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Abstract We present a method for finding exact solutions of Max-Cut, the problem
of finding a cut of maximum weight in a weighted graph. We use a Branch-and-Bound
setting that applies a dynamic version of the bundle method as bounding procedure.
This approach uses Lagrangian duality to obtain a “nearly optimal” solution of the basic
semidefinite Max-Cut relaxation, strengthened by triangle inequalities. The expensive
part of our bounding procedure is solving the basic semidefinite relaxation of the
Max-Cut problem, which has to be done several times during the bounding process.
We review other solution approaches and compare the numerical results with our
method. We also extend our experiments to instances of unconstrained quadratic 0–1
optimization and to instances of the graph equipartition problem. The experiments
show that our method nearly always outperforms all other approaches. In particular,
for dense graphs, where linear programming-based methods fail, our method performs
very well. Exact solutions are obtained in a reasonable time for any instance of size up
to n = 100, independent of the density. For some problems of special structure we can
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solve even larger problem classes. We could prove optimality for several problems of
the literature where, to the best of our knowledge, no other method is able to do so.

Keywords Maximum cut · Cut polytope · Semidefinite programming ·
Unconstrained binary quadratic optimization

Mathematics Subject Classification (2000) 90C20 · 90C22 · 90C27

1 The Max-Cut problem

The Max-Cut problem is one of the basic NP-hard combinatorial optimization prob-
lems and has attracted scientific interest from both the discrete (see, e.g., [17,33,35])
and the nonlinear optimization community (see, e.g., [14,10,28]).

The purpose of this paper is twofold. We first give an overview of all relevant
exact solution approaches for the Max-Cut problem in Sect. 3. This part is of survey
type, providing a literature overview and a discussion of the practical limitations of
these approaches. Second, we provide some computational experience with a Branch-
and-Bound (B&B) based method, that solves large size instances of this problem to
optimality. Here we call “large” an instance whose size makes it very difficult to solve
with the current state-of-the-art methods. The technical details of our approach are
given in Sects. 4 and 5. Sections 6 and 7 contain a description of the data sets and
computational results on a variety of test data. A preliminary version of this work is
presented in [42].

There are two equivalent formulations to the problem.

Max-Cut in a graph: Let G = (V, E) be an undirected graph on n = |V | vertices
and m = |E | edges with edge weights we for e ∈ E . Any bipartition (S, T ) of the
node set V , where S or T are allowed to be empty, defines a cut of G, i.e., the edge set
(S : T ) = {{i, j} ∈ E | i ∈ S, j /∈ S}. The weight w(S : T ) of the cut is defined as

w(S : T ) =
∑

e∈(S:T )

we.

The Max-Cut problem calls for a bipartition (S∗, T ∗) for which w(S∗ : T ∗) is maximal.
It will be convenient to use matrix notation and introduce the weighted adjacency
matrix A = (ai j ) with

ai j = a ji = we

for edge e = {i, j} ∈ E , and ai j = 0 if {i, j} /∈ E . We also introduce the Laplacian
matrix L associated with A, defined by

L = Diag(Ae) − A,
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Max-Cut by semidefinite and polyhedral relaxations 309

where e denotes the vector of all ones and Diag(v) is the operator that maps a
n-dimensional vector v into the n-dimensional matrix M , where Mii = vi and all
the off-diagonal components are zero.

If we represent a bipartition (S, T ) by its incidence vector x ∈ {−1, 1}n , with
xi = 1 if i ∈ S and xi = −1 otherwise, then it is easy to show that

w(S : T ) = 1

4
xT Lx .

Hence finding a cut in a graph with maximum weight is equivalent to solving the
following quadratic optimization problem.

(MC) zMC = max{xT Lx : x ∈ {−1, 1}n}.

Quadratic 0–1 minimization: Given a matrix Q of order n and an n-dimensional
vector c, let

q(y) := yT Qy + cT y. (1)

We consider the following problem.

(QP) min{q(y) : y ∈ {0, 1}n}.

It is not difficult to show that solving (QP) is equivalent to solving (MC) (see, for
instance, [6]).

To this purpose, define

W =
(

0 −(Qe + c)T

−(Qe + c) Q

)

and consider W to be the adjacency matrix of a graph with node set V = {0, 1, . . . , n}.
Let x denote the incidence vector of a cut of this graph with value k. Without loss of
generality we can assume x0 = −1. Then y, defined as

yi = 1

2
(xi + 1), 1 ≤ i ≤ n,

is a solution of (QP) with objective value −k.
Conversely, let L be the Laplace matrix of a given graph and

L =
(

l11 LT
12

L12 L22

)
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where L22 is a (n − 1) × (n − 1) matrix. Let y be a solution of (QP) with Q = −L22
and c = L12 + L22e with value q(y). Then, x defined by

x1 = −1, xi = 2yi−1 − 1, 2 ≤ i ≤ n

is a solution of (MC) with objective value −q(y).

2 A generic B&B scheme for (MC)

Even though the description of a B&B scheme is rather simple, and can be found in
virtually any textbook on enumerative methods for NP-hard problems, we summarize
the key features of this procedure. We do this because we are going to compare several
different B&B approaches to solve (MC). In order to explain how these approaches
differ from each other, we need to describe the basic principle as it is relevant for
our purposes. The development of the machinery for linear optimization-based B&B
has reached a high degree of sophistication, see for instance [2] for a recent summary
on branching rules. There are also efficient implementations available, for instance
ABACUS [18] and SCIP [1].

The basic step of a B&B procedure is to decompose an instance into two smaller
ones where one of the binary decisions involved in the problem is already taken.
In particular, to make such a decomposition, we follow a very simple approach and
subdivide the set of feasible solutions S = {−1, 1}n by selecting two vertices i and j
and considering the two sub problems

Sjoin := {x ∈ {−1, 1}n : xi − x j = 0},
Ssplit := {x ∈ {−1, 1}n : xi + x j = 0}.

In the first case, i and j are forced to stay in the same set of the partition (we will say
that i and j are forced to be joined), while in the second case they must be in separate
sets (we will say that i and j are forced to be split). A nice feature of Max-Cut allows
us to optimize over both these sets by solving again a Max-Cut problem but this time
on two graphs of size n − 1. In the first case the problem is equivalent to finding a
maximum cut in a graph obtained from the original one by identifying the two nodes
i and j , by removing the loop edge possibly created, and by replacing each pair of
parallel edges e and f resulting from the identification with a single edge having
weight we + w f . The new graph has n − 1 nodes. Each of its cuts corresponds to
exactly one cut of the original graph and the two cuts have the same weight.

In the second case we first apply the following linear transformation to the problem:

x̃ = N j x, (2)

where N j is the identity matrix with the sign of the j th diagonal component changed
to −1. After the transformation, Problem (MC) becomes

max
{

x̃ T L̃ x̃ | x̃ ∈ {−1, 1}n
}

, (3)
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where L̃ = N j L N j . It is easy to verify that x̃ T L̃ x̃ = xT L ′x + 4s, where L ′ is the
Laplacian matrix corresponding to the weighted adjacency matrix N j AN j and s is
the weight of the cut defined by the bipartition ({ j} : V \{ j}), i.e., s = ∑

k j∈E ak j .
Therefore, solving (3) amounts to solving a Max-Cut instance on a graph obtained
from the original graph by flipping the sign of the weights of the edges incident
with node j . After having applied the transformation (2), the set Ssplit is represented
by Ssplit := {x̃ ∈ {−1, 1}n : x̃i − x̃ j = 0}, so like in the first case, the prob-
lem is equivalent to finding a maximum cut in a graph obtained from the original
one (but with the sign of some edge weights flipped) by identifying the two nodes
i and j .

Every node of the enumeration tree associated with the B&B process is fully char-
acterized by two sets Fjoin and Fsplit containing the pairs {i, j} of nodes for which
the constraints xi − x j = 0 and xi + x j = 0, respectively, are active. Therefore, by
(L , Fjoin, Fsplit) we denote the problem

max xT Lx

(L , Fjoin, Fsplit) s.t. xi − x j = 0, for {i, j} ∈ Fjoin

xi + x j = 0, for {i, j} ∈ Fsplit.

Note that the edges whose endpoints are the pairs in Fjoin ∪ Fsplit form an acyclic
graph.

In order to complete the definition of the B&B process, given an instance of (MC)
through the matrix L and the two sets Fjoin and Fsplit , we need the following three
procedures.

1. Upper bound. The bounding procedure

zub = upper-bound(L , Fjoin, Fsplit)

determines an upper bound zub on the optimal value zMC of (MC) for cost matrix
L under the constraints defined by the two sets Fjoin and Fsplit (we have seen that
this problem is a (MC) on a graph with n − |Fjoin| − |Fsplit| nodes).

2. Heuristic. We also need to be able to produce some (good) feasible solution x f

with value z f = xT
f Lx f (hopefully) close to zMC for the problem of the previous

point:

x f = feasible-solution(L , Fjoin, Fsplit)

3. Branching pair selection. Finally, a branching strategy to determine a pair {i, j}
of vertices to be split or joined is needed.

Using these three ingredients, we can summarize a generic B&B approach for (MC)
in the following scheme.
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Generic Branch-and-Bound Algorithm for (MC)

input: L symmetric n × n matrix
output: x ∈ {−1, 1}n optimal solution
initialize:

zub = upper-bound(L ,∅,∅); (initial upper bound)
xbk = (1, . . . , 1)T ; (initial cut vector)
zbk = xT

bk Lxbk ; (best known (bk) solution value)
Q = {(zub, (L ,∅,∅))}; (problem list)

while Q �= ∅
remove problem (z, (L , Fjoin, Fsplit)) from Q having z maximal;
compute:

zub = upper-bound(L , Fjoin, Fsplit);
x f = feasible-solution(L , Fjoin, Fsplit);

if xT
f Lx f > zbk then
update (zbk, xbk);
remove all problems (z′, (L , F ′

join, F ′
split)) from Q with z′ < zbk ;

if zbk < zub then
determine the branching pair {i, j} for the problem (z, (L , Fjoin, Fsplit));
set F ′

join = Fjoin ∪ {{i, j}} and F ′
split = Fsplit ∪ {{i, j}};

add (zub, (L , F ′
join, Fsplit)) and (zub, (Fjoin, F ′

split)) to Q;
endwhile
return xbk;

Contrary to linear optimization-based B&B, where branching is a critical issue (see
for instance [2]), we concentrate on the bounding procedure as this will turn out to be
the only nontrivial part. This is also the distinguishing feature of most of the existing
methods to solve (MC), so we first summarize the various ways to get bounds on (MC)
in the following section. The bounding procedure used in our algorithm will then be
described in detail in Sect. 4.

Finding good feasible solutions can be done routinely in our case, as any vector
x ∈ {−1, 1}n is feasible. We will briefly touch this issue in Sect. 5.2. The branching
strategy will be described in some detail in Section 5.1. Here we follow essentially
the ideas outlined in [27].

3 Some solution approaches and their limits

In this section we recall the most popular and the most recent methods for solving our
problem of interest. We sketch the algorithms and summarize their limits. A survey
of techniques developed before 1980 can be found in [24].

3.1 LP-based relaxations

The solution of (MC) can be found, in principle, by solving a linear program. To
express the objective with a linear function we have to represent every solution of the
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problem with the incidence vector of a cut. In particular, if K is a cut of G, its incidence
vector χ K ∈ {0, 1}m is such that its component χ K

e is equal to 1 if e ∈ K and is equal
to zero otherwise. The cut polytope CUT(G) associated with G is the convex hull of
the incidence vectors of all cuts of G. Problem (MC) can now be written as

(MC) zMC = max
{

4wT s : s ∈ CUT(G)
}
, (4)

where w is the vector of the weights on the edges. Unfortunately, the constraint set
of (4) has a number of inequalities that is way too large to be solved with current LP
technology even for graphs of small size. However, by replacing CUT(G) in (4) with
an LP relaxation, i.e., by any (more manageable) polytope P containing CUT(G), we
get an upper bound on zMC that can be used in a B&B scheme. Usually, it is required
that an integral point contained in P is always the incidence vector of a cut of G. If this
is the case, we call P a valid IP formulation and (4) can be replaced by the following
integer linear program:

zMC = max
{

4wT s : s ∈ P, s integral
}
.

The most used relaxation of CUT(G) is given by the following system of inequalities
defining the so-called semimetric polytope M(G) of the graph G:

∑
e∈F

se − ∑
e∈C\F

se ≤ |F | − 1 C ∈ C, F ⊆ C, |F | odd

0 ≤ se ≤ 1 e ∈ E,

(5)

where C is the set of all cycles of G, see for instance [5] or [17]. The inequalities of
the first set are called the cycle inequalities and are non-redundant (and actually facet
defining) if for C we take the set of all chordless cycles. The inequalities of the second
set are non-redundant (and facet defining) if E is replaced by the set of all edges of G
that are not contained in a triangle.

If the graph is complete, the (non-redundant) system (5) becomes

si j + sik + s jk ≤ 2
si j − sik − s jk ≤ 0

−si j + sik − s jk ≤ 0
−si j − sik + s jk ≤ 0

⎫
⎪⎪⎬

⎪⎪⎭
for all triangles i < j < k of G (6)

While there are O(n3) triangles, there are in general exponentially many cycle inequal-
ities. However, in [5] a polynomial time algorithm is given that solves the separation
problem for (5), i.e., the problem to find, for any given point s̄ ∈ R

m , a cycle inequality
violated by s̄ or show that no such an inequality exists.

The number of inequalities of (5) (or of (6)) is too large to be explicitly represented
in the LP formulation needed to compute the upper bound. The polynomial time
separation algorithm, however, can be effectively used in the following cutting-plane
scheme:
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Cutting-Plane Algorithm for (MC)

initialize:
L = {(�, �0)} = initial set of inequalities (typically the bounds on the variables);

repeat
solve max{wT s : �T s ≤ �0 for (�, �0) ∈ L};
let s̄ be the optimal solution;
find a cycle inequality �T s ≤ �0 with �T s̄ > �0;
if successful then add (�, �0) to L;

until no cycle inequalities are generated;

The optimal solution s∗ of an LP relaxation is used for selecting the branching pair
{i, j}, as well as for finding a feasible (good) solution of (MC). A typical heuristic that
achieves this result amounts to finding a maximum weight spanning tree in the graph
G where each edge e is assigned the weight |s∗ − 0.5|. The edges of the optimal tree
with s∗

e > 0 are assigned to the resulting cut, while the other edges are assigned to the
complement of the cut. The assigned edges unambiguously determine a bipartition
(S : T ) and hence a feasible cut.

The optimal solution of an LP relaxation can also be used for fixing variables. If
s∗

e = 0 and wT s∗ − de < zbk , where zbk is the value of the best known cut in G and
d ∈ R

E(G) is the reduced cost vector, then the variable se has value 0 also in the optimal
solution, consequently se can be fixed to 0. Similarly, if se = 1 and wT s∗ + de < zbk ,
we can fix the variable se to 1. Furthermore, we can also fix the variables associated
with all the edges that belong to a subgraph induced by the end-nodes of the edges
fixed to 0 or 1 as, by the cycle inequalities, their value is readily determined.

The techniques described in this section are the basic tools that have been used,
within a B&B scheme of the type described before, in all the computational studies
based on LP relaxations (see, e.g., [35] for a recent survey on these methods). The
bound obtained by optimizing over the semimetric polytope is, in general, not very
strong. On the other hand, the cut polytope has been extensively studied and several
families of valid and facet defining inequalities have been characterized (see, e.g.,
[17] for an extensive survey). Nevertheless most of these results concern the case
when the graph G is complete. For the case of a general graph only few facet inducing
inequalities are known besides (5). Moreover, it seems very difficult to extend the
inequalities for a complete graph to the general case, as complex projection operations
would be involved. A possible solution to overcome some of these difficulties, at least
for very sparse graphs, is suggested in [30] where the separation procedures are applied
to a projection of the fractional point and then the violated inequalities found are lifted
up to the original space. This technique, however, was never experimented with so far
in actual computations.

The most successful results of the LP relaxations have been obtained for the com-
putation of the state of minimum energy for spin glasses described by the Ising model.
The graphs related to these problems are toroidal grids, thus very sparse. For these
type of instances the LP-based approach appears to be, by far, the method of choice.
Choosing the weights randomly from a Gaussian distribution, in [15] the solutions of
instances up to 22,500 nodes are reported. For instances with ±1 objective function
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coefficients drawn from a uniform distribution, solutions are reported for sizes up to
12,100 nodes in [4].

Limits of this method. The computational results presented in [4,6] show, that graphs
of any density up to n = 30 nodes can be computed in reasonable time. But with an
increasing number of nodes, the limits on the density of the graphs decreases rapidly.
Graphs with n = 100 nodes can only be solved, if the edge density is at most 20%.

Besides the lack of additional inequalities that would strengthen the semimetric
relaxation, there is another drawback that prevents LP-based methods to attack graphs
of moderate density. When in the above cutting-plane algorithm a simplex or a barrier
algorithm is used to solve each LP, computation times can really blow up: for example,
[20] reports computation times of more than 1 h for complete graphs of 150 nodes
just to solve the LP relaxation. A different way to compute the relaxation is to keep,
as explicit constraints, only a small subset of the inequalities (5) and to dualize all
the others that would be used by the cutting-plane algorithm. In [4] only the box
constraints of the variables are kept as explicit constraints and the volume algorithm
is used to solve the Lagrangian dual.

Yet another approach is proposed in [20]. It is assumed that the graph has a node r
adjacent to all other nodes. If this is not the case, 0-weighted edges are added to the
graph to meet the assumption. Then the following subset of (5) is considered:

sr j + srk + s jk ≤ 2
sr j − srk − s jk ≤ 0

−sr j + srk − s jk ≤ 0
−sr j − srk + s jk ≤ 0

⎫
⎪⎪⎬

⎪⎪⎭
for all { j, k} ∈ E, r �= j < k �= r. (7)

These inequalities define the r-rooted metric polytope of G (Mr (G)). The optimiza-
tion of a linear function over Mr (G) can be done efficiently, as it amounts to solving a
maximum flow problem in a graph derived from G. Therefore, the inequalities (7) are
kept explicitly in the constraint set while all the other cycle inequalities are dualized.
The Lagrangian dual is then solved with a bundle method pretty much in the same way
as described in Sect. 4.1. In [20] time savings of up to two orders of magnitude with
respect to simplex or barrier-based cutting-plane algorithms are reported for graphs of
up to 150 nodes. The primal and dual infeasibilities of the solutions are comparable
with those obtained with the simplex or the barrier algorithm. Experiments to obtain
exact solutions for (MC) using this approach have not been carried out. However,
despite the remarkable improvements in the computation time of the LP bound, on
dense graphs it is not expected that, at present, LP-based relaxations can compete with
the techniques described in the following sections.

3.2 The basic SDP relaxation

An equivalent formulation of (MC) is given by

zMC = max{tr L X : diag(X) = e, rank(X) = 1, X 	 0}, (8)
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(see, e.g., [41]), where X is an n × n real matrix, tr A denotes the trace of the matrix
A, i.e., the sum of its diagonal elements, and diag(A) maps a matrix A of order n into
the n-dimensional vector made of its diagonal components. It is easy to see that if x
is the incidence vector of an (S : T ) bipartition, then the matrix xxT satisfies all the
constraints in (8). (Remember that x is a ±1 incidence vector.) Moreover, if s ∈ R

m

is the incidence vector of the cut defined by (S : T ) and Xi j denotes [xxT ]i j , then we
have

si j = 1 − Xi j

2
. (9)

By dropping the constraint that imposes X to have rank one, we obtain the following
semidefinite relaxation of (MC):

zSDP = max{tr L X : diag(X) = e, X 	 0}. (10)

This is a semidefinite program (SDP) in the matrix variable X of order n, and n equality
constraints. Its dual form

min
{

eT u : Diag(u) − L 	 0
}

(11)

was introduced by Delorme and Poljak [16] as the (equivalent) eigenvalue optimization
problem

min
{

nλmax(L − Diag(u)) : u ∈ R
n, uT e = 0

}
, (12)

where λmax(A) is the largest eigenvalue of the matrix A. The primal version (10) can
be found in [40]. In [23] it is shown that this relaxation has an error of no more than
13.82%, i.e.,

zSDP

zMC
≤ 1.1382,

provided there are non-negative weights on the edges.
The model (12) is used in [39] as the bounding procedure in a B&B framework.

Limits of this method. This basic SDP bound can be computed efficiently by interior
point methods. However, the bound is too weak to be successfully used within a B&B
framework, since the progress at each node is disappointingly small and the number
of B&B nodes becomes rather large, already for medium sized problems. Graphs up
to n = 50 nodes can be solved quite efficiently to optimality, but for larger n a solution
in reasonable time can only be obtained, for instances where the initial gap is already
very small.
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3.3 Convex quadratic relaxations

Billionnet and Elloumi [11] consider the following relaxation of (QP). Define for any
vector u ∈ R

n the Lagrangian

qu(y) := q(y) +
∑

i

ui

(
yi − y2

i

)
= yT (Q − Diag(u))y + (c + u)T y

An equivalent problem to (QP) is

(QPu) min{qu(y) : y ∈ {0, 1}n}.

Relaxing the integrality constraints in (QPu), gives the lower bound β(u),

β(u) = min{qu(y) : y ∈ [0, 1]n}.

If the vector u is chosen, such that Q − Diag(u) is positive semidefinite, β(u) is
obtained by solving a convex quadratic problem, which can be done efficiently. Now,
u∗ is chosen to maximize β(u). This gives the “optimal” lower bound β∗, i.e.,

β∗ = β(u∗) = max{β(u) : (Q − Diag(u)) 	 0, u ∈ R
n}.

In [11] it is observed that the dual to this SDP is essentially equivalent to the basic
Max-Cut relaxation (10), see Sect. 3.2.

The solution of problem (QPu) (or (QPu∗ ), respectively) can be derived by using
a solver for convex quadratic 0–1 problems, i.e., a B&B algorithm using β(u), the
continuous relaxation of QPu , as a bound.

The computational effort for this algorithm can be summarized as follows:

1. Preprocessing phase: solve an SDP to obtain a vector u∗ and a bound β∗.
2. Use a mixed integer quadratic problem solver for solving problem (QPu∗). Even

though the computation of the bounds is very cheap, the number of nodes in the
B&B tree typically exceeds 100,000 for problems of n = 100 variables.

Limits of this method. Quadratic problems with some special structure can be solved
up to n = 100 variables. But the method is not capable of solving certain classes
of Max-Cut instances of this size (for example, graphs with edge weights chosen
uniformly from {−1, 0, 1}).

3.4 SDP with cutting planes

The SDP relaxation introduced in Sect. 3.2 can be strengthened by requiring X to
satisfy the triangle inequalities. By applying (9) to the triangle inequalities (6) we
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obtain

Xi j + Xik + X jk ≥ −1
Xi j − Xik − X jk ≥ −1

−Xi j + Xik − X jk ≥ −1
−Xi j − Xik + X jk ≥ −1

⎫
⎪⎪⎬

⎪⎪⎭
for all i < j < k.

We collect these inequalities symbolically as

A(X) ≤ b,

where A is an operator mapping symmetric matrices of dimension n into R
m , m = 4

(n
3

)

with the adjoint operator AT . Hence we get the strengthened SDP relaxation

zmc-met = max{tr L X : diag(X) = e, A(X) ≤ b, X 	 0}. (13)

This is again a semidefinite program, but it has 4
(n

3

)
triangle inequalities in addition to

the n equations fixing the main diagonal of X to e. The computational effort to solve
this problem is nontrivial, even for small n like n ≈ 100, see, e.g., [27].

Helmberg and Rendl [27] apply this semidefinite relaxation with cutting planes
(solved by an interior point code) in a B&B scheme. They consider the basic semi-
definite relaxation (10), strengthened by some hypermetric inequalities. Inequalities
are added while solving the relaxation (i.e., after some Newton steps), as well as after
the exact solution of the relaxation has been obtained. Then the optimization process
is restarted again.

Later on, Helmberg [25] improved this algorithm by fixing variables. In [26] this
approach is further refined.

Although the relaxation produced very tight bounds, the results of the B&B code
remained below the expectations of the authors. The number of nodes in the B&B tree
is very small, but the computation time per node may be rather large.

Limits of this method. Most graphs with up to n = 50 nodes can be solved in the
root node of the B&B tree. Instances up to the size n = 100 can still be solved, but
the computational effort may be very high. For graphs with more than 100 nodes this
algorithm is too slow to be practical.

3.5 Further approaches

Branch-and-Bound with second-order cone programming. Kim and Kojima [32],
and later on Muramatsu and Suzuki [36] use a second-order cone programming (SOCP)
relaxation as bounding procedure in a B&B framework to solve Max-Cut problems.
However, the basic SDP relaxation (see Sect. 3.2) performs better than their SOCP
relaxation and the method works only for sparse graphs.
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Limits of this method. The algorithm is capable of solving very sparse instances
only. The largest graphs for which solutions are reported are random graphs (weights
between 1 and 50) of n = 120 nodes and density d = 2%, and graphs that are the
union of two planar graphs up to n = 150, d = 2%.

Branch-and-Bound with preprocessing. Pardalos and Rodgers [37,38] solve (QP)
by B&B using a preprocessing phase where they try to fix some of the variables. The
test on fixing the variables is based on the gradient of (1), which reads 2Qy + c, and
exploits the fact that if y∗ is the global solution of (QP), then y∗ is also optimal for
the linear program

min
{
(2Qy∗ + c)T y : y ∈ {0, 1}n

}
.

Limits of this method. Similar to the cutting-plane technique in [6], dense instances
up to n = 30 and sparse instances up to n = 100 can be computed. Special classes of
instances can be solved efficiently up to n = 200. These instances have off-diagonal
elements in the range [0, 100] and diagonal elements lying in the fixed interval [−I, 0],
for the case I = 63 (the density is 100%). For other values of I , the problem may
become much more difficult to solve. However, the method fails for general dense
problems already with n = 50 variables.

4 The bounding procedure in our B&B framework

In the previous section we described the most popular bounding procedures for Max-
Cut, along with their limitations. In this section we explain the bounding procedure
used in our approach. The explanation of step 2 (heuristics) and step 3 (branching
rules) can be found in the subsequent section.

We are going to use the semidefinite relaxation (13). Instead of solving this relax-
ation with a limited number of inequality constraints by interior point methods, as
done in [27], we use the bundle approach suggested in [19].

The basic semidefinite relaxation (10) can be solved with reasonable effort for
rather large problem sizes. However, using this relaxation as bounding procedure in a
B&B framework turns out to be too weak. On the other hand, solving the strengthened
relaxation (13) directly is intractable for problems of size n ≥ 100, since the number
of inequalities is roughly 2

3 n3.
As already mentioned in Sect. 3.4, Helmberg and Rendl [27] developed a machinery

for getting solutions of this relaxation by using an interior point algorithm applied to
a limited number of triangle inequalities. The number of inequalities to be included,
say m, strongly affects the computational effort, since a dense matrix of order m has
to be stored and factorized throughout the algorithm. This puts a severe limit to the
number m of triangle inequalities to be included explicitly.

Although the decrease of the bound after the inclusion of some of the trian-
gle inequalities is significant, the computational overhead is prohibitive for larger
instances. Section 4.2 describes the situation and compares it to the method used in
the B&B framework of our algorithm.
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Instead of maintaining a limited set of triangle inequalities explicitly in the SDP,
[19] apply the bundle method to the Lagrangian dual, obtained by dualizing the tri-
angle constraints. We briefly describe the relevant details of this approach, and our
modifications for use in the B&B setting.

4.1 Using Lagrangian duality for solving the strengthened SDP relaxation

The set E := {X : diag(X) = e, X 	 0} defines the feasible region of (10). Therefore,
(13) can be written compactly as

zmc-met = max{〈L , X〉 : X ∈ E,A(X) ≤ b}. (14)

Let us introduce the Lagrangian

L(X, γ ) := 〈L , X〉 + γ T (b − A(X)) (15)

and the dual functional

f (γ ) := max
X∈E

L(X, γ ) = bT γ + max
X∈E

〈L − AT (γ ), X〉. (16)

The problem now consists in minimizing f over γ ≥ 0:

zmc-met = min
γ≥0

f (γ ).

The function f is well-known to be convex but non-smooth. Evaluating f for some
γ ≥ 0 amounts to solving a problem of type (10), which can be done easily for
problem sizes of our interest. We use a primal-dual interior-point method to solve it,
which also provides an optimality certificate Xγ , uγ [optimal solutions to (10) and
(11)]. The primal matrix Xγ will turn out to be useful in our algorithmic setup. We
have, in particular that

f (γ ) = L(Xγ , γ ).

Moreover, a subgradient of f at γ is given by b − A(Xγ ).
Dualizing all triangle constraints would result in a dual problem of dimension

roughly 2
3 n3, we prefer a more economical approach where inequalities are included

only if they are likely to be active at the optimum.
Let I be a subset of the triangle inequalities, hence AI (X) ≤ bI . We also write

γI for the variables dual to the inequalities in I . Setting the dual variables not in I to
zero, it is clear that for any I and any γI ≥ 0, we have

f (γI ) ≥ zmc-met ≥ zMC,

hence f (γI ) is an upper bound on the optimal value of Max-Cut.
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Approximating the value zmc-met therefore breaks down into the following two
independent tasks:

1. Identify a subset I of triangle inequalities.
2. For a given set I of inequalities, determine an approximate minimizer γI ≥ 0

of f .

The second step can be carried out with any of the subgradient methods for convex
non-smooth functions. For computational efficiency we use the bundle method with a
limit on the number of function evaluations.

Carrying out the first step is less obvious. We are interested in constraints which
are active at the optimum, but this information is in general not available. Therefore
we use the optimizer XγI , corresponding to an approximate minimizer γI of f , and
add to the current set I of constraints the t triangle inequalities most violated by XγI .
(Here t is a parameter which is dynamically chosen.) Thus we can identify promising
new inequalities to be added to I .

A dual multiplier close to zero is an indication that the constraint is unlikely to be
binding at the optimal solution. Therefore, we remove any constraint from I where
the dual multiplier is close to zero. We iterate this process of selecting and updating
a set of triangle inequalities, and then solving the respective relaxation, as long as
the decrease of the upper bound is sufficiently large. An informal description of our
bounding procedure therefore goes as follows.

The Bounding Procedure

solve (10) yielding X and an upper bound f (0);
select a set I of triangle inequalities violated by X ;
while upper bound decreases significantly

use the bundle method to obtain an approximate minimizer γI of f on I ;
remove constraints from I where γi ≈ 0;
add new constraints to I , violated by XγI ;

endwhile

Remarks:

• In addition to the triangle inequalities, other constraints could be used to tighten the
relaxation (see [27]). However, using only triangle inequalities led to a satisfactory
behavior of our algorithm and therefore we abandoned the option of considering
other inequalities in favor of computational efficiency and simplicity.

• The (exact) minimizer γ ∗ ≥ 0 of f (γ ) is difficult to reach using the bundle method.
This is illustrated in Fig. 1 and will be explained in more detail in Sect. 4.2.
In particular, see also [19], the improvement in the minimization process of f
is biggest in the first iterations, with a strong tailing-off effect. Detecting this
phenomenon is useful in a B&B setting, where early termination of the bound
computation can provide a substantial overall speed-up.

• Finally, we point out again that the main computational effort in the bounding
process is solving (10).
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Fig. 1 Beasley graph with n = 250. The optimal value of Max-Cut is 43 931, zmc-met ≈ 44 095

4.2 Comparing two methods for solving the strengthened SDP relaxation

As reported in [19], this approach provides the currently strongest bounds at reasonable
computational cost for Max-Cut. The number of function evaluations [i.e., solving
(10)] is surprisingly small.

To illustrate the practical behavior of this algorithm compared to the SDP-based
method of [27], we plot in Fig. 1 the decrease of the bound over time for both
approaches. We took an instance from the Beasley collection (beasley250-6) with
n = 250, see Sect. 7.2. The optimal value is zMC = 43 931 (bottom line in the figure).
We also computed zmc-met and found that zmc-met ≤ 44 095 (dashed horizontal line).
The topmost curve in the figure shows the progress of the upper bound as more and
more constraints are added and the resulting SDP is solved by interior-point meth-
ods. The second curve shows the development of the upper bound during the iterative
scheme described above. It should be clear that this variant is substantially more effi-
cient in approaching zmc-met. The figure also suggests that the true value of zmc-met is
hard to reach for both methods. Finally, we also see that there is some room to experi-
ment with early termination of the iterations: in case it is clear that the value of the best
cut can not be reached (in a subproblem of the B&B process), it may be worthwhile to
stop iterating and generate new subproblems (thereby saving computation time). On
the other hand, carrying on with the iterative process may be useful in case the current
progress of the bound suggests that the value of the best known cut is within reach,
so that the branching node under consideration may be eliminated without generating
additional branching nodes. In our implementation, we applied a dynamic strategy to
control the number of iterations.
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5 Branching rules and heuristics

In this section we explain how we carry out step 2 (heuristics) and step 3 (branching
rules) of the generic B&B algorithm of Sect. 2.

5.1 Branching strategies

There are several natural choices for a pair i, j of vertices for branching.

Easy first: A first idea is to branch on node pairs where the decision seems to be
obvious. We choose i and j such that their rows of X are ‘closest’ to a {−1, 1} vector,
i.e., they minimize

∑n
k=1(1 − |Xik |)2. We may assume, that for these two very well

articulated nodes the value |Xi j | is also very large. Setting Xi j opposite to its current
sign should lead to a sharp drop of the optimal solution in the corresponding sub tree.
Hoping that the bound also drops as fast, we should be able to cut off this sub tree
quickly. This rule has been introduced in [27] and called R2.

Difficult first: Another possibility for branching is, to fix the hard decisions first. We
branch on the node pair {i, j} which minimizes |Xi j |. This means that we fix the most
difficult decisions and hope that the quality of the bound gets better fast and that the
sub problems become easier. Following [27] we call this rule R3.

Strong branching: Motivated from linear programming-based B&B, one can also
experiment with strong branching, meaning that we do a forecast on potential branch-
ing edges in order to branch on the edge that seems to bring the best progress, see for
instance [2]. Ideally, we might even be able to fathom a node (before we actually added
it to the queue Q), i.e., we would only have to add the other node to the branching tree.

If we consider the decision to join nodes i and j , we would have to solve the SDP

zi∼ j = max{trL X : X ∈ E,A(X) ≤ b, Xi j = 1}. (17)

It turns out that this problem can be approximately solved using our general bound-
ing procedure by simply taking the Lagrangian dual with respect to the new equation
Xi j = 1. Unfortunately, the computational effort to restart the optimization is sub-
stantially bigger than in LP-based B&B. Our various computational experiments with
strong branching showed that the overall number of nodes could be reduced, but the
overhead in computation time led to an overall inferior performance.

Depending on the class of problems, either rule R2 or R3 was more efficient.

5.2 Generating feasible solutions

Generating feasible solutions is done iteratively, basically in three steps:

1. Apply the Goemans–Williamson hyperplane rounding technique [23] to the primal
matrix X obtained from solving the SDP during the bundle iterations. This gives
a bipartition-vector x̄ .
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2. The cut x̄ is locally improved by checking all possible moves of a single vertex to
the opposite set of the partition. This gives a new bipartition-vector x̃ .

3. Move the rounding matrix X towards a ‘good vertex’ by using a convex-combina-
tion of X and x̃ x̃ T . With this new matrix go to 1, and repeat as long as a better cut
is found.

The last step of biasing X towards a good cut matrix x̃ x̃ T turned out to be quite helpful
in practise. Using this heuristic, the optimal cut is already found at the root node of the
B&B tree for most of the instances. The computational effort of this step is negligible,
compared to the bound computation.

6 Random data for (MC) and (QP)

In this section some random data for presenting numerical results of our algorithm are
specified. All the data sets can be downloaded from

http://biqmac.uni-klu.ac.at/biqmaclib.html.

These instances are taken from various sources. Here we provide some of the charac-
teristics of the data sets.

6.1 Max-Cut instances

6.1.1 Rudy-generated instances

The first group of instances follows [27] and consists of random graphs (of specified
edge density) with various types of random edge weights. All graphs were produced
by the graph generator Rudy [43]. For a detailed description and a list of the Rudy-
calls the reader is referred to [44]. We generated ten instances of size n = 100 of the
following types of graphs:

G0.5: unweighted graphs with edge probability 1/2.
G−1/0/1: weighted (complete) graphs with edge weights chosen uniformly from the

set {−1, 0, 1}.
G[−10,10]: graphs with integer edge weights chosen from the interval [−10, 10] and

density d ∈ {0.5, 0.9}.
G[0,10]: graphs with integer edge weights chosen from the interval [−10, 10] and

density d ∈ {0.5, 0.9}.

6.1.2 Applications in statistical physics: Ising instances

We also consider test-problems of Frauke Liers (personal communication, 2005) from
applications in Statistical Physics. Two classes of instances are considered:

1. Two- and three-dimensional grid graphs, with Gaussian-distributed weights (zero
mean and variance one).

2. Dense Ising instances (one-dimensional Ising chain), i.e., complete graphs with a
certain structure. These instances are obtained in the following way: all nodes lie
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evenly distributed on a cycle. The weights w of the edges depend on the Euclidean
distance between two nodes and a parameter σ , such that the following proportion
holds:

wi j ∼ εi j

(ri j )σ

where εi j is chosen according to a Gaussian distribution with zero mean and
variance one and ri j is the Euclidean distance between nodes i and j . In our
experiments the exponent σ ∈ {2.5, 3}. For a more detailed study of the one-
dimensional Ising chain we refer to the dissertation of Liers [34] and the references
therein.

6.2 Instances of (QP)

Pardalos and Rodgers [37] have proposed a test problem generator for Unconstrained
Quadratic Binary Programming. Their procedure generates a symmetric integer matrix
Q to define the objective function for (QP), with the linear term c represented by the
main diagonal of Q, and has several parameters to control the characteristics of the
problem, namely:

n: the number of variables
d: the density, i.e., the probability that a nonzero will occur for any off-diagonal

coefficient (qi j )
c−: the lower bound of the diagonal coefficients (qii )
c+: the upper bound of the diagonal coefficients (qii )
q−: the lower bound of the off-diagonal coefficients (qi j )
q+: the upper bound of the off-diagonal coefficients (qi j )

s: a seed to initialize the random number generator

qii drawn from a discrete uniform distribution in the interval [c−, c+], i = 1, . . . , n
qi j = q ji drawn from a discrete uniform distribution in the interval [q−, q+], 1 ≤ i <

j ≤ n.

Several test problems generated this way are provided in the OR-library [7] or
[8]. We have chosen all the problems of sizes of our interest, which are the data sets
bqpgka, due to [21] and bqp100 and bqp250, see [9].

Furthermore, in [11] the sets c and e of bqpgka are extended. We call these
instances bqpbe.

The characteristics of the test problems are as follows:

bqpgka
n d c− c+ q− q+

bqpgka, set a 30, . . . , 100 0.0625, . . . , 0.5 −100 100 −100 100
bqpgka, set b 20, . . . , 120 1.0 0 63 −100 0
bqpgka, set c 40, . . . , 100 0.1, . . . , 0.8 −100 100 −50 50
bqpgka, set d 100 0.1, . . . , 1.0 −75 75 −50 50
bqpgka, set e 200 0.1, . . . , 0.5 −100 100 −50 50
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bqpbe
Size ranging from n = 100 to n = 250 nodes; density ranging from d = 0.1 to
d = 1.0; c− = −100; c+ = 100; q− = −50 and q+ = 50.

beasley
Two sizes of n = 100 and n = 250 nodes; d = 0.1; c− = −100; c+ = 100;
q− = −100 and q+ = 100.

6.3 Comparing (MC) and (QP) instances

Looking at the existing computational studies on Max-Cut, it is striking that all
approaches seem to have a harder time with (MC)-type instances, while (QP)-type
instances look more manageable. This looks like a paradox since, as it was shown in
Sect. 1, (MC) and (QP) are equivalent.

We will now take a closer look at this issue. We believe that one possible reason
of the difference comes from the way people tend to construct reasonably difficult
instances to test their algorithms.

For those who work with MC-type instances it is quite natural to consider as a
typical difficult problem the one given by a random graph with edge weight = 1 and
an edge probability = 1

2 .
In the (QP) case, the situation is less clear. If all the data are nonnegative, then the

optimum is x = 0. If all the data are nonpositive then the optimum is x = e. Therefore,
it makes sense (as is done by the Pardalos and Rodgers generator [37]) to generate
instances where the data are randomly chosen with mean = 0.

In Fig. 2 we compare two ‘random’ instances from both classes. To be specific,
we generated a random graph (edge weight = 1, edge probability = 1

2 ) on n = 25
vertices, and a random instance of QP of equivalent size (all entries in Q and c are
randomly drawn from [−100, 100]). We enumerated all solutions (roughly 16 × 106

of them), sorted them by objective value, and normalized these values to lie in the
interval [0, 1]. The figure clearly shows that the random (MC) instance should be
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Fig. 2 Random data (n = 25), normalized cost values for an unweighted random graph and a random QP
instance (left plot), and zooming in to the 10,000 best solutions (right plot)
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much harder for maximization, as many more solutions are within only a tiny fraction
of the optimal solution. In the figure on the right we zoom the picture to the 10,000
best solutions in both cases, and here the difference becomes even more evident.

Extrapolating from this small example to larger ones, it should be clear that the (QP)
instances are more or less symmetric with respect to maximization and minimization,
while the (MC) instances have ‘high mass’ of good solutions concentrated around
the maximal solution. Identifying (and proving) global optimality in the latter case
should therefore be expected to be much more difficult than in the (QP) case. This is
confirmed in all our computational experiments reported in the following section. It
is also consistent with the computational results published in the literature.

Finally, this figure also suggests that having a small initial gap does not necessarily
imply that the problem can be solved ‘easily’. This will be illustrated also in the
computational results given in Table 2, where the initial gap and the computation
times are provided.

7 Numerical results

We implemented the algorithm in C. It is publicly usable as “Biq Mac”—a solver for
binary quadratic and Max-Cut problems at

http://biqmac.uni-klu.ac.at/.

If not stated otherwise, test runs were performed on a Pentium IV with 3.6 GHz and 2
GB RAM, operating system Linux. For a more detailed study of the numerical results
the reader is referred to [44].

Before we present our computational results, we give in Table 1 a rough overview
of the capability of the approaches presented in Sect. 3. We use the following abbre-
viations.

LP: Linear programming-based B&B, see Sect. 3.1.
V: Linear programming combined with the volume algorithm, see Sect. 3.1.
EO: An exact approach using eigenvalue optimization based on (12), see

Sect. 3.2.
QP: The recent work of Billionnet and Elloumi [11] based on convex quadratic

optimization, see Sect. 3.3.
SDPMET: SDP combined with triangle inequalities and solving (13) by an interior

point algorithm, see Sect. 3.4.
PP: Method of Pardalos and Rodgers [37], see Sect. 3.5.

We consider different types of instances and use the following symbols. A ✔ means,
that the approach can solve instances of this type in a routine way. AK indicates that
one can have (at least) one cup of coffee while waiting for the solution and maybe there
are instances that cannot be solved at all. The® suggests to have some holidays and
come back in a couple of days to see whether the job is finished, and the � indicates
that the chances for solving the problem with this method are very low. If we do not
know, whether an algorithm can solve certain classes of instances or not, we indicate
this with a question mark. Most likely, though, we could place � instead of a question
mark.
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Table 1 Who can do what?

LP V EO QP SDPMET PP Biq Mac

quadr 0–1, n = 100, d = 0.1 ✔ ✔ � ✔ K ✔ ✔

quadr 0–1, n = 250, d = 0.1 ? ? � � � � K
Two-dimensional torus, n = 20 × 20 ✔ ✔ � � � ? ®
Three-dimensional torus, n = 7 × 7 × 7 ✔ ✔ � � � ? K
G0.5, n = 100 � ? � ® ® ? ✔

G−1/0/1, n = 100 � ? ® ® ® ? ✔

Table 2 Biq Mac results for Max-Cut problems

n d Time (h:min) Nodes in B&B tree Initial gap (%)

min avg max min avg max min avg max

G0.5

100 0.5 5 50 3:44 65 610 2, 925 0.48 0.79 1.20

G−1/0/1

100 0.99 7 56 2:31 79 651 1, 811 3.53 6.03 9.26

G[−10,10]
100 0.5 9 38 1:13 97 435 815 2.94 5.26 8.02

100 0.9 5 57 3:12 51 679 2, 427 1.63 5.58 8.52

G[1,10]
100 0.5 7 48 2:02 111 576 1, 465 0.49 0.91 1.21

100 0.9 12 40 1:26 155 464 1, 007 0.40 0.53 0.62

For each problem type, ten instances were solved. Run times on a Pentium IV, 3.6 GHz, 2GB RAM. “initial
gap” indicates the relative gap in the root node of the B&B tree in %

7.1 Numerical results of Max-Cut instances

7.1.1 Rudy-generated instances

Table 2 lists the computation times (minimum, average and maximum), the number of
nodes (minimum, average, maximum) of the resulting B&B tree and the relative gap
in the root node (minimum, average, maximum). The branching rule used for these
kind of instances is R2.

The average computation time for all kinds of instances is approximately 1 h.
Nevertheless, some instances may be solved within minutes whereas for others it could
take more than 3 h. We also want to point out that, for example, the G0.5 instances have
a much smaller gap in the root node than the G−1/0/1 instances, while the number of
nodes in the B&B tree is roughly the same. This means that even if the initial gap is
already very small, it can be hard to identify the optimal solution if there are many
solutions close to the optimal one (as explained in Sect. 6.3).

The results show that on these classes of instances we outperform all other solution
approaches known so far. The currently strongest results on these graphs are due to
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Billionnet and Elloumi [11] (details about their algorithm are given in Sect. 3). They
are not able to solve instances G−1/0/1 of size n = 100 at all. Also, they could solve
only two out of ten instances of G0.5, n = 100.

7.1.2 Applications in statistical physics: Ising instances

As explained in Sect. 6.1.2, we consider two kind of Ising instances: toroidal grid
graphs and complete graphs.

Instances of the first kind can be solved efficiently by an LP-based Branch-and-
Cut algorithm (see [35]). The computation times of this LP-based method and of our
algorithm are reported in Table 3. As it can be seen, on these sparse instances the
LP-based method outperforms our algorithm. However, we find a solution within a
gap of 1% in reasonable time for all these samples.

The run time of the Branch-Cut-and-Price algorithm [34] developed for the sec-
ond kind of problems depends strongly on the parameter σ . For σ close to zero, we
have a complete graph with Gaussian-distributed weights. But for σ chosen suitably
large, some of the edges become ‘unimportant’ and the technique of fixing variables,
described in Sect. 3.1, works very well for these graphs. In Table 4 the computation
times of [34] and our algorithm are given. For σ = 3.0, roughly speaking we have
the same computation times. But for σ = 2.5, the Branch-Cut-and-Price algorithm
already takes more than 20 h for instances of size n = 150, whereas our algorithm
needs almost similar computation times as in the σ = 3.0 case.

For both kind of instances we used branching rule R3.

7.2 Numerical results of (QP) instances

In this section we report the results for the instances derived from (QP). Best known
lower and upper bounds for bqpgka and beasley data are reported at the pseudo-
Boolean web-site [12]. Our results are as follows:

bqpgka
Set a. All problems are solved in the root node of the B&B tree.
Set b. These instances could all be solved, but were extremely challenging

for our algorithm. The reason is, that the objective value in the Max-Cut
formulation is of magnitude 106, and therefore even a relative gap of 0.1%
is not sufficient to fathom the node. However, if we allow a relative error of
at most 0.1%, we can solve all problems in the root node of the B&B tree.

Set c. Also these instances were solved in the root node of the B&B tree.
Set d. These instances could be solved within at most 7 min.
Set e. The instances with 10, 20, 30 and 40% density could all be solved within

2 h of computation time. The instance with density d = 50% has been solved
after 35 h. According to [12], these problems have not been solved before.
The branching rule we used for solving these instances is R2.

bqpbe
We report the results of [11] and our results in Table 5. As it is shown in this table,
[11] could not solve all out of the ten problems from the n = 120 variables and 80%
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Table 3 Test runs on torus graphs with Gaussian distribution

Problem number n Time [35] Biq Mac

Time Nodes Gap (%)

Two-dimensional

g10_5555 100 0.15 10.12 1

g10_6666 100 0.14 15.94 1

g10_7777 100 0.18 14.89 1

g15_5555 225 0.44 304.03 3 0.0028

g15_6666 225 0.78 359.87 3 0.0043

g15_7777 225 0.67 346.89 3 0.0165

g20_5555 400 1.70 6690.99 9 0.0611

g20_6666 400 3.50 35205.95 45 0.2489

g20_7777 400 2.61 8092.80 11 0.1245

Three-dimensional

g5_5555 125 2.68 18.01 1

g5_6666 125 3.29 24.52 1

g5_7777 125 3.07 26.00 1

g6_5555 216 20.56 280.85 3 0.0032

g6_6666 216 37.74 2025.74 19 0.3648

g6_7777 216 27.30 277.95 3 0.0146

g7_5555 343 95.25 432.71 1

g7_6666 343 131.34 550.12 1

g7_7777 343 460.01 117782.75 243 0.6879

The Branch-and-Cut algorithm [35] runs on a 1.8 GHz PC, Biq Mac runs on a Pentium IV, 3.6 GHz. Times
are given in seconds. Column “nodes” lists the number of nodes in the resulting B&B tree, and column
“gap (%)” indicates the relative gap in the root node of the B&B tree in %

density instances on, whereas our method still succeeded in solving them all. From
the instances n = 150, d = 80%, the convex-quadratic approach failed to solve
any instance within their time limit of 3 h. We still managed to obtain solutions
to all of these instances (although for one graph it took about 54 h). We applied
branching rule R2 to solve these problems.

beasley
Solving the ten problems of size n = 100 can be done in the root node within 1 min.
For the set of problems of size n = 250, only two out of the ten problems have
been solved before, as reported by Boros et al. [12]. For the other eight problems
we could prove optimality for the first time. Eight out of the ten instances were
solved within 5 h, the other two needed 15 and 80 h, respectively. Since most of
these instances have been solved for the first time, we report in Table 6 the optimal
values together with the run times, the number of nodes in the B&B tree, and the
relative gap in the root node (in %). The branching strategy used for these instances
is R3.
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Table 4 Test runs on Ising instances (complete graphs)

Problem n Time [34] Biq Mac time Problem n Time [34] Biq Mac time
number number

σ = 3.0 σ = 2.5

100_5555 100 4 : 52 1 : 36 100_5555 100 18 : 22 1 : 32

100_6666 100 0 : 24 0 : 34 100_6666 100 6 : 27 1 : 06

100_7777 100 7 : 31 0 : 48 100_7777 100 10 : 08 0 : 47

150_5555 150 2 : 36 : 46 4 : 38 150_5555 150 21 : 28 : 39 4 : 25

150_6666 150 4 : 49 : 05 3 : 55 150_6666 150 23 : 35 : 11 5 : 39

150_7777 150 3 : 48 : 41 6 : 06 150_7777 150 31 : 40 : 07 9 : 19

200_5555 200 9 : 22 : 03 10 : 07 200_5555 200 – 10 : 05

200_6666 200 32 : 48 : 03 18 : 53 200_6666 200 – 17 : 55

200_7777 200 8 : 53 : 26 22 : 42 200_7777 200 – 21 : 38

250_5555 250 21 : 17 : 07 1 : 46 : 29 250_5555 250 – 3 : 00 : 28

250_6666 250 7 : 42 : 25 15 : 49 250_6666 250 – 1 : 17 : 04

250_7777 250 17 : 30 : 13 57 : 24 250_7777 250 – 1 : 10 : 50

300_5555 300 17 : 20 : 54 2 : 20 : 14 300_5555 300 – 6 : 43 : 47

300_6666 300 10 : 21 : 40 1 : 32 : 22 300_6666 300 – 9 : 04 : 38

300_7777 300 18 : 33 : 49 3 : 12 : 13 300_7777 300 – 13 : 00 : 10

Branch-cut-and-price [34] runs on a 1.8 GHz PC, Biq Mac runs on a 3.6 GHz PC. Times in
hours:minutes:seconds. The relative gap in the root node of the B&B tree is at most 0.1%, the number
of nodes in the tree ranges from 3 to 139

Table 5 Comparison between [11] and Biq Mac

n d [11] Biq Mac

Solved CPU time (s) Solved CPU time (s)

min avg max min avg max

100 1.0 10 27 372 1, 671 10 86 178 436

120 0.3 10 168 1, 263 4, 667 10 29 162 424

120 0.8 6 322 3, 909 9, 898 10 239 1, 320 3, 642

150 0.3 1 6, 789 10 1425 2, 263 2, 761

150 0.8 0 – 10 1, 654 1, 848 2, 133

200 0.3 0 – 10 7, 627 37, 265 193, 530

200 0.8 0 – 10 5, 541 47, 740 148, 515

250 0.1 0 – 10 12, 211 13, 295 16, 663

Computation times of the convex-quadratic algorithm were obtained on a laptop Pentium IV, 1.6 GHz (time
limit 3 h), our results were computed on a Pentium IV of 3.6 GHz

Bounds of the beasley and some of the bqpgka data sets have also been cal-
culated by Boros et al. [13]. They use the so-called iterated roof dual as bounding
routine and report that, applying this bound computation in a B&B framework, they
could solve the four sparsest instances of the bqpgka-d data sets and two of the
instances beasley-250. However, on most instances their bound behaves worse

123



332 F. Rendl et al.

Table 6 Test runs on the n = 250 QP instances of the OR-library [7]

Problem number Solution Biq Mac

Time (h:min:sec) B&B nodes Gap (%)

250-1 45,607 2 : 34 : 31 37 0.4357

250-2 44,810 1 : 20 : 23 19 0.5647

250-3 49,037 1 : 21 : 13 19 0.1395

250-4 41,274 1 : 15 : 23 17 0.3927

250-5 47,961 1 : 29 : 24 21 0.3462

250-6 41,014 14 : 35 : 02 223 1.0252

250-7 46,757 2 : 31 : 12 37 0.4380

250-8 35,726 88 : 55 : 05 4, 553 2.1931

250-9 48,916 3 : 12 : 57 47 0.7808

250-10 40,442 4 : 34 : 40 63 0.6178

The density is d = 0.1. Column “time” gives the run times on a Pentium IV, 3.6 GHz. Column “B&B
nodes” lists the number of nodes in the resulting B&B tree and column “gap (%)” indicates the relative gap
in the root node of the B&B tree in %

than the basic SDP bound and therefore, using it within a B&B scheme, might not
lead to satisfying results.

8 Extension to the equipartition problem

Simple modifications can make our algorithm work for solving related problems. In
this section we show such a modification that allows solving the equipartition problem
using Biq Mac.

Consider the problem of bisecting a graph such that the sum of the weights on
the edges that are cut is minimum and the two sets of the partition have the same
cardinality. Given a graph G = (V, E) with |V | even, and edge weights wi j , the
minimum weight equipartition problem reads

zequi = min

⎧
⎨

⎩
1

2

∑

{i, j}∈E

wi j (1 − xi x j ) :
n∑

i=1

xi = 0, x ∈ {−1, 1}n

⎫
⎬

⎭ (18)

By setting X := xxT , the following natural semidefinite relaxation arises:

zequi−rel =
{

min
1

4
trL X : tr J X = 0, diag(X) = e, X 	 0

}
, (19)

where J is the matrix of all ones.
Let A be the adjacency matrix of an unweighted graph. If solving the Max-Cut

problem of a graph with cost matrix

B = −A + J
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Table 7 Best known results of the equipartition problem for the Johnson graphs and the new gap obtained
by Biq Mac

n d Best known New gap

Bound |Ecut | Gap

124 0.02 12.01 13 0 0

124 0.04 61.22 63 1 0

124 0.08 170.93 178 7 0

124 0.16 440.08 449 8 0

250 0.01 26.06 29 2 0

250 0.02 103.61 114 10 8

250 0.04 327.88 357 29 22

250 0.08 779.55 828 48 35

gives a bipartition (S∗, T ∗) with |S∗| = |T ∗| = n
2 and weight k, then

n2

4
− k

is the optimal value of the equipartition problem. (The “−” in B = −A + J arises,
because we do a maximization instead of minimizing, and the J comes from the
constraint tr J X = 0, that is lifted into the objective function. The Lagrange multiplier
for this constraint is guessed to be one.)

We consider the instances introduced in [29] of size n = 124 and n = 250 and
summarize in Table 7 the best results for these instances known so far (see [31]).
With our algorithm we could prove optimality of the known lower bounds of all
instances of size n = 124, and one of the instances of size n = 250. To the best of
our knowledge, these exact solutions were obtained for the first time. The improved
gap for the instances of size n = 250 and densities 0.02, 0.04 and 0.08 were obtained
after a time limit of 32 h cpu-time. We observe, however, that the recent dissertation
[3] contains similar results.

9 Summary

In this paper we have presented an algorithm, that uses a B&B framework to solve
the Max-Cut and related problems. At each node of the tree we calculate the bound
by using a dynamic version of the bundle method that solves the basic semidefinite
relaxation for Max-Cut strengthened by triangle inequalities.

We conclude, that

• Our approach solves any instance of all the test-bed considered up to n = 100
nodes. To the best of our knowledge, no other algorithm can manage these instances
in a routine way.
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• We solve problems of special structure and sparse problems up to n = 300 nodes.
• For the first time optimality could be proved for several problems of the

OR-library. All problems that are reported at the Pseudo-Boolean web-site [12]
with dimensions up to n = 250 are now solved.

• For the first time optimality of the equipartition problem for some of the Johnson
graphs has been proved, for those where we could not close the gap we reduced
the best known gap significantly.

• For sparse problems it is not advisable to use our approach. Since linear program-
ming-based methods are capable of exploiting sparsity, solutions might be obtained
much faster when applying these methods to sparse data.

Using our algorithm to solve this problem has been made publicly available at

http://biqmac.uni-klu.ac.at/.
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