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Abstract The Lovász theta number of a graph G can be viewed as a semidefinite
programming relaxation of the stability number of G. It has recently been shown that a
copositive strengthening of this semidefinite program in fact equals the stability num-
ber of G. We introduce a related strengthening of the Lovász theta number toward the
chromatic number of G, which is shown to be equal to the fractional chromatic number
of G. Solving copositive programs is NP-hard. This motivates the study of tractable
approximations of the copositive cone. We investigate the Parrilo hierarchy to approx-
imate this cone and provide computational simplifications for the approximation of the
chromatic number of vertex transitive graphs. We provide some computational results
indicating that the Lovász theta number can be strengthened significantly toward the
fractional chromatic number of G on some Hamming graphs.
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1 Introduction

The Lovász theta numberϑ(G) has been introduced as an upper bound on the Shannon
capacity of a graph G [22]. It can be formulated as the optimal value of a semidefinite
program (SDP), and therefore computed to an arbitrary fixed precision in polynomial
time (see the survey by Todd [33]). The theta number and various strengthenings
toward the stability number α(G) have been studied intensively in the last years (see
the survey [21]). Recently a strengthening ϑC(G) of ϑ(G) toward the stability number
has been introduced by de Klerk and Pasechnik in [6]. The strengthening is obtained
by going from semidefinite matrices to the cone of completely positive matrices. De
Klerk and Pasechnik in fact show that this approximation is tight, ϑC(G) = α(G).
Lovász showed that the theta number is also a lower bound on the chromatic number
[22]. Based on the semidefinite program defining the theta number, Karger, Motwani
and Sudan suggested a graph-coloring heuristic which was a major advance at that
time for the worst case analysis [17]. Their breakthrough result has been slightly
improved since, see, e.g., [16]. Inspired by the definition of ϑC(G) [6] we introduce
a related copositive program �C(G) which strengthens the Lovász theta number
toward the chromatic number.1 While the copositive programming relaxation of the
stability number is exact, we will see that the number �C(G) equals the fractional
chromatic number, which is a lower bound on the chromatic number. An exact copos-
itive programming formulation of the chromatic number has recently been proposed
by Gvozdenović and Laurent [15]. It has recently been shown [28] that the quadratic
assignment problem also has an exact copositive programming formulation. In fact,
quite a general class of quadratic programs with linear as well as binary constraints
allows a copositive representation [3].
Copositive programs cannot be solved efficiently. Just testing whether a matrix is
copositive is co-NP-complete [25]. So a chain of inner approximations of the copositive
cone P ⊆ K0 ⊆ K1 ⊆ · · · ⊆ C has been suggested in [26]. Optimizing over the
semidefinite cone P and the cone K0 are well-understood (see [10]). On the other
hand, optimizing over the next weakest cone K1 is a large SDP with O(n3) variables,
n = |V (G)|. We show that this relaxation can be restated as a program with just
O(n2) variables in the case of a vertex transitive graph. We also show that bounds on
the stability and the chromatic number obtained by optimizing over any cone K are
related. In fact, in the case of vertex transitive graphs a simple change of variables
transforms one SDP into the other.
We give preliminary numerical experience with the cone K1 on vertex transitive Ham-
ming graphs. On some instances it shows a significant strengthening over the Lovász
theta number.

1 A remark on notation: actually, a lower bound on the chromatic number χ(G) is the theta number of
the complement graph ϑ(Ḡ). In the literature on the stability number this bound is often denoted as ϑ̄(G).
However, to clarify the exposition on the lower bounds of the chromatic number, and to emphasize the
symmetry in approaches to bound the stability number and the (fractional) chromatic number, we use the
notation�(G) := ϑ̄(G). So we denote by�C(G) the corresponding copositive programming bound which
would by analogy to the existing literature be denoted by ϑ̄C(G).
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Copositive programming motivated bounds 251

2 Notation

A graph with vertex set V := V (G) := {1, . . . , n} and edge set E will be denoted by
G(V, E), or shortly G. We assume G to be simple (loopless, without multiple edges)
and undirected. The complement graph Ḡ is the simple graph on the same vertex set
V and the edge set Ē := {i j /∈ E : i �= j}. A (proper) s-coloring of a graph G(V, E)
is a mapping c : V → {1, . . . , s} such that i j ∈ E ⇒ c(i) �= c( j). The chromatic
number χ(G) is the smallest number of colors needed to (properly) color the graph
G. The stability number α(G) is the size of the largest stable set in the graph G. (A
subset S of the vertices of G is stable, if no edge of G has both endpoints in S.)
The n-dimensional vector of all ones is denoted by e. The matrix J = eeT is the n ×n
matrix of all ones. In fact, rows and columns of any matrix considered in this paper
are induced by the n vertices of the graph G, and are therefore n × n real matrices. An
edge i j induces the symmetric matrix Ei j = ei eT

j +e j eT
i where ei is the i th column of

the identity matrix I . All our matrices belong to the universal space of the symmetric
matrices denoted by Sn with the trace inner product

〈
X,Y

〉 := tr XY =
n∑

i, j=1

xi j yi j .

The operator diag : Sn → R
n maps a matrix into its diagonal. A set K is a cone,

if K ∈ K, λ ≥ 0 ⇒ λK ∈ K. The cone K is convex, if it additionally satisfies
K , K ′ ∈ K ⇒ K + K ′ ∈ K. We will consider only convex cones, such as R

n+ =
{x ∈ R

n : x ≥ 0} and

N := {K ∈ Sn : K ≥ 0}, (1)

the cone of elementwise nonnegative matrices. Positive semidefinite matrices also form
a convex cone, denoted P := {K ∈ Sn : K � 0}. Its interior is {K ∈ Sn : K 	 0}
where A � B (A 	 B) means that A − B is a positive semidefinite (respectively
positive definite) matrix. The dual of a cone K is defined by

K∗ := {D ∈ Sn : 〈K , D〉 ≥ 0 ∀K ∈ K}. (2)

The cones N and P are self-dual, N ∗ = N and P∗ = P . The following well-known
characterization of positive semidefinite matrices

P = {K ∈ Sn : xT K x ≥ 0 ∀x ∈ R
n} (3)

shows that P is a subcone of the cone of copositive matrices defined by

C := {K ∈ Sn : xT K x ≥ 0 ∀x ∈ R
n+}. (4)

Its dual is the cone of completely positive matrices given by C∗ = {x1xT
1 +· · ·+xk xT

k :
xi ∈ R

n+ i = 1, . . . , k, and k ∈ N}. Now P ⊆ C implies C∗ ⊆ P∗.
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252 I. Dukanovic, F. Rendl

Optimization over N corresponds to linear programming and optimizing over P to
semidefinite programming. We refer to both optimizing over the cone C and its dual
cone C∗ as copositive programming. This is justified by the fact that in our instances
there is no duality gap (see Remark 7), so primal-dual techniques apply.

3 The stability number and its semidefinite programming relaxation

We briefly outline the technique for developing semidefinite and copositive program-
ming relaxations of the stability number. The characteristic vector of a set S ⊆ V ,
χS ∈ {0, 1}n is defined by

(χS)v :=
{

1 v ∈ S,
0 v /∈ S.

Any nonempty set S induces the matrix

X S := 1

χT
S χS

χSχ
T
S . (5)

This matrix satisfies the following conditions: X S ∈ C∗ ⊆ P, tr (X S) = 1 and
|S| = 〈X S, J 〉.
Let S be a stable set. Then clearly at most one endpoint of any edge can be in S,
i.e., (χS)i (χS) j = 0 whenever i j ∈ E . In terms of the matrix (5) this is equivalent
to (X S)i j = 0 for any edge i j . To describe this sparsity pattern of the matrix X S we
introduce the following linear operator AG : Sn → R

E

(AG X)i j := 〈X, Ei j 〉 = xi j + x ji = 2xi j ∀i j ∈ E . (6)

So AG X S = 0. The Lovász theta number introduced in [22]

ϑ(G) := max{〈X, J 〉 : tr X = 1, AG X = 0, X ∈ P}, (7)

and the optimum of the following copositive program introduced by de Klerk and
Pasechnik in [6]

ϑC(G) := max{〈X, J 〉 : tr X = 1, AG X = 0, X ∈ C∗} (8)

are upper bounds on α(G) since the matrix X S induced by any stable set is feasible
for (7) and (8).
Since C∗ ⊆ P

α(G) ≤ ϑC(G) ≤ ϑ(G). (9)

The first inequality is tight [6].

Theorem 1 (de Klerk–Pasechnik) α(G) = ϑC(G). ��
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Copositive programming motivated bounds 253

Since it is NP-hard to compute the stability number (see, e.g., [31]), computing ϑC(G)
is NP-hard, too. On the other hand, the semidefinite program (8) is solvable in poly-
nomial time.

4 Graph coloring

In this section we recall the well-known linear programming (LP) and semidefinite
programming (SDP) relaxations for graph coloring. Then, inspired by Theorem 1, we
introduce a new copositive programming relaxation �C(G) complementing ϑC(G),
and prove �C(G) = χ f (G), the fractional chromatic number.
An s-coloring c partitions the vertex set V into s stable sets (color classes) defined
by Si := c−1(i). In fact, any partition of the vertex set into stable sets S1, . . . , Ss

defines an s-coloring by c(v) = i whenever v ∈ Si . A partition of V into s sets is
characterized by χS1 + · · · + χSs = e.
Let us denote the family of all stable sets by S, i.e., S := {S ⊆ V : S stable}. A
subfamily T ⊆ S partitions V , if

∑
S∈T χS = e. The chromatic number χ(G) is the

minimal cardinality of such a partitioning into stable sets, i.e.,

χ(G) = min

{∑

S∈S
λS : λS ∈ {0, 1},

∑

S∈S
λSχS = e

}
. (10)

It is well-known that computing the chromatic number is NP-hard, see, e.g., [31]. The
fractional chromatic number χ f (G) defined by the linear program

χ f (G) := min

{∑

S∈S
λS : λS ≥ 0,

∑

S∈S
λSχS = e

}
(11)

is obviously a lower bound on χ(G). Unfortunately, this number is also NP-hard to
compute, (see, e.g., the recent reformulation of the stability number α(G) as (frac-
tional) chromatic number of a certain graph [15]).
Let S1, . . . , Sχ(G) be a partition of V into χ(G) stable sets, and let us define the
corresponding coloring matrix C ∈ Sn by

C :=
χ(G)∑

i=1

χSiχ
T
Si
. (12)

This coloring matrix in turn uniquely determines a partition of the vertex set V , i.e.,
if we denote by S[u] ∈ {S1, . . . , Sχ(G)} the stable set which contains vertex u,

cuv = eT
u Cev =

χ(G)∑

i=1

(eT
u χSi )(χ

T
Si

ev) =
{

1 S[u] = S[v],
0 S[u] �= S[v].

(13)

123
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Since the endpoints of an edge uv cannot be in the same color class, cuv = 0. By
applying operator (6) this fact can be written as

AGC = 0. (14)

On the other hand cuu = 1 for any u ∈ V, i.e.,

diag C = e. (15)

Furthermore C ∈ C∗ ⊆ P . These facts motivate all our semidefinite and copositive
programming relaxations of the chromatic number. So the following Lemma 2 which
relates vectors appearing in the definition (11) to matrices which generalize (12) is the
key to linking linear to semidefinite and copositive programming relaxations.

Lemma 2 Let Si ⊆ V and λi ≥ 0 for i = 1, . . . , k. Define the matrix Xλ :=∑k
i=1 λiχSiχ

T
Si

and the vector xλ := ∑k
i=1 λiχSi . Then

M :=
(

k∑

i=1

λi

)

Xλ − xλxT
λ � 0.

Proof We have to show that xT Mx ≥ 0 for any vector x ∈ R
n . Note that

M =
k∑

i, j=1

λiλ jχS jχ
T
S j

−
k∑

i, j=1

λiλ jχSiχ
T
S j
.

Denote ai := χT
Si

x .Then xT Mx = ∑k
i, j=1 λiλ j (a2

j −ai a j ) = ∑k
i=1

∑
j>i λiλ j (a2

j −
2a j ai + a2

i ) ≥ 0. ��
The coloring matrix (12) can be written as

C =
χ(G)∑

i=1

λiχSiχ
T
Si
,

where each λi = 1. Since the sum of characteristic vectors of a partition xλ :=
∑χ(G)

i=1 λiχSi = e, by Lemma 2 we get

(
k∑

i=1

λi

)

C − eeT = χ(G)C − J � 0.

Now C � 0 implies

t ≥ χ(G) ⇒ tC − J � 0.
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Copositive programming motivated bounds 255

Also notice that t ≥ χ(G) > 0 implies tC ∈ C∗.
The adjoint operator of (6) is given by AT

G y = ∑
i j∈E(G) yi j Ei j . So the conditions

(14) and (15) can also be written as

tC = t I + AT
Ḡ

y, (16)

where y ∈ R
Ē . Therefore the Lovász theta number

�(G) := min{t : t I + AT
Ḡ

y − J � 0}, (17)

and the optimum of the copositive program

�C(G) := min{t : t I + AT
Ḡ

y − J � 0, t I + AT
Ḡ

y ∈ C∗} (18)

are lower bounds on χ(G). Since the feasible set of (18) is contained in the one of (17)

�(G) ≤ �C(G) ≤ χ(G). (19)

The rest of this section is devoted to proving �C(G) = χ f (G) defined by (11). To
our knowledge, the relaxation (18) has not been investigated before.

Lemma 3 �C(G) ≤ χ f (G).

Proof Let {S1, . . . , Sk} be stable sets and λi ≥ 0 such that
∑k

i=1 λiχSi = e is an
optimal solution of (11). Then t := χ f (G) = ∑k

i=1 λi ≥ 0. Since χS ∈ {0, 1}n is

a vector of zeros and ones, diag (χSχ
T
S ) = χS , and the diagonal of the completely

positive matrix

Cλ :=
k∑

i=1

λiχSiχ
T
Si
, diag (Cλ) =

k∑

i=1

λiχSi = e. (20)

This resembles (15). Likewise for ab ∈ E , eT
a Cλeb = ∑k

i=1 λi (eT
a χSi )(χ

T
S j

eb) =
∑

0 = 0 as in (14). Again like (14) and (15) together produce (16), we get tCλ =
t I + AT

Ḡ
y. If t I + AT

Ḡ
y − J � 0, (t, y) is feasible for (18) and�C(G) ≤ t = χ f (G).

But indeed by applying Lemma 2 on Cλ where by (20)
∑
λiχSi = e

( k∑

i=1

λi

)
Cλ − eeT � 0,

which is equivalent to tCλ − J = t I + AT
Ḡ

y − J � 0. ��

Lemma 4 [12] χ f (G) ≤ �C(G).
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256 I. Dukanovic, F. Rendl

Proof The dual of the linear program (11) is

χ f (G) = max{eTw : χT
S w ≤ 1 ∀S ∈ S}. (21)

Let w be an optimal solution of (21). Notice that w ≥ 0 as otherwise w+ defined by

(w+)i =
{
wi wi ≥ 0,
0 otherwise

would also be feasible as χT
S w+ = χT

S∩{i :wi ≥0}w ≤ 1 by (21), contradicting χ f (G) =
eTw < eTw+.
Let (t, y) be an optimal solution of (18). As U := t I + AT

Ḡ
y ∈ C∗ there are vectors

xk ≥ 0 such that U = ∑
k xk xT

k . For any edge i j , 0 = ui j = ∑
k(xk)i (xk) j must be

a sum of zeros. Therefore the support of each vector xk

Sk := {i : (xk)i > 0}

is a stable set. Moreover t = uii = ∑
k(xk)

2
i for any i ∈ V . As Z := t I + AT

Ḡ
y − J =

U − J = (
∑

k xk xT
k )− eeT � 0 by (18), we deduce wT Zw ≥ 0 which is equivalent

to

(eTw)2 ≤
∑

k

(wT xk)
2. (22)

After writing wi = √
wi

√
wi , each summand in (22) satisfies

(
wT xk

)2 =
⎛

⎝
∑

i∈Sk

wi (xk)i

⎞

⎠

2

≤
⎛

⎝
∑

i∈Sk

wi (xk)
2
i

⎞

⎠
∑

i∈Sk

wi ≤
⎛

⎝
∑

i∈Sk

wi (xk)
2
i

⎞

⎠

=
(

∑

i

wi (xk)
2
i

)

by the Cauchy–Schwartz inequality, since
∑

i∈Sk
wi = χT

Sk
w ≤ 1 by (21) as Sk is

stable.
Therefore, their sum

∑
k(w

T xk)
2 ≤ ∑

k
∑

i wi (xk)
2
i = ∑

i

(∑
k(xk)

2
i

)
wi = ∑

i twi

= teTw. Combining with (22) this gives (eTw)2 ≤ teTw. Since χ f (G) = eTw > 0,
we get χ f (G) ≤ t . ��
Corollary 5 �C(G) = χ f (G).

Remark 6 In [3], Burer suggests a copositive programming reformulation of a large
class of quadratic programs including the linear formulation (11) of the fractional
chromatic number χ f (G). However his formulation for this particular problem is
intractable as it would require as many variables as there are stable sets in the graph G.
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5 Relations between strengthenings of ϑ and �

Looking at the chains of relaxations (9) and (19) we conclude that having a tractable
cone K “between” P and C, P ⊆ K ⊆ C, yields a tractable relaxation for the respective
problems. Motivated by [6] we define

ϑK(G) := max{〈X, J 〉 : tr X = 1, AG X = 0, X ∈ K∗}, (23)

and the corresponding bound on the chromatic number

�K(G) := min{t : t I + AT
Ḡ

y − J ∈ P, t I + AT
Ḡ

y ∈ K∗}. (24)

Notice that it generalizes (8) and (18). Meanwhile ϑP (G) = ϑ(G), and �P (G) =
�(G) since J ∈ P implies that the constraint t I + AT

Ḡ
y ∈ P is redundant in (17).

Now C∗ ⊆ K∗ ⊆ P implies

α(G) = ϑC(G) ≤ ϑK(G) ≤ ϑ(G), and �(G) ≤ �K(G) ≤ �C(G) = χ f (G).

Remark 7 The dual of (23)

inf{t : t I + AT
G y − J ∈ K} = ϑK(G), (25)

(i.e., there is no duality gap) because X = 1
n I ∈C∗ ⊆ K∗ while t =2n and y =0 define

a matrix 2nI−J 	0 in the strict interior of K⊇P . The conic duality theorem (see [5])
also states that the optimum of (23) is indeed attained. Likewise the dual of (24) satisfies

�K(G) = sup{〈X − W, J 〉 : tr X = 1, AḠ X = 0, X − W � 0,W ∈ K}, (26)

and the optimum of (24) is attained as X − W = W = 1
2n I 	 0 is strictly feasible for

(26) while t = 2n, y = 0 is feasible for (24).

Compare ϑ(Ḡ) computed from (25) to (17). The resulting well-known equation
�(G) = ϑ(Ḡ) was proved already in [22]. The next proposition is a generalization
of the inequality ϑ(G)ϑ(Ḡ) ≥ n [22]. The case K = P + N was proved in [32].

Proposition 8 Let K be a cone such that P ⊆ K ⊆ C. Then ϑK(G)�K(G) ≥ n.

Proof Let the optimum t∗ := �K(G) of (24) be achieved at (t∗, y∗). Since Z∗ :=
t∗ I + AT

Ḡ
y − J � 0, its diagonal elements t∗ − 1 ≥ 0. Therefore X := 1

nt∗ (t
∗ I +

AT
Ḡ

y∗) = 1
n I + AT

Ḡ
( 1

nt∗ y∗) is feasible for (23). Since X = 1
nt∗ (Z

∗ + J )

ϑK(G) ≥ 〈X, J 〉 = eT Xe = eT Z∗e + eT Je

nt∗
≥ 0 + n2

nt∗
= n

�K(G)
.

��
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Remark 9 A polynomial bound p(G) provably improves�(G) toward the chromatic
number, if whenever

�(G) �= χ(G) ⇒ �(G) < p(G) ≤ χ(G).

The existence of such a bound remains an open question. Busygin and Pasechnik [4]
however prove that no polynomial bound improvesϑ(G) toward α(G) unless P = NP.
Likewise Gvozdenović and Laurent prove that there is no polynomial bound between
χ f (G) and χ(G) unless P = NP [15]. Next, let a polynomial bound p(G) lay between
�(G) and χ f (G). (Notice that all conic bounds described in this paper indeed satisfy
�(G) ≤ �K(G) ≤ χ f (G).) Since �(H̄(6, 2)) = χ f (H̄(6, 2)) = 10 + 2/3 where
H(m, n) stands for the Hamming graph described in Sect. 9, see [8] for details, p(G)
does not provably improve �(G) toward the chromatic number χ(G) either.

6 Vertex transitive graphs

The numerical experiments as reported in [10,14] suggest that strengthening the
Lovász theta number on highly structured vertex transitive graphs can be substan-
tial while the computational effort can be kept reasonable. So in the rest of the paper
we will consider only the vertex transitive graphs.

Definition 10 Let G(V, E) be a simple graph. A permutation π : V → V of the
vertices such that i j ∈ E ⇐⇒ π(i)π( j) ∈ E is an automorphism of the graph.
The group of all automorphisms is denoted by Aut (G). Group H ≤ Aut (G) is vertex
transitive, if for every pair i, j ∈ V there exists an automorphism

πi j ∈ H such that πi j (i) = j. (27)

Graph G is vertex transitive, if Aut (G) is a vertex transitive group.

Vertex transitive graphs possess a lot of symmetry and thus enable us to apply the tech-
nique which goes back at least to [30]. Its main idea is roughly sketched in Lemma 12.

Definition 11 Let K̄ be a subcone of the cone K, i.e., K̄ ⊆ K. A (continuous) mapping
r : K → K̄ is a retraction to its subcone K̄ and K̄ a retract of K, if r |K̄ = id.

Lemma 12 Let r : K → r(K) be a retraction. Let c : K → R be such a map that
c(A) = c(r(A)) for each A ∈ K. Then

max{c(A) : A ∈ K} = max{c( Ā) : Ā ∈ K̄}. (28)

Proof max{c(A) : A ∈ K} = max{c(r(A)) : A ∈ K} = max{c(r(A)) : r(A) ∈ K̄}.
��

In the most interesting case the dimension of the retract K̄ is considerably smaller than
the dimension of the original cone K implying that K̄ can be described by substantially
fewer variables. As the space complexity alone determines which conic programs
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Copositive programming motivated bounds 259

considered in this paper are practically solvable replacing the former program in (28)
by the latter enables us to compute bounds on much larger (vertex transitive) graphs.
(Note that the time complexities of all programs considered here are cubic in their
space complexities as we solve them by an interior point method.)
Inspired by [11], we study in this section cases where the structure of the cone K is
described by a vertex transitive group H ≤ Aut (G). To transmit the structure from
permutations of n = |V | vertices to the corresponding cone of n ×n matrices we need
to define for each permutation π : V → V its permutation matrix Pπ by

Pπei = eπ(i).

Definition 13 Matrix M is H -invariant,2 if PT
β M Pβ = M for any β ∈ H , i.e.,

mi j = mβ(i)β( j).

Definition 14 Cone K preserves graph isomorphisms, if it satisfies

Z ∈ K ⇒ PT
π Z Pπ ∈ K (29)

for any automorphism π ∈ Aut (G).

Obviously the cones N ,P, C and N + P preserve graph isomorphisms, see (1), (3)
and (4). For further examples of such cones see, e.g., [6,10,26]. Next, consider the dual
K∗ (see definition (2)) of a cone K which preserves graph isomorphisms. Let K ∈ K,
D ∈ K∗ and π ∈ Aut (G). Since PT

π = Pπ−1 , π−1 ∈ Aut (G) and PT
π−1 K Pπ−1 ∈ K

〈K , PT
π D Pπ 〉 = 〈PπK PT

π , D〉 = 〈PT
π−1 K Pπ−1, D〉 ≥ 0,

implying PT
π D Pπ ∈ K∗. So the dual cone K∗ also preserves graph isomorphisms. In

fact we are not aware of any subcone of Sn applied to the graph coloring or stable set
problems which does not preserve graph isomorphisms.3

Let cone K preserve graph isomorphisms. Let matrix Z ∈ K. Then the cone K contains
its H-average defined by

r(Z) := 1

|H |
∑

π∈H

PT
π Z Pπ . (30)

Lemma 15 Let cone K ⊆ Sn preserve graph isomorphisms. Let K̄ := {A ∈ K :
PT
π APπ = A ∀π ∈ H} be its subcone consisting of the H-invariant matrices. Then

(a) Map r defined by (30) is a retraction of K to K̄.
(b) Let A be an H-invariant matrix. Let c(Z) := 〈Z , A〉. Then c(Z) = c(r(Z)).

2 or is invariant under the action of group H or possesses the symmetry of group H .
3 In the papers [19,23] larger square matrices are considered. Their rows do not represent only vertices of
the graph G but its edges as well. However, if we additionally define Pei j = eπ(i)π( j), the cones considered
in [19,23] satisfy (29), too.
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260 I. Dukanovic, F. Rendl

Proof (a) Let H be a group, ◦ be the group operation and β ∈ H . Then H ◦ β =
{π ◦ β|π ∈ H} = H .

So

PT
β r(Z)Pβ = 1

|H |
∑

π∈H

PT
β PT

π Z Pπ Pβ = 1

|H |
∑

π∈H

PT
π◦β Z Pπ◦β = r(Z), (31)

i.e., the image r(Z) is H -invariant. Since any H -invariant matrix is by definition (30)
obviously a fixed point of map r , r is indeed the described retraction.
(b) By (30) and since A is H invariant c(r(Z)) = 〈r(Z), A〉 = 1

|H |
∑
π∈H 〈Z , Pπ APT

π 〉
= 〈Z , A〉 = c(Z). ��

Corollary 16 Let H ≤ Aut (G) be a group of automorphisms. Let cone K preserve
graph isomorphisms and satisfy P ⊆ K ⊆ C. Then

ϑK(G) = max{〈X, J 〉 : tr X = 1, AG X = 0, X ∈ K∗, xi j = xπ(i)π( j)∀π ∈ H},
(32)

and

�K(G) = sup{〈X − W, J 〉 : tr X = 1, AḠ X = 0, X − W � 0,W ∈ K,
xi j = xπ(i)π( j) and wi j = wπ(i)π( j)∀π ∈ H}. (33)

Proof By definition (23), ϑK(G) = max{〈X, J 〉 : tr X = 1, AG X = 0, X ∈ K∗}.
Matrices J and identity I are obviously group invariant for any permutation group.
By Lemma 15 the retraction r : K → {X ∈ K|PT

π X Pπ = X ∀π ∈ H} defined in (30)
satisfies 〈X, J 〉 = 〈r(X), J 〉 and tr X = 〈X, I 〉 = 〈r(X), I 〉 = tr r(X). If i j ∈ E ,
then {π(i j) : π ∈ H} ⊆ E . So AG X = 0 implies

〈Ei j , r(X)〉 = 1

|H |
∑

π∈H

〈ei e
T
j + e j e

T
i , PT

π X Pπ 〉 = 1

|H |
∑

π∈H

〈Eπ(i)π( j), X〉

=
∑

0 = 0,

i.e., AG r(X) = 0. Also by Lemma 15 r maps K∗ into H -invariant matrices. So r maps
the feasible space of (23) onto the feasible space of (32). Now Lemma 12 establishes
(32). Likewise (33) is established by applying the retraction r in (26). ��

In the case of a highly symmetric vertex transitive graph this observation reduces the
number of variables and therefore the space and time complexity, dramatically. We
will exploit (33) in Sect. 9.

Lemma 17 Let H be a vertex transitive group and M ∈ Sn be an H-invariant matrix.
Then e is an eigenvector of M, and all diagonal elements of M are equal.
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Proof Take any i, j ∈ V . Since H ≤ Aut (G) is a vertex transitive group by Definition
10 there is a permutation π ∈ H such that π( j) = i . Since M H -invariant, by Defini-
tion 13 m jk = mπ( j)π(k) = miπ(k), i.e., the elements in j th row are just permuted ele-
ments from the i th row. Their sum equals

∑
k m jk = ∑

k mik , so Me = (
∑

i m1π(i))e,
and e is an eigenvector. Likewise z j j = zπ( j)π( j) = zii , i.e., all diagonal elements are
equal. ��
Theorem 18 Let G be a vertex transitive graph. Let cone K preserve graph isomor-
phisms and satisfy P ⊆ K ⊆ C. Then ϑK(G)�K(G) = n.

Proof Take H := Aut (G) in Corollary 16 and let an optimum of (32) be attained at
X̄ ∈ K∗. As X̄ is H -invariant and since tr X̄ = 1 by Lemma 17 any diagonal entry
x̄i i = 1

n , and also X̄e = λe. Therefore the sum of all entries in X̄

ϑK(G) = 〈X̄ , J 〉 = eT X̄e = eT λe = nλ.

The only nonzero eigenvalue of J is n, Je = ne. So vector e is also an eigenvector of
Z := n

λ
X̄ − J ,

Ze = n

λ
X̄e − Je = ne − ne = 0.

Next, let v be any eigenvector of X̄ orthogonal to e. Then Jv = 0 and Zv = (n/λ)X̄v,
i.e., v is eigenvector of Z , too. Therefore X̄ ∈ K∗ ⊆ P implies Z � 0. As AG X̄ = 0,
there are t ∈ R and y ∈ R

Ē such that Z = t I + AT
Ḡ

y − J . So (y, t) is feasible for

(24) and t = n
λ

x̄i i = 1
λ

= n
ϑK(G) , so�K(G) ≤ n

ϑK(G) . Now Proposition 8 completes
the proof. ��
By taking K = P we see that Theorem 18 generalizes the well-known equality for
vertex transitive graphs ϑ(G)ϑ(Ḡ) = n, see [18]. We notice that the same technique
has already been used in [10] to prove Theorem 18 for the cone K0 = P + N .

Remark 19 Other approaches to bound the stability number also have related
approaches to bound the fractional chromatic number. Lasserre’s hierarchy of bounds
on the stability number ϑ(G) = las(1)(G) ≥ las2(G) ≥ · · · ≥ α(G) introduced in
[19] and the corresponding hierarchy of bounds on the chromatic number �(G) =
ψ(1)(G) ≤ ψ(2)(G) ≤ · · · ≤ χ f (G) introduced in [15] also satisfy the inequality
las(i)(G)ψ(i)(G) ≥ n which is again tight on the vertex transitive graphs [15]. The
semidefinite programs las(i)(G) and ψ(i)(G) have equal computational complexity.
Gvozdenović and Laurent [15] also define an operator which turns any hierarchy
toward the stability number into a hierarchy toward the chromatic number where the
latter is not bounded above by χ f (G). However the effort to compute a bound in this
new hierarchy is much larger than for the corresponding bound on the stability number.

7 Cone K1

Parrilo [26] has introduced a chain of increasingly more complex cones squeezed
between P and C. The simplest of them is K0 = P + N with K∗

0 = P ∩ N [26].
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262 I. Dukanovic, F. Rendl

So ϑK0(G) is just Schrijver’s number introduced in [30], and�K0(G) is the Szegedy
number introduced in [32]. Since efficient algorithms for optimizing over the cone K0
are already known (see [10]), we will in the rest of the paper address optimizing over
K1.
The cone K1 is characterized by n supporting matrices M (1), . . . ,M (n) ∈ Sn [1,26]

M ∈K1 ⇐⇒ ∃M (1), . . . ,M (n): M � M (i) ∀i ∈ V,

m(i)
i i = 0 ∀i ∈ V,

m( j)
i i + 2m(i)

i j = 0 ∀i, j ∈ V, i �= j

m(i)
jk + m( j)

ik + m(k)
i j ≥ 0 ∀i, j, k ∈ V : i< j<k.

(34)

To gain more insight into this cone we will give a constructive proof that preserves
graph isomorphisms.

Proposition 20 Let π ∈ Aut (G) and M ∈ K1 be supported by matrices M (1), . . . ,

M (n). Then PT
π M Pπ ∈ K1 is supported by the matrices M [i] := PT

π M (π(i))Pπ ,
i = 1, . . . , n.

Proof Obviously PT
π M Pπ � M [i] for any i ∈ V. The other three conditions in (34)

regarding M [1], . . . ,M [n] also follow trivially from the corresponding three conditions
for M (1), . . . ,M (n) since m[a]

bc = eT
b PT

π Mπ(a)Pπec = m(π(a))
π(b)π(c). For example m[i]

i i =
mπ(i)
π(i)π(i) = 0. ��

Remark 21 Let us note that de Klerk and Pasechnik [6] do not relax (8) but the copos-
itive program α(G) = min{t : t (I + AT

Ge) − J ∈ C}. So their relaxation ϑ(i), Gvoz-
denović-Laurent’s ϑ(i) [13] and our refinement of the same relaxation ϑKi

ϑ(i)(G) = inf{t : t I + AT
G(te)− J ∈ Ki }, (35)

ϑ(i)(G) = inf{t : t I + AT
G(se)− J ∈ Ki }, (36)

ϑKi (G) = inf{t : t I + AT
G y − J ∈ Ki } (37)

slightly differ. While (35) has only one variable (and is therefore better suited for
theoretical considerations) (37) is obviously the tightest as any feasible solution of
(35) or (36) is feasible for (37), too. However, as already observed in [6] ϑ(0)(G)
also equals Schrijver number ϑK0(G). Moreover ϑK1(G) = ϑ(1)(G) on the vertex
transitive graphs, see [8]. So all three versions of the de Klerk–Pasechnik bound ϑ(i)

coincide on all computationally tractable instances.

Though polynomial-time (semidefinite programming), algorithms for optimizing over
cones K1,K2, . . . are increasingly demanding while their remarkable theoretical prop-
erties have been intensively studied [1,6,13,26,27]. Applying copositive programming
to optimization problems is only a bit older [2,29]. Consider computing �K1(G) on
an unstructured (random) graph. Though it is an SDP which can be solved by efficient
primal-dual interior point methods notice that its description needs roughly n3/2 vari-
ables. Therefore the size of the system matrix is O(n6), the Cholesky decomposition
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of which requires O(n9) flops. So computing a K1 bound on a random graph with 100
vertices requires more than 1000G RAM computer.
However the main result of the next section, Lemma 22, states that for computing
�K1(G) or ϑK1(G) in the case of a vertex transitive graphs we do not need n sup-
porting matrices M (1), . . . ,M (n) like in (34) for a general graph. We need only one
supporting matrix defined by (38), see (39). This decreases the time complexity to
O(n6). These results apply also to the recently introduced copositive programming
formulation of the chromatic number [15] while a similar result for codes is derived
in [20,30].

8 Cone K1 in the case of a vertex transitive graph

Let us restate characterization (34) of K1. We define

K̂1 := {(X (0), X (1), . . . , X (n)) : X (0) � X (i)∀i, X (i) ∈ Sn∀i,

x (i)i i = 0∀i, x ( j)
i i + 2x (i)i j = 0∀i, j, x (i)jk + x ( j)

ik + x (k)i j ≥ 0∀i, j, k: i< j<k}.

Obviously X (0) ∈ K1, if and only if there are (X (0), X (1), . . . , X (n)) ∈ K̂1. So we can
rewrite any conic program over the cone K1 into an SDP, e.g.,

min{c(X (0)) : X (0) ∈ K1} = min{c(X (0)) : (X (0), . . . , X (n)) ∈ K̂1}.

Notice the “explosion” of the number of variables as an element of the latter semidef-
inite cone is determined by O(n3) real numbers. In order to keep optimizing over K1
tractable, we need to decrease the number of variables by finding a suitable retraction.
In this section we describe such a retraction for any vertex transitive graph G with a
known vertex transitive group H ≤ Aut (G). Note that finding Aut (G) is an isomor-
phism complete problem. There is however a very efficient heuristic named NAUTY
which can find large subgroups of Aut (G) [24].
Motivated by the definition of the retract r in Lemma 12 we consider the mapping
R : (Sn)n → (Sn)n with the image (X̄ (1), . . . , X̄ (n)) := R(X (1), . . . , X (n)) compo-
nentwise defined by

X̄ (i) := 1

|H |
∑

π∈H

PT
π X (π(i))Pπ . (38)

Lemma 22 Let H be a vertex transitive group of graph G and the map r × R : K̂1 →
K̂1 defined by (30) and (38). Then

1. Image r × R(K̂1) ⊆ K̂1.
2. Image r × R(K̂1) is a retract of the cone K̂1.
3. Image

r ×R(K̂1)={(X̄ (0), X̄ (1), . . . , X̄ (n)) ∈ K̂1: PT
π X (0)Pπ = X (0)∀π ∈ H,

PT
π X̄ (π(i))Pπ = X̄ (i)∀π ∈ H,∀i>0}.
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Proof Let (X (0), X (1), . . . , X (n)) ∈ K1, and (X̄ (0), X̄ (1), . . . , X̄ (n)) := r × R(X (0),
X (1), . . . , X (n)).

1. By Lemma 15 retract r(K1) ⊆ K1. Let i > 0. Since X (0) � X (i), PT
π X (0)Pπ �

PT
π X (i)Pπ implying X̄ (0) � X̄ (i).

Next,

x̄ (i)i i = eT
i X̄ (i)i i ei = 1

|H |
∑

π∈H

ei PT
π X (π(i))Pπei = 1

|H |
∑

π∈H

eT
π(i)X

(π(i))eπ(i)

= 1

|H |
∑

π∈H

xπ(i)π(i)π(i) =
∑

0

by (34). An analog proof,

x̄ ( j)
i i + x̄ (i)i j = · · · = 1

|H |
∑

π∈H

eT
π(i)X

(π( j))eπ(i) + 2eT
π(i)X

(π(i))eπ( j) = · · ·

=
∑

0 = 0

establishes the second equality. And similar for inequality.
2. Since r is by Lemma 15 a retract, r(r(X (0))) = r(X (0)). To prove that R(R(X (1),

. . . , X (n))) = R(X (1), . . . , X (n)) observe its kth component (by twice applying
(38)) equals

1

|H |
∑

σ∈H

PT
σ X̄ (σ (k))Pσ = 1

|H |2
∑

σ,π∈H

PT
σ PT

π X (π(σ (k)))Pπ Pσ

= 1

|H |2
∑

σ,π∈H

PT
π◦σ X (π◦σ(k))Pπ◦σ = X̄ (k)

as in the above sum over σ, π ∈ H compositums π ◦ σ produce each element of
H exactly |H | times.

3. Let (X̄0, X̄1, . . . , X̄n) ∈ r × R(K1). The equality PT
π X̄ (0)Pπ = X̄ (0) was proved

in Lemma 15, see (31). Likewise

PT
σ X̄ (σ (i))Pσ = 1

|H |
∑

π∈H

PT
σ PT

π X (π(σ (i)))Pπ Pσ

= 1

|H |
∑

π◦σ∈H

PT
π◦σ X (π◦σ(i))Pπ◦σ = X̄ (i).

��
As G is a vertex transitive graph and H its vertex transitive group by applying πi j ∈ H
such that πi j (i) = j in the above formula we get

X̄ (i) = PT
πi j

X̄ ( j)Pπi j , (39)
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Table 1 Computational results on the complements of Hamming graphs

Graph n Orbits �K0 (Ḡ) K1-bound χ(Ḡ) Times Seconds

H(7, 6) 128 120 53.33 63.9 64 2 0

H(8, 6) 256 165 85.33 127.9 128 22 1

H(9, 4) 512 220 51.19 53.9 228 4

H(10, 8) 1024 286 383.99 511.9 512 3290 11

H(11, 10) 2048 364 921.59 1023.5 1024 46135 19

H(12, 4) 4096 455 211.86 255.5 37

H(13, 10) 8192 560 2867.20 4095.5 4096 64

H(14, 4) 16384 680 614.40 930.8 99

H(15, 4) 32768 816 1000.72 1846.9 174

H(16, 14) 65536 969 28086.86 32668.9 32768 250

i.e., all supporting matrices X̄ (1), . . . , X̄ (n) have the same (just permuted) entries.
However as the number of vertices in Hamming graphs H(n, 2) grows exponentially
with n, for large n this does not suffice to compute the K1 bounds considered in the
next section. In [8] further technical details are given on how to exploit the richness of
Aut (G) (i.e., existence of πi i ∈ H such that πi i �= id, πi i (i) = i) to further decrease
the number of variables as many entries in

PT
πi i

X̄ (i)Pπi i = X̄ (i)

are equal, i.e., x̄ (i)jk = x̄ (i)πi i ( j)πi i (k)
is in the reduced model (28) only one variable.

These simplifications reduce the number of the remaining inequalities and equalities
in classification (34), too (e.g., all variables in n equalities x̄ (1)11 = 0, . . . , x̄ (n)n = 0 are

equal thus reducing these n equalities to a single equality x̄ (1)11 = 0). In fact we noticed
that each remaining variable appears in exactly one remaining equality or inequality,
see [8].

9 Example: Hamming graphs

We tested the algorithm on the binary Hamming graphs (Table 2) and on the comple-
ments of such graphs (Table 1). We denote by H(b, d) the binary Hamming graph in
which vertices are all n = 2b strings made of b bits and edges connect strings at Ham-
ming distance (the number of different bits) d. Such graphs have rich automorphism
groups, a fact already exploited by Schrijver in [30].
In addition to a vertex transitive group4 isomorphic to Z

b
2 such a graph also has a

rich group of automorphisms isomorphic to the symmetric group Sb.5 We used the

4 generated by {πi : i = 1, . . . , b} where πi switches the i th bit and leaves the other bits unchanged.
5 consisting of all n! permutations of b bits.
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Table 2 Computational results on Hamming graphs

Graph �(G) �K0 (G) K1-bound ψ(G) ψ≥0(G)

H(10, 6) 6.00 8.73 10.5 10.44 10.89

H(10, 8) 2.67 3.20 3.4 +3.92 3.92

H(11, 4) 16.00 21.57 24.7 +25.74 25.74

H(11, 6) 12.00 12.00 14.1 12.00 15.28

H(11, 8) 3.20 4.94 5.4 +5.78 5.78

H(13, 8) 5.33 9.41 12.5 12.14 13.65

H(15, 6) 27.76 30.74 43.0 +46.43 50.30

H(16, 8) 16.00 16.00 24.1 16.00 28.44

H(17, 6) 35.00 48.22 62.5 +86.31 88.32

H(17, 8) 18.00 18.00 34.5 32.00 46.51

H(17, 10) 6.67 12.63 20.5 15.88 25.84

H(18, 10) 10.00 16.00 28.8 18.31 38.88

semidirect product Z
b
2 × Sb of both subgroups to decrease the number of variables in

(26) rewritten as SDP

�K1(H(b, d)) = sup{〈X − W, J 〉 : tr X = 1, AḠ X = 0, X

−W0 � 0, (W0,U1, . . . ,Wn) ∈ K̂1} (40)

by applying the retraction from Sect. 8, see [8] for technical details. As all matrix
variables in SDP (40) possess group symmetry even further reductions described in
[7] can be made. (Actually we implemented its implicit version described in [9].)
Both reductions have decreased the numerical stability of the algorithm (the faster
was less stable, see also [10] or [8]), but the computation times have been reduced
substantially. We implemented a primal-dual predictor-corrector interior point method
encoded in Matlab with C interfaces, and ran it on a 3 GHz PC running Linux. We
stopped the algorithm when numerical instability was encountered. So the numbers
in column “K1-bound” in Tables 1 and 2 are the costs of the last (feasible) dual (40).
Even though these numbers are only lower bounds on �K1 large improvements over
the Szegedy number �K0 are easily observed.6

In Table 1 the times in last column correspond to applying reductions described in [9].
On the other hand, the times in the last-but-one column refer to solving (40) without
any further simplifications with the blank entries corresponding to the programs whose
variables did not fit into 1G RAM.
As Lasserre’s semidefinite program las(2)(G) is a strengthening of de Klerk–
Pasechnik’s bound on the stability number ϑ(1)(G) [13] Gvozdenović and Laurent
consider the corresponding lower bound on the fractional chromatic number ψ(2)(G)
[14]. In Table 2 we compare these relaxations ψ(G) and ψ≥0(G), reported in [14],

6 The Szegedy number�K0 (Ḡ) happens to be equal to Lovász theta number�(Ḡ) on all graphs in Table 1.
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with our bound �K1(G). While ψ≥0(G) is always stronger than �K1(G), the bound
ψ(G) is stronger only on the instances marked by +.
Hamming graphs are vertex transitive. So we could interpret these results in terms
of bounds ϑK1 on the stability numbers, since ϑK1(G) = n/�K1(G) by Theorem
18 and Proposition 20. The same algorithm could be applied to compute ϑK1 of a
vertex transitive graph. For example, ϑK1 of powers of an odd cycle Ck with the
automorphism groups (Sp × Z p

2 ≤ Aut (C p
k , 1)) could be used in studying Shannon

capacities of Ck . The same holds for ϑKi , i > 1, which also involves symmetries.
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