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Abstract Linear programs with joint probabilistic constraints (PCLP) are difficult
to solve because the feasible region is not convex. We consider a special case of PCLP
in which only the right-hand side is random and this random vector has a finite dis-
tribution. We give a mixed-integer programming formulation for this special case and
study the relaxation corresponding to a single row of the probabilistic constraint. We
obtain two strengthened formulations. As a byproduct of this analysis, we obtain new
results for the previously studied mixing set, subject to an additional knapsack inequa-
lity. We present computational results which indicate that by using our strengthened
formulations, instances that are considerably larger than have been considered before
can be solved to optimality.
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1 Introduction

Consider a linear program with a probabilistic or chance constraint

(PCLP) min
{

cx : x ∈ X, P{T̃ x ≥ ξ} ≥ 1 − ε
}

(1)

where X ⊆ R
d+ is a polyhedron, c ∈ R

d , T̃ is an m × d random matrix, ξ is a
random vector taking values in R

m, and ε is a confidence parameter chosen by the
decision maker, typically near zero, e.g., ε = 0.01 or ε = 0.05. Note that in (1) we
enforce a single probabilistic constraint over all rows, rather than requiring that each
row independently be satisfied with high probability. Such a constraint is known as a
joint probabilistic constraint, and is appropriate in a context in which it is important
to have all constraints satisfied simultaneously and there may be dependence between
random variables in different rows.

Problems with joint probabilistic constraints have been extensively studied; see
[1] for background and an extensive list of references. Probabilistic constraints have
been used in various applications including supply chain management [2], production
planning [3], optimization of chemical processes [4,5] and surface water quality mana-
gement [6]. Unfortunately, linear programs with probabilistic constraints are difficult
to solve in general for two reasons. The first difficulty is that, for a given x ∈ X , the
quantity P{T̃ x ≥ ξ} is usually hard to compute, as it requires multi-dimensional inte-
gration. There are some important exceptions in which this quantity can be estimated
to reasonable accuracy efficiently, such as when the random input has a joint normal
distribution, see, e.g., [7–9]. The second difficulty is that the feasible region defined
by a probabilistic constraint generally is not convex.

In this work, we demonstrate that by using integer programming techniques, ins-
tances of PCLP that are considerably larger than have been considered before can be
solved to optimality under the following two simplifying assumptions:

(A1) Only the right-hand side vector ξ is random; the matrix T̃ = T is deterministic.
(A2) The random vector ξ has a finite distribution.

Despite its restrictiveness, the special case given by assumption A1 has received consi-
derable attention in the literature, see, e.g., [1,11,10]. A notable result for this case is
that if the distribution of the right-hand side is log-concave (in which case assumption
A2 does not hold), then the feasible region defined by the joint probabilistic constraint
is convex [1]. Specialized methods have been developed in [1,12,11] for the case in
which assumption A1 holds and the random vector has discrete but not necessarily
finite distribution. These methods rely on the enumeration of certain efficient points
of the distribution, and hence do not scale well with m, the dimension of ξ , since the
number of efficient points grows exponentially in m.

Assumption A2 may also seem restrictive. However, if the possible values for ξ are
generated by taking a Monte Carlo sample from a general distribution, we can think
of the resulting problem as an approximation of a problem with general distribution.
There is theoretical and empirical evidence which demonstrates that such a sample
approximation can indeed be used to approximately solve problems with continuous
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distribution with reasonable effort, see [13–18] for some relevant results. It seems that
the reason such a sampling approach has not been seriously considered for PCLP in
the past is that the resulting sampled problem has a non-convex feasible region. Our
contribution is to demonstrate that, at least under assumption A1, it is nonetheless
possible to solve the sample approximation.

Under assumption A2 it is possible to write a mixed-integer programming (MIP)
formulation for PCLP, as has been done, for example, in [19]. In the general case,
such a formulation requires the introduction of “big-M” type constraints, and hence
is difficult to solve. In [19], inequalities which are valid for PCLP when assump-
tion A2 holds (but not necessarily A1) are derived by using the knapsack inequality
which enforces the probabilistic constraint (see Sect. 2) along with dominance bet-
ween different realizations of the random input. Under assumption A1, a realization
ξ i dominates a realization ξ j if ξ i ≥ ξ j , so that if T x ≥ ξ i , then also T x ≥ ξ j .
Although the inequalities in [19] do not require assumption A1, they depend critically
on the existence of realizations which dominate each other, and as the dimension of
the random input increases, this will be increasingly rare. In contrast, the formulations
we study are restricted to the case of assumption A1, but do not have any dependence
on dominance between realizations, and hence yield strong formulations even with
random vector of large dimension.

Using assumption A1 we are able to develop strong mixed-integer programming
formulations which overcome the weakness of the “big-M” formulation. Our approach
in developing these formulations is to consider the relaxation obtained from a single
row in the probabilistic constraint. This yields a system similar to the mixing set
introduced by Günlük and Pochet [20], subject to an additional knapsack inequality.
We are able to derive strong valid inequalities for this system by first using the knapsack
inequality to “pre-process” the mixing set and then applying the mixing inequalities
of [20]; see also [21,22]. We also derive an extended formulation, equivalent to one
given by Miller and Wolsey in [23]. Making further use of the knapsack inequality,
we are able to derive more general classes of valid inequalities for both the original
and extended formulations. If all scenarios are equally likely, the knapsack inequality
reduces to a cardinality restriction. In this case, we are able to characterize the convex
hull of feasible solutions to the extended formulation for the single row case. Although
these results are motivated by the application to PCLP, they can be used in any problem
in which a mixing set appears along with a knapsack constraint.

An extended abstract of this paper has appeared in [24]. This paper includes
proofs of all the main results, as well as some additional computational results and an
implicit characterization of all valid inequalities for the single row relaxation studied
in Sect. 3.

The remainder of this paper is organized as follows. In Sect. 2 we verify that PCLP
remains N P-hard even under assumptions A1 and A2, and present the standard MIP
formulation. In Sect. 3 we analyze this MIP and present classes of valid inequalities
that make the formulation strong. In Sect. 4 we present an extended formulation, and
a new class of valid inequalities and show that in the equi-probable scenarios case,
these inequalities define the convex hull of the single row formulation. In Sect. 5 we
present computational results using the strengthened formulations, and we close with
concluding remarks in Sect. 6.
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2 The MIP formulation

We now consider a probabilistically constrained linear programming problem with
random right-hand side given by

min cx
s.t. P{T x ≥ ξ} ≥ 1 − ε

x ∈ X.

(2)

Here X ⊆ R
d+ is a polyhedron, T is an m × d matrix, ξ is a random vector in R

m ,
ε ∈ (0, 1) (typically small) and c ∈ R

d . We assume that ξ has finite support, that
is there exist vectors, ξi ∈ R

m, i = 1, . . . , n such that P{ξ = ξi } = πi for each i
where πi > 0 and

∑n
i=1 πi = 1. We refer to the possible outcomes as scenarios. We

assume without loss of generality that ξi ≥ 0. In addition, we assume πi ≤ ε for each
i , since if πi > ε, then T x ≥ ξ i must hold for any feasible x , so we can include these
inequalities in the definition of X and not consider scenario i further. We also define
the set N = {1, . . . , n}.

Before proceeding, we note that (2) is NP-hard.

Theorem 1 Problem (2) is NP-hard, even in the special case in which πi = 1/n for
all i ∈ N, X = R

m+, T is the m × m identity matrix, and c = (1, . . . , 1) ∈ R
m.

Proof Let K = �(1 − ε)n�. Then, under the stated conditions (2) can be written as

min
I⊆N

{ m∑
j=1

max
i∈I

{
ξi j

} : |I | ≥ K

}
.

We show that the associated decision problem:

(DPCLP) Given non-negative integers ξi j for i = 1, . . . , n, j = 1, . . . , m,
K ≤ n and B, is there an I ⊆ N such that |I | ≥ K and

∑m
j=1 maxi∈I {ξi j } ≤ B?

is NP-complete by reduction from the NP-complete problem CLIQUE. Consider an
instance of CLIQUE given by graph G = (V, E), in which we wish to decide whe-
ther there exists a clique of size C . We construct an instance of DPCLP by letting
{1, . . . , m} = V , N = E , B = C, K = C(C − 1)/2 and ξi j = 1 if edge i is incident
to node j and ξi j = 0 otherwise. The key observation is that for any I ⊆ E , and j ∈ V ,

max
i∈I

{ξi j } =
{

1 if some edge i ∈ I is incident to node j
0 otherwise.

Hence, if there exists a clique of size C in G then we have a subgraph of G consisting of
C nodes and C(C −1)/2 edges. Thus there exists I ⊆ N with |I |=C(C−1)/2= K and

m∑
j=1

max
i∈I

{ξi j } = C = B

and the answer to DPCLP is yes.
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Conversely, if the answer to DPCLP is yes, there exists I ⊆ E of size at least
K = C(C − 1)/2 such that the number of nodes incident to I is at most B = C . This
can only happen if I defines a clique of size C . ��

We now formulate (2) as a mixed-integer program [19]. To do so, we introduce for
each i ∈ N , a binary variable zi , where zi = 0 guarantees that T x ≥ ξi . Observe that
because ε < 1 we must have T x ≥ ξi for at least one i ∈ N , and because ξi ≥ 0 for
all i , this implies T x ≥ 0 in every feasible solution of (2). Then, letting v = T x , we
obtain the MIP formulation of (2):

(PMIP) min cx

s.t. x ∈ X, T x − v = 0 (3)

v + ξi zi ≥ ξi i = 1, . . . , n (4)
n∑

i=1

πi zi ≤ ε (5)

z ∈ {0, 1}n

where (5) is equivalent to the probabilistic constraint

n∑
i=1

πi (1 − zi ) ≥ 1 − ε.

3 Strengthening the formulation

We begin by considering how the formulation PMIP can be strengthened when the
probabilities πi are general. In Sect. 3.2 we present results specialized to the case
when all πi are equal.

3.1 General probabilities

Our approach is to strengthen PMIP by ignoring (3) and finding strong formulations
for the set

F :=
{

(v, z) ∈ R
m+ × {0, 1}n :

n∑
i=1

πi zi ≤ ε, v + ξi zi ≥ ξi i = 1, . . . , n

}
.

Note that

F =
m⋂

j=1

{
(v, z) : (v j , z) ∈ G j

}
,
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where for j = 1, . . . , m

G j =
{

(v j , z) ∈ R+ × {0, 1}n :
n∑

i=1

πi zi ≤ ε, v j + ξi j zi ≥ ξi j i = 1, . . . , n

}
.

Thus, a natural first step in developing a strong formulation for F is to develop a
strong formulation for each G j . In particular, note that if an inequality is facet-defining
for conv(G j ), then it is also facet-defining for conv(F). This follows because if an
inequality valid for G j is supported by n + 1 affinely independent points in R

n+1,
then because this inequality will not have coefficients on vi for any i 	= j , the set
of supporting points can trivially be extended to a set of n + m affinely independent
supporting points in R

n+m by appropriately setting the vi values for each i 	= j .
The above discussion leads us to consider the generic set

G =
{

(y, z) ∈ R+ × {0, 1}n :
n∑

i=1

πi zi ≤ ε, y + hi zi ≥ hi i = 1, . . . , n

}

obtained by dropping the index j and setting y = v j and hi = ξi j for each i . We
assume without loss of generality that h1 ≥ h2 ≥ · · · ≥ hn . The relaxation of G
obtained by dropping the knapsack inequality (5) is a mixing set given by

P = {
(y, z) ∈ R+ × {0, 1}n : y + hi zi ≥ hi i = 1, . . . , n

}
.

This set has been extensively studied, in varying degrees of generality, by Atamtürk
et. al [21], Günlük and Pochet [20], Guan et. al [22] and Miller and Wolsey [23]. The
star inequalities of [21] given by

y +
l∑

j=1

(ht j − ht j+1)zt j ≥ ht1 ∀T = {t1, . . . , tl} ⊆ N ,

where t1 < · · · < tl and htl+1 := 0 are valid for P . Furthermore, these inequalities
can be separated in polynomial time, are facet-defining for P when t1 = 1, and are
sufficient to define the convex hull of P [20–22].

We can tighten these inequalities for G by using the knapsack constraint (5). In
particular, let p := max{k : ∑k

i=1 πi ≤ ε}. Then, from the knapsack constraint, we
cannot have zi = 1 for all i = 1, . . . , p + 1 and thus we have y ≥ h p+1. This also
implies that the mixed-integer constraints in G are redundant for i = p + 1, . . . , n.
Thus, we can replace the inequalities y + hi zi ≥ hi for i = 1, . . . , p in the definition
of G by the inequalities

y + (hi − h p+1)zi ≥ hi i = 1, . . . , p

where the coefficient on zi can be strengthened because when zi = 1, the inequality
reduces to the redundant condition y ≥ h p+1. Then, we have
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G =
{

(y, z)∈R+ × {0, 1}n :
n∑

i=1

πi zi ≤ ε, y+(hi − h p+1)zi ≥ hi i = 1, . . . , p

}
.

(6)

In addition to yielding a tighter relaxation, the description (6) of G is also more
compact. In typical applications, ε is near 0, suggesting p � n. When applied for
each j in the set F , if p is the same for all rows, this would yield a formulation with
mp � mn rows.

By applying the star inequalities to (6) we obtain the following result.

Theorem 2 The inequalities

y +
l∑

j=1

(ht j − ht j+1)zt j ≥ ht1 ∀T = {t1, . . . , tl} ⊆ {1, . . . , p} (7)

with t1 < · · · < tl and htl+1 := h p+1, are valid for G. Moreover, (7) is facet-defining
for conv(G) if and only if ht1 = h1.

Proof The result follows directly from Proposition 3 and Theorem 2 of [21] after
appropriate reformulation. See also [20,22]. However, since our formulation differs
somewhat, we give a self-contained proof. To prove (7) is valid, let (y, z) ∈ G and let
j∗ = min{ j ∈ {1, . . . , l} : zt j = 0}. Then y ≥ ht j∗ . Thus,

y +
l∑

j=1

(ht j − ht j+1)zt j ≥ ht j∗ +
j∗−1∑
j=1

(ht j − ht j+1) = ht1 .

If ht1 < h1, then a stronger inequality can be obtained by including index 1 in the set T ,
proving that this is a necessary condition for (7) to be facet-defining. Consider the fol-
lowing set of points: (h1, ei ), i ∈ N \ T , (hi ,

∑i−1
j=1 e j ), i ∈ T and (h p+1,

∑p
j=1 e j ),

where e j is the j th unit vector in R
n . It is straightforward to verify that these n + 1

feasible points satisfy (7) at equality and are affinely independent, completing the
proof. ��

We refer to the inequalities (7) as the strengthened star inequalities. Because the
strengthened star inequalities are just the star inequalities applied to a strengthened
mixing set, separation can be accomplished using an algorithm for separation of star
inequalities [20–22].

3.2 Equal probabilities

We now consider the case in which πi = 1/n for all i ∈ N . Thus p = max
{k : ∑k

i=1 1/n ≤ ε} = 
nε� and the knapsack constraint (5) becomes

n∑
i=1

zi ≤ nε
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which, by integrality on zi , can be strengthened to the simple cardinality restriction

n∑
i=1

zi ≤ p. (8)

Thus, the feasible region (6) becomes

G ′ =
{

(y, z) ∈ R+ × {0, 1}n :
n∑

i=1

zi ≤ p, y + (hi − h p+1)zi ≥hi i = 1, . . . , n

}
.

Although the strengthened star inequalities are not sufficient to characterize the convex
hull of G ′, we can give an implicit characterization of all valid inequalities for conv(G ′).
To obtain this result we first show that for any (γ, α) ∈ R

n+1, the problem

min{γ y + αz : (y, z) ∈ G ′} (9)

is easy to solve. For k = 1, . . . , p let

Sk = {S ⊆ {k, . . . , n} : |S| ≤ p−k+1}.

Also, let S∗
p+1 = ∅ and

S∗
k ∈ arg min

S∈Sk

{ ∑
i∈S

αi

}
k = 1, . . . , p.

Finally, let k∗ ∈ arg min
{
γ hk + ∑

i∈S∗
k
αi + ∑k−1

i=1 αi : k = 1, . . . , p + 1
}

.

Lemma 1 If γ < 0, then (9) is unbounded. Otherwise, an optimal solution to (9) is
given by y = hk∗ and zi = 1 for i ∈ S∗

k∗ ∪ {1, . . . , k∗ − 1} and zi = 0 otherwise.

Proof Problem (9) is unbounded when γ < 0 because (y, 0) ∈ G ′ for all y ≥ 0. Now
suppose γ ≥ 0. We consider all feasible values of y, y ≥ h p+1. First, if y ≥ h1, then
the zi can be set to any values satisfying (8), and hence it would yield the minimum
objective to set zi = 1 if and only if i ∈ S∗

1 and to set y = h1 since γ ≥ 0. For any
k ∈ {2, . . . , p + 1}, if hk−1 > y ≥ hk then we must set zi = 1 for i = 1, . . . , k − 1.
The minimum objective in this case is then obtained by setting y = hk and zi = 1
for i = 1, . . . , k − 1 and i ∈ S∗

k . The optimal solution to (9) is then obtained by
considering y in each of these ranges. ��
Using Lemma 1, we can solve (9) by first sorting the values of αi in increasing order,
then finding the sets S∗

k by considering at most p − k + 1 of the smallest values in this
list for each k = 1, . . . , p + 1. Subsequently finding the index k∗ yields an optimal
solution defined by Lemma 1. This yields an obvious algorithm with complexity
O(n log n + p2) = O(n2). This implies that there exists a polynomial algorithm
which, given a point x , determines whether x ∈ conv(G ′), and if not returns an
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inequality valid for conv(G ′) which cuts off x . We will give an explicit polynomial
size linear program which accomplishes this. We begin by characterizing the set of
valid inequalities for G ′.
Theorem 3 Any valid inequality for G ′ with nonzero coefficient on y can be written
in the form

y ≥ β +
n∑

i=1

αi zi . (10)

Furthermore, (10) is valid for G ′ if and only if there exists (σ, ρ) such that

β +
k−1∑
i=1

αi + (p−k+1)σk +
n∑

i=k

ρik ≤ hk k = 1, . . . , p + 1 (11)

αi − σk − ρik ≤ 0 i = k, . . . , n, k = 1, . . . , p + 1 (12)

σ ≥ 0, ρ ≥ 0. (13)

Proof First, consider a generic inequality of the form γ y ≥ β + ∑n
i=1 αi zi . Because

(y, 0) ∈ G ′ for all y ≥ 0, we must have γ ≥ 0, since otherwise (y, 0) would violate
the inequality for y large enough. Thus, if a valid inequality for G ′ has nonzero
coefficient γ on y, then γ > 0, and so we can scale the inequality such that γ = 1,
thus obtaining the form (10). Now, since any extreme point of conv(G ′) is the unique
optimal solution to (9) for some (γ ′, α′) ∈ Rn+1, we know by Lemma 1 that the
extreme points of conv(G ′) are contained in the set of feasible points given by y = hk,

zi = 1 for i = 1, . . . , k − 1 and i ∈ S, and zi = 0 otherwise, for all S ∈ Sk and
k = 1, . . . , p + 1. This fact, combined with the observation that (1, 0) is the only
extreme ray of conv(G ′), implies inequality (10) is valid for G ′ if and only if

β +
k−1∑
i=1

αi + max
S∈Sk

∑
i∈S

αi ≤ hk k = 1, . . . , p + 1. (14)

Note that

max
S∈Sk

∑
i∈S

αi = max
ω

n∑
i=k

ωikαi

s.t.
n∑

i=k

ωik ≤ p−k+1 (15)

0 ≤ ωik ≤ 1 i = k, . . . , n

= min
σ,ρ

(p−k+1)σk +
n∑

i=k

ρik

s.t. σk + ρik ≥ αi i = k, . . . , n (16)

σk ≥ 0, ρik ≥ 0 i = k, . . . , n
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by linear programming duality since (15) is feasible and bounded and its optimal
solution is integral. It follows that (14) is satisfied and hence (10) is valid for G ′ if and
only if there exists (σ, ρ) such that the system (11)–(13) is satisfied. ��

Using Theorem 3 we can find cutting planes valid for conv(G ′) by solving a poly-
nomial size linear program.

Corollary 1 Suppose (y∗, z∗) satisfy z∗ ∈ Z := {z ∈ [0, 1]n : ∑n
i=1 zi ≤ p}. Then,

(y∗, z∗) ∈ conv(G ′) if and only if

y∗ ≥ L P∗ = max
α,β,σ,ρ

{
β +

n∑
i=1

αi z
∗
i : (11) − (13)

}
(17)

where L P∗ exists and is finite. Furthermore, if y∗ < L P∗ and (α∗, β∗) is optimal
to (17), then y ≥ β∗ + ∑n

i=1 α∗zi is a valid inequality for G ′ which is violated by
(y∗, z∗).
Proof By Theorem 3, if y∗ ≥ L P∗, then (y∗, z∗) satisfies all valid inequalities for G ′
which have nonzero coefficient on y. Because z∗ ∈ Z and all extreme points of Z are
integral, (y∗, z∗) also satisfies all valid inequalities which have a zero coefficient on y,
showing that (y∗, z∗) ∈ conv(G ′). Conversely, if y∗ < L P∗, then the optimal solution
to (17) defines a valid inequality of the form (10) which is violated by (y∗, z∗).

We next argue that (17) has an optimal solution. First note that it is feasible since
we can set β = h p+1 and all other variables to zero. Next, because z∗ ∈ Z , and all
extreme points of Z are integer, we know there exists sets S j , j ∈ J for some finite

index set J , and λ ∈ R
|J |
+ such that

∑
j∈J λ j = 1 and z∗ = ∑

j∈J λ j z j where z j
i = 1

if i ∈ S j and 0 otherwise. Hence,

β +
n∑

i=1

αi z
∗
i = β +

∑
j∈J

λ j

∑
i∈S j

αi =
∑
j∈J

λ j

(
β +

∑
i∈S j

αi

)
≤

∑
j∈J

λ j h1 = h1

where the inequality follows from (14) for k = 1 which is satisfied whenever
(α, β, σ, ρ) is feasible to (11)–(13). Thus, the objective is bounded, and so (17) has
an optimal solution. ��

Although (17) yields a theoretically efficient way to generate cutting planes valid
for conv(G ′), it still may be too expensive for use in a branch-and-cut algorithm. We
would therefore prefer to have an explicit characterization of a class or classes of
valid inequalities for G ′ with an associated combinatorial algorithm for separation.
The following theorem gives an example of one such class, which generalizes the
strengthened star inequalities.

Theorem 4 Let m ∈ {1, . . . , p}, T = {t1, . . . , tl} ⊆ {1, . . . , m} and Q = {q1, . . . ,

qp−m} ⊆ {p+1, . . . , n}. For m < p, define �m
1 = hm+1 − hm+2 and

�m
i = max

{
�m

i−1, hm+1 − hm+i+1 −
i−1∑
j=1

�m
j

}
i = 2, . . . , p − m.
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Then, with htl+1 := hm+1,

y +
l∑

j=1

(ht j − ht j+1)zt j +
p−m∑
j=1

�m
j (1 − zq j ) ≥ ht1 (18)

is valid for G ′.

Proof First note that if m = p, we recover the strengthened star inequalities. Now,
let m < p and T, Q satisfy the conditions of the theorem and let (y, z) ∈ G ′ and
S = {i ∈ N : zi = 1}. Suppose first there exists t j ∈ T \S and let j∗ = min{ j ∈
{1, . . . , l} : t j /∈ S}. Then, zt j∗ = 0 and so y ≥ ht j∗ . Hence,

y +
l∑

j=1

(ht j − ht j+1)zt j ≥ ht j∗ +
j∗−1∑
j=1

(ht j − ht j+1)

= ht1 ≥ ht1 −
p−m∑
j=1

�m
j (1 − zq j )

since �m
j ≥ 0 for all j .

Next, suppose T ⊆ S. Now let k = ∑
i∈Q(1 − zi ) so that, because |Q| = p − m,

0 ≤ k ≤ p − m and
∑

i∈Q zi = p − m − k. Because Q ⊆ {p + 1, . . . , n}, we know∑p
i=1 zi + ∑

i∈Q z j ≤ p and hence
∑p

i=1 zi ≤ k + m. It follows that y ≥ hk+m+1.
Next, note that by definition, �m

1 ≤ �m
2 ≤ · · · ≤ �m

p−m . Thus

p−m∑
j=1

�m
j (1 − zq j ) ≥

k∑
j=1

�m
j = �m

k +
k−1∑
j=1

�m
j

≥
(

hm+1 − hm+k+1 −
k−1∑
j=1

�m
j

)
+

k−1∑
j=1

�m
j

= hm+1 − hm+k+1. (19)

Using (19), y ≥ hk+m+1 and the fact that T ⊆ S we have

y +
l∑

j=1

(ht j − ht j+1)zt j ≥ hk+m+1 +
l∑

j=1

(ht j − ht j+1)

= hk+m+1 + ht1 − hm+1 ≥ ht1 −
p−m∑
j=1

�m
j (1 − zq j )

completing the proof. ��

123



258 J. Luedtke et al.

In [25] it is shown that the inequalities given by (18) are facet-defining for conv(G ′)
when t1 = 1. Separation of inequalities (18) can be accomplished by a simple modi-
fication to the routine for separating the strengthened star inequalities.

Example 1 Let n = 10 and ε = 0.4 so that p = 4 and suppose h1−5 = {20, 18,

14, 11, 6}. The formulation of G ′ for this example is

y + 14z1 ≥ 20

y + 12z2 ≥ 18

y + 8z3 ≥ 14

y + 5z4 ≥ 11
10∑

i=1

zi ≤ 4, zi ∈ {0, 1} i = 1, . . . , 10.

Let m = 2, T = {1, 2} and Q = {5, 6}. Then, �2
1 = 3 and �2

2 = max{3, 8 − 3} = 5
so that (18) yields

y + 2z1 + 4z2 + 3(1 − z5) + 5(1 − z6) ≥ 20.

��
Unfortunately, in contrast to the case of the mixing set P in which the convex hull is

characterized by the star inequalities [20,21], we have not been able to find an explicit
class of inequalities that characterizes the convex hull of G ′. For example, using the
software PORTA [26], we have found all facet-defining inequalities for Example 1.
This list includes the inequality

y + 4z1 + 2(1 − z3) + 5(1 − z9) + 5(1 − z10) ≥ 20

which is not of the form (7) or (18) since it has a negative coefficient on z3.

4 A strong extended formulation

4.1 General probabilities

Let

FS =
{

(y, z) ∈ R+ × [0, 1]n :
n∑

i=1

πi zi ≤ ε, (7)

}
.

FS represents the polyhedral relaxation of G, augmented with the strengthened star
inequalities (7). Note that the inequalities

y + (hi − h p+1)zi ≥ hi , i = 1, . . . , p (20)
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used to define G are included in FS by taking T = {i}, so that enforcing integrality in
FS would yield a valid formulation for the set G. Our aim is to develop a reasonably
compact extended formulation which is equivalent to FS. To do so, we introduce binary
variables w1, . . . , wp and let

EG = {
(y, z, w) ∈ R+ × {0, 1}n+p : (21) − (24)

}

where:

y +
p∑

i=1

(hi − hi+1)wi ≥ h1 (21)

wi − wi+1 ≥ 0 i = 1, . . . , p (22)

zi − wi ≥ 0 i = 1, . . . , p (23)

n∑
i=1

πi zi ≤ ε (24)

and wp+1 := 0. The variables wi can be interpreted as deciding whether or not scenario
i is satisfied for the single row under consideration. The motivation for introducing
these variables is that because they are specific to the single row under consideration,
the ordering on the hi values implies that the inequalities (22) can be safely added. Note
that this is not the case for the original variables zi for i ∈ N since they are common to
all rows in the formulation. The inequalities (23) ensure that if a scenario is infeasible
for the single row under consideration, then it is infeasible overall. Because of the
inequalities (22), the p inequalities (20) used to define G can be replaced by the single
inequality (21). We now show that EG is a valid formulation for G.

Theorem 5 Proj(y,z)(EG) = G.

Proof First, suppose (y, z, w) ∈ EG. Let l ∈ {1, . . . , p + 1} be such that wi = 1,

i = 1, . . . , l − 1 and wi = 0, i = l, . . . , p. Then, y ≥ h1 − (h1 − hl) = hl . For
i = 1, . . . , l − 1 we have also zi = 1 and hence,

y + (hi − h p+1)zi ≥ hl + (hi − h p+1) ≥ hi

and for i = l, . . . , n we have y + (hi − h p+1)zi ≥ hl ≥ hi which establishes that
(y, z) ∈ G. Now, let (y, z) ∈ G and let l = min{i : zi = 0}. Then, y+(hl −h p+1)zl =
y ≥ hl . Let wi = 1, i = 1, . . . , l − 1 and wi = 0, i = l, . . . , p. Then, zi ≥ wi for
i = 1, . . . , p, wi are non-increasing, and y ≥ hl = h1 − ∑p

i=1(hi − hi+1)wi which
establishes (y, z, w) ∈ EG. ��

An interesting result is that the linear relaxation of this extended formulation is
as strong as having all strengthened star inequalities in the original formulation. This
result is nearly identical to Proposition 8 of Miller and Wolsey [23], who consider an
extended formulation involving variables δk = wk − wk+1. Aside from this variable
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transformation, the formulation they study is slightly different because they consider
a case in which zi ∈ Z as opposed to zi ∈ {0, 1} in EG, and as a result their proof
does not directly apply to our case. Let EF be the polyhedron obtained by relaxing
integrality in EG.

Theorem 6 Proj(y,z)(EF) = FS.

Proof First suppose (y, z) ∈ FS. We show there exists w ∈ R
p
+ such that (y, z, w) ∈

EF. For i = 1, . . . , p let wi = min{z j : j = 1, . . . , i}. By definition, 1 ≥ w1 ≥
w2 ≥ · · ·wp ≥ 0 and zi ≥ wi for i = 1, . . . , p. Next, let T := {i = 1, . . . , p : wi =
zi } = {t1, . . . , tl}, say. By construction, we have wi = wt j for i = t j , . . . , t j+1 − 1,
j = 1, . . . , l (tp+1 := p + 1). Thus,

p∑
i=1

(hi − hi+1)wi =
l∑

j=1

(ht j − ht j+1)wt j =
l∑

j=1

(ht j − ht j+1)zt j

implying that y + ∑p
i=1(hi − hi+1)wi ≥ h1 as desired.

Now suppose (y, z, w) ∈ EF. Let T = {t1, . . . , tl} ⊆ {1, . . . , p}. Then,

y +
l∑

j=1

(ht j − ht j+1)zt j ≥ y +
l∑

j=1

(ht j − ht j+1)wt j

≥ y +
l∑

j=1

t j+1−1∑
i=t j

(hi − hi+1)wi

= y +
p∑

i=t1

(hi − hi+1)wi .

But also, y + ∑p
i=1(hi − hi+1)wi ≥ h1 and so

y +
p∑

i=t1

(hi − hi+1)wi ≥ h1 −
t1−1∑
i=1

(hi − hi+1)wi ≥ h1 − (h1 − ht1) = ht1 .

Thus, (y, z) ∈ FS. ��
Because of the knapsack constraint (24), formulation EF does not characterize the
convex hull of feasible solutions of G. We therefore investigate what other valid
inequalities exist for EG. We introduce the notation

fk :=
k∑

i=1

πi , k = 0, . . . , p.
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Theorem 7 Let k ∈ {1, . . . , p} and let S ⊆ {k, . . . , n} be such that
∑

i∈S πi ≤
ε − fk−1. Then,

∑
i∈S

πi zi +
∑

i∈{k,...,p}\S

πiwi ≤ ε − fk−1 (25)

is valid for EG.

Proof Let l = max{i : wi = 1} so that zi = wi = 1 for i = 1, . . . , l and hence∑n
i=l+1 πi zi ≤ ε − fl . Suppose first l < k. Then,

∑
i∈{k,...,p}\S πiwi = 0 and the

result follows since, by definition of the set S,
∑

i∈S πi ≤ ε − fk−1. Next, suppose
l ≥ k. Then,

∑
i∈S

πi zi ≤
∑

i∈S∩{k,...,l}
πi zi +

n∑
i=l+1

πi zi ≤
∑

i∈S∩{k,...,l}
πi + ε − fl

and also
∑

i∈{k,...,p}\S πiwi = ∑
i∈{k,...,l}\S πi . Thus,

∑
i∈S

πi zi +
∑

i∈{k,...,p}\S

πiwi ≤
∑

i∈S∩{k,...,l}
πi + ε − fl +

∑
i∈{k,...,l}\S

πi = ε − fk−1.

��

4.2 Equal probabilities

Now, consider the case in which πi = 1/n for i = 1, . . . , n. Then the extended
formulation becomes

EG′ = {(y, z, w) ∈ R+ × {0, 1}n+p : (26)–(29)}

where:

y +
p∑

i=1

(hi − hi+1)wi ≥ h1 (26)

wi − wi+1 ≥ 0 i = 1, . . . , p (27)

zi − wi ≥ 0 i = 1, . . . , p (28)
n∑

i=1

zi ≤ p. (29)

Again using the notation Sk = {S ⊆ {k, . . . , n} : |S| ≤ p − k + 1} for k = 1, . . . , p
and Sp+1 = ∅, the inequalities (25) become

∑
i∈S

zi +
∑

i∈{k,...,p}\S

wi ≤ p−k+1 ∀S ∈ Sk, k = 1, . . . , p. (30)
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Example 2 (Example 1 continued.) The extended formulation EG′ is given by

y + 2w1 + 4w2 + 3w3 + 5w4 ≥ 20

w1 ≥ w2 ≥ w3 ≥ w4

zi ≥ wi i = 1, . . . , 4
10∑

i=1

zi ≤ 4, z ∈ {0, 1}10, w ∈ {0, 1}4.

Let k = 2 and S = {4, 5, 6}. Then (30) becomes

z4 + z5 + z6 + w2 + w3 ≤ 3.

��
Next we show that (30) together with the inequalities defining EG′ are sufficient to
define the convex hull of the extended formulation EG′. Let

EH′ = {(y, z, w) ∈ R+ × [0, 1]n+p : (26)–(30)}

be the linear relaxation of the extended formulation, augmented with this set of valid
inequalities.

Theorem 8 EH′ = conv(EG′).

Proof Let

H = {(z, w) ∈ [0, 1]n+p : (27)–(30)}

and H I = H ∩ {0, 1}n+p. The proof will be based on three steps. First, in Claim 8.1,
we will show that it is sufficient to prove that H = conv(H I ). Then, in Claim 8.2 we
will establish that if (z, w) satisfies (27) and the system

min{ j,p+1}∑
k=1

η jk = θ j j = 1, . . . , n (31)

n∑
j=k

η jk ≤ (p−k+1)(wk−1 − wk) k = 1, . . . , p + 1 (32)

0 ≤ η jk ≤ wk−1 − wk j = k, . . . , n, k = 1, . . . , p + 1 (33)

has a feasible solution, then (z, w) ∈ conv(H I ), where in (31) θ j = z j − w j for
j = 1, . . . , p and θ j = z j for j = p + 1, . . . , n. Finally, Claim 8.3 will show that
when (z, w) ∈ H then (31)–(33) indeed has a feasible solution. The theorem then
follows because any (z, w) ∈ H satisfies (27) so that Claims 8.2 and 8.3 imply that
H ⊆ conv(H I ), and hence H = conv(H I ) since the reverse inclusion is trivial. ��
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Claim 8.1 If H = conv(H I ), then EH′ = conv(EG′).

Proof That EH′ ⊇ conv(EG′) is immediate by validity of the extended formulation
and the inequalities (30). Now suppose H = conv(H I ), and let (y, z, w) ∈ EH′.
Then, (z, w) ∈ H = conv(H I ), and hence there a exists a finite set of integral points
(z j , w j ), j ∈ J , each in H , and a weight vector λ ∈ R

|J |
+ with

∑
j∈J λ j = 1 such that

(z, w) = ∑
j∈J λ j (z j , w j ). For each j ∈ J define y j = h1 − ∑p

i=1(hi − hi+1)w
j
i

so that (y j , z j , w j ) ∈ EG′ and also

∑
j∈J

λ j y j = h1 −
p∑

i=1

(hi − hi+1)wi ≤ y.

Thus, if we let ȳ j = y j +(y−∑
i∈J λi yi ), then ȳ j ≥ y j and hence (ȳ j , z j , w j ) ∈ EG′

for j ∈ J and (y, z, w) = ∑
j∈J λ j (ȳ j , z j , w j ). Hence, (y, z, w) ∈ conv(EG′). ��

Claim 8.2 Suppose (z, w) satisfies (27) and the system (31)–(33) has a feasible solu-
tion. Then (z, w) ∈ conv(H I ).

Proof First observe that the feasible points of H I are given by w j = 1 for
j = 1, . . . , k − 1 and w j = 0 for j = k, . . . , p and

z j =
{

1 j = 1, . . . , k − 1 and j ∈ S

0 j ∈ {k, . . . , n}\S

for all S ∈ Sk and k = 1, . . . , p + 1. Thus, an inequality

n∑
j=1

α j z j +
p∑

j=1

γ jw j − β ≤ 0 (34)

is valid for conv(H I ) if and only if

k−1∑
j=1

(α j + γ j ) + max
S∈Sk

∑
j∈S

α j − β ≤ 0 k = 1, . . . , p + 1. (35)

Representing the term max{∑ j∈S α j : S ∈ Sk} as a linear program and taking the
dual, as in (15) and (16) in the proof of Theorem 3, we obtain that (35) is satisfied and
hence (34) is valid if and only if the system of inequalities

k−1∑
j=1

(α j + γ j ) +
n∑

j=k

ρ jk + (p−k+1)σk − β ≤ 0 (36)

α j − σk − ρ jk ≤ 0 j = k, . . . , n (37)

σk ≥ 0, ρ jk ≥ 0 j = k, . . . , n (38)

123



264 J. Luedtke et al.

has a feasible solution for k = 1, . . . , p + 1. Thus, (w, z) ∈ conv(H I ) if and only if

max
α,β,γ,σ,ρ

{ n∑
j=1

α j z j +
p∑

j=1

γ jw j − β : (36)–(38), k = 1, . . . , p + 1

}
≤ 0. (39)

Thus, by linear programming duality applied to (39), with dual variables δk associated
with (36) and η jk associated with (37) we obtain that (w, z) ∈ conv(H I ) if and only
if the system

p+1∑
k= j+1

δk = w j j = 1, . . . , p (40)

p+1∑
k= j+1

δk +
min{ j,p+1}∑

k=1

η jk = z j j = 1, . . . , n (41)

(p−k+1)δk −
n∑

j=k

η jk ≥ 0 k = 1, . . . , p + 1 (42)

δk − η jk ≥ 0 j = k, . . . , n, k = 1, . . . , p + 1 (43)
p+1∑
k=1

δk = 1 (44)

δk ≥ 0, η jk ≥ 0 j = k, . . . , n, k = 1, . . . , p + 1 (45)

has a feasible solution, where constraints (40) are associated with variables γ , (41)
are associated with α, (42) are associated with σ , (43) are associated with ρ, and
(44) is associated with β. Noting that (40) and (44) imply δk = wk−1 − wk for
k = 1, . . . , p + 1, with w0 := 1 and wp+1 := 0, we see that (w, z) ∈ conv(H I ) if
and only if wk−1 − wk ≥ 0 for k = 1, . . . , p + 1 (i.e., (27) holds) and the system
(31)–(33) has a feasible solution. ��
Claim 8.3 If (z, w) ∈ H , then (z, w) satisfies (27) and the system (31)–(33) has a
feasible solution.

Proof Let (z, w) ∈ H and consider a network G with node set given by V = {u, v, rk

for k = 1, . . . , p+1, m j for j ∈ N }. This network has arcs from u to rk with capacity
(p − k + 1)(wk−1 − wk) for all k = 1, . . . , p + 1, arcs from rk to m j with capacity
wk−1 − wk for all j = k, . . . , n and k = 1, . . . , p + 1, and arcs from m j to v with
capacity θ j for all j ∈ N . An example of this network with n = 4 and p = 2 is given
in Fig. 1. The labels on the arcs in this figure represent the capacities. For the arcs
from nodes rk to nodes m j , the capacity depends only on the node rk , so only the first
outgoing arc from each rk is labeled. It is easy to check that if this network has a flow
from u to v of value

∑
j∈N θ j , then the system (31)–(33) has a feasible solution. We

will show that (z, w) ∈ H implies the minimum u − v cut in the network is at least∑
j∈N θ j , and by the max-flow min-cut theorem, this guarantees a flow of this value

exists, proving that (z, w) ∈ conv(H I ).
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Fig. 1 Example of network G with p = 2 and n = 4

Now, consider a minimum u −v cut in the network G, defined by a node set U ⊂ V
with u ∈ U and v /∈ U . Let S = { j ∈ N : m j ∈ V \U } and l = min{k = 1, . . . , p+1 :
|S ∩ {k, . . . , n} | ≥ p−k+1}.

We first show that we can assume rk ∈ U for 1 ≤ k < l and rk /∈ U for l ≤ k
≤ p + 1. Indeed, if rk /∈ U we obtain an arc in the cut, from u to rk , with capacity
(p − k + 1)(wk−1 − wk), whereas if rk ∈ U , we obtain a set of arcs in the cut, from
rk to m j for j ∈ S such that j ≥ k, with total capacity

∑
j∈S∩{k,...,n}

(wk−1 − wk) = |S ∩ {k, . . . , n}|(wk−1 − wk).

Thus, because wk−1 ≥ wk we can assume that in this minimum u − v cut rk ∈ U if
and only if |S ∩ {k, . . . , n}| < p − k + 1.

We next show that S ⊆ {l, . . . , n}. Indeed, suppose j < l. If j ∈ S then the cut
includes arcs from rk to m j with capacity (wk−1 − wk) for all 1 ≤ k ≤ j yielding
a total capacity of 1 − w j . If j /∈ S, then the cut includes an arc from m j to v with
capacity θ j = z j − w j . Because z j ≤ 1, this implies we can assume that in this
minimum u − v cut if j < l, then j /∈ S.

Now suppose that l = 1, which occurs if |S| ≥ p. Then the value of the minimum
cut is given by

p+1∑
k=1

(p − k + 1)(wk−1 − wk) +
∑
j /∈S

θ j = p −
p∑

k=1

wk +
∑
j /∈S

θ j

≥
(

p −
∑
j∈S

z j

)
+

∑
j∈N

θ j ≥
∑
j∈N

θ j
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since
∑

j∈N z j ≤ p. Thus, in this case, the value of the minimum cut is at least∑
j∈N θ j .
So now assume l > 1. In this case, we claim that |S| = p − l + 1. Indeed, if not,

then |S| > p − l + 1, and so |S ∩ {l − 1, . . . , n}| ≥ p − (l − 1) − 1, contradicting the
minimality in the definition of l since l −1 also satisfies the condition in the definition.
The capacity of this minimum u − v cut is

C =
p+1∑
k=l

(p − k + 1)(wk−1 − wk) +
l−1∑
k=1

|S|(wk−1 − wk) +
∑

j∈N\S

θ j .

Since,

p+1∑
k=l

(p − k + 1)(wk−1 − wk) =
p∑

k=l

p∑
j=k

(wk−1 − wk) =
p∑

j=l

(wl−1 − w j )

it follows that

C = (p − l + 1)wl−1 −
p∑

k=l

wk + (1 − wl−1)|S| +
∑

j∈N\S

θ j

= (p − l + 1) −
p∑

k=l

wk +
∑

j∈N\S

θ j ≥
∑
j∈N

θ j

by (30) for k = l since S ⊆ {l, . . . , n} and |S| = p − l + 1. ��
We close this section by noting that inequalities (30) can be separated in polynomial

time. Indeed, suppose we have a point (z∗, w∗) and we wish to determine if there exists
an inequality (30) which cuts it off. This can be accomplished by calculating

V ∗
k = max

S∈Sk

{ ∑
i∈S

z∗
i +

∑
i∈{k,...,p}\S

w∗
i

}
= max

S∈Sk

{ ∑
i∈S

θ∗
i

}
+

p∑
i=k

w∗
i

for k = 1, . . . , p where θ∗
i = z∗

i − w∗
i for i = 1, . . . , p and θ∗

i = z∗
i for i =

p + 1, . . . , n. If V ∗
k > p−k+1 for any k, then a violated inequality is found. Hence,

a trivial separation algorithm is to first sort the values θ∗
i in non-increasing order,

then for each k, find the maximizing set S ∈ Sk by searching this list. This yields an
algorithm with complexity O(n log n + p2) = O(n2). However, the complexity can
be improved to O(n log n) as follows. Start by storing the p largest values of θ∗

i over
i ∈ {p + 1, . . . , n} in a heap, and define V ∗

p+1 = 0. Then, for k = p, . . . , 1 do the
following. First insert θ∗

k into this heap. Next remove the largest value, say θ∗
max, from

the heap and finally calculate V ∗
k by

V ∗
k = V ∗

k+1 + max{θ∗
max, 0} + w∗

k .
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The initial heap construction is accomplished with complexity O(n log n), and the
algorithm then proceeds through p steps, each requiring insertion into a heap and
removal of the maximum value from a heap, which can each be done with O(log p)

complexity, yielding overall complexity of O(n log n). For general probabilities πi ,
(heuristic) separation of inequalities (25) can be accomplished by (heuristically) sol-
ving p knapsack problems.

5 Computational experience

We performed computational tests on a probabilistic version of the classical transpor-
tation problem. We have a set of suppliers I and a set of customers D with |D| = m.
The suppliers have limited capacity Mi for i ∈ I . There is a transportation cost ci j

for shipping a unit of product from supplier i ∈ I to customer j ∈ D. The customer
demands are random and are represented by a random vector d̃ ∈ R

m+. We assume
we must choose the shipment quantities before the customer demands are known. We
enforce the probabilistic constraint

P

{ ∑
i∈I

xi j ≥ d̃ j , j = 1, . . . , m

}
≥ 1 − ε (46)

where xi j ≥ 0 is the amount shipped from supplier i ∈ I to customer j ∈ D. The
objective is to minimize distribution costs subject to (46), and the supply capacity
constraints

∑
j∈D

xi j ≤ Mi , ∀i ∈ I.

We randomly generated instances with the number of suppliers fixed at 40 and varying
numbers of customers and scenarios. The supply capacities and cost coefficients
were generated using normal and uniform distributions respectively. For the random
demands, we experimented with independent normal, dependent normal and inde-
pendent Poisson distributions. We found qualitatively similar results in all cases, but
the independent normal case yielded the most challenging instances, so for our expe-
riments we focus on this case. For each instance, we first randomly generated the
mean and variance of each customer demand. We then generated the number n of sce-
narios required, independently across scenarios and across customer locations, as a
Monte Carlo sample with these fixed parameters. In most instances we assumed all
scenarios occur with probability 1/n, but we also did some tests in which the sce-
narios have general probabilities, which were randomly generated. CPLEX 9.0 was
used as the MIP solver and all experiments were done on a computer with two 2.4
GHz processors (although no parallelism is used) and 2.0 Gb of memory. We set
a time limit of 1 h. For each problem size we generated 5 random instances and,
unless otherwise specified, the computational results reported are averages over the 5
instances.
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Table 1 Average solution times for different formulations

Probabilities ε m n PMIP PMIP+Star Extended

Gap (%) Cuts Time(s) Time(s)

Equal 0.05 100 1,000 0.18 734.8 7.7 1.1

100 2,000 1.29 1414.2 31.8 4.6

200 2,000 1.02 1848.4 61.4 12.1

200 3,000 2.56 2644.0 108.6 12.4

0.10 100 1,000 2.19 1553.2 34.6 12.7

100 2,000 4.87 2970.2 211.3 41.1

200 2,000 4.48 3854.0 268.5 662.2

200 3,000 5.84 5540.8 812.7 490.4

General 0.05 100 1,000 0.20 956.4 20.5 8.5

100 2,000 1.04 1819.4 46.2 14.0

200 2,000 0.34 2429.6 66.7 40.6

200 3,000 1.14 3207.4 154.0 97.7

0.10 100 1,000 1.76 1904.8 46.6 54.6

100 2,000 4.02 3671.0 229.6 148.1

200 2,000 2.11 6860.4 1661.5 1403.7

200 3,000 3.31 5049.0 824.6 3271.4

5.1 Comparison of formulations

In Table 1 we compare the results obtained by solving our instances using

1. formulation PMIP given by (3)–(5),
2. formulation PMIP with strengthened star inequalities (7), and
3. the extended formulation of Sect. 4, but without (25) or (30).

When the strengthened star inequalities are not used, we still used the improved
formulation of G corresponding to (6). Recall that the strengthened star inequalities
subsume the rows defining the formulation PMIP; therefore, when using these inequa-
lities we initially added only a small subset of the mp inequalities in the formulation.
Subsequently separating the strengthened star inequalities as needed guarantees the
formulation remains valid. For formulation PMIP without strengthened star inequa-
lities, we report the average optimality gap that remained after the hour time limit
was reached, where we define the optimality gap as the difference between the final
upper and lower bounds, divided by the upper bound. For the other two formulations,
which we refer to as the strong formulations, we report the average of the time to
solve the instances to optimality. We used ε = 0.05 and ε = 0.1, reflecting the natural
assumption that we want to meet demand with high probability.

The first observation from Table 1 is that formulation PMIP without the strengthe-
ned star inequalities failed to solve these instances within an hour, often leaving large
optimality gaps, whereas the instances are solved efficiently using the strong formula-
tions. The number of nodes required to solve the instances for the strong formulations
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Table 2 Results for increasing ε values on a single instance

ε 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Root LP (s) 52.3 94.0 148.9 265.1 299.8 508.4 779.8 1783

Final Gap (%) 0.0 2.2 5.8 10.5 16.2 28.7 35.1 44.4

is very small. The instances with equi-probable scenarios were usually solved at the
root, and even when branching was required, the root relaxation usually gave an exact
lower bound. Branching in this case was only required to find an integer solution
which achieved this bound. The instances with general probabilities required slightly
more branching, but generally not more than 100 nodes. Observe that the number of
strengthened star inequalities that were added is small relative to the number of rows
in the formulation PMIP itself. For example, with equi-probable scenarios, ε = 0.1,
m = 200 and n = 3,000, the number of rows in PMIP would be mp = 60,000, but on
average, only 5,541 strengthened star inequalities were added. Next we observe that
in most cases the computation time using the extended formulation is significantly
less than the formulation with strengthened star inequalities. Finally, we observe that
the instances with general probabilities take somewhat longer to solve than those with
equi-probable scenarios but can still be solved efficiently.

5.2 The effect of increasing ε

The results of Table 1 indicate that the strong formulations can solve large instances to
optimality when ε is small, which is the typical case. However, it is still an interesting
question to investigate how well this approach works for larger ε. Note first that we
should expect solution times to grow with ε if only because the formulation sizes
grow with ε. However, we observe from Table 2 that the situation is much worse
than this. Table 2 shows the root LP solve times and optimality gaps achieved after
an hour of computation time for an example instance with equi-probable scenarios,
m = 50 rows and n = 1,000 scenarios at increasing levels of ε, using the extended
formulation. We see that the time to solve the root linear programs does indeed grow
with ε as expected, but the optimality gaps achieved after an hour of computation
time deteriorate drastically with growing ε. This is explained by the increased time
to solve the linear programming relaxations combined with an apparent weakening of
the relaxation bound as ε increases.

5.3 Testing inequalities (30)

With small ε the root relaxation given by the extended formulation is extremely tight,
so that adding the inequalities (30) is unlikely to have a positive impact on computation
time. However, as observed in Table 2, the extended formulation may have a substantial
optimality gap on instances with larger ε. We therefore investigated whether using
inequalities (30) can improve solution time in this case. In Table 3 we present results
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Table 3 Results with and without inequalities (30)

m ε n Root Gap (%) Nodes Time(s) or Gap (%)

Ext +(30) Ext +(30) Ext +(30)

25 0.3 250 1.18 0.67 524.0 108.4 121.2 s 93.9 s

0.3 500 1.51 0.58 568.6 399.6 750.6 s 641.3 s

0.35 250 2.19 1.50 2529.2 724.0 563.2 s 408.4 s

0.35 500 2.55 1.61 2769.0 1456.4 0.22% 0.06%

50 0.3 500 2.32 2.00 1020.6 242.8 1.37% 1.41%

0.3 1,000 2.32 1.75 29.4 8.8 1.98% 1.66%

0.35 500 4.10 3.31 651.2 94.2 3.03% 2.66%

0.35 1,000 4.01 3.23 23.6 6.4 3.58% 3.17%

comparing solution times and node counts with and without inequalities (30) for
instances with larger ε. We performed these tests on smaller instances since these
instances are already hard for these values of ε. We observe that adding inequalities
(30) at the root can decrease the root optimality gap significantly. For the instances
that could be solved in 1 h, this leads to a significant reduction in the number of nodes
explored, and a moderate reduction in solution time. For the instances which were not
solved in 1 h, the remaining optimality gap was usually, but not always, lower when
the inequalities (30) were used. These results indicate that when ε is somewhat larger,
inequalities (30) may be helpful on smaller instances. However, they also reinforce
the difficulty of the instances with larger ε, since even with these inequalities, only
the smallest of these smaller instances could be solved to optimality within an hour.

6 Concluding remarks

We have presented strong integer programming formulations for linear programs with
probabilistic constraints in which the right-hand side is random with finite distribution.
In the process we made use of existing results on mixing sets, and have introduced
new results for the case in which the mixing set additionally has a knapsack restric-
tion. Computational results indicate that these formulations are extremely effective on
instances in which reasonably high reliability is enforced, which is the typical case.
However, instances in which the desired reliability level is lower remain difficult to
solve, partly due to increased size of the formulations, but more significantly due to
the weakening of the formulation bounds. Moreover, these instances remain difficult
even when using the inequalities which characterize the single row relaxation convex
hull. This suggests that relaxations which consider multiple rows simultaneously need
to be studied to yield valid inequalities which significantly improve the relaxation
bounds for these instances.

We remark that although we have focused on linear programs with probabilistic
constraints, this approach can be applied in more general settings, such as mixed-
integer programs and nonlinear programs (NLP) with probabilistic constraints, as
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long as the randomness appears only in the right-hand side. In the case of a MIP
with probabilistic constraints, our approach would yield a formulation which is still a
MIP, whereas in the case of NLP, our approach would yield a formulation which is a
mixed-integer nonlinear program.

The most challenging area of future work in this area will be to relax the assumption
that only the right-hand side is random. A natural first step in this direction will be
to extend results from the generalized mixing set [23,27] to the case in which an
additional knapsack constraint is present.

Acknowledgments The authors express thanks to the anonymous referees for comments that helped
significantly improve the presentation of this paper.
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