steiner) at rate 1/|K ∩ R|.
Other Vertices: For each Steiner vertex v not in any component, the algorithm increases its coordinates
depending on the components it has linked to. For each component K that v is linked to, the coordinates
of v corresponding to K increase at rate 1/|K ∩ R|.

Merge Step: A Merge Step happens when one of the three events take place:

1. For some two components K , L ∈ K, we have c(K , L) = t . Recall that c(K , L) :=
minu∈K ,v∈L c(u, v) and now u or v (but not both since graph is quasi-bipartite) could be Steiner
vertices. Since we project (as we see below) Steiner vertices of a component to the t-simplex, the
distance between these components is also t .
In this case, we merge K and L into one component. All Steiner vertices linked to either K or L now
link to the new component. Moreover, if a Steiner vertex is linked to both K and L , the costlier of its
links to K and L is removed. This maintains that a Steiner vertex has only one link to a component.
Let (u, v) be the edge which achieves c(K , L). Add (u, v) to T .

2. Some Steiner vertex v not in any component hits the t-simplex, that is,
∑

i∈[k] zv(i) = t . In this case,
merge v and all the components it links to into one single component. For each component K , v links
to, add the cheapest links of v to K to T . Add v to T as well.

3. Some Steiner vertex v not in any component links to three components Ki , K j , Kl . In this case, merge
v and Ki , K j , Kl into one component. Once more all Steiner vertices linked to either Ki ,K j or Kl now
link to the new component. Steiner vertices which link to two out of the three, discard their costlier link,
as in Step 1. Add v and its links to Ki , K j , Kl to T . Also project v onto the t-simplex as in Embed.

Projection Step: Once the number of components is 1, we do a projection step as in the Embed procedure.

Call the two components K and L . Let the links to K and L be (v, i) and (v, j)
respectively. Without loss of generality let (v, i) be the shorter one with c(v, i) =:
a ≤ c(v, j) =: b ≤ t . Note that the increase in the left hand side is a + b. That is,
c(K ∪ L ∪ v) = c(K) + c(L) + (a + b). Now note that whenever a link from v is
removed (this happens only when two components linked to the same Steiner vertex
merge), we always remove the costlier link from v. Thus, the smaller link (v, i) is in
fact the first link of v. That is, before time a, the coordinates of v were all 0. By the
running of the algorithm, a Steiner vertex is linked to at most two components at all
times. Thus, the rate of increase of sum of coordinates is at most 2. Therefore at time
t when the vertex hits the simplex, the sum of coordinates (which is t since it hits the
simplex) is at most 2(t − a). This gives a bound on t : 2(t − a) ≥ t implying t ≥ 2a.
Furthermore, note that t ≥ b since the terminal j links to a vertex v at time c(j, v) = b
which must be before t . Thus a + b ≤ 3t/2. This gives us

c(K ∪ L ∪ v) ≤ c(K)+ c(L)+ 3

2
t ≤ 3

2

⎛
⎝ ∑

i∈(K∪L)∩R

zi (i)− t

⎞
⎠

where the last inequality follows as in Inequality 2.
Suppose a merging of type 3 happens at time t : a Steiner vertex links to components

K , L , M via links (v, i), (v, j) and (v, l) respectively. Each of these links have cost
less than t . Thus the cost of the new component

123

20 D. Chakrabarty et al.

c(K ∪ L ∪ M ∪ v) ≤ c(K)+ c(L)+ c(M)+ 3t ≤ 3

2

⎛
⎝ ∑

i∈(K∪L∪M)

zi (i)− t

⎞
⎠

where the last inequality follows from induction on the components K , L , M . This
completes the proof. �

The above algorithm can be implemented in time O((|E | + |V |) log(|V |)) thus
giving a nearly linear time 3/2-factor algorithm for quasi-bipartite graphs. However,
the implementation details are a little tedious and not quite the main focus of this
paper, and so we defer the proof of the next theorem to Appendix B.

Theorem 5.2 Given a weighted quasi-bipartite graph G(V = R ∪ S, E; c), there
exists an algorithm which runs in time O((|E | + |V |) log(|V |)) and returns a tree T
with cost within 3/2 times the optimal Steiner tree.

6 A
√

2 factor approximation algorithm

In this section and the next, we give algorithms for the Steiner tree problem using
Embed as a black-box unlike the 3/2-factor algorithm. We will require nothing more
than the statement of Theorem 4.5. Both algorithms would use Embed in rounds to
obtain useful Steiner vertices, although each round will be preceded by a pre-process-
ing step. In this section we look at a

√
2-factor algorithm.

Notation 1 M ST (U ; c) denotes the minimum cost spanning tree on vertices U given
the costs c. Based on the context, it also denotes the cost of this tree.

We start by giving a high level idea of our algorithm. The algorithm will finally return
a cost c2 and a subset of Steiner vertices X ⊆ S such that

1. The optimal Steiner tree w.r.t. c2 is the MST on the terminals. Equivalently, by
Theorem 4.5, Embed when run on G, c2 terminates with a feasible embedding z
with γ (z) = M ST (R; c2).

2. M ST (X ∪ R; c) ≤ √2 · M ST (R; c2)

The costs c2 will be only smaller than c; therefore, z is also feasible for c. Hence,
the two conditions imply that we get a factor

√
2 approximation.

Initially, X = ∅ and we obtain c2 by reducing the costs of the required–required
edges by a factor of

√
2 and leaving the costs of required-Steiner edges unchanged.

We denote the reduced cost at this point as c1 which we use later. Clearly Condition
2 is satisfied now, and will remain an invariant of the algorithm.

Suppose that condition 1 is not satisfied, that is, when Embed is run on G, c2, a
Steiner vertex v ∈ S hits the simplex. At this point, the algorithm adds v to X , and
modifies c2 by reducing the costs of certain required-required edges further, as detailed
below. This has the effect that if Embed is run with these new costs, v does not hit
the simplex. Moreover, the Condition 2 above is maintained. Hence in each iteration,
a new Steiner vertex is added to X , implying termination in at most |S| rounds.

123

New geometry-inspired relaxations and algorithms 21

We now give the intuition behind modifying the costs so that the invariant is main-
tained. The first step of scaling all the required-required edges acts as a “global filter”
which filters out Steiner vertices that only help a little. If a Steiner vertex v now hits
the simplex, then adding it to X reduces the cost of M ST (R ∪ X; c) so much that
decreasing the cost of required-required edges “local” to it to 1

2 of the original costs
still maintains the invariant Condition 2. This requires an involved argument (Lemma
6.2) that amortizes the improvements due to all the vertices previously added to X .
Moreover, since all the local required–required edges have been decreased to half
their original cost, this has the additional desired effect that running Embed on the
new costs doesn’t let v hit the simplex—that is v itself is filtered out.

Now the formal description of the algorithm follows.

Definition 4 Applying the global filter with parameter ρ > 1 gives a cost c1 defined
as c1(i, j) = c(i, j)

ρ
for all i, j ∈ R, and c1(i, v) = c(i, v) for all i ∈ R and v ∈ S.

Definition 5 Applying a local filter w.r.t X ⊆ S gives a cost c2. Let T = M ST (R ∪
X; c1), and for each u ∈ X , Clos(u) denote the closest required vertex to u. Let �T (u)

be the neighbors of u in T1. The cost c2 is defined as

c2(i, j) =
{ 1

2 c(i, j) if there exists u ∈ X such that i = Clos(u) and j ∈ �T (u)

c1(i, j) otherwise

Algorithm 3 Primal- Dual
1. Apply global filter with parameter ρ = √2 to get c1.

Initialize X ← ∅; c2 ← c1.
2. Repeat till Embed returns z

Run Embed on G, c2.
If Embed returns v then

X = X ∪ v; Apply local filter w.r.t X to get c2.
3. Return T1 = M ST (R ∪ X; c), z.

Claim 6.1 At each round a new Steiner vertex enters X .

Proof Let c2 be obtained by applying the local filter w.r.t. X . Let T1 = M ST (R ∪
X; c1). We claim that Embed run on G, c2 will not crystallize any vertex v ∈ X . This
will complete the proof.

Suppose Embed on G; c2 does crystallize v ∈ X . Then by Theorem 4.5 M ST (R∪
v; c2) < M ST (R; c2) =: T2. That is, there exist a set of edges A, each of the form
(v, j) where j is a terminal; and a set of terminal-terminal edges in E(T2) so that
c2(A) = c1(A) < c2(B); and T2 \ B ∪ A is a tree spanning R ∪ v.

Call an edge diminished if c2(e) = 1
2 c(e). Now, among the edges in B, some are

diminished and some are in E(T1); and each diminished edge e corresponds to two
edges e1 and e2 in E(T1) one of which, say e1, has c1(e1) ≥ c2(e). Thus from B, we get
a subset of edges B ′ ⊆ E(T1) with c1(B ′) ≥ c2(B). Moreover, note that T1\B ′∪A is a

123

22 D. Chakrabarty et al.

valid spanning tree of R∪X∪v. This implies M ST (R∪X∪v; c1) < M ST (R∪X; c1),
which is a contradiction. �

Lemma 6.2 (Invariant Condition 2) Let X be the set of Steiner vertices at any stage
of the algorithm. Then, M ST (R ∪ X; c) ≤ √2 · M ST (R; c2).

Proof Let T1 := M ST (R ∪ X; c1). Clearly, M ST (R ∪ X; c) ≤ c(T1). Let T1 =
E0 ∪ E1, where E0 denotes the required-Steiner edges and E1 denotes the required-
required edges of T1. We bound the costs of these two sets separately. Let E2 be the
set of edges modified by the local filter, that is, e such that c2(e) = 1

2 c(e). Recall such
edges are called diminished. Define T2 to be E2 ∪ E1. It can be shown that T2 is an
M ST (R, c2).

Claim 6.3 T2 is an MST of R with respect to cost c2.

Proof By definition of the local filter, it is clear that E2 ∪ E1 is a terminal spanning
tree. If it is not a minimum one w.r.t cost c2, there exists an edge e ∈ E(T2) and an
edge f /∈ E(T2) such that T2 − e + f is spanning and c2(f) < c2(e). Note that
c2(f) = c1(f), since f /∈ E2. Also, since f /∈ E1 ∪ E0, T1 + f has a cycle, and in
fact it is the precisely the cycle formed in T2 + f with the edges in E2 replaced by
length 2 paths containing a Steiner vertex. Moreover, by definition of the local filter,
there will be an edge e′ in the cycle in T1 + f such that c1(e′) ≥ c2(e), and thus
T1 + f − e′ will be a cheaper spanning tree of R ∪ X w.r.t. costs c1, contradicting the
choice of T1. �

We have c(T1) = c(E0)+ c(E1),

c2(T2) = c2(E2)+ c2(E1). The proof follows from the following.

• c(E0) ≤
√

2c2(E2).

This is essentially a consequence of the observation that c1(T1) ≤ M ST (R; c1).
Since T2 = E1∪E2 is also a spanning tree of R, we get c1(T1) ≤ c1(T2). Expanding
the costs, we get

c1(E0)+ c1(E1) ≤ c1(E2)+ c1(E1).

Since E0 are required vertex-Steiner edges, c1(E0) = c(E0). c1(E2) = c(E2)/
√

2
= √2c2(E2) by definition, giving us c(E0) ≤

√
2c2(E2).

• c(E1) ≤
√

2c2(E1). Since E1 costs are not modified by the local filter, c2(E1) =
c1(E1) and in fact the relation holds with equality.

�

Theorem 6.4 The algorithm Primal- Dual terminates in at most |S| rounds, return-
ing a Steiner tree T1 and a feasible embedding z of G, c such that c(T1) ≤

√
2 ·γ (z) ≤√

2 · O PT .

Proof By Claim 6.1, the algorithm terminates in |S| rounds. Moreover, we have γ (z) =
M ST (R; c2). Using Lemma 6.2, we get M ST (R ∪ X; c) ≤ √2 · M ST (R; c2) =√

2 · γ (z) ≤ √2 · O PT . �

123

New geometry-inspired relaxations and algorithms 23

In fact, the above algorithm has a faster implementation. Although the algorithm
constructs the set X in a certain order, it turns out that the order does not matter. Hence
it is enough to simply apply the global filter and go through the Steiner vertices (in
any order) once, picking the ones that help. We describe this in Algorithm 4 Reduced
One- Pass Heuristic.

Algorithm 4 Reduced One- Pass Heuristic
1. Apply global filter with parameter ρ = √2 to get c1.

Initialize X ← ∅;
2. For all v ∈ S,

If M ST (R ∪ X ∪ v; c1) < M ST (R ∪ X; c1), then
X = X ∪ v ;

3. Return T1 = M ST (R ∪ X; c1).

Theorem 6.5 There exists a feasible embedding z of G, c such that for T1 returned
by Algorithm Reduced One- Pass Heuristic, c(T1) ≤

√
2 · γ (z).

The proof of Theorem 6.5 is quite similar to Theorem 6.4 and is deferred to Appendix
C for completeness. Note that the above algorithm makes at most |S| minimum span-
ning tree computations and is hence is very efficient. In particular, it runs in strongly
polynomial time.

7 A 4
3 factor approximation algorithm

The primal-dual 4
3 approximation algorithm is along the lines of the one in the previous

section, with the major difference being that it drops Steiner vertices from X when
beneficial. The other differences are that it applies the global filter with ρ = 4/3, and
the definition of a local filter is somewhat different. And like the earlier algorithm, the
order of vertices picked/dropped does not matter. As a result it can be implemented as
a local search algorithm with an extra global filtering step, which is what we present
here.

Algorithm 5 Reduced- Local- Search
1. Apply global filter with parameter ρ = 4/3 to get c1.

Initialize X ← ∅, T1 = M ST (R; c1);
2. Repeat

If ∃v such that M ST (R ∪ X ∪ v; c1) < c1(T1), X = X ∪ v.
If ∃v such that M ST (R ∪ X \ v; c1) < c1(T1), X = X \ v.
T1 = M ST (R ∪ X; c1).

Until No such v exists.
3. Return T1.

The plain local search algorithm (without the global filtering step) was studied [19]
who showed that this algorithm gives a 3/2 factor approximation for quasi-bipartite

123

24 D. Chakrabarty et al.

graphs. This factor is tight. So the simple modification of applying a global filter
provably improves the performance of this algorithm. It was shown in [18] that this
algorithm can be implemented efficiently in time O(|V ||S|T (|V |, |E |) log2(cmax))

where T (n, m) is the time taken to compute the minimum spanning tree in an n-vertex
m-edge graph, and cmax is the maximum cost of an edge.

We show that T1 returned by the algorithm is within 4/3 of the optimal by exhibit-
ing an embedding z of value greater than 3/4 times the cost of T1. As in Sect. 6, the
analysis proceeds by defining cost c2 and constructing tree T2. The factor 4/3 comes
from the parameter ρ used in the global filter and the following property of T1.

Lemma 7.1 The degree of every Steiner vertex in T1 is at least 4.

Proof It is easy to see that T1 doesn’t have vertices of degree 1 or 2. Suppose there
existed a Steiner vertex v ∈ T1 with deg(v) = 3. Let a, b, c be the required vertices
connected to v and assume c1(va) ≤ c1(vb) ≤ c1(vc) without loss of generality.
Now by triangle inequality property of c, we know c(va) + c(vb) ≥ c(ab). Since
c(va) = c1(va) and c(vb) = c1(vb), we get 3

4 (c1(va)+c1(vb)) ≥ 3
4 c(ab) = c1(ab).

Similarly 3
4 (c1(va)+c1(vc)) ≥ c1(ac). Thus c1(ab)+c1(ac) ≤ 3

4 (2c1(va)+c1(vb)+
c1(vc)) ≤ c1(va) + c1(vb) + c1(vc). Thus M ST (R ∪ X) would choose6 (ab) and
(ac), rather than choosing (va), (vb), (vc). �

Theorem 7.2 For the tree T1 returned by Reduced- Local- Search, there exists a
feasible embedding z such that c(T1) ≤ 4

3 · γ (z).

Proof As in the proof of Lemma 6.2, denote the edges of T1 as E1 ∪ E0. Define c2
as: For every Steiner vertex v ∈ T1 and for every j �= Clos(v) connected to v in
T1, let c2(Clos(v), j) = c1(v j). Note that c1(v j) ≤ c1(Clos(v), j), for otherwise T1
would have picked (Clos(v), j) instead of (v j). Call these required vertex-required
vertex edges diminished. For every other edge, c2(e) := c1(e). Let E2 be the set of
diminished edges and let T2 := E1 ∪ E2, be a required vertex spanning tree. By the
conditions of the algorithm, since T1 is an MST of R ∪ X with costs c1 and no Steiner
vertices help X , T2 is an MST of R with costs c2 and no Steiner vertex helps T2. Thus,
by Theorem 4.1 running Embed on G, c2 returns a feasible embedding z of value
c2(T2). We now bound the cost of T1.

We have c(T1) = c(E1)+ c(E0) = c(E1)+ c1(E0). Note that c2(T2) = c1(E1)+
c2(E2) since E1 is not diminished. As in the proof of Theorem 6.4, we argue term by
term. By definition we have c(E1) = 3

4 c1(E1).
Every Steiner vertex v ∈ T1 contributes deg(v)− 1 edges to E2 and deg(v) edges

in E0, where deg(v) is the degree of v in T1. By definition the deg(v)− 1 edges have
cost exactly the cost of the largest deg(v)−1 edges of the deg(v) edges it contributes
to E0. By Lemma 7.1, deg(v) ≥ 4 and thus we get c1(E0) ≤ 4

3 c2(E2). Adding, we
get c(T1) ≤ 4

3 c2(T2) = 4
3γ (z). �

6 It would seem that (ab) and (ac) could be equal to (va) + (vb) + (vc) and improve the MST—in this
case we break ties by excluding Steiner vertices if possible.

123

New geometry-inspired relaxations and algorithms 25

Appendix A: An 8/7 Integrality gap example for LP (SE-DUAL2)

In this section we show that the LP relaxation LP 1 described in Sect. 3 has integrality
gap lower bounded by 8/7. We first recall the LP relaxation.

min

⎧⎨
⎩

∑
(u,v)∈E

c(u, v)xuv : (SE-Dual2)

xuv ≥ fi ([u, v])+ fi ([v, u]), ∀i ∈ [k], (u, v) ∈ E;∑
v:(u,v)∈E

(fi ([u, v])− fi ([v, u])) ≥ α(u), ∀i ∈ [k], u ∈ V \ i;
∑

v:(i,v)∈E

(fi ([i, v])− fi ([v, i])) ≥ α(i)+ 2, ∀i ∈ [k];
∑

v

α(v) = −2;

fi ([u, v]), fi ([v, u]), xuv ≥ 0, ∀(u, v) ∈ E, i ∈ [k];

α(v) ≥ 0, ∀v ∈ S

⎫⎬
⎭ (3)

The example showing a gap of 8/7 is due to Martin Skutella which was reported
by Könemann et al. [17]. We produce the example below from their paper.

It can be seen (by inspection, or there exists a proof in [17]) that the optimum Steiner
tree costs 10. We now demonstrate a solution to LP SE-Dual2 of cost 35/4 which will
show that the gap of the LP is at least 8/7. In fact the cost 35/4 is optimal for the
LP since the bidirected cut value is exactly 35/4 for this example, and as proved in
Sect. 3, LP SE-Dual2 can only be larger.

The solution gives xe = 1/4 for every edge. Note that the value is then 35/4. The
α values are as follows: α(r) = −1/4. α(i) = −1 for every other required vertex.
α(u) = 3/4 for every Steiner vertex u. Note that

∑
v∈V α(v) = (−7+21/4−1/4) =

−2. It remains to describe the circulations. We will describe the circulation fr for the
root r and fa for the terminal a. All the other circulations are symmetric to fa .

r

a b c d e f g

Fig. 4 The nodes in white are Steiner nodes and nodes in black are required. Each edge has unit cost. The
optimum Steiner tree is of cost 10

123

26 D. Chakrabarty et al.

fr sends a flow of 1/4 from r to every Steiner vertex and a flow of 1/4 from every
Steiner vertex to terminal which is not r . Thus, the supply on r is 7/4 = 2+ (−1/4).
The supply on a Steiner vertex is 1 − 1/4 = 3/4 and that on a non-root terminal is
−1.

To describe fa , let S be the set of Steiner vertices incident on a. fa is the same
as fr except on the edges of the form (v, a) and (r, v) for v ∈ S. In fr , fr (v, a) =
fr (a, v) = 1/4 for all v ∈ S. In fa , these are reversed. That is, fa(a, v) = fa(v, r) =
1/4 for all v ∈ S. All the other flows are the same. Now, the total supply on r is
(−1 + 3/4) = −1/4, the total supply on Steiners remain the same, and the total
supply on a is 1 = (−1 + 2). Thus, we get a feasible solution to LP 1 of value
35/4.

Appendix B: An Implementation of SMART EMBED in time
O((|E| + |V |) log |V |)

Theorem B.1 (Theorem 5.2) Given a weighted quasi-bipartite graph G(V = R ∪
S, E; c), there exists an algorithm (Algorithm 6 below) which runs in time O((|E | +
|V |) log(|V |)) and returns a tree T with cost within 3/2 times the optimal Steiner tree.

We now describe an implementation of the Algorithm Smart- Embed which runs
in almost linear time (O((|E | + |V |) log |V |). Note that Smart- Embed has a notion
of time, and this implementation mimics the same by only maintaining the times at
which the merge operations of Smart- Embed take place.

For every edge (u, v) ∈ E , we maintain a variable t (u, v) := c(u, v) the cost of the
edge. Thus t (u, v)’s are static variables. The idea is that the edge (u, v) comes to play
in Smart- Embed precisely at time t = t (u, v). For instance, if the vertices u and v

are required, at time t = t (u, v) the components containing them merge. Moreover
a Steiner vertex v links to a component at time t (u, v) for some terminal u in the
component.

We also maintain a time-variable t (v) for every Steiner vertex v which is not in
any component. t (v) stands for the time at which the Steiner vertex v will hit the
simplex if no other merge steps occur in between. Initially t (v) is set to ∞ (which
for implementation issues can be assumed to be an integer larger than sum of all edge
weights).

We maintain a list L of t (u, v)’s (for all edges (u, v)) and t (v)’s (for Steiner vertices
v). These are precisely the set of times at which the merge steps of Smart- Embed
take place. We remark that the list is not static as t (v)’s can change as the algorithm
progresses. However, we always maintain L sorted in non-decreasing order of times.
The implementation reads the list L in the sorted order and depending on the entry read,
and whenever applicable, performs one of the three merge steps of Smart- Embed.
We show that these merges can all be made to run with an amortized O(log |V |) time
per entry in L , and since there are at most O(|E | + |V |) entries in L , the implemen-
tation runs in almost linear time of O((|E | + |V |) log |V |).

Data structures: We now describe the data structure used for the implementation.
The data structures are similar to disjoint set data structures implemented via linked

123

New geometry-inspired relaxations and algorithms 27

lists (see for example, [5]). These are used in an implementation of Kruskal’s minimum
spanning tree algorithm.

For each vertex v of the graph, we maintain 4 pointers: head - which points to
the connected component containing v, next - which points to the next vertex in v’s
connected component, copy1 and copy2 - these point to two copies of the same vertex,
as we see these will be used by only Steiner vertices and for terminals the two pointers
will always be null.

The components K ∈ K are stored as linked lists of vertices. For every component,
one of the vertices will be an identifier vertex. Each vertex in the component will point
to this identifier vertex via their head pointers. Thus, given a vertex v, the component
which contains it can be found in O(1) time. Initially, we start with |V | linked lists,
one for each vertex. However, there are only |R| (number of terminals) components
corresponding to the terminals; the head pointers of the Steiner vertices are initialized
to null. For each component, we also maintain the size of the component. We also
maintain a pointer tail which points to the last vertex in the list.

For each Steiner vertex v ∈ S, we store two copies of it, call them vA and vB .
These correspond to the two possible components a Steiner vertex could link to. Each
of these copies are linked with the original vertex via their copy pointers. Whenever
a Steiner vertex v is picked in a component, these copies are deleted and the Steiner
vertex is treated like a terminal henceforth.

For every component K , we maintain another linked-list, Steiner(K), which con-
tains the list of all Steiner vertices K is linked to. The list contains only copies of the
Steiner vertices and not the original Steiner vertex. Steiner(K) is stored similarly
as K is stored: a linked list with all Steiner vertices pointing to an identifier vertex
for Steiner(K). The lists K and Steiner(K) are doubly linked to each other for all
K , thus given a Steiner vertex v one can find the components to which it is linked
to in O(1) operations. In fact, we will call this function Link(v) which returns a set
(which we also call Link(v), abusing notation) of (identifiers of) connected compo-
nents linked to v. Link(v) is of at most size two, for all Steiner vertices v. For any
Steiner vertex v, we also maintain a set of edges link- edges(v) which contains the
unique links of v to the various components in Link(v).

To calculate t (v), we maintain a bunch of variables for every Steiner vertex v. We
store a variable z(v) for every Steiner vertex which is supposed to contain the sum-
of-coordinates of v as in Smart- Embed. z(v) is initialized to 0 for every Steiner
vertex. We maintain a variable last(v), which is the last time when a modification
had to be made to z(v). These will correspond to instances when v links to a com-
ponent, or when two components linked to v merge. last(v) is also initialized to
0. We maintain rate(v), which is the rate at which z(v) increases since last(v).
rate(v) will always equal to |Link(v)|. Using last(v),rate(v) and z(v), at any
time t (u, v), one can easily figure out t (v): if rate(v) = 1, t(v) = ∞, otherwise
t (v) = t (u, v)− z(v).

We now describe how Smart- Embed can be implemented using these data struc-
tures. Initially, the set of components K is initialized to be all singleton terminals.
That is, all terminals have their head pointer pointing to themselves. All t (v)’s are
set to ∞. The list L is read in non-decreasing order. If the entry read is t(u,v)
for some edge (u, v) and u and v are not in the same component, then the following

123

28 D. Chakrabarty et al.

is done. If u and v are both terminals, the components corresponding to them are
merged and (u, v) is added to the tree. The set of Steiner vertices Steiner(K (u)) and
Steiner(K (v)) are also merged and for Steiner vertices w linked to both K (u) and
K (v), z(w),last(w),rate(w) and t(w) are modified. If u is a terminal and v is
a vertex not linked to K (u), then either v links to K (u) if |Link(v)| ≤ 1, or a merge
step corresponding to merge step 3 of Smart- Embed takes place. If the entry of L
read corresponds to t (v) for some Steiner vertex v, then it means v has hit the sim-
plex in Smart- Embed. The components in Link(v) are merged and the link-edges
link- edges(v) are added to the tree. The algorithm terminates when there is a single
component formed.

What remains to be described is how to perform the merge steps in O(log |V |)
amortized time per entry of L . It is known that if the sets to be merged are always
disjoint, then this can be done using the disjoint-set data structures. In our case, any
two components are disjoint. However, for two components K1 and K2, the list of
linked Steiner vertices Steiner(K1) and Steiner(K2) might not be disjoint and the
above argument for disjoint data structures fail. Nevertheless, we can show that the
total time taken by the merge steps can be bounded by O(|E | + |V | log |V |). The
main idea is this: if the two sets Steiner(K1) and Steiner(K2) have a “big” enough
union, then the argument for disjoint set data structures can be made to go through.
If the union is not “big”, then the intersection must be “big”. Note that a vertex v

in the intersection of Steiner(K1) and Steiner(K2) is a vertex linked to both K1
and K2. When two such components merge, the costlier of the two link-edges in
link- edges(v) is discarded and this never plays a role in the algorithm subsequently.
Thus, all the operations (which are only O(1)) made on v in this merge operation can
now be charged to the costlier edge in link- edges(v). The algorithm details are in
Algorithm 6: Implementation of Smart- Embed.

What remains to be described in the implementation is the Merge(K1, K2) step.
When two components merge, a number of things needs to be taken care of: firstly,
the two linked lists corresponding to the components need to be merged. Further-
more, the linked lists Steiner(K1) and Steiner(K2) need to be merged and care
needs to be taken that the duplicate copies of the same Steiner vertex should be
removed. Moreover, for precisely these Steiner vertices which were linked to
both K1 and K2, the variables z(v),last(v),rate(v) and t(v) need to be
recalculated.

The merge step is very similar to the weighted-union step used in disjoint-set data
structures. Since our sets (Steiner(K1) and Steiner(K2)) might not be disjoint, we
need a little more care. However, recognizing the duplicates only takes constant times
more time since the recognition requires going through the vertices of one component,
and the weighted union step does precisely that.

We now describe merge step in Algorithm 7.

Proof of Theorem 5.2: It is easy to see that the implementation mimics Algorithm 2
and thus from Theorem 5.1 the tree T returned is within 3/2 times the optimal tree.
We need to argue about the running time.

Note that the sorting of L (storing it as a heap) takes O((|E |+ |V |) log(|V |)) time.
Suppose that for every entry of L , all the operations of Algorithm 6 took O(log |V |)

123

New geometry-inspired relaxations and algorithms 29

Algorithm 6 Implementation of Smart Embed
1. Initialization:
• For every vertex u ∈ V , create linked list containing u with pointers head, next, copy1, copy2.

For terminals i ∈ R, head points to itself, next is initialized to null, and the two copy pointers are
always set to null. We also initialize the tail pointers for each to point to itself.

• For Steiner vertices v ∈ S, head and next both point to null. For each v, create two linked lists
vA, vB which are the two copies of v. The two copy pointers of v point to vA and vB respectively.
All pointers of the copy nodes are set to null.

• For every Steiner vertex v ∈ S, create linked list Link(v) containing two pointers initially set to
null. Also create a list link- edges(v) initially set to null. Initialize variables z(v) to 0, last(v)

to 0, rate(v) to 0 and t(v) to∞.
• Initialize the tree T to be a linked list of edges initialized to an empty list. L be the list of t (u, v)’s

and t (v)’s. Along with the value of the t (), we also store the edge or the Steiner vertex responsible
for it. L can be stored as a heap so that insertion in sorted can be done in O(log |L|) time and the
list can be read out in a non-decreasing order with O(1) time per read.

2. Read the entries of L in non-decreasing order. If the entry read corresponds to a Steiner vertex (that is
t (v) for some Steiner vertex v), then merge the components v is linked to along with the Steiner vertex
v: For K1, K2 ∈ Link(v), Merge(K1, K2, v). Delete the copies vA, vB , delete t (v) from L , and add
the links of v to the tree, that is, append link- edges(v) to T .

3. If the next term in the list L is the edge (u, v), then
(a) If u and v are in the same component, delete t (u, v) from L and proceed to the next entry.
(b) If u ∈ R, v ∈ R, merge the two components containing them and add the edge to the tree:

Merge(K (u), K (v)) and append (u, v) to T .
(c) If u ∈ R, v ∈ S (or vice-versa) and K (u) /∈ Link(v), that is, v is not already linked to the

component containing u
i If K (v) is not null, merge the components containing u and v and add the edge (u, v) to the

tree: Merge(K (u), K (v)) and append (u, v) to T .
ii If |Link(v)| = 2, that is, v is already linked to 2 other components, merge those with the

component containing u and add v to the new component, Merge(K (u), Link(v), v). Add
the edge (u, v) and edges in link- edges(v) to the tree: append (u, v) and link- edges(v)

to T . Also delete the copies of v and delete t(v) from L , as in Step 2.
iii If |Link(v)| ≤ 1, then do the following: append the edge (u, v) to link- edges(v);

append a copy of v (choose arbitrarily if both copies have their heads
pointing to null) to Steiner(K (u)); append K (u) to Link(v); recalculate
z(v) = z(v)+ rate(v) · t (u, v)− last(v)), last(v) = t (u, v) and rate(v) =
rate(v)+ 1. Recalculate t (v) to∞ if (new) rate(v) = 1, or t (v) = t (u, v)− z(v)) and
place it in the correct order in L .

time. Then since the size of L is at most (|E | + |V |) we would be done. In fact, it
is easy to check that all the steps take O(log |V |) time except the merge step. We
now show that the total time taken in merge steps across the run of the algorithm is
O(|E | + |V | log |V |) and we will be done.

When two components K1, K2 are merged, one individual step of merge might
take O(min(|K1|, |K2|)+min(|Steiner(K1)|, |Steiner(K2)|) time which is linear.
However, since the smaller list is always appended to the larger list, an amortized
analysis is possible. Indeed this the most naive implementation of the “union” step in
the disjoint step data structures.

Consider the appending of K1 and K2. Note that every vertex which changes its
head pointer ends up in a component at least twice the size of the original compo-
nent it was in. This is because it was in the smaller component to begin with and the
components are disjoint. Thus, since the maximum size of a component in |V |, each

123

30 D. Chakrabarty et al.

Algorithm 7 Merge(K1, K2)

1. Choose the smaller linked list (which can be determined the size variable) of K1 and K2, say it is K1.
Append K1 to K2 using the tail pointer of K2. Update the tail pointer of K2 to point to the last element
of K1. For every vertex in K1, make the head pointer point to the identifier of K2

2. Choose the smaller linked list among Steiner(K1) and Steiner(K2), say Steiner(K2) and append
Steiner(K2) to Steiner(K1) as in the merge of K1 and K2. Also make the identifier of K2 (which
now starts a list of the merged K1 and K2) point to the identifier of Steiner(K1) (which now starts a
list of the merged Steiner(K1) and Steiner(K2)), and vice-versa. This takes care that the Link(v)

operation is consistent with the merges.
For every vertex v (or rather copy of v) in Steiner(K2) do the following: check if a copy of it exists
in Steiner(K1). This can be done in O(1) pointer chasing: for a vertex vA in Steiner(K2), go to the
original Steiner vertex v and figure out the component containing the other copy. If a copy does not
exist, move the head pointer of v (the copy) to the identifier of Steiner(K1).
If a copy exists, and the original Steiner vertex be v, then this means that v is linked to both K1 and
K2. Remove the copy of v (call it vA) from Steiner(K2) and make the head pointer of vA point to
null. Also remove the costlier edge from link- edges(v). Furthermore, for v recalculate the variables
z(v),last(v),rate(v),t(v) as in last step of the implementation above. The only difference being
rate(v) decreases by 1 (note that |Link(v)| also decreases by 1 too).

vertex changes its head pointer at most O(log |V |) times implying the total number of
head pointer changes for vertices in components throughout the run of the algorithm
is at most O(|V | log |V |).

However the same accounting does not hold for the appending of Steiner(K1) and
Steiner(K2). This is because the two sets need not be disjoint and thus the doubling
argument does not hold. Nevertheless, we can argue the total number of operations
when we append two Steiner lists is also bounded by O(|E | + |V | log |V |). This is
because if the union of the two lists Steiner(K1) and Steiner(K2) is not too large
(say it is smaller than 1.5 times the size of the smaller list), then the intersection will
have to be large (larger than 0.5 times the size of the smaller list). Moreover, for every
Steiner vertex v in the intersection, we remove one edge from link- edges(v) and
this edge never appears again in the algorithm.

Thus, whenever a Steiner vertex changes its head pointer, if it moves into a list
larger than 1.5 times the list it was in, we charge the movement of the pointer to the
vertex. Thus a single Steiner vertex can be charged at most O(log |V |) times. If the
Steiner vertex which changes its head pointer doesn’t move into a list larger than 1.5
times the list it was in, then we charge the movement of head pointers of all the
Steiner vertices in the smaller list equally to the Steiner vertices in the intersection.
Thus by the above observation about intersections being large, every Steiner vertex
in the intersection is charged 2. Moreover, vertices in the intersection perform O(1)

operations re-evaluating the various variables (z(v),last(v),etc), thus the extra 2
can be swept in the O(1). Now, for every Steiner vertex in the intersection, we move
the O(1) charge on it, on to the unique link-edge incident to it that is removed. The
crucial observation is that this link-edge is never brought back on to the algorithm,
and thus the charge on it remains O(1).

Therefore, adding up, the total number of operations for merge operations can be
charged to vertices and edges, each vertex having charge O(log |V |) and each edge
having charge O(1). The theorem follows. �

123

New geometry-inspired relaxations and algorithms 31

Appendix C: Proof of Theorem 6.5

Theorem C.1 (Theorem 6.5) There exists a feasible embedding z of G, c such that
for T1 returned by Algorithm Reduced One- Pass Heuristic, c(T1) ≤

√
2 · γ (z).

Proof Let T1 be the tree returned by Algorithm Reduced One- Pass Heuristic with
X as the set of Steiner vertices in T1. Firstly observe that for any vertex v ∈ S \ X ,
M ST (R ∪ X ∪ v; c1) ≥ M ST (R ∪ X; c1). This is because, a Steiner vertex which
does not help the MST on R ∪ X at an earlier iteration cannot help the MST at a later
iteration; the heaviest edge in the unique path between any two terminals in T1 keeps
on decreasing. Note that we use the fact here that the graph is quasi-bipartite and a
Steiner vertex can connect only to terminals.

As in the proof of Lemma 6.2, let T1 = E0∪ E1. Construct the costs c2 by applying
the local filter w.r.t X . Let E2 be the set of diminished edges and let T2 = E1∪E2. Once
again, one can apply the same proof of Claim 6.3 to show that T2 = M ST (R, c2).
Moreover,

Claim C.2 For every Steiner vertexv ∈ S, M ST (R∪v; c2) ≥ M ST (R; c2) = c2(T2).

Proof Suppose for some Steiner vertex v, M ST (R ∪ v; c2) < M ST (R; c2). Thus
there exist a set of edges A, each of the form (v, j) where j is a terminal; and a set of
terminal–terminal edges in E(T2) so that c2(A) = c1(A) < c2(B); and T2 \ B ∪ A is
a tree spanning R∪v. Now, among the edges in B, some are diminished and some are
in E(T1); and each diminished edge e corresponds to two edges e1 and e2 in E(T1)

one of which, say e1, has c1(e1) ≥ c2(e). Thus from B, we get a subset of edges
B ′ ⊆ E(T1) with c1(B ′) ≥ c2(B). Moreover, note that T1 \ B ′ ∪ A is a valid spanning
tree of R ∪ X ∪ v. This implies M ST (R ∪ X ∪ v; c1) < M ST (R ∪ X; c1), which is
a contradiction. �

Thus, in the quasi-bipartite graph G with costs c2, T2 is an MST spanning the
terminals and the addition of no Steiner vertex improves it. So, by Theorem 4.1, we
know that running Embed on (G; c2) will return a feasible dual z with c2(T2) = γ (z).
Since c2 is only reduced, this embedding is a feasible embedding of (G, c) as well.
The proof ends by noting that c(T1) ≤

√
2c2(T2) which is exactly as in the proof of

Lemma 6.2. �

References

1. Agarwal, A., Charikar, M.: On the advantage of network coding for improving network throughput.
In: Proceedings of the IEEE Information Theory Workshop (2004)

2. Calinescu, G., Karloff, H.J., Rabani, Y.: An improved algorithm for the MULTIWAY CUT. Proceedings
of Symposium on Theory of Computation (STOC) (1998)

3. Chekuri, C., Gupta, A., Kumar, A.: On a bidirected relaxation for the MULTIWAY CUT problem.
Discret. Appl. Math. 150(1-3), 67–79 (2005)

4. Chlebik, M., Chlebikova, J.: Approximation hardness of the steiner tree problem on graphs. Proceed-
ings of Scandinavian Workshop on Algorithm Theory (2002)

5. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn, MIT Press and
McGraw-Hill, Boston (2001)

6. Chopra, S., Rao, M.R.: The Steiner tree problem I: formulations, compositions and extension of
facets. Math. Program. 64, 209–229 (1994)

123

32 D. Chakrabarty et al.

7. Chopra, S., Rao, M.R.: The Steiner tree problem II: properties and classes of facets. Math.
Program. 64, 231–246 (1994)

8. Courant, R., Robbins, H., Stewart, I.: What Is Mathematics? An Elementary Approach to Ideas and
Methods. Oxford Papebacks (1996)

9. Edmonds, J.: Optimum branchings. J. Res. Natl. Bureau Stand. Sect. B 71, 233–240 (1967)
10. Goemans, M., Myung, Y.: A catalog of Steiner tree formulations. Networks 23, 19–23 (1993)
11. Goemans, M.: Personal communication with third author. (1996)
12. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfi-

ability problems using semidefinite programming. J. ACM. pp. 1115–1145, (1995)
13. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem, vol. 53 of Annals of Discrete

Mathematics. North-Holland, Amsterdam (1992)
14. Ivanov, A.O., Tuzhilin, A.A.: The Steiner Problem and its Generalizations. CRC Press, BocaRaton

(1994)
15. Jain, K., Vazirani, V.V.: Equitable cost allocations via primal-dual-type algorithms. In: Proceedings of

33rd ACM Symposium on Theory of Computing (2002)
16. Karger, D., Klein, P., Stein, C., Thorup, M., Young, N.: Rounding algorithms for a geometric embedding

of minimum multiway cut. Math. Oper. Res. 29(3), 436–461 (2004)
17. Könemann, J., Pritchard, D., Tan, K.: A partition based relaxation for Steiner trees. Manuscript (2007)
18. Rizzi, R.: On Rajagopalan and Vazirani’s 3/2-approximation bound for the iterated 1-Steiner heuris-

tic. Inf. Process. Lett. 86, 335–338 (2003)
19. Rajagopalan, S., Vazirani, V.: On the bidirected cut relaxation for the metric Steiner tree problem.

In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete algorithms (1999)
20. Robins, G., Zelikovsky, A.: Tighter bounds for graph Steiner tree approximation. SIAM J. Discret.

Math. 19, 122–134 (2005)
21. Vazirani, V.V.: Approximation Algorithms, 2nd edn. Springer, UK (2001)
22. Wong, R.T.: A dual ascent approach for Steiner trees on a directed graph. Math. Program. 28, 271–

287 (1984)

123

	New geometry-inspired relaxations and algorithms for the metric Steiner tree problem
	Abstract
	1 Introduction
	1.1 Related work

	2 Preliminaries
	2.1 The bidirected cut relaxation

	3 A geometric lower bound and its consequences
	3.1 A lower bound on OPT
	3.2 Connections to the bidirected cut relaxation
	3.3 A stronger LP relaxation
	3.4 Primal-Dual schema with the geometric dual

	4 The Embed algorithm
	5 A 32-factor approximation algorithm
	6 A sqrt2 factor approximation algorithm
	7 A 43 factor approximation algorithm
	References

