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Abstract We describe a way of generating a warm-start point for interior point
methods in the context of stochastic programming. Our approach exploits the structural
information of the stochastic problem so that it can be seen as a structure-exploiting
initial point generator. We solve a small-scale version of the problem corresponding
to a reduced event tree and use the solution to generate an advanced starting point
for the complete problem. The way we produce a reduced tree tries to capture the
important information in the scenario space while keeping the dimension of the corre-
sponding (reduced) deterministic equivalent small. We derive conditions which should
be satisfied by the reduced tree to guarantee a successful warm-start of the complete
problem. The implementation within the HOPDM and OOPS interior point solvers
shows remarkable advantages.
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372 M. Colombo et al.

1 Introduction

Stochastic programming [4,18] models uncertainty through the analysis of possible
future outcomes (scenarios). The more detailed the description is, the more robust
the decisions taken are. This involves the generation of very large scenario trees and,
consequently, of very-large scale deterministic equivalent matrices. With the growing
industrial acknowledgement of the benefits of considering uncertainty for planning
purposes, it is expected that the need for solving very large problem instances will
grow as well.

The practical advantages of relying on interior point solvers become more and
more evident as the dimensions of the problems increase. Very-large scale problems,
however, are very difficult to solve with general purpose solvers: problems of these
sizes can be solved by exploiting the structure present in the matrix; this leads to a
further advantage that comes from assigning the computational work to more than one
processing unit through the parallelisation of the linear algebra. This is where structure-
exploiting parallel solvers such as OOPS [13] excel. Moreover, structure-exploiting
interior point methods can be used not only for linear programming problems, but also
for quadratic and nonlinear problems [12].

In a large scenario tree there may be very little difference among scenarios, and so
the large-scale problem can provide a fine-grained solution to a problem that could have
been solved more coarsely by using a much smaller tree. This observation suggests
a warm-start technique that can be applied in the context of interior point methods.
A warm-start solution is obtained by solving the stochastic optimization problem for a
reduced event tree, the dimension of which is much smaller than that of the complete
one. The solution to the reduced problem is used to construct an advanced iterate
for the complete formulation. We provide evidence that this novel way of exploiting
the problem structure to generate an initial iterate provides a better starting point (in
terms of centrality, feasibility, and closeness to optimality) than the one produced by a
generic strategy. We emphasize that the proposed warm-start strategy is independent
of the details of the linear algebra implementation adopted by the solver.

This paper is organised as follows. In Sect. 2 we outline some basic concepts of
stochastic programming and introduce a measure of the distance between scenarios.
In Sect. 3 we review some studies on warm-start techniques for interior point methods.
In Sect. 4 we present a method of generating a reduced event tree and constructing
the warm-start iterate. In Sect. 5 we analyse the approach and derive bounds that the
reduced tree has to satisfy to guarantee a successful warm start. Considerations on the
implementation and numerical results are discussed in Sect. 6. Finally, in Sect. 7 we
draw our conclusions.

2 Stochastic programming

Data forecasts are usually made through econometric models that take into account
historical data: this helps to determine trends and their variations, but unfortunately it
is not applicable to recently introduced products and services, as this data may not be
available. When the uncertainty cannot be conveniently forecast, the use of determin-
istic models is considered inadequate for decision making. In these situations, being
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Fig. 1 An event tree

able to describe and model the uncertain parameters becomes a requirement for robust
decision making. Stochastic programming [4,18] studies the methods and provides
the tools for modelling uncertainty.

The relevance of stochastic programming lies in the fact that it allows the handling
of uncertainty in a practical way, through a rich set of tools. The popularity of sto-
chastic programming is on the increase, as its paradigm is well-suited to modelling
many real-life problems in several different areas (finance, energy production and
planning, telecommunications, logistics, etc). In stochastic programming, the uncer-
tain environment is described through a stochastic process which is usually estimated
from historical data or conjectured according to prescribed properties. The continuous
process is usually further approximated by a discrete distribution in order to obtain a
computationally amenable description. In such a case, the most common techniques
[16,25] generate a finite, but usually very large, number of scenarios that represent an
approximate description of the possible outcomes.

2.1 Deterministic equivalent formulation for stochastic programs

A natural formulation of a stochastic programming problem relies on recursion to
describe the dynamics of the modelled process. The term recourse means that, at
each time period, the decision variables adapt to the different outcomes of the random
parameters. In a planning approach, the evolution of uncertainties can be described as
an alternating sequence of decisions and random realisations that occur at different
points in time (stages).

The discrete stochastic process can be represented as an event tree (Fig. 1).
A node denotes a point in time when a realisation of the random process becomes

known and a subsequent decision is taken. To each node of the event tree we associate
a set of constraints, an objective function, and the conditional probability of visiting
the node from its parent node in the previous stage. A path from the root to a leaf node
of the event tree represents a scenario. The probability of each scenario is the product
of the conditional probabilities of visiting each of the nodes on the path.

To express the deterministic equivalent of the multi-stage stochastic programming
problem in node formulation we need to enumerate all nodes of the event tree: we
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use a breadth-first ordering, i.e. we start from the root node corresponding to the ini-
tial stage (stage 1) and end with leaf nodes corresponding to the final stage (stage
t f ). Let t = 1, 2, . . . , t f denote the stages and let Lt be the set of nodes at stage t .
With a(l) we denote the direct ancestor of node l ∈ Lt (which is a node that belongs to
stage t − 1). The decision variables are superscripted with the node number l; similar
notation is used for the corresponding matrix and vector blocks.

In the case of one-period recourse, the main constraint that describes the dynamics
of the system has the form

T l xa(l) + W l xl = hl , l ∈ Lt , t = 2, . . . , t f ,

where T l is the technology matrix that varies with the node in the event tree, and W l

is the recourse matrix that, in general, may depend on realisations within the same
stage, but often varies only with time. The deterministic equivalent formulation of the
multi-stage problem has the following general form:

min

t f∑

t=1

∑

l∈Lt

pl
(

ql
)�

xl

s.t. W 1x1 = h1,

T lt xa(lt ) + W lt xlt = hlt , lt ∈ Lt , t = 2, . . . , t f ,

xlt ≥ 0, lt ∈ Lt , t = 1, . . . , t f .

(1)

Note that the probabilities in the objective function of problem (1) are the uncon-
ditional path probabilities: pl is the probability that a path goes through node l, which
equals the product of the conditional probabilities δi , for i along the path from the
root to node l, so that pi = δi pa(i).

If the event tree is traversed with depth-first ordering of the nodes during the gen-
eration of the program, the corresponding constraint matrix displays a nested dual
block-angular structure. Figure 2 displays the two possible structures for the event
tree of Fig. 1 according to the chosen ordering of nodes. While the different ordering
of blocks within the matrix is not relevant for general-purpose solvers, the structure-
exploiting software OOPS [12,13] can take full advantage of the nested dual block-
angular structure resulting from the depth-first ordering in its internal object-oriented
linear algebra representation.

Several solution methods for stochastic linear programs have been presented in the
literature. These often rely on some decomposition approach [2,19,23], among oth-
ers. In this paper, instead, we consider solving the deterministic equivalent problem
directly through an interior point method.

2.2 Scenario distance

For the purposes of this paper (see Sect. 4.1), we need to introduce a measure of
distance between scenarios. Let the total number of scenarios be N . Recalling that
a scenario is a path in the event tree from the root to a leaf node, we can encode
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Fig. 2 Deterministic equivalent corresponding to the event tree of Fig. 1, with nodes listed in breadth-first
order (left) and depth-first order (right)

a scenario sk , k = 1, . . . , N , as an ordered set of nodes sk = {l1, . . . , lt f : lt =
a(lt+1), t = 1, . . . , t f − 1}. To each node lt of the tree we associate the 4-tuple
ηlt = {T lt , W lt , hlt , qlt } of matrices, right-hand side and objective coefficients.

We first define the distance between two nodes it and jt that belong to the same
stage t as

d(ηit , η jt )=‖T it − T jt ‖∞+‖W it −W jt ‖∞+‖hit −h jt ‖∞+‖qit −q jt ‖∞. (2)

Hence, we compute the distance between scenarios si and s j as

D
(
si , s j

) =
t f∑

t=1

d(ηit , η jt ), it ∈ si , jt ∈ s j .

Scenarios that belong to the same branch of the tree will have smaller distance in
general, as they share some of the nodes. Conversely, scenarios are likely to be farther
away if they do not share nodes apart from the root.

3 Warm-start with interior point methods

Consider the linear programming problem in standard form

min c�x s.t. Ax = b, x ≥ 0, (3)

where A ∈ Rm×n is full rank, x, c ∈ Rn and b ∈ Rm . For the purposes of this paper,
problem (3) corresponds to the deterministic equivalent generated from a given event
tree T , and we will refer to it as the complete problem.

In the context of interior point methods, the non-negativity conditions are replaced
by a logarithmic term, thus generating the barrier problem

min c�x − μ

n∑

i=1

ln xi s.t. Ax = b, (4)
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where μ > 0 is the barrier parameter. The first-order optimality conditions (Karush–
Kuhn–Tucker conditions) corresponding to problem (4) can be expressed as

Fμ(x, y, s) =
⎡

⎣
Ax − b

A� y + s − c
X Se − μe

⎤

⎦ = 0, (x, s) > 0,

where s ∈ Rn is the vector of dual slacks, X and S are diagonal matrices with elements
xi and si respectively, and e ∈ Rn is a vector of ones. As μ is decreased at each iter-
ation, the solution of the perturbed Karush-Kuhn-Tucker conditions traces a unique
path toward the optimal set, generally referred to as the central path. Path-following
interior point methods [26] seek a solution to the nonlinear system Fμ(x, y, s) = 0
by using Newton’s method, and consider the Newton system

⎡

⎣
A 0 0
0 A� I
S 0 X

⎤

⎦

⎡

⎣
�x
�y
�s

⎤

⎦ =
⎡

⎣
b − Ax

c − A� y − s
−X Se + μe

⎤

⎦ =
⎡

⎣
ξb

ξc

ξμ

⎤

⎦ , (5)

which needs to be solved with a specified μ for a search direction (�x,�y,�s).
To guarantee the positivity of the x and s components when moving along the search

direction, the maximum stepsize α is computed such that (x + α�x, s + α�s) > 0.
Path-following methods rely on keeping the iterates in a neighbourhood of the central
path, thus follow it in approaching the optimal solution. In our analysis we work with
the symmetric neighbourhood [6] of the central path

Ns(γ ) = {(x, y, s) : Ax = b, A� y + s = c, (x, s) > 0, γμ ≤ xi si ≤ μ/γ }, (6)

where 0 < γ < 1. In the authors’ experience, such a neighbourhood best describes
the desired properties of a “well-centered” interior point iterate.

The problem of finding a starting point is usually solved by using Mehrotra’s start-
ing point heuristic [20], which is considered to be computationally effective. In this
heuristic, the starting point is found by solving two least squares problems which
attempt to satisfy primal and dual constraints; this point is then shifted inside the
positive orthant. However, many practical applications rely on solving a sequence of
closely related problems, where the instances differ by some perturbation. This hap-
pens within algorithms that are sequential in their nature; also it is very common in
(mixed) integer programming, when the problems are solved with some branching
strategy, when new cuts are added, etc. In these situations, we expect the solution
of an instance to be close to the solution of the next one. Therefore, (warm) starting
the optimization of one problem from the solution of the previous problem should
reduce the computational effort of solving the perturbed instance. Warm-start tech-
niques are very successful when implemented with a simplex solver (see, for example,
[5]). Instead, in the context of interior point methods, they are much more difficult to
implement successfully, for the reasons we outline below.

The optimal solution of a linear programming problem found with a path-following
interior point method is very close to a vertex of the feasible polytope or, in the case
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of multiple solutions, it is close to the analytic center of the optimal set of solutions. If
the polytope changes, the previously optimal solution may now be very far away from
the central path of the perturbed instance. Moreover, an interior point algorithm may
get stuck when an iterate gets too close to a boundary before optimality is reached.
Hipolito [15] analysed such situation and showed that if the iterate is close to a bound-
ary, the search direction may be parallel to the nearby constraints.

The required features for a good warm-start candidate for an interior point algo-
rithm are somewhat contradictory. The point should not be too close to the boundary
of the feasible region in order to be able to absorb larger perturbations in the prob-
lem data. Also, it should be sufficiently advanced to provide computational savings
over a cold-start iterate. The theory and practice of warm-start techniques for interior
point methods is a relatively new and still open field of study. In the remainder of this
section, we present a review of some of the warm-start approaches proposed in the
interior point literature.

3.1 Literature review

Mitchell [21] and Mitchell and Todd [22] analyse the potential reduction interior point
method within a cutting plane algorithm. They exploit the fact that the primal feasible
point can be constructed after a set of new columns is added to the problem. They
use this strategy with success in column generation scheme and more generally in the
solution of combinatorial optimization problems.

Gondzio [9] presents a warm-start procedure for primal–dual interior point methods
in the context of a cutting plane method. The interior point method is used to solve a
sequence of restricted master problems, which differ by one or more cutting planes.
The idea proposed in [9] is to store a nearly optimal point (3–4 digits of accuracy) to
be employed as a warm-start point. As one requirement for a good iterate is centrality,
it is of interest to perform a few centering steps based on centrality correctors [8] on
the stored iterate. An auxiliary feasibility recovery procedure may be needed as, due to
the addition of cuts, large infeasibilities are often produced. The warm-start approach
proposed in [9] is extended in [14] to the case of solving a sequence of problems with
the same dimensions but changing problem data (the objective function or the right-
hand side) which arise in the context of decomposition approaches for large structured
linear programs.

Yıldırım and Wright [27] consider again the case of solving a sequence of problems
in fixed dimensions, and analyse the number of iterations required to converge to a
solution of the perturbed instance from the warm-start point and obtain worst-case
estimates. They show that these estimates depend on the size of the perturbation as
well as on the conditioning of the problem instances. Thus they obtain conditions
under which the complexity of the warm-start approach is better than for the cold
start case. The strategy proposed in [27] aims at absorbing the primal and dual infea-
sibilities introduced by the perturbation in just one step. This strategy requires to
backtrack to an iterate for which μ is large enough to allow a full step for the cor-
rection direction they produce. The amount of necessary backtracking depends on the
magnitude of the perturbation (as measured by the change in the problem data): this is
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intuitively justified considering that a large perturbation will produce a large adjust-
ment. To ensure the availability of an approximate μ-center from which the perturba-
tion can be absorbed in one step, a subset of iterates for different values of μ is stored.
When the size of the perturbation becomes known, the closest μ available is retrieved,
and the corresponding iterate is used as a warm-start point for the next problem in
the sequence. In [27], two different corrections for the perturbation are studied: one is
based on least squares, the other on a Newton step correction. A detailed computational
comparison of these strategies has been carried out by John and Yıldırım [17].

Gondzio and Grothey [10] assess perturbations by a relative measure of implied
primal and dual infeasibilities, and analyse recovery steps in the primal and the dual
spaces independently. This reoptimization procedure is based on two phases: first, an
attempt is made to absorb the infeasibilities caused by the perturbation with a full
Newton step; second, the centrality of the iterate is improved. Another key feature
of Gondzio and Grothey’s approach [10] is that the primal search direction is gov-
erned only by the primal perturbation, and similarly for the dual space. They produce
bounds on the magnitude of primal perturbation ξb and dual perturbation ξc that can be
absorbed in a single Newton step; as opposed to the results of [27], these bounds are
easy to compute and thus can be used in practice. An approximate μ-center is stored
for a tolerance level that depends on the magnitude of the expected perturbation. The
absorption of infeasibilities may be spread across a few iterations whenever the step-
sizes fall below a predefined level. As this strategy does not make assumptions upon
the centrality of the warm-start iterate, it can be initialised with any iterate. Gondzio
and Grothey [10] apply this warm-start strategy successfully to structured problems
for crash-start points that come from a cross-decomposition scheme, and thus may
lack centrality. In subsequent work, Gondzio and Grothey [11] develop a variety of
heuristics based on sensitivity analysis according to which the warm-start iterate is
perturbed with the aim of allowing a longer stepsize in the search direction.

A different approach has been studied by Benson and Shanno [1]. They inves-
tigate how to improve the efficiency of interior point methods in a reoptimization
context by the use of a primal–dual penalty approach. While standard penalty tech-
niques are effective only in one space, the introduction of penalty parameters in both
the primal and the dual problems allows to capture perturbations in both spaces.
The strategy relaxes the non-negativity constraints for the decision variables, pen-
alising the violation in the objective, for both the primal and dual problems. The
penalised problem allows the variables to become negative: this provides more free-
dom of movement for the variables, with the immediate advantage of accepting larger
stepsizes along the computed search direction. This favours a faster progress espe-
cially in the first few iterations, when the perturbation needs to be absorbed. Benson
and Shanno [1] also provide some computational evidence of the effectiveness of their
strategy.

4 A reduced-tree warm-start iterate

While the strategies mentioned in the previous section apply to general linear prob-
lems, we introduce an approach tailored to stochastic programming. In particular,
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we propose to exploit the structure inherent to a stochastic programming problem to
generate a good warm-start iterate.

In the event tree corresponding to a large multistage program, the numerous leaf
nodes descend from a relatively small number of branches in the first few stages. Two
“neighbouring” scenarios, that is two scenarios that have common nodes, may display
large differences concerning later stage decisions, but the decisions taken in the earlier
stages are identical (nonanticipativity).

Techniques for reducing the size of the scenario tree have been studied before from
a probabilistic perspective; in some cases considerable savings can be obtained with
such methods. Among others, Dupačová et al. [7] discuss an optimal scenario reduc-
tion technique that couples a large reduction of the scenario tree with a small loss
in accuracy. In their example, a reduction by 50% of the scenario tree still maintains
about 90% of the original accuracy. In this paper, we are interested in capturing some
aspects of the stochasticity of the event tree without assuming further knowledge on
the underlying stochastic process that generated it. Given this difference from what
is required for example by Dupačová et al. [7], we will use less sophisticated argu-
ments in finding a reduced tree. We remark that if we had knowledge of the underlying
stochastic process, then we could exploit it in the generation of the reduced tree.

We first study how to build a reduced tree, TR , by choosing just some of the avail-
able scenarios. We provide some insight on how to make this selection, so that our
choice performs better than an arbitrary one. Then we discuss how to obtain a warm-
start solution from the reduced tree that corresponds to the chosen scenarios. Our aim
is to generate a warm-start iterate that allows the complete problem to be solved to
optimality in fewer iterations (and less computing time) than an iterate chosen with a
standard starting point heuristic [20]. With these aims, we propose a way of choosing
a subset of scenarios that we believe to be sufficiently representative of the whole tree.
The approach can be summarised in the steps of Algorithm 1.

Algorithm 1 Reduced-tree warm-start algorithm
Require: The complete event tree T .
1: Generate a reduced event tree TR ⊂ T ;
2: Solve the deterministic equivalent corresponding to TR with a loose tolerance;
3: Use this solution to construct a warm-start iterate for the complete problem;
4: Solve the complete problem to optimality.

In the rest of this section we define our method of generating a reduced tree and
describe the construction of the complete warm-start iterate.

4.1 Reduced tree generation

We generate the reduced tree by taking into account both the structural and the sto-
chastic information available from the problem formulation. By structural information
we mean the shape of the event tree, i.e. how the tree branches at the various stages. By
stochastic information we mean the probabilities associated to each node in the tree,
and consequently to each scenario. Hence we adopt two complementary strategies.
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Fig. 3 Complete tree and the reduced tree corresponding to the chosen scenarios (in bold)

First we choose a subset of branches of the event tree; then, in each branch, we choose
the most representative leaf nodes.

We try to capture the structure of the complete tree by making sure that a sufficient
number of different early stage decisions will appear in the reduced tree. In some
sense, we look for a way to span the breadth of the complete tree. For a defined small
value κ < t f , where t f is the number of stages in the problem, we choose some of
the nodes at the κth stage, together with all their ancestors up to the root, to appear
in the subtree. The choice of nodes to appear in the reduced tree should be guided by
probabilities. The rationale for this strategy is to ensure that our warm-start iterate is
a good representation of the decisions to be taken in the first few stages, as getting
early decisions right is fundamental for easier optimization of the later stages.

To illustrate this idea, suppose we deal with a multistage setting where there are
t f = 4 stages, such as in the tree of Fig. 3: for κ = 2 we choose nodes 1, 2 and 3 to
be in the reduced tree.

Each of the chosen nodes in the κth stage now becomes the root of a branch of the
tree, which we call a subtree. In each subtree we choose the scenario that minimises
the distance to an average scenario in the same subtree. Let St be the set of nodes
in the subtree S at stage t , and |St | its cardinality. For each stage t within subtree S,
we determine an artificial node nt by averaging the data associated to all the subtree
nodes at this stage:

nt = 1

|St |
∑

lt ∈St

(
T lt , W lt , hlt , qlt

)
, κ < t ≤ t f .

We define the average scenario for subtree S as an ordered set of nodes {lκ , nκ+1,

. . . , nt f }. Therefore, the average scenario s̄ (in the complete tree) is obtained by listing
the nodes from the root of the tree to the root of the subtree S, and then by appending
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the artificial (averaged) nodes. We define it as

s̄ = { l1, . . . , lκ , nκ+1, . . . , nt f },

where lt = a(lt+1) for t = 1, . . . , κ − 1. Scenario s̄ is completely artificial, and there
is no guarantee that it is feasible; hence, we cannot use it directly as our representative
scenario. Instead, we use it as a reference point which we compare all other scenarios
to, and thus find the closest scenario among the existing ones. In this way we do not
introduce spurious infeasibilities. Hence, in the subtree S we choose the representative
scenario s∗ as

s∗ = sk, k = arg min
i∈S

{(1 − pi )D(si , s̄)}, (7)

where, since our ultimate goal is to find the most representative scenario in the subtree,
we use the term (1 − pi ) to “bring closer” scenarios that have a higher probability of
occurring.

The reduced tree selection induces a function r : T → TR that maps each node l of
the complete tree to a corresponding node in the reduced tree in the following way: if
l ∈ TR , then r(l) = l; if l �∈ TR , then we choose as r(l) the node in the representative
scenario corresponding to the same stage as node l. In other words, to get from node
l ∈ T to r(l) ∈ TR we walk up the tree T until we find a node that is also in TR , and
from there walk back down the reduced tree until we arrive at the same stage as the
original node.

The mapping between the two trees is used to decide how to initialise the warm-
start iterate for the complete tree, as presented in the next section. We remark that our
generation process guarantees that for each l ∈ T , the following properties hold:

a(r(l)) ∈ TR, and a(r(l)) = r(a(l)), (8)

that is, if a node is in the reduced tree then so is its parent, and the mapping r(·)
preserves the parent–child relationship.

Continuing the example started above, we consider two subsets of scenarios, corre-
sponding to nodes 9–12 (for the subtree rooted at node 2) and to nodes 13–18 (for the
subtree rooted at node 3). Within each subset we build the scenario of average nodes
and then find the representative scenario. The resulting reduced tree is shown in the
right of Fig. 3.

Before proceeding further, we introduce some notation. We adopt the convention
that symbols referring to the reduced tree carry the subscript R . Given a node l ∈ Lt ,
we define Dl ⊂ Lt+1 to be the set of direct descendants of node l. We introduce the
set Ik of nodes in the complete tree that are mapped to the same reduced-tree node k,
that is Ik = { l ∈ T : r(l) = k } for k ∈ TR . In what follows, we will exploit the fact
that

Dl =
⋃

k∈Dr(l)
R

Ik ∩ Dl , (9)
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that is, the set of descendants can be partitioned according to which nodes of the
reduced tree they map to.

As will be seen later it is advantageous if the aggregation of nodes is balanced
throughout the tree. On average, every node in the reduced tree corresponds to n/nR

nodes in the full tree, so for a totally balanced aggregation we would expect

pl

pr(l)
R

n

nR
≈ 1.

We define the deviation from this as

ρ = min
l∈T

{
pl

pr(l)
R

n

nR
,

pr(l)
R

pl

nR

n

}
. (10)

4.2 Construction of the warm-start iterate

From the reduced tree we build the reduced deterministic equivalent problem

min c�
R xR s.t. AR xR = bR, xR ≥ 0, (11)

with AR ∈ Rm R×nR , xR, cR ∈ RnR and bR ∈ Rm R . We call problem (11) the reduced
problem. As we expect that (m R, nR) � (m, n), the reduced problem is much smaller
than the complete formulation, and hence much easier to solve.

We solve problem (11) with an interior point method. For the reasons presented in
Sect. 3, we do not aim for optimality, but instead we aim for a sufficiently advanced
primal–dual feasible point. Therefore we stop at an iterate (x∗

R, y∗
R, s∗

R) ∈ Ns(γ ) for a
barrier parameter corresponding to merely few digits of accuracy in the solution. This
iterate is used to construct the warm-start point (x̂, ŷ, ŝ) for the complete problem on
a node-by-node basis.

It should be noted that the reduced-tree generation process can be interpreted as a
node-aggregation process, in which all nodes in Ik ⊂ T are aggregated into a single
node k ∈ TR . The node aggregation determines the node probabilities pk

R associated
with each node k ∈ TR ; we use:

pk
R =

∑

i∈Ik

pi , k ∈ TR . (12)

Denote by (x̂ l , ŷl , ŝl) the part of the vectors (x̂, ŷ, ŝ) corresponding to node l ∈
T , and likewise (xr(l)

R , yr(l)
R , sr(l)

R ) for components of the reduced problem solution.
We construct the starting point for the complete problem in the following manner:

x̂ l = xr(l)
R ,

(
ŷl , ŝl

)
= pl

pr(l)
R

(
yr(l)

R , sr(l)
R

)
, l ∈ T , (13)
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Fig. 4 Generation of the warm-start iterate

where pr(l)
R is computed according to (12). This means that the dual reduced-tree

solution is spread among the nodes it initialises, as can be seen here:

∑

i∈Ik

(
ŷi , ŝi

)
=

∑

i∈Ik

pi

pk
R

(
yk

R, sk
R

)
=
(

yk
R, sk

R

) 1

pk
R

∑

i∈Ik

pi =
(

yk
R, sk

R

)
, k ∈ TR .

Considering again the example of Fig. 3, suppose that in the reduced tree we ac-
cepted only the scenarios that end at node 10 and node 15, so that the reduced tree
consists of nodes 1, 2, 3, 4, 7, 10 and 15. By solving the corresponding reduced prob-
lem, we obtain the parts of the solution vector associated to such nodes. These can be
used directly in the complete iterate (Fig. 4 top). We fill in the missing elements by
reproducing the solution from the nodes in the same subtree and the same stage (Fig. 4
bottom). The proposed way of constructing the complete iterate is easy to implement
and its execution time is negligible.

5 Analysis of the warm-start iterate

In this section we study how the warm-start iterate generated with the procedures pre-
sented above satisfies the conditions expressed by Gondzio and Grothey [10]. Contrary
to what is assumed in both [27] and [10], in our approach the dimension of the prob-
lem changes, as the reduced tree problem is, by construction, much smaller than the
complete problem.

However, similarly to what we did with the solution vector, we can expand the
reduced problem to one which has the same dimension as the complete problem (3)
by replicating the blocks in the coefficient matrix and in the objective and right-hand
side vectors, as shown in Fig. 5.

This corresponds to creating the (artificial) expanded problem

min ĉ�x s.t. Âx = b̂, x ≥ 0, (14)

the dimension of which, Â ∈ Rm×n , ĉ, x ∈ Rn and b̂ ∈ Rm , corresponds to the
dimension of the complete problem (3). Using the notation introduced earlier, we will
denote all symbols referring to the expanded problem with a hat .̂
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Fig. 5 The expanded system for the complete event tree of Fig. 3

To analyse the warm-start iterate we can now follow a two-step procedure. First we
note that from an advanced iterate (xR, yR, sR) ∈ N R

s (γ ) for the reduced problem the
procedure in (13) constructs a primal–dual feasible point (x̂, ŷ, ŝ) for the expanded
problem. Indeed, in Theorem 3 we will show that (x̂, ŷ, ŝ) ∈ N̂s(γ̂ ). In the second step
we can use this iterate to warm-start the complete problem. Since from the expanded
to the complete problem the problem size does not change, the methods developed in
[10,27] can be used to analyse the warm-start iterate.

We start the analysis with a technical result.

Lemma 1 Let l ∈ T , then

∑

i∈Dl

T r(i)�
ŷi = pl

pr(l)
R

∑

k∈Dr(l)
R

T k�
yk

R .

Proof We have this chain of identities:

∑

i∈Dl

T r(i)�
ŷi =

∑

i∈Dl

T r(i)�
yr(i)

R
pi

pr(i)
R

= pl

pr(l)
R

∑

i∈Dl

T r(i)�
yr(i)

R
δi

δ
r(i)
R

= pl

pr(l)
R

∑

k∈Dr(l)
R

T k�
yk

R

δk
R

∑

i∈Ik∩Dl

δi ,
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where the first equality follows from (13) and the second from pi = plδi and pr(i)
R =

pr(l)
R δ

r(i)
R for i ∈ Dl . The last equality is obtained observing that we can partition Dl

according to (9). The claim then follows noting that for a node l at stage t < κ:

∑

i∈Ik∩Dl

δi =
∑

i∈Ik

δi = δk = δk
R,

while for a node l at stage t ≥ κ:

∑

i∈Ik∩Dl

δi =
∑

i∈Dl

δi = δk
R = 1.

��
The next two results show that the reduced tree solution can be used to generate a

point that is primal–dual feasible and central for the expanded problem.

Theorem 2 If (xR, yR, sR) is primal and dual feasible for the reduced problem (11),
then the warm-start solution (x̂, ŷ, ŝ) obtained from (13) is primal and dual feasible
for the expanded problem (14).

Proof As x̂ l = xr(l)
R , primal feasibility is trivially satisfied:

T r(l) x̂a(l) + W r(l) x̂ l = hr(l), l ∈ T . (15)

Now we consider dual feasibility. By assumption, the reduced problem solution
satisfies the dual constraints:

W r(l)�
yr(l)

R +
∑

k∈Dr(l)
R

T r(k)�
yr(k)

R + sr(l)
R = pr(l)

R qr(l), r(l) ∈ TR .

Multiplying both terms by pl/pr(l)
R we obtain

pl

pr(l)
R

⎛

⎜⎝W r(l)�
yr(l)

R +
∑

k∈Dr(l)
R

T r(k)�
yr(k)

R + sr(l)
R

⎞

⎟⎠ = plqr(l),

which, according to (13) and Lemma 1, becomes

W r(l)�
ŷl +

∑

i∈Dl

T r(i)�
ŷi + ŝl = plqr(l), l ∈ T , (16)

so (ŷ, ŝ) satisfies the dual constraints in the expanded problem. ��
Theorem 3 If (xR, yR, sR) ∈ N R

s (γ ) for some γ ∈ (0, 1), then (x̂, ŷ, ŝ) ∈ N̂s(ργ ),
with ρ defined in (10).

123



386 M. Colombo et al.

Proof From Theorem 2, the warm-start iterate (x̂, ŷ, ŝ) is feasible in the reduced
system. Hence, here we only need to prove centrality. We observe that

μ̂ = x̂�ŝ

n
= 1

n

∑

l∈T
(x̂ l)�ŝl = 1

n

∑

k∈TR

∑

i∈Ik

(x̂ i )�ŝi

= 1

n

∑

k∈TR

∑

i∈Ik

pi

pk
R

(xk
R)�sk

R

= 1

n

∑

k∈TR

1

pk
R

(xk
R)�sk

R

∑

i∈Ik

pi

= nR

n
μR,

where we used (13) and (12), and μR = x�
RsR/nR . Hence, since (xR, yR, sR) ∈ Ns(γ )

implies (xR) j (sR) j ≥ γμR , for j = 1, . . . , nR , using (10) we have

x̂ l
j ŝ

l
j = (xr(l)

R ) j (s
r(l)
R ) j

pl

pr(l)
R

≥ γμR
pl

pr(l)
R

= γ μ̂
n

nR

pl

pr(l)
R

≥ ργ μ̂, l ∈ T .

The upper bound x̂ l
j ŝ

l
j ≤ μ̂/(ργ ) can be derived similarly. ��

5.1 Absorbing perturbations

We argue that the difference between the data of the expanded problem (14) and that of
the original (complete) problem (3) can be interpreted as a perturbation between two
problem instances of identical dimension. Clearly the expanded system has merely a
theoretical interest, as we use it to evaluate the magnitude of the perturbation intro-
duced, and we never generate it in practice.

We assume that a feasible long-step path-following algorithm based on the sym-
metric neighbourhood Ns(γ ) [6] is used to solve the warm-started complete prob-
lem. Although the constructed warm-start iterate (x̂, ŷ, ŝ) from (13) is feasible in the
expanded problem, it is not feasible in the complete problem. As in [27] and [10] we
derive conditions that guarantee to absorb these infeasibilities with one modification
step. For this, consider the following Newton system:

⎡

⎣
A 0 0
0 A� I
Ŝ 0 X̂

⎤

⎦

⎡

⎣
�x
�y
�s

⎤

⎦ =
⎡

⎣
ξb

ξc

0

⎤

⎦ , (17)

where ξb = b − Ax̂ and ξc = c − A� ŷ + ŝ are the infeasibilities incurred by using the
expanded iterate (x̂, ŷ, ŝ) to warm-start the complete problem. Gondzio and Grothey
[10] analyse the same system, but are concerned with absorbing primal and dual infea-
sibility separately by splitting (17) into two separate directions. We will give a more
general result and apply it to the situation of warm start for stochastic programming
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problems. To avoid overburdening the notation, we will drop the hat from the warm-
start vectors. We will keep it in the neighbourhoods to make a clear distinction between
N̂ s(γ ) and Ns(γ ) denoting the symmetric neighbourhoods for the expanded problem
(14) and the complete problem (3), respectively.

After some straightforward manipulation following the arguments of [10], the
Newton direction (17) can be expressed in terms of the primal and dual residuals
ξb, ξc as

�x = (X S−1 A�(AX S−1 A�)−1 AX S−1 − X S−1)ξc + X S−1 A�(AX S−1 A�)−1ξb,

�y = (AX S−1 A�)−1(AX S−1ξc + ξb), (18)

�s = (I − A�(AX S−1 A�)−1 AX S−1)ξc − A�(AX S−1 A�)−1ξb.

We consider matrix Q = I − S−1 A�(AX S−1 A�)−1 AX , and restate Lemma 3.2
of [10], which provides a bound on the norm of Q, in terms of the symmetric neigh-
bourhood Ns(γ ).

Lemma 4 If (x, y, s) ∈ Ns(γ ), then ‖Q‖2 ≤ 1/γ .

Proof For a point (x, y, s) ∈ Ns(γ ), the following inequalities hold:

(xi si )
−1/2 ≤ (γμ)−1/2, and (xi si )

1/2 ≤ (μ/γ )1/2.

With some manipulations, we can express matrix Q as

Q = X−1/2S−1/2[I − X1/2S−1/2 A�(AX S−1 A�)−1 AX1/2S−1/2]X1/2S1/2,

where the term in square brackets is an orthogonal projection on the null space of
AX1/2S−1/2, so its Euclidean norm is 1. As desired, we obtain

‖Q‖2 = ‖X−1/2S−1/2‖2‖X1/2S1/2‖2 ≤ 1/γ.

��
In the next Lemma we state sufficient conditions for the perturbations to guarantee

a full Newton step.

Lemma 5 Let (x, y, s) ∈ N̂s(γ ) be the warm-start iterate and define the scaled
residuals

ξ̃b = X−1 A�(AA�)−1ξb and ξ̃c = S−1ξc. (19)

If for β < 1 we have

‖ξ̃b‖∞ + ‖ξ̃c‖∞ ≤ β
(
1 + √

n/γ
)−1

,

then the full Newton step (17) from the warm-start iterate can be taken and absorbs
the complete infeasibilities.
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Proof Using the definitions of the matrix Q and of the relative residual vectors (19),
the relations (18) simplify to

X−1�x = −Qξ̃c + (I − Q)ξ̃b = −S−1�s,

yielding the bound

‖X−1�x‖∞ ≤ ‖Q‖∞‖ξ̃c‖∞
+ (1 + ‖Q‖∞) ‖ξ̃b‖∞ ≤ (1 + ‖Q‖∞)(‖ξ̃b‖∞ + ‖ξ̃c‖∞). (20)

As (x, y, s) ∈ N̂ s(γ ), using Lemma 4 we obtain ‖Q‖∞ ≤ √
n‖Q‖2 ≤ √

n/γ .
Substituting it into (20), we get

‖X−1�x‖∞ ≤ (
1 + √

n/γ
)
(‖ξ̃b‖∞ + ‖ξ̃c‖∞),

which, under the condition of the Lemma, implies

‖X−1�x‖∞ = ‖S−1�s‖∞ ≤ β, (21)

that is the full Newton step is feasible, as β < 1. ��

The following theorem establishes that the search direction obtained from (17)
brings the iterate inside a symmetric neighbourhood of the central path for the com-
plete problem.

Theorem 6 Let (x, y, s) ∈ N̂s(γ ) and β < 1. Under the conditions of Lemma 5, the
new point (x̃, ỹ, s̃) = (x + �x, y + �y, s + �s) ∈ Ns

(
(1 − β2)γ

)
.

Proof The barrier parameter at the new point (x̃, ỹ, s̃) is

nμ̃ =
n∑

i=1

x̃i s̃i =
n∑

i=1

(xi + �xi )(si + �si ) =
n∑

i=1

(xi si + �xi�si ), (22)

as, according to the last equation of (17), si�xi + xi�si = 0, i = 1, . . . , n; the latter
also implies that �xi�si ≤ 0. Using (21) from Lemma 5, we have ‖X−1�x‖∞‖S−1

�s‖∞ ≤ β2, and so

− β2xi si ≤ �xi�si ≤ 0. (23)

By summing up all products and adding nμ = ∑
i xi si to all terms, and by using (22),

we obtain

(1 − β2)nμ ≤ nμ̃ ≤ nμ. (24)
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We now study whether the new iterate is still in (some) symmetric neighbourhood
of the central path by checking the pairwise complementary products

x̃i s̃i = xi si + �xi�si =
(

1 + �xi�si

xi si

)
xi si.

Using (23) and (24) we obtain

x̃i s̃i ≥ (1 − β2)γμ ≥ (1 − β2)γ μ̃ and x̃i s̃i ≤ 1

γ
μ ≤ 1

(1 − β2)γ
μ̃,

which proves the statement of the theorem. ��

5.2 Conditions on the warm-start iterate

We use Lemma 5 to obtain conditions that the reduced tree has to satisfy in order for a
warm start of the complete problem to be successful. In order to prove this result, we
need to assume that the primal–dual solution (x∗

R, y∗
R, s∗

R) to the reduced stochastic
programming problem is uniformly bounded, say,

max{‖x∗
R‖∞, ‖y∗

R‖∞, ‖s∗
R‖∞}≤ B, max{‖(X∗

R)−1e‖∞, ‖(S∗
R)−1e‖∞}≤ B, (25)

where B > 1. It is worth noting that since we work with the symmetric neighbourhood
(6), we actually need only the first inequality to hold. Indeed, if x∗

j ≤ B then 1/s∗
j ≤

x∗
j /(γμ) ≤ B/(γμ) and, similarly, if s∗

j ≤ B then 1/x∗
j ≤ s∗

j /(γμ) ≤ B/(γμ).
In other words, the boundedness of the iterate (x∗

R, y∗
R, s∗

R) implies the boundedness
of the component-wise inverses of x∗

R and s∗
R .

The reduced problem solution is in a neighbourhood of the central path for the
reduced problem. In particular, this is the case if additional centering steps are com-
puted once the desired tolerance level has been attained [9]. Using the feasibility result
of Theorem 2, the residuals for the complete problem at the warm-start point (x̂, ŷ, ŝ)
are:

ξb = b − Ax̂ = (b − b̂) − (A − Â)x̂,

ξc = c − A� ŷ − ŝ = (c − ĉ) − (A − Â)� ŷ.

It is crucial to ensure that the primal and dual residuals ξb and ξc are small. By
construction, the elements of the vectors (b − b̂) and (c − ĉ) that correspond to nodes
in the reduced tree are zero; for the same reason, the corresponding blocks of (A − Â)

are zero as well.
The elements corresponding to the nodes not considered in the reduced tree will

be, in general, non zero. However, as the scenarios in the reduced tree were chosen
according to (7) in order to minimize the distance from the average case, we expect
the perturbations to be small.

We can now state the following result, in which we obtain some bounds on the size
of the primal and dual perturbations.
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Lemma 7 Let the reduced tree be chosen in such a way that for every node i ∈ T the
node distance (2) is d(r(i), i) < ε, for an ε > 0. If the reduced problem solution is
primal and dual feasible and satisfies (25), then ‖ξb‖∞ ≤ εB and ‖ξc‖∞ ≤ εB|TR |,
where |TR | is the number of nodes in the reduced tree.

Proof Using the form of the stochastic programming problem (1) we can write the
primal residual of the complete problem as

‖ξb‖∞ = ‖b − Ax̂‖∞ = max{‖hl − T l x̂a(l) − W l x̂l‖∞ : l ∈ Lt , t = 1, . . . , t f }.

The contribution of a node l ∈ T to ξb is

‖ξ l
b‖∞ = ‖hl − T l x̂a(l) − W l x̂l‖

= ‖hl − hr(l) − (T l − T r(l))x̂a(l) − (W l − W r(l))x̂ l‖
≤ (‖hl − hr(l)‖ + ‖T l − T r(l)‖ + ‖W l − W r(l)‖)B

≤ d(l, r(l))B ≤ εB,

where the step from the first to the second line uses (15), and all norms here are infinity
norms. This clearly implies that ‖ξb‖∞ ≤ εB.

The dual residual for the complete problem at the warm-start point can be written
as

‖ξc‖∞ = ‖c − A� ŷ − ŝ‖∞

= max

⎧
⎨

⎩‖plql − W l �
ŷl −

∑

i∈Dl

T i �
ŷi − ŝl‖∞ : l ∈ Lt , t = 1, . . . , t f

⎫
⎬

⎭.

The contribution of a node l ∈ T to ξc is

ξ l
c = plql − W l �

ŷl −
∑

i∈Dl

T i �
ŷi − ŝl

= pl(ql − qr(l)) − (W l − W r(l))� ŷl −
∑

i∈Dl

(T i − T r(i))� ŷi

= pl(ql − qr(l)) − pl

pr(l)
R

⎡

⎣(W l − W r(l))� yr(l)
R +

∑

i∈Dl

(T i − T r(i))� δi

δ
r(i)
R

yr(i)
R

⎤

⎦,

where the step from the first to the second line uses (16) and the next step uses (13)
together with pi = plδi , pr(i)

R = pr(l)
R δ

r(i)
R . Taking norms (all norms here are infinity

norms) and using the partitioning defined in (9) we obtain
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‖ξ l
c‖∞ ≤ ‖ql − qr(l)‖+‖W l −W r(l)‖‖yr(l)

R ‖+
∑

k∈Dr(l)
R

‖yk
R‖

∑

i∈Ik∩Dl\{k}
‖T i − T k‖ δi

δk
R

≤ ‖ql −qr(l)‖+‖W l − W r(l)‖‖yr(l)
R ‖+

∑

k∈Dr(l)
R

‖yk
R‖ε

∑

i∈Ik∩Dl\{k}

δi

δk
R

≤
⎛

⎜⎝‖ql − qr(l)‖ + ‖W l − W r(l)‖ +
∑

k∈Dr(l)
R

(
1 − δk

δk
R

)
ε

⎞

⎟⎠ B ≤ εB|TR |.

��
The following result combines the findings of Lemmas 5 and 7.

Theorem 8 Let the assumptions of Lemma 7 be satisfied and

εB2 max
{
‖A�(AA�)−1‖∞, |TR |

}
≤ 1

2
β
(
1 + √

n/γ
)−1

.

Then the full Newton step (17) from the warm-start iterate is feasible and restores
primal and dual feasibility.

Proof Using the definition of ξ̃b from (19), the bounds (25), and Lemma 7, we get

‖ξ̃b‖∞ = ‖X−1 A�(AA�)−1ξb‖∞ ≤ εB2‖A�(AA�)−1‖∞ ≤ 1

2
β
(
1 + √

n/γ
)−1

.

In a similar way, we obtain

‖ξ̃c‖∞ = ‖S−1ξc‖∞ ≤ εB2|TR | ≤ 1

2
β
(
1 + √

n/γ
)−1

.

Now the result follows from Lemma 5. ��
It is worth making a few remarks about these results. Theorem 8 implies that if we

can choose the reduced scenario tree such that ε = maxi {d(r(i), i)} is small enough to
satisfy the bound given in the Theorem, then the warm-start point constructed from the
reduced scenario tree will be successful for the complete problem. Unfortunately we
have only limited influence on ε. Indeed ε is the result of the variation of the problem
data between the expanded and the complete systems. However, we can reduce ε by
having a denser reduced tree, although this would make the solution of the reduced
problem more expensive.

While the analysis performed concerned a primal–dual interior point algorithm
applied to a deterministic equivalent problem with node (rather than scenario) for-
mulation, we expect that similar results could be adapted to a different interior point
algorithm and problem formulation.

It is important to remember that these are theoretical bounds. There is a gap between
theory and practice. In practice much larger infeasibilities ‖ξ̃b‖, ‖ξ̃c‖ can be absorbed.
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This is confirmed by our numerical results where even choosing just two scenarios
in the reduced tree leads to a significant reduction in the number of interior point
iterations required to solve the complete problem. We remark that this is problem
dependent, and on other instances a larger number of scenarios in the reduced tree
may be necessary.

6 Implementation and numerical results

We first implemented the strategy of generating a reduced tree and the correspond-
ing warm-start iterate within the HOPDM [8] solver. We tested a series of publicly
available stochastic problems in the SMPS format [3] coming from the POSTS collec-
tion available from: http://users.iems.northwestern.edu/~jrbirge/html/dholmes/post.
html. It should be noted that we disabled HOPDM’s presolve in order to preserve the
dimensions of the problems, and thus obtain sensible warm-start points.

While the analysis of Sect. 5 is very conservative in its estimates of the absorbable
perturbations, in practice we noticed that the reduced-tree warm-start strategy is effec-
tive even with a much sparser tree than that suggested by the theory. In our experiments
different choices for the reduced tree size have been explored, without any noticeable
difference in the effectiveness of the warm-start strategy. In results presented below,
the reduced tree was built with only two scenarios.

We solved the reduced problem with an optimality tolerance of 5.0 × 10−1, while
the optimality tolerance for the complete problem was set to 5.0×10−8. Computations
were performed on a Linux PC with a 3.0 GHz Intel Pentium processor and 1 GB of
RAM. In Table 1 we report the dimensions of the problems in terms of the number of
stages and scenarios for the complete tree, the number of iterations and the computing
time (in seconds) with cold start and warm start. The latter includes the generation
and solution of the reduced problem, and the construction of the warm-start iterate.

Table 1 Results obtained with HOPDM, 2 scenarios in the reduced tree

Problem data Cold start Warm start

Name Stages Scens Iters Time Iters Time

fxm2_16 2 16 22 1.2 13 1.0

fxm3_6 3 36 30 1.5 17 1.3

fxm3_16 3 256 40 31.1 20 20.7

fxm4_6 4 216 30 8.2 22 8.3

fxm4_16 4 4,096 41 218.3 27 182.6

pltexpA3_16 3 256 26 153.8 14 87.8

pltexpA4_6 4 216 36 55.8 16 27.5

pltexpA5_6 5 1,296 81 772.0 30 311.5

storm27 2 27 41 95.4 22 53.2

storm125 2 125 73 107.3 36 69.1

storm1000 2 1,000 107 1,498.3 45 831.5
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The problems solved show an overall good behaviour of our warm-start strategy,
with time savings of up to 59% (for problem pltexpA5_6). The generation of the
reduced tree and the solution of the corresponding problem (11) is generally fast, and
becomes negligible as the problem sizes increase. However, for the smallest instances
of our test set (fxm2_16, fxm3_6 and fxm4_6), it is noticeable and consumes the
savings produced by using an advanced iterate.

6.1 Telecommunication problems

We implemented the same approach in OOPS [12,13], where we were able to test larger
problem instances. Since OOPS does not have features such as presolve and scaling,
the accuracy requested in the solution has to be smaller. We set it to 5.0 × 10−4 which
is sufficient for telecommunication applications. On the other hand, OOPS makes
an effective use of its structure-exploiting capabilities allowing the solver to tackle
large-scale problems and provides access to parallel computing techniques.

We applied our warm-start strategy to the capacity assignment problem with uncer-
tain demand, a model relevant to the telecommunication industry [24]. The objective
of this model is to find the optimal choice of capacities to be assigned to the links in the
network in order to minimize unsatisfied customer demands. In our particular appli-
cation we assume that the topology of the network and the sets of origin–destination
pairs are given and are not going to change during the planning horizon.

We model this situation as a two-stage stochastic linear program with recourse. The
general model has the following form:

min
x

Ed [ f (x, d)] s.t.
∑

l∈A
cl xl ≤ M, x ≥ 0,

where cl and xl are the cost and capacity of link l ∈ A, respectively, and M is a bound
on the budget. The objective here is to minimize the expected cost (conditional on the
uncertain demand). This general model describes the first stage decision about the link
capacities. The function f (x, d) is defined in the following model, which describes
the second stage decisions:

f (x, d) = min
∑

k∈D

⎛

⎝dk −
∑

p∈Pk

z p

⎞

⎠

s.t.
∑

k∈D

∑

p∈Pk :l∈p

z p ≤ xl ∀l ∈ A
∑

p∈Pk

z p ≤ dk ∀k ∈ D

z p ≥ 0,

where dk is the demand for the kth origin–destination pair, Pk is a given set of paths
linking the kth pair, and z p is the flow on path p. While this problem has relatively
complete recourse, that is, for any first-stage decision there is always a second-stage
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Table 2 Characteristics of the telecommunication problems

Name Nodes Arcs Demands Paths Av.length

mnx 12 50 66 189 2.6

jlg 26 84 264 697 5.6

mgntA 53 158 1,378 3,574 6.7

mgntB 70 210 2,346 6,137 6.4

recourse that satisfies all constraints, our warm-start approach does not exploit this
property. Indeed we do not attempt do construct a primal-feasible recourse decision
for the incoming scenarios, rather we aim to construct an approximately primal-dual
feasible and central point for the complete problem on the full tree. To generate sce-
narios, we used the approach described in [24]. For each origin–destination pair k we
need to have a demand estimate dk , which can be determined from historic data or
from an educated guess. The demand is assumed to be uniformly distributed around
this estimate. Hence, the demand ds

k for the kth pair in scenario s is given by

ds
k = (

1 + εs
k

)
dk,

where εs
k is a random number generated in the interval [−
, 
]. The value of 
 > 0

determines the range in which we assume the demand to fluctuate. In our experiments
we chose a value of 
 = 0.5, thus allowing very large variations in the demand.

The relevant network characteristics of the problems solved are shown in Table 2,
where we detail the size of the network, the number of demands considered, the overall
number of paths and the average number of arcs in each path. For a problem with N
scenarios, the number of constraints and decision variables (including slacks) are

m = 1 + N × (#A + #D), and n = 1 + #A + N × (#A + #D + #P),

respectively, where #A is the number of arcs, #D the number of demands, and #P the
total number of paths.

In the second and third columns of Table 3 we report the solution statistics for
OOPS. Computations were performed on a Linux PC with 3.0 GHz Intel Pentium
processor and 2 GB of RAM. In all cases the reduced tree was built with merely two
scenarios. Therefore the computation time corresponding to the solution of the reduced
problem (included in time reported in the table) was always negligible. The savings
of warm start over cold start strategy vary between 40 and 80% in most cases.

We have also solved the smallest instances of these problems with Cplex 9.0 Bar-
rier Solver. The problems mnx-100, jlg-100, mgntA-100 and mgntB-100
were solved in 1.1, 7.1, 4,379.9 and 9,030.4 s, respectively. This means that Cplex was
about 4 and 2 times faster than OOPS on mnx-100 and jlg-100 problems, respec-
tively but it was about 28 times slower than OOPS on more difficult mgntA-100 and
mgntB-100 problems.

In the fourth and fifth columns of Table 3 we report the parallel performance of
OOPS on a cluster of four machines with a 3.0 GHz Intel Pentium processor and 2 GB
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Table 3 Efficiency of the warm-start strategy in OOPS in the serial case (2 scenarios in the reduced tree)
and in the parallel case (4 processors and 4 scenarios in the reduced tree)

Problem Serial case Parallel case

Cold start Warm start Cold start Warm start

Iters Time Iters Time Iters Time Iters Time

mnx-100 15 6.7 9 3.9 15 3.9 9 2.6
mnx-200 13 12.9 7 7.3 13 4.6 7 3.5

mnx-400 16 28.9 8 15.5 16 10.5 8 6.3

mnx-800 17 58.8 10 39.5 17 18.8 10 10.7

mnx-1600 19 131.1 10 68.8 19 50.3 10 31.4

jlg-100 21 38.3 6 15.5 21 11.0 6 6.1

jlg-200 45 164.9 17 39.5 45 49.9 17 20.7

jlg-400 44 255.2 18 103.1 43 83.2 19 39.7

jlg-800 27 353.4 10 152.9 29 130.5 10 50.1

jlg-1600 32 855.3 13 360.6 35 286.1 14 129.7

mgntA-100 28 260.0 14 156.2 28 76.9 14 51.6

mgntA-200 50 877.1 35 690.6 50 256.4 34 195.3

mgntA-400 40 1,470.3 14 572.5 40 410.9 14 181.6

mgntB-100 23 511.1 14 318.0 23 137.5 14 103.9

mgntB-200 25 909.4 8 332.4 25 284.2 8 140.5

mgntB-400 29 2,154.5 7 538.1 29 605.5 7 211.6

of RAM each. In this case, we choose the size of the reduced tree to be equal to the
number of processors employed for two complementary reasons. First, it is preferable
to assign to OOPS a balanced number of blocks on each processor, so we needed to
guarantee that each processor gets at least one block; second, we obtain a more refined
starting solution at no additional computational cost. However the analysis of the par-
allel results collected in Table 3 indicates that the use of a slightly larger reduced tree
does not translate into any noticeable improvement in the warm start runs as measured
with the number of warm start iterations. Obviously, the solution times are reduced
but this is the effect of using more processors.

6.2 Effectiveness with respect to the VSS

We considered the effectiveness of the warm-start strategy with respect to the value
of stochastic solution (VSS) [4]. The VSS measures the improvement in objective
function obtained by solving a stochastic problem over solving an expected value
problem. Therefore, for low values of the VSS, it may not be worthwhile formulating
and solving a stochastic problem; however, for higher values of the VSS, the stochastic
solution yields measurably better decisions. The VSS can therefore be seen as a mea-
sure of how much new problem information is contained in the additional scenarios,
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Fig. 6 Plot of the relative savings in number of iterations against the relative VSS

and how far we expect the first-stage decisions for the complete tree differ from the
ones obtained on the reduced tree.

In the context of the telecomunication problem of Sect. 6.1, we noticed that we
could modify the VSS by considering different values of the budget M . For very small
values of the budget, the first-stage decisions are virtually independent of the stochas-
ticity, as we would resort to buying the cheapest arcs for any value of the unknown
demand. However, for larger values of the budget, stochasticity has an impact on the
first-stage decisions, and therefore the stochastic measure grows.

In Fig. 6 we present the results we obtained by setting different values of the budget
in problems mnx-200 and jlg-200. As we can see, for these problems there is no
discernible relationship between the magnitude of the VSS and the success of the
warm-start strategy.

7 Conclusions

We introduced a technique that exploits the near-optimal solution to a stochastic linear
program corresponding to a reduced scenario tree to warm-start a much larger problem
that encompasses the complete scenario tree. Our way of reducing the dimension of
the scenario tree was based on the assumption that we have no knowledge of the under-
lying stochastic process, and therefore we developed an ad-hoc measure of distance
between the scenarios. We proposed to minimize the distance to a selection of repre-
sentative scenarios; other possibilities can be devised, and may be the subject of future
research. We observed that the iterate generated from the reduced problem provides an
advanced starting point for the solution of the complete problem, in general resulting in
a decrease of the number of iterations needed. As the computational cost of generating
such an iterate is negligible, this produces consistent savings in computational time.

Acknowledgments We thank one of the referees for pointing out a way to strengthen the statement of
Theorem 6.
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