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Abstract Many combinatorial constraints over continuous variables such as SOS1
and SOS2 constraints can be interpreted as disjunctive constraints that restrict the
variables to lie in the union of a finite number of specially structured polyhedra.
Known mixed integer binary formulations for these constraints have a number of
binary variables and extra constraints linear in the number of polyhedra. We give suf-
ficient conditions for constructing formulations for these constraints with a number of
binary variables and extra constraints logarithmic in the number of polyhedra. Using
these conditions we introduce mixed integer binary formulations for SOS1 and SOS2
constraints that have a number of binary variables and extra constraints logarithmic in
the number of continuous variables. We also introduce the first mixed integer binary
formulations for piecewise linear functions of one and two variables that use a number
of binary variables and extra constraints logarithmic in the number of linear pieces of
the functions. We prove that the new formulations for piecewise linear functions have
favorable tightness properties and present computational results showing that they can
significantly outperform other mixed integer binary formulations.
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50 J. P. Vielma, G. L. Nemhauser

1 Introduction

Since the 1957 paper by Dantzig [15], the issue of modeling problems as mixed inte-
ger programs (MIPs) has been extensively studied. A study of the problems that can
be modeled as MIPs began with Meyer [35–38] and was continued by Jeroslow and
Lowe [21,23–25,31].

An important question in the area of mixed integer programming (MIP) is charac-
terizing when a disjunctive constraint of the form

z ∈
⋃

i∈I

Pi ⊂ R
n, (1)

where Pi = {z ∈ R
n : Ai z ≤ bi } and I is a finite index set, can be modeled as a

binary integer program. Jeroslow and Lowe [21,24,31] showed that a necessary and
sufficient condition is for {Pi }i∈I to be a finite family of polyhedra with a common
recession cone. That is, the directions of unboundedness of the polyheda given by
{z ∈ R

n : Ai z ≤ 0} for i ∈ I are all equal. Using results from disjunctive program-
ming [3,4,6,9,20,41] they showed that, in this case, constraint (1) can be simply
modeled as

Ai zi ≤ xi b
i ∀i ∈ I, z =

∑

i∈I

zi ,
∑

i∈I

xi = 1, xi ∈ {0, 1} ∀i ∈ I. (2)

The possibility of reducing the number of continuous variables in these models has
been studied in [5,10,22], but the number of binary variables and extra constraints
needed to model (1) has received little attention. However, it has been observed that a
careful construction can yield a much smaller model than a naive approach. Perhaps
the simplest example comes from the equivalence between general integer and binary
integer programming. The requirement x ∈ [0, u]∩Z can be written in the form (1) by
letting Pi := {i} for all i in I := [0, u]∩Z which, after some algebraic simplifications,
yields a representation of the form (2) given by

z =
∑

i∈I

i xi ,
∑

i∈I

xi = 1, xi ∈ {0, 1} ∀i ∈ I. (3)

This formulation has a number of binary variables that is linear in |I | and can be
replaced by

z =
�log2 u�∑

i=0

2i xi , z ≤ u, xi ∈ {0, 1} ∀i ∈ {0, . . . , �log2 u�}. (4)

In contrast to (3) and (4) has a number of binary variables that is logarithmic in |I |.
Another example of a model with a logarithmic number of variables is the work in
[28], which also considers polytopes of the form Pi := {i} to model different choices
from an abstract set I . This work is used in [29] to model edge coloring problems by
using I = {possible colors}.

Although (4) appears in the mathematical programming literature as early as [48],
and the possibility of modeling with a logarithmic number of binary variables and a
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Modeling disjunctive constraints 51

linear number of constraints is studied in the theory of disjunctive programming [4]
and in [19], we are not aware of any formulation with a logarithmic number of binary
variables and extra constraints for the case in which each polyhedron Pi contains more
than one point.

The main objective of this work is to show that some well known classes of con-
straints of the form (1) can be modeled with a logarithmic number of binary variables
and extra constraints. Although modeling with fewer binary variables and constraints
might seem advantageous, a smaller formulation is not necessarily a better formula-
tion. More constraints might provide a tighter LP relaxation and more variables might
do the same by exploiting the favorable properties of projection [7]. For this reason,
we will also show that under some conditions our new formulations are as tight as
any other mixed integer formulation, and we empirically show that they can provide
a significant computational advantage.

The paper is organized as follows. In Sect. 2, we study the modeling of a class of
hard combinatorial constraints. In particular, we introduce the first formulations for
SOS1 and SOS2 constraints that use only a logarithmic number of binary variables
and extra constraints. In Sect. 3, we relate the modeling with a logarithmic number of
binary variables to branching and we introduce sufficient conditions for these models
to exist. We then show that for a broad class of problems the new formulations are
as tight as any other mixed integer programming formulation. In Sect. 4, we use the
sufficient conditions to present a new formulation for non-separable piecewise linear
functions of one and two variables that uses only a logarithmic number of binary
variables and extra constraints. In Sect. 5, we study the extension of the formulations
from Sects. 2 and (3) to a slightly different class of constraints and study the strength
of these formulations. In Sect. 6, we show that the new models for piecewise linear
functions of one and two variables can perform significantly better than the standard
binary models. Section 7 gives some conclusions.

2 Modeling a class of hard combinatorial constraints

In this section, we study a class of constraints of the form (1) in which the polyhedra
Pi have the simple structure of only allowing some subsets of variables to be non-zero.
Specifically, we study constraints over a vector of continuous variables λ indexed by
a finite set J that are of the form

λ ∈
⋃

i∈I

Q(Si ) ⊂ �J , (5)

where I is a finite set such that |I | is a power of two, �J := {λ ∈ R
|J |
+ : ∑

j∈J λ j ≤ 1}
is the |J |-dimensional simplex in R

|J |, Si ⊂ J for each i ∈ I and

Q(Si ) =
{
λ ∈ �J : λ j=0 ∀ j /∈ Si

}
. (6)

Furthermore, without loss of generality we assume that
⋃

i∈I Si = J . Since Q(Si ) is
a face of �J we call �J the ground set of the constraint. Except for Theorem 5, our
results easily extend to the case in which the simplex is replaced by a box in R

|J |
+ , but
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52 J. P. Vielma, G. L. Nemhauser

the restriction to �J greatly simplifies the presentation. We will study this extension
in Sect. 5. We finally note that the requirement of |I | being a power of two is without
loss of generality as we can always add 2	log2 |I |
 − |I | polyhedra Q(Si ) with Si = ∅
to (5). We study the implications of this completion on formulation sizes in Sect. 3.

Disjunctive constraint (5) includes SOS1 and SOS2 constraints [8] over continuous
variables in �J . SOS1 constraints on λ ∈ R

n+ allow at most one of the λ variables to
be non-zero which can be modeled by letting I = J = {1, . . . , n} and Si = {i} for
each i ∈ I . SOS2 constraints on (λ j )

n
j=0 ∈ R

n+1+ allow at most two λ variables to be
non-zero and have the extra requirement that if two variables are non-zero their indices
must be adjacent. This can be modeled by letting I = {1, . . . , n}, J = {0, . . . , n} and
Si = {i − 1, i} for each i ∈ I .

Mixed integer binary models for SOS1 and SOS2 constraints have been known for
many years [16,33], and some recent research has focused on branch-and-cut algo-
rithms that do not use binary variables [18,26,27,34]. However, the incentive of being
able to use state of the art MIP solvers (see for example the discussion in Sect. 5 of
[46]) makes binary models for these constraints very attractive [14,32,39,40].

We first review a formulation for (5) with a linear number of binary variables and
a formulation with a logarithmic number of binary variables and a linear number of
extra constraints. We then study how to obtain a formulation with a logarithmic num-
ber of variables and a logarithmic number of extra constraints and show that this can
be achieved for SOS1 and SOS2 constraints.

The most direct way of formulating (5) as an integer programming problem is by
assigning a binary variable for each set Q(Si ) and using formulation (2). After some
algebraic simplifications this yields the formulation of (5) given by

λ ∈ �J , λ j ≤
∑

i∈I ( j)

xi ∀ j ∈ J,
∑

i∈I

xi = 1, xi ∈ {0, 1} ∀i ∈ I (7)

where I ( j) = {i ∈ I : j ∈ Si }. This gives a formulation with |I | binary variables
and |J | + 1 extra constraints and yields standard formulations for SOS1 and SOS2
constraints. (We consider the inequalities of ground set �J as the original constraints
and disregard the bounds on x .)

The following theorem shows that by using techniques from [19] we can obtain
a formulation with log2 |I | binary variables and |I | extra constraints. Let L(r) :=
{1, . . . , log2 r}.
Theorem 1 Let B : I → {0, 1}log2 |I | be any bijective function and σ(B) be the
support of vector B. Then

∑

j /∈Si

λ j ≤
∑

l /∈σ(B(i))

xl

+
∑

l∈σ(B(i))

(1 − xl) ∀i ∈ I, λ ∈ �J , xl ∈ {0, 1} ∀l ∈ L(|I |) (8)

is a valid formulation for (5).
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Modeling disjunctive constraints 53

Proof The formulation simply fixes λ j to zero for all j /∈ Si when x takes the value
B(i). �

The following example illustrates formulation (8) for SOS1 and SOS2 constraints.

Example 1 Let J = {1, . . . , 4}, (λ j )
4
j=1 ∈ �J be SOS1 constrained and let B∗(1) =

(1, 1)T , B∗(2) = (1, 0)T , B∗(3) = (0, 1)T and B∗(4) = (0, 0)T. Formulation (8) for
this case with B = B∗ is

λ∈�J , x1, x2 ∈ {0, 1}, λ2 + λ3 + λ4 ≤2 − x1 − x2, λ1 + λ3 + λ4 ≤1 − x1 + x2,

λ1 + λ2 + λ4 ≤ 1 + x1 − x2, λ1 + λ2 + λ3 ≤ x1 + x2.

Let J = {0, . . . , 4} and (λ j )
4
j=0 ∈ �J be SOS2 constrained. Formulation (8) for

this case with B = B∗ is

λ∈�J , x1, x2 ∈ {0, 1}, λ2 + λ3 + λ4 ≤2 − x1 − x2, λ0 + λ3 + λ4 ≤1 − x1 + x2,

λ0 + λ1 + λ4 ≤ 1 + x1 − x2, λ0 + λ1 + λ2 ≤ x1 + x2.

For SOS1 constraints, for which |I ( j)| = 1 for all j ∈ J , we obtain the following
alternative formulation of (5) which has log2 |I | binary variables and 2 log2 |I | extra
constraints.

Theorem 2 Let B : I → {0, 1}log2 |I | be any bijective function. Then

λ ∈ �J ,
∑

j∈J+(l,B)

λ j ≤ xl ,

∑

j∈J 0(l,B)

λ j ≤ (1 − xl) ∀ j ∈ J, xl ∈ {0, 1} ∀l ∈ L(|I |), (9)

where J+(l, B) = { j ∈ J : ∀i ∈ I ( j) l ∈ σ(B(i))} and J 0(l, B) = { j ∈ J : ∀i ∈
I ( j) l /∈ σ(B(i))}, is a valid formulation for SOS1 constraints.

Proof For SOS1 constraints we have I = J = {1, . . . , n} and S j = { j} for each
i ∈ I . This implies that I ( j) = { j} and hence J+(l, B) = { j ∈ J : l ∈ σ(B( j))} and
J 0(l, B) = { j ∈ J : l /∈ σ(B( j))}. Then, in formulation (9), we have that λ j = 0 for
all x �= B( j). �

The following example illustrates formulation (9) for SOS1 constraints.

Example 2 Let J = {1, . . . , 4}, (λ j )
4
j=1 ∈ �J be SOS1 constrained. Formulation (9)

for this case with B = B∗ from Example 1 is

λ ∈ �J , x1, x2 ∈ {0, 1}, λ1 + λ2 ≤ x1, λ3 + λ4 ≤ 1 − x1,

λ1 + λ3 ≤ x2, λ2 + λ4 ≤ 1 − x2.

123



54 J. P. Vielma, G. L. Nemhauser

We do not know how to give meaning to the binary variables in formulation (8)
because fixing them individually has little effect on the λ variables. For example fixing
x1 = 1 and letting x2 be free in either of the formulations of Example 1 has no effect
on the λ variables. In contrast fixing xl = 1 individually in (9) has the precise effect
of fixing to zero all λ j ’s for which B(i)l = 0 for all i such that j ∈ Si . Analogously,
fixing xl = 0 individually in (9) fixes to zero all λ j ’s for which B(i)l = 1 for all i
such that j ∈ Si . Fixing the binary variables then gives a way of enforcing λ ∈ Q(Si )

by systematically fixing certain λ variables to zero.
Formulation 9 is valid for SOS1 constraints independent of the choice of B. In

contrast, for SOS2 constraints, where |I ( j)| = 2 for some j ∈ J , formulation (9) can
be invalid for some choices of B. This is illustrated by the following example.

Example 3 Let J = {0, . . . , 4} and (λ j )
4
j=0 ∈ �J be SOS2 constrained. Formulation

(9) for this case with B = B∗ is

λ ∈ �J , x1, x2 ∈ {0, 1}, λ0 + λ1 ≤ x1, λ3 + λ4 ≤ 1 − x1,

λ0 ≤ x2, λ4 ≤ 1 − x2

which has the feasible solution λ0 = 1/2, λ2 = 1/2, λ1 = λ3 = λ4 = 0, x1 = x2 = 1
that does not comply with SOS2 constraints. However, the formulation can be made
valid by adding constraints

λ2 ≤ x1 + x2, λ2 ≤ 2 − x1 − x2. (10)

For any B we can always correct formulation (9) for SOS2 constraints by adding
a number of extra linear inequalities, but with a careful selection of B the validity of
the model can be preserved without the need for additional constraints.

Definition 1 (SOS2 compatible function) A function B : {1, . . . , n} → {0, 1}log2(n)

is compatible with an SOS2 constraint on (λ j )
n
j=0 ∈ R

n+1+ if it is bijective and for all
i ∈ {1, . . . , n − 1} the vectors B(i) and B(i + 1) differ in at most one component.

Theorem 3 If B is an SOS2 compatible function then (9) is valid for SOS2 constraints.

Proof For SOS2 constraints we have that I = {1, . . . , n}, J = {0, . . . , n} and Si =
{i − 1, i} for each i ∈ I . This implies that I (0) = {1} and I (n) = {n}. Then, in a
similar way to the proof of Theorem 2 for SOS1 constraints, we have that for j ∈ {0, n}
formulation (9) imposes λ j = 0 for all x �= B( j).

In contrast, for j ∈ J\{0, n} we have I ( j) = { j, j + 1} and hence J+(l, B) =
{ j ∈ J : l ∈ σ(B( j)) ∩ σ(B( j + 1))} and J 0(l, B) = { j ∈ J : l /∈ σ(B( j)) and l /∈
σ(B( j + 1))}. Using the fact that B is SOS2 compatible we have that, in formulation
(9), λ j = 0 for all x /∈ {B( j), B( j + 1)}. �

The following example illustrates how an SOS2 compatible function yields a valid
formulation.
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Example 3 continued Let B0(1) = (1, 0)T , B0(2) = (1, 1)T , B0(3) = (0, 1)T and
B0(4) = (0, 0)T . Formulation (9) with B = B0 for the same SOS2 constraints is

λ ∈ �J , x1, x2 ∈ {0, 1}
λ0 + λ1 ≤ x1, λ3 + λ4 ≤ (1 − x1) (11)

λ2 ≤ x2, λ0 + λ4 ≤ (1 − x2). (12)

Finally, the following lemma shows that an SOS2 compatible function can always
be constructed.

Lemma 1 For any n ∈ Z+ there exists a compatible function for SOS2 constraints
on (λ)n

j=0.

Proof We construct an SOS2 compatible function B̄ : {1, . . . , 2r } → {0, 1}r induc-
tively on r . The case r = 1 follows immediately. Now assume that we have an SOS2
compatible function B̄ : {1, . . . , 2r } → {0, 1}r . We define B̃ : {1, . . . , 2r+1} →
{0, 1}r+1 as

B̃(i)l :=
{

B̄(i)l if i ≤ 2r

B̄(2r+1 − i + 1)l o.w.
∀l ∈{1, . . . , r}, B̃(i)r+1 :=

{
1 if i ≤2r

0 o.w.
,

which is also SOS2 compatible. �
The function from the proof of Lemma 1 is not the only possible SOS2 compatible

function. In fact, Definition 1 is equivalent to requiring (B(i))n
i=1 to be a reflected

binary or Gray code [49] and the construction from Lemma 1 corresponds to a version
of this code that is usually called the standard reflected Gray code. Definition 1 is also
equivalent to requiring (B(i))n

i=1 to be a Hamiltonian path on the hypercube.

3 Branching and logarithmic size formulations

We have seen that fixing the binary variables of (9) provides a systematic procedure
for enforcing λ ∈ Q(Si ). In this section, we exploit the relation between this proce-
dure and specialized branching schemes to extend the formulation to a more general
framework.

We can identify each vector in {0, 1}log2 |I | with a leaf in a binary tree with log2 |I |
levels such that each component corresponds to a level and the value of that compo-
nent indicates the selected branch in that level. Then, using function B we can identify
each set Q(Si ) with a leaf in the binary tree and we can interpret each of the log2 |I |
variables as the execution of a branching scheme on sets Q(Si ). The formulations in
Example 3 illustrate this idea.

In formulation (9) with B = B0 the branching scheme associated with x1 sets
λ0 = λ1 = 0 when x1 = 0 and λ3 = λ4 = 0 when x1 = 1, which is equivalent to
the traditional SOS2 constraint branching of [8] whose dichotomy is fixing to zero
variables to the “left of” (smaller than) a certain index in one branch and to the “right”
(greater) in the other. In contrast, the scheme associated with x2 sets λ2 = 0 when
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(a) (b)

Fig. 1 Two level binary trees for Example 3

x2 = 0 and λ0 = λ4 = 0 when x2 = 1, which is different from the traditional
branching as its dichotomy can be interpreted as fixing variables in the “center” and
on the “sides”, respectively. If we use function B∗ instead we recover the traditional
branching. The drawback of the B∗ scheme is that the second level branching cannot
be implemented independently of the first level branching using linear inequalities.
For B0 the branch alternatives associated with x2 are implemented by (12), which
only includes binary variable x2. In contrast, for B∗ one of the branching alternatives
requires additional constraints (10) which involves both x1 and x2. The binary tree
associated with the model for B∗ and B0 are shown in Fig. 1, where the arc labels
indicate the values taken by the binary variables and the indices of the λ variables
which are fixed to zero because of this and the node labels indicate the indices of the
λ variables that are set to zero because of the cumulative effect of the binary variable
fixing. The main difference in the trees is that for B = B∗ the effect on the λ variables
of fixing x2 to a particular value depends on the value previously assigned to x1 while
for B = B0 this effect is independent of the previous assignment to x1.

This example illustrates that a sufficient condition for modeling (5) with a loga-
rithmic number of binary variables and extra constraints is to have a binary branching
scheme for λ ∈ ⋃

i∈I Q(Si ) with a logarithmic number of dichotomies and for which
each dichotomy can be implemented independently. This condition is formalized in
the following definition.

Definition 2 (Independent branching scheme) {Lk, Rk}d
k=1 with Lk, Rk ⊂ J is an

independent branching scheme of depth d for disjunctive constraint (5) if

⋃

i∈I

Q(Si ) =
d⋂

k=1

(
Q(Lk) ∪ Q(Rk)

)
. (13)

This definition can then be used in the following theorem and immediately gives
a sufficient condition for modeling with a logarithmic number of variables and
constraints.
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Theorem 4 Let {Q(Si )}i∈I be a finite family of polyhedra of the form (6) and

{Lk, Rk}log2 |I |
k=1 be an independent branching scheme for λ ∈ ⋃

i∈I Q(Si ). Then

λ ∈ �J ,
∑

j /∈Lk

λ j ≤ xk,
∑

j /∈Rk

λ j ≤ (1 − xk), xk ∈ {0, 1} ∀k ∈ L(|I |) (14)

is a valid formulation for (5) with log2 |I | binary variables and 2 log2 |I | extra
constraints.

Formulation (9) with B = B0 in Example 3 illustrates how an SOS2 compatible
function induces an independent branching scheme for SOS2 constraints. In general,
given an SOS2 compatible function B : {1, . . . , n} → {0, 1}log2 n the induced indepen-
dent branching is given by Lk = J\J+(k, B), Rk = J\J 0(l, B) for all k ∈ {1, . . . , n}.

Formulation (14) in Theorem 4 can be interpreted as a way of implementing a spe-
cialized branching scheme using binary variables. Similar techniques for implement-
ing specialized branching schemes have been given in [1] and [42], but the resulting
models require at least a linear number of binary variables. To the best of our knowl-
edge the first independent branching schemes of logarithmic depth for the case in
which polytopes Q(Si ) contain more than one point are the ones for SOS1 constraints
from Theorem 2 and for SOS2 constraints induced by an SOS2 compatible function.

Formulation (14) can be obtained by algebraic simplifications from formulation
(2) of (5) rewritten as the conjunction of two-term polyhedral disjunctions. Both the
simplifications and the rewrite can result in a significant reduction in the tightness of
the linear programming relaxation of (14) [4,5,10,22]. Fortunately, as the following
theorem shows, the restriction to �J makes (14) as tight as any other mixed integer
formulation for (5).

Theorem 5 Let Pλ and Qλ be the projection onto the λ variables of the LP relaxation
of formulation (14) and of any other mixed integer programming formulation of (5),
respectively. Then Pλ = conv

(⋃
i∈I Q(Si )

)
and hence Pλ ⊆ Qλ.

Proof Without loss of generality
⋃

i∈I Si = J and hence for every j ∈ J there is a
i ∈ I such that j ∈ Si . Using this, it follows that Pλ = �J = conv

(⋃
i∈I Q(Si )

)
.

The relation with other mixed integer programming formulations follows directly from
Theorem 3.1 of [24]. �

Theorem 5 might not be true if we do not use ground set �J , but this restriction
is not too severe as it includes a popular way of modeling piecewise linear functions.
We explore this modeling in Sect. 4 and the potential loss of Theorem 5 when using a
different ground set in Sect. 5.

We finally study the effect on formulation (14) of dropping the assumption that |I |
is a power of two. As mentioned in Sect. 2, if |I | is not a power of two we can complete
I to an index set of size 2	log2 |I |
 without changing (5). If we now construct a formu-
lation that is of logarithmic size with respect to the completed index set we obtain a
formulation that is still of logarithmic order with respect to the original index set. For
instance, if I is not a power of two we can complete it and apply Theorem 1 to obtain a
formulation with 	log2 |I |
 < log2 |I |+ 1 binary variables and 2	log2 |I |
 < 2|I | extra
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58 J. P. Vielma, G. L. Nemhauser

constraints with respect to the original index set I . This is illustrated in the following
example.

Example 4 Let J = {1, . . . , 3}, (λ j )
3
j=1 ∈ �J be SOS1 constrained. In this case

I = {1, . . . , 3} and Si = {i} for all i ∈ I . We can complete I so that |I | is a power
of two by letting I = {1, . . . , 4}. We then set S4 = ∅ to avoid adding new feasible
solutions. Using B = B∗ from Example 1 formulation (8) for the completed I is

λ ∈ �J , x1, x2 ∈ {0, 1}, λ2 + λ3 ≤ 2 − x1 − x2, λ1 + λ3 ≤ 1 − x1 + x2,

λ1 + λ2 ≤ 1 + x1 − x2, λ1 + λ2 + λ3 ≤ x1 + x2.

We can alternatively think of this formulation as being obtained by setting λ4 = 0 in
the formulation for SOS1 constraints over (λ j )

4
j=1 ∈ �J given in Example 1.

Formulation (14) deals with the requirement that |I | is a power of two somewhat
differently. It is clear that (14) does not have this requirement explicitly as it only
needs the existence of an independent branching scheme. Fortunately, if a family of
constraints has an independent branching scheme when |I | is a power of two we can
easily construct an independent branching scheme for the cases in which |I | is not a
power of two. This is illustrated in the following example.

Example 5 Let {Lk, Rk}	log2 n

k=1 be an independent branching scheme for an SOS2 con-

straint on (λ j )
n
j=0 ∈ �J for n := 2	log2 n
 and J = {0, . . . , n}. Then {Lk, Rk}	log2 n


k=1
defined by

Lk := Lk ∩ {0, . . . , n}, Rk := Rk ∩ {0, . . . , n} ∀k ∈ {1, . . . , 	log2 n
} (15)

is an independent branching scheme for an SOS2 constraint on (λ j )
n
j=0 ∈ �J for

J = {0, . . . , n}.
For example, for n = 3 and n = 4, SOS2 compatible function B0 from Exam-

ple 3 yields the independent branching scheme for SOS2 on (λ j )
4
j=0 ∈ �J given by

L1 := {2, 3, 4}, R1 := {0, 1, 2}, L2 := {0, 1, 3, 4} and R2 := {1, 2, 3}. By restrict-
ing this scheme to {0, . . . , 3} we get the independent branching scheme for SOS2 on
(λ j )

3
j=0 ∈ �J given by L1 := {2, 3}, R1 := {0, 1, 2}, L2 := {0, 1, 3} and R2 :=

{1, 2, 3}. This scheme yields the following formulation of SOS2 on (λ j )
3
j=0 ∈ �J.

λ ∈ �J , x1, x2 ∈ {0, 1}
λ0 + λ1 ≤ x1, λ3 ≤ (1 − x1)

λ2 ≤ x2, λ0 ≤ (1 − x2).

Note that this formulation can also be obtained by completing the constraint to I =
{1, . . . , 4} by adding S4 = ∅ and using formulation (9) for B = B0 from Example 3.
We could show the validity of this procedure without referring to independent branch-
ing schemes by proving an analog to Theorem 3 for the case in which |I | is not a power
of two. A third alternative is to again think of this formulation as being obtained by
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Fig. 2 Triangulations. a
Example of “Union Jack”
Triangulation, b Triangle
selecting branching

(a) (b)

setting λ4 = 0 in the formulation for SOS2 constraints over (λ j )
4
j=0 ∈ �J given in

the continuation of Example 3.

4 Modeling nonseparable piecewise linear functions

In this section, we use Theorem 4 to construct a model for non-separable piecewise
linear functions of two variables that use a number of binary variables and extra con-
straints logarithmic in the number of linear pieces of the functions. We also extend
this formulation to functions of n variables, in which case the formulation is slightly
larger, but still asymptotically logarithmic for fixed n.

Imposing SOS2 constraints on (λ j )
n
j=0 ∈ �J with J = {0, . . . , n} is a popular

way of modeling a one variable piecewise-linear function which is linear in n different
intervals [26,27,30,34,44]. This approach has been extended to non-separable piece-
wise linear functions in [30,34,44,50]. For functions of two variables this approach
can be described as follows.

We assume that for an even integer w we have a continuous function f : [0, w]2 →
R which we want to approximate by a piecewise linear function. A common approach
is to partition [0, w]2 into a number of triangles and approximate f with a piecewise
linear function that is linear in each triangle. One possible triangulation of [0, w]2

is the J1 or “Union Jack” triangulation [43] which is depicted in Fig. 2a for w = 4.
The J1 triangulation of [0, w]2 for any even w is obtained by adding copies of the 8
triangles shaded gray in Fig. 2a. This yields a triangulation with 2w2 triangles.

We use this triangulation to approximate f with a piecewise linear function that we
denote by g. Let I be the set of all the triangles of the J1 triangulation of [0, w]2 and
let Si be the vertices of triangle i . For example, in Fig. 2a, the vertices of the triangle
labeled T are ST := {(0, 0), (1, 0), (1, 1)}. A valid model for g(y) [30,34,44] is

∑

j∈J

λ j = 1, y =
∑

j∈J

v jλ j , g(y) =
∑

j∈J

f (v j )λ j (16a)

λ ∈
⋃

i∈I

Q(Si ) ⊂ �J , (16b)
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where J := {0, . . . , w}2, v j = j for j ∈ J . This model becomes a traditional model
for one variable piecewise linear functions when we restrict it to one coordinate of
[0, w]2 by setting y2 = 0 and λ(s,t) = 0 for all 0 ≤ s ≤ w, 1 ≤ t ≤ w.

To obtain a mixed integer formulation of (16) with a logarithmic number of binary
variables and extra constraints it suffices to construct an independent binary branch-
ing scheme of logarithmic depth for (16b) and use formulation (14). Binary branching
schemes for (16b) with a similar triangulation have been developed in [44] and [34],
but they are either not independent or have too many dichotomies. We adapt some of
the ideas of these branching schemes to develop an independent branching scheme for
the two-dimensional J1 triangulation. Our independent branching scheme will basi-
cally select a triangle by forbidding the use of vertices in J . We divide this selection
into two phases. We first select the square in the grid induced by the triangulation and
we then select one of the two triangles inside this square.

To implement the first branching phase we use the observation made in [34,44] that
selecting a square can be achieved by applying SOS2 branching to each component.
To make this type of branching independent it then suffices to use the independent
SOS2 branching induced by an SOS2 compatible function. This results in the set of
constraints

w∑

v2=0

∑

v1∈J+
2 (l,B,w)

λ(v1,v2) ≤ x1
l ,

w∑

v2=0

∑

v1∈J 0
2 (l,B,w)

λ(v1,v2) ≤ 1 − x1
l ,

x1
l ∈ {0, 1} ∀l ∈ L(w), (17a)
w∑

v1=0

∑

v2∈J+
2 (l,B,w)

λ(v1,v2) ≤ x2
l ,

w∑

v1=0

∑

v2∈J 0
2 (l,B,w)

λ(v1,v2) ≤ 1 − x2
l ,

x2
l ∈ {0, 1} ∀l ∈ L(w), (17b)

where B is an SOS2 compatible function and J+
2 (l, B, w), J 0

2 (l, B, w) are the special-
izations of J+(l, B), J 0(l, B) for SOS2 constraints on (λ j )

w
j=0. Constraints (17a) and

binary variables x1
l implement the independent SOS2 branching for the first coordinate

and (17b) and binary variables x2
l do the same for the second one.

To implement the second phase we use the branching scheme depicted in Fig. 2b for
the case w = 4. The dichotomy of this scheme is to select the triangles colored white
in one branch and the ones colored gray in the other. For general w, this translates to
forbidding the vertices (v1, v2) with v1 even and v2 odd in one branch (square vertices
in the figure) and forbidding the vertices (v1, v2) with v1 odd and v2 even in the other
(diamond vertices in the figure). This branching scheme selects exactly one triangle
of every square in each branch and induces the set of constraints

∑

(v1,v2)∈L

λ(v1,v2) ≤ y0,
∑

(v1,v2)∈R

λ(v1,v2) ≤ 1 − y0, y0 ∈ {0, 1}, (18)

where L = {(v1, v2) ∈ J : v1 is even and v2is odd} and R = {(v1, v2) ∈ J : v1 is
odd and v2 is even}. When w is a power of two the resulting formulation has exactly

123



Modeling disjunctive constraints 61

Fig. 3 Partial B&B tree for
Example 6

log2 T binary variables and 2 log2 T extra constraints where T is the number of tri-
angles in the triangulation. We illustrate the formulation with the following example.

Example 6 Constraints (17) and (18) for w = 2 are

λ(0,0) + λ(0,1) + λ(0,2) ≤ x(1,1), λ(2,0) + λ(2,1) + λ(2,2) ≤ 1 − x(1,1)

λ(0,0) + λ(1,0) + λ(2,0) ≤ x(2,1), λ(0,2) + λ(1,2) + λ(2,2) ≤ 1 − x(2,1)

λ(0,1) + λ(2,1) ≤ x0, λ(1,0) + λ(1,2) ≤ 1 − x0.

A portion of the associated branching scheme is shown in Fig. 3. The shaded trian-
gles inside the nodes indicates the triangles forbidden by the corresponding assignment
of the binary variables.

The restriction to the first coordinate of [0, w]2 yields a logarithmic formulation
for piecewise linear functions of one variable that only uses one of the SOS2 branch-
ings and does not use the triangle selecting branching. Furthermore, under some mild
assumptions, the model can be extended to non-uniform grids by selecting different
values of v j .

The extension of the formulation to functions of n variables is direct from the
definition of the n-dimensional J1 triangulation [43]. For D = [0, w]n with w an
even integer the vertex set of the triangulation is defined to be {0, . . . , w}n and
the triangulation is composed by the finite family of simplices defined as follows.
Let N = {1, . . . , n}, V0 = {v ∈ {0, . . . , w}n : vi is odd, ∀i ∈ N }, Sym(N ) be
the group of all permutations on N and ei be the i th unit vector of R

n . For each
(v0, π, s) ∈ V0 × Sym(N ) × {−1, 1}n we define j1(v0, π, s) to be the simplex
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whose extreme points are {yi }n
i=0 where yi = yi−1 + sπ(i)eπ(i) for each i ∈ N .

The J1 triangulation of D = [0, w]n is given by all the simplices j1(v0, π, s). By
letting J = {0, . . . , w}n and I be the set of triangles of the J1 triangulation of
D = [0, w]n we have that (16) is a model for the piecewise linear approximation g
of function f : [0, w]n → R. For this case, to implement the independent branching
scheme for (16b) we can use the fact that indices v0 and s of the simplices deter-
mine the hypercube in which the simplex is contained and index π determines the
selection of one of the n! simplices contained in a given hypercube (For example
for the triangulation in Fig. 1a, the simplices for v0 = (1, 1) and s = (−1,−1) are
the two triangles contained in box [0, 1]2 and the triangle labeled T corresponds to
the permutation π(1) = 2, π(2) = 1). Then to select the hypercube we can again
apply independent SOS2 branching for each component which yields the constraints
given by

∑

v∈ J̃+
2 (l,B,w,k)

λv ≤ xk
l ,

∑

v∈ J̃ 0
2 (l,B,w,k)

λv ≤ 1 − xk
l , xk

l ∈ {0, 1} ∀l ∈ L(w), ∀k ∈ N (19)

where J̃+
2 (l, B, w, k) = {v ∈ J : vk ∈ J+

2 (l, B, w)} and J̃ 0
2 (l, B, w, k) = {v ∈

J : vk ∈ J 0
2 (l, B, w)}. To select a permutation π it suffices to select between π−1(r) <

π−1(s) or π−1(r) > π−1(s) for each r, s ∈ N , r < s. If we select a permu-
tation with π−1(r) < π−1(s) we have that no vertex v of the resulting triangu-
lation will have an odd vr component and even vs component. In contrast, if we
select a permutation with π−1(s) < π−1(r) we have that no vertex v of the result-
ing triangulation will have an even vr component and odd vs component. Hence
to select a simplex if suffices to apply the triangle selection branching depicted
in Fig. 2b to each pair of indices r, s ∈ N , r < s which yields the constraints
given by

∑

v∈L(r,s)

λv ≤ y(r,s),

∑

v∈R(r,s)

λv ≤ 1 − y(r,s), y(r,s) ∈ {0, 1} ∀r, s ∈ N , r < s (20)

where L(r, s)= {v ∈ J : vr is even and vs is odd} and R = {v ∈ J : vr is odd and vs

is even}. The resulting formulation has L := n	log2 w
+n(n −1)/2 binary variables
(and twice as many extra constraints) and the J1 triangulation has T := wnn! sim-
plices. In contrast to the two dimensional case, it is not clear how to explicitly relate
these two numbers even for the case when w is a power of two. However we can see
that L grows asymptotically as log2 T only when n is fixed. More specifically, for
fixed n we have L ∼ log2 T (i.e. limw→∞ L/ log2 T = 1), but for fixed w we have
log2 T ∈ o(L) (i.e. limn→∞ log2 T /L = 0).
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5 Extension of the model to ground set [0, 1]J

We replace λ ∈ �J in Definition 6 of Q(Si ) with the box constraint λ ∈ [0, 1]J to
obtain Q(Si ) = {

λ ∈ [0, 1]J : λ j = 0 ∀ j /∈ Si
}
. We have that an independent branch-

ing {Lk, Rk}d
k=1 for (5) is also an independent branching for

λ ∈
⋃

i∈I

Q(Si ) (21)

since

⋃

i∈I

Q(Si ) =
d⋂

k=1

(
Q(Lk) ∪ Q(Rk)

)
. (22)

However, to preserve validity formulation (14) needs to be modified to

λ ∈ [0, 1]J (23a)
∑

j /∈Lk

λ j ≤ |J\Lk | xk,

∑

j /∈Rk

λ j ≤ |J\Rk | (1 − xk), xk ∈ {0, 1} ∀k ∈ {1, . . . , d}. (23b)

This formulation still has d binary variables and 2d extra constraints, but Theorem 5
is no longer true for this formulation.

To understand the potential sources of weakness of formulation (23) we study how
this formulation can be constructed from the standard disjunctive programming for-
mulation of (21) in three steps, two of which have the potential for weakening the
formulation. The first step is to use identity (22) to reduce the formulation of (21) to
the formulation of

λ ∈ Q(Lk) ∪ Q(Rk) (24)

for each k ∈ {1, . . . , d}. The second step is to eliminate the duplicated continuous
variables of formulation (2) for (24) in the following way. Formulation (2) for (24) is
given by

λ
1,k
j , λ2,k ∈ R

|J |
+ , xk ∈ {0, 1} (25a)

λ
1,k
j ≤ (1 − xk) ∀ j ∈ Lk, λ

1,k
j ≤ 0 ∀ j /∈ Lk (25b)

λ
2,k
j ≤ xk ∀ j ∈ Rk, λ

2,k
j ≤ 0 ∀ j /∈ Rk (25c)

λ = λ1,k + λ2,k . (25d)
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Using (25d) we can eliminate variables λ1,k, λ2,k to obtain the formulation of (24)
given by

λ ∈ [0, 1]J , xk ∈ {0, 1} (26a)

λ j ≤ xk ∀ j /∈ Lk (26b)

λ j ≤ (1 − xk) ∀ j /∈ Rk . (26c)

The third and final step is to aggregate constraints (26b)–(26c) and combine the result-
ing formulation of (24) for all k ∈ {1, . . . , d} to obtain (23).

With regard to the first step, we have that (22) shows how an independent branching
scheme rewrites disjunctive constraint (5) from its disjunctive normal form (DNF) as
the union of polyhedra (left hand side) to a conjunction of two-term polyhedral dis-
junctions (right hand side). It is well known that this rewrite can significantly reduce
the tightness of mixed integer programming formulations [4]. More specifically, The-
orem 3.1 of [24] tells us that if we directly formulate constraint (21) the best we can
hope is for the projection onto the original λ variables of the LP relaxation of our
formulation to be equal to conv(

⋃
i∈I Q(Si )). In contrast, if we construct a formula-

tion for constraints (24) for each k ∈ {1, . . . , d} and then combine them, the best we
can hope is for the projection onto the original λ variables of the LP relaxation of our
formulation to be equal to

⋂d
k=1 conv(Q(Lk)∪ Q(Rk)). Because the convex hull and

intersection operations usually do not commute we only have

conv

(
⋃

i∈I

Q(Si )

)
⊂

d⋂

k=1

conv(Q(Lk) ∪ Q(Rk)) (27)

and we can expect strict containment resulting in the first formulation being stronger.
This is illustrated in the following example.

Example 7 Let J = {0, . . . , 4} and (λ j )
4
j=0 ∈ �J be SOS2 constrained. We then

have S1 = {0, 1}, S2 = {1, 2}, S3 = {2, 3}, S4 = {3, 4} and using PORTA [12] we get
that

conv

(
4⋃

i=1

Q(Si )

)
=

{
(λ j )

4
j=0 ∈ [0, 1]5 : λ1 + λ4 ≤ 1, λ1 + λ3 ≤ 1,

λ0 + λ3 ≤ 1, λ0 + λ2 + λ4 ≤ 1
}
. (28)

If we let d = 1, L1 = {2, 3, 4}, R1 = {0, 1, 2}, L2 = {0, 1, 3, 4} and R2 = {1, 2, 3}
we have

⋃4
i=1 Q(Si ) = (

Q(L1) ∪ Q(R1)
)∩ (

Q(L2) ∪ Q(R2)
)
. Again using PORTA

we get that

conv
(
Q(L1) ∪ Q(R1)

) =
{
(λ j )

4
j=0 ∈ [0, 1]5 : λ2 ≤ 1,

λ1+ λ4 ≤ 1, λ1+λ3 ≤ 1, λ0+λ4 ≤ 1, λ0 + λ3 ≤ 1
}
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and

conv
(
Q(L2) ∪ Q(R2)

) =
{
(λ j )

4
j=0 ∈ [0, 1]5 : λ3 ≤ 1, λ1 ≤ 1,

λ2 + λ4 ≤ 1, λ0 + λ2 ≤ 1, λ3 + λ4 − λ0 − λ1 ≤ 1
}
.

Clearly (1/2, 1/2, 1/2, 1/2, 1/2)∈ conv (Q(L1)∪ Q(R1))∩conv (Q(L2)∪ Q(R2)),
but from (28) we have (1/2, 1/2, 1/2, 1/2, 1/2) /∈ conv(

⋃4
i=1 Q(Si )). Hence

conv

(
4⋃

i=0

Q(Si )

)
�

2⋂

k=1

conv(Q(Lk) ∪ Q(Rk)).

This source of weakness could be avoided by applying techniques from [4] at the
expense of increasing the number of continuous variables.

With respect to the second step, it is well known that eliminating the multiple cop-
ies of the continuous variables in formulation (2) can result in a weaker formulation
[5,10,22]. Fortunately, as the following theorem shows, for constraints of the form (5)
or (21) eliminating the multiple copies of the continuous variables does not make the
formulations weaker.

Theorem 6 Let Pλ be the projection onto the λ variables of the LP relaxation of for-
mulation (7) for (5) and let Pλ the projection onto the λ variables of the LP relaxation
of the formulation of (21) given by

λ ∈ [0, 1]J , λ j ≤
∑

i∈I ( j)

xi ∀ j ∈ J,
∑

i∈I

xi = 1, xi ∈ {0, 1} ∀i ∈ I. (29)

Then Pλ = conv
(⋃

i∈I Q(Si )
)

and Pλ = conv
(⋃

i∈I Q(Si )
)
. In particular the pro-

jections onto the λ variables of the LP relaxations of formulations (25) and (26) are
equal to conv(Q(Lk) ∪ Q(Rk)).

Proof For Pλ the result follows directly from Theorem 5. For Pλ the result follows
directly from Sect. 3.1 of [22] because

⋃
i∈I Q(Si ) is the union of multidimensional

intervals as defined in that section. �
Theorem 6 shows that the traditional formulations for SOS1 and SOS2 constraints

are as tight as possible, which could explain their success. In addition, Theorem 6
shows that the second step does not weaken the formulation as we get the following
corollary.

Corollary 1 The projection onto the λ variables of the LP relaxation of the formula-
tion given by (26) for all k ∈ {1, . . . , d} is

⋂d
k=1 conv(Q(Lk) ∪ Q(Rk)).

Finally, with respect to the third step, it is well known that a weaker integer pro-
gramming formulation can result from aggregating constraints. As expected it is also
easy to construct examples where formulation (26) is stronger than formulation (23)
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(the example for the strict containment in (27) also works here). Of course, this source
of weakness can be avoided by simply choosing formulation (26) instead of (23) at
the expense of increasing the number of constraints from 2d to at most |J |d.

6 Computational results

In this section, we computationally test the logarithmic models for piecewise linear
functions of one and two variables against some other existing models. For a set of
transportation problems with piecewise linear cost functions, the logarithmic models
provide a significant advantage in almost all of our experiments.

We denote the model for piecewise linear functions of one and two variables from
Sect. 4 by Log. From the traditional models we selected the so called incremental and
multiple choice models. The incremental model for one variable functions appears as
early as [16,17,33], was extended to functions of several variables in [50] and it has
been recently shown to have favorable integrality and tightness properties [14,39,40].
We denote this model by Inc. The multiple choice model appears in [2,14,31] and
also has favorable integrality and tightness properties. We denote this model by MC.
We also include two models that are based on independent branching schemes of lin-
ear depth. The first model is based on the independent branching scheme for SOS2
constraints on (λ j )

n
j=0 given by Lk = {k, . . . , n}, Rk = {0, . . . , k} for every k ∈

{1, . . . , n − 1}. This formulation has been independently developed in [42] and is
currently defined only for functions of one variable. We denote this model by LB1.
The second model is based on an independent branching defined in [34, p. 573]. This
branching scheme is defined for any triangulation and its depth is equal to the number
of vertices in the triangulation. In particular for piecewise linear functions of one var-
iable with k intervals or segments its depth is k + 1 and for piecewise linear functions
on a k × k grid it is (k + 1)2. We denote the model by LB2. We also tested some
other piecewise linear models, but do not report results for them since they did not
significantly improve the worst results reported here. We refer the reader to [45] for a
more detailed study and evaluation of mixed integer formulations for piecewise linear
functions. In addition to the mixed integer programming formulations we tested the
traditional SOS2 formulation of univariate piecewise linear functions which does not
include binary variables. We implemented this formulation using CPLEX’s built in
support for SOS2 constraints and we denote it by SOS2. All models were generated
using Ilog Concert Technology and solved using CPLEX 11 on a dual 2.4 GHz Xeon
Linux workstation with 2 GB of RAM. Furthermore, all tests were run with a time
limit of 10, 000 seconds.

We note that Log, Inc, MC, LB1 and LB2 are mixed integer programming problems
that do not include SOS2 constraints such as the ones supported by CPLEX. Hence,
when CPLEX solves these formulations the only type of branching that occurs is
due to the fixing of binary variables to zero or one. For Log, LB1 and LB2 this binary
branching induces a specialized branching schemes that fixes some λ variables to zero,
but CPLEX does not directly fix λ variables to zero. In contrast, formulation SOS2
does not contain any binary variables and to solve it CPLEX executes the traditional
SOS2 branching of [8] by directly fixing λ variables to zero.

123



Modeling disjunctive constraints 67

The first set of experiments correspond to piecewise linear functions of one vari-
able for which we used the transportation models from [46]. We selected the instances
with ten supply and ten demand nodes and for each of the five available instances we
generated several randomly generated objective functions. We generated a separable
piecewise linear objective function given by the sum of concave non-decreasing piece-
wise linear functions of the flow in each arc. We use concave functions because they
are widely used in practice and because using them results in NP-hard problems [26]
that are challenging for our experiments. For each instance and number of segments
we generated 20 objective functions to obtain a total of 100 instances for each number
of segments. We excluded LB2 as LB1 performed consistently better. Table 1 shows
the minimum, average, maximum and standard deviation of the solve times in seconds
for 4, 8, 16 and 32 segments. The tables also shows the number of times the solves
failed because the time limit was reached and the number of times each formulation
had the fastest solve time (win or tie). MC is the best model for 4 and 8 segments and
Log is clearly the best model for 16 and 32 segments.

The next set of experiments correspond to piecewise linear functions of two vari-
ables for which we selected a series of two commodity transportation problems with
5 supply nodes and 2 demand nodes. These instances were constructed by combin-
ing two 5 × 2 transportation problems generated in a manner similar to the instances
used in [46]. The supplies, demands and individual commodity arc capacities for each
commodity were obtained from two different transportation problems and the joint arc
capacities were set to 3/4 of the sum of the corresponding individual arc capacities. We
considered an objective function of the form

∑
e∈E fe(x1

e , x2
e ) where E is the common

set of 10 arcs of the transportation problems and fe(x1
e , x2

e ) is a piecewise linear func-
tion of the flows xi

e on arc e of commodity i for i = 1, 2. Each component fe(x1
e , x2

e )

for arc e with individual arc capacities ui
e for commodity i = 1, 2 was constructed

as follows. We begin by triangulating [0, u1
e] × [0, u2

e] as described in Sect. 4 with a
K × K segment grid. Using this triangulation we then obtained fe(x1

e , x2
e ) by interpo-

lating g
(∥∥(

x1
e , x2

e

)∥∥)
where ‖ · ‖ is the euclidean norm and g : [

0,
∥∥(

u1
e, u2

e

)∥∥] → R

is a continuous concave piecewise linear function which was randomly generated
independently for each arc in a similar way to the one variable functions of the pre-
vious set of experiments. The idea of this function is to use the sub-linearity of the
euclidean norm to consider discounts for sending the two commodities on the same
arc and concave function g to consider economies of scale. We note that although g
is concave its interpolation is not always concave due to the known fact that multivar-
iate interpolation on a predefined triangulation is not always shape preserving [11].
We selected 5 combinations of different pairs of the original transportation problems
and for each one of these we generated 20 objective functions for a total of 100 instances
for each K . For these instances we excluded SOS2 and LB1 as they are only defined
for univariate functions. Table 2 shows the statistics for this set of instances. In the two
variable case, Log is best for all sizes and the advantage becomes overwhelming for
the largest instances.

It is clear that one of the advantages of Log is that it is smaller than the other
formulations while retaining favorable tightness properties. In addition, formulation
Log effectively transforms CPLEX’s binary variable branching into a specialized
branching scheme for piecewise linear functions. This allows formulation Log to
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Table 1 Solve times for one variable functions (s)

Stat Log LB1 MC Inc SOS2

(a) Four segments

Min 0 0 0 0 0

Avg 2 3 1 3 2

Max 12 16 8 15 8

SD 2 3 2 3 1

Wins 25 1 46 2 27

Fail 0 0 0 0 0

(b) Eight segments

Min 1 3 1 5 1

Avg 12 26 10 47 16

Max 84 116 39 160 202

SD 11 17 7 31 23

Wins 34 0 43 0 23

Fail 0 0 0 0 0

(c) Sixteen segments

Min 0 7 2 23 2

Avg 24 124 97 284 109

Max 96 376 730 1,250 1,030

SD 18 78 122 201 167

Wins 95 0 3 0 2

Fail 0 0 0 0 0

(d) Thirty-two segments

Min 2 117 23 214 10

Avg 43 569 2,246 889 925

Max 194 2,665 10,000 3,943 10,000

SD 39 476 3,208 662 1,900

Wins 98 0 0 0 2

Fail 0 0 9 0 2

combine the favorable properties of specialized branching schemes and the technol-
ogy in CPLEX’s variable branching. Given its computational advantages, we anticipate
that Log will become a valuable tool in practice.

7 Conclusions

We have introduced a technique for modeling hard combinatorial problems with a
mixed 0–1 integer programing formulation that uses a logarithmic number of binary
variable and extra constraints. It is based on the concept of independent branching
which is closely related to specialized branching schemes for combinatorial opti-
mization. Using this technique we have introduced the first binary formulations for
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Table 2 Solve times for two
variable functions on a 4 × 4,
8 × 8 and 16 × 16 grids (s)

Stat Log LB2 MC Inc

(a) 4 × 4 grid

Min 0 1 1 3

Avg 3 6 6 32

Max 9 22 17 127

SD 2 4 3 26

Wins 87 9 5 0

Fail 0 0 0 0

(b) 8 × 8 grid

Min 2 37 31 100

Avg 13 196 398 769

Max 33 804 5,328 6,543

SD 5 129 584 1,111

Wins 100 0 0 0

Fail 0 0 0 31

(c) 16 × 16 grid

Min 27 3,116 2,853 772

Avg 56 9,825 9,266 4,857

Max 118 10,000 10,000 10,000

SD 19 866 1,678 3,429

Wins 100 0 0 0

Fail 0 94 77 20

SOS1 and SOS2 constraints and for one and two variable piecewise linear functions
that use a logarithmic number of binary variables and extra constraints. Finally, we
have illustrated the usefulness of these new formulations by showing that for one
and two variable piecewise linear functions they provide a significant computational
advantage.

There are still a number of unanswered questions concerning necessary and more
general sufficient conditions for the existence of formulations with a logarithmic num-
ber of binary variables and extra constraints. For example, if we allow the formulation
to have a number of binary variables and extra constraints whose asymptotic growth is
logarithmic our sufficient conditions do not seem to be necessary. Consider cardinality
constraints that restrict at most K components of λ ∈ [0, 1]n to be non-zero. We do
not know of an independent branching scheme for this constraint, but it does have a
formulation with a number of variables and constraints of logarithmic order. We can
write cardinality constraints in the form (5) by letting J = {1, . . . , n}, I = {1, . . . , m}
for m = ( n

K

)
and {S j }m

j=1 be the family of all subsets of J such that |Si | = K . The
traditional formulation for cardinality constraints is [16,33]

n∑

j=1

x j ≤ K ; λ j ∈ [0, 1], λ j ≤ x j , x j ∈ {0, 1} ∀ j ∈ J. (30)
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Let n be an even number. By choosing K = n/2, which is the non-trivial cardinality
constraint with the largest number of sets Si , we can use the fact that for K = n/2 we
have n ≤ 2 log2

( ( n
K

) )
to conclude that (30) has O(log2(|I |)) binary variables and

extra constraints.
Another question concerns the case in which I is not a power of two. Theoretically,

this does not pose a problem because we can complete I or adapt the independent
branching scheme. However, preliminary tests in [45] showed that the computational
effectiveness of independent branching schemes can be significantly reduced if I is
not a power of two. This is a common problem with binary encoded formulations, that
can be mitigated by the use of techniques developed in [13].
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