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Abstract Inspired by a recent work by Alexander et al. (J Bank Finance 30:583–605,
2006) which proposes a smoothing method to deal with nonsmoothness in a conditional
value-at-risk problem, we consider a smoothing scheme for a general class of nons-
mooth stochastic problems. Assuming that a smoothed problem is solved by a sample
average approximation method, we investigate the convergence of stationary points
of the smoothed sample average approximation problem as sample size increases and
show that w.p.1 accumulation points of the stationary points of the approximation pro-
blem are weak stationary points of their counterparts of the true problem. Moreover,
under some metric regularity conditions, we obtain an error bound on approximate sta-
tionary points. The convergence result is applied to a conditional value-at-risk problem
and an inventory control problem.

Keywords Smoothing method · Sample average approximation · Stationary points ·
Error bound
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1 Introduction

In this paper, we consider the following nonsmooth stochastic minimization problem

min E [ f (x, ξ(ω))]
s.t. x ∈ X , (1.1)
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where f : R
m × R

k → R is locally Lipschitz continuous but not necessarily conti-
nuously differentiable, ξ : � → � ⊂ R

k is a random vector defined on probability
space (�,F , P), E denotes the mathematical expectation, x ∈ X is a decision vec-
tor with X being a nonempty subset of R

m . Throughout this paper, we assume that
E[ f (x, ξ(ω))] is well defined for every x ∈ X . To ease the notation, we will write
ξ(ω) as ξ and this should be distinguished from ξ being a deterministic vector of �
in a context.

Nonsmooth stochastic programming model (1.1) covers a number of interesting
problems such as stochastic programs with recourse and stochastic min-max problems,
see [11,32,38] and references therein.

This paper is concerned with numerical methods for solving (1.1). We deal with two
main issues: one is the nonsmoothness of f (x, ξ) and the other is the mathematical
expectation operator in the objective function. Over the past few decades, a number
of effective numerical methods such as bundle methods [18] and aggregate subgra-
dient methods [17] have been proposed for solving general nonsmooth deterministic
optimization problems. Rusczyński [32] proposes a stochastic bundle-like method for
solving nonsmooth stochastic optimization problems and shows the convergence of
stationary points. Another well known method for solving nonsmooth stochastic opti-
mization problem is stochastic quasi-subgradient method [10]. The method is simple
to implement in that it only requires calculation of a quasi-subgradient of the objective
function at each iteration albeit the convergence of the method is relatively slow.

In practical applications, nonsmooth problems are often well structured. For ins-
tance, Rockafelar and Uryasev [27] reformulate the minimization of conditional value-
at-risk (CVaR for short) in finance as a nonsmooth stochastic minimization problem
where the nonsmoothness is essentially caused by a max-function. Similar cases can
also be found in inventory control problems in supply chain. Undoubtedly these nons-
mooth stochastic minimization problems can be solved by the stochastic bundle-like
methods [32], however they can be also treated by simple smoothing techniques. For
instance, Alexander et al. [1] use an elementary smoothing function to deal with the
nonsmoothness of stochastic program in CVaR where the nonsmoothness is caused by
a max-function. They show how the smoothing method can save significant amount of
calculations from a linear programming approach. This kind of elementary smoothing
techniques is easy to handle and numerically effective in many cases, indeed they
have been extensively exploited to deal with nonlinear complementarity problems and
mathematical problems with equilibrium constraints (MPEC) [12,20]. More recently
the smoothing methods have been used for two stage stochastic programs with nons-
mooth equality constraints and stochastic MPECs [21,39,40].

In this paper we propose a general smoothing scheme which uses a smoothing func-
tion f̂ (x, ξ, ε) parameterized by a number ε with small absolute value to approximate
f (x, ξ). This type of smoothing is considered in [24] and covers many useful elemen-
tary smoothing functions. Consequently we consider a smoothed stochastic program

min E

[
f̂ (x, ξ, ε)

]

s.t. x ∈ X ,
(1.2)
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and investigate the approximation of (1.2)–(1.1) as the smoothing parameter ε is driven
to zero. Here X is defined as in (1.1).

We next deal with the mathematical expectation in the objective function. The way to
tackle this issue depends on the availability of the information of ξ and the property of
f . If we know the distribution of ξ and can integrate out the expected value explicitly,
then the problem becomes a deterministic minimization problem, no discretization
procedures are required. Throughout this paper, we assume that E[ f (x, ξ)] cannot be
calculated in a closed form so that we will have to approximate it through discretization.

One of the most well known discretization approaches is Monte Carlo simulation
based method. The basic idea of the method is to generate an independent identically
distributed (i.i.d.) sample ξ1, . . . , ξ N of ξ and then approximate the expected value
with sample average, that is,

min
x

1

N

∑N
i=1 f̂ (x, ξ i , ε)

s.t. x ∈ X .
(1.3)

We refer to (1.1) as true problem and (1.3) as sample average approximation (SAA)
problem. SAA methods have been extensively investigated in stochastic optimization.
This type of methods are also known as sample path optimization (SPO) methods.
There has been extensive literature on SAA and SPO. See recent work [3,16,19,23,
26,30,35] and a comprehensive review by Shapiro [34].

Most convergence analysis of SAA problems in the literature concerns the conver-
gence of optimal solutions and optimal values [34], that is, if we solve (1.3) and
obtain an optimal solution, what is the convergence of the optimal solution sequence
as sample size N increases? Our interest here, however, is on the convergence of
stationary points, that is, if we obtain a stationary point of (1.3) which is not neces-
sarily an optimal solution, then what is the accumulation point of the SAA stationary
sequence? The rational behind this is that in some practical instances, f (x, ξ) is
non-convex and consequently the smoothed SAA problem (1.3) is also non-convex.
Under these circumstances, it is more likely to obtain a stationary point rather than an
optimal solution in solving (1.3). To investigate whether or not an accumulation point
of a stationary sequence of SAA is an optimal solution of the true problem, we will
need more information about the properties of the true problem such as convexity or
quasi-convexity of the objective function and the structure of feasible set X .

The main contributions of this paper as far as we are concerned can be summa-
rized as follows: we propose a smoothing SAA method for solving a general class
of one stage nonsmooth stochastic problems. We generalize a convergence theorem
established by Shapiro [34] on SAA method for a stochastic generalized equation and
use it to show that under moderate conditions w.p.1 the stationary points of smoothed
sample average approximation problem converge to the weak stationary points of the
true problem and, when the underlying functions are convex, to optimal solutions.
When the smoothing parameter is fixed, we obtain an error bound for the SAA statio-
nary points under some metric regularity condition. Finally we apply the convergence
results to a CVaR problem and an inventory control problem in supply chain.

The rest of the paper is organized as follows. In Sect. 2, we discuss the measurability
of Clarke generalized gradient of locally Lipschitz continuous random functions. In
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Sect. 3, we discuss smoothing techniques and smooth approximation of stationary
points. In Sect. 4, we discuss sample average approximation of the smoothed problem
and analyze convergence of stationary point of the smoothed SAA problem. In Sect. 5,
we apply the convergence results established in Sect. 4 to a CVaR problem and an
inventory control problem in supply chain.

2 Preliminaries

Throughout this paper, we use the following notation. ‖ · ‖ denotes the Euclidean
norm of a vector and a compact set of vectors. When M is a compact set of vectors,
‖M‖ := maxM∈M ‖M‖. d(x,D) := inf x ′∈D ‖x − x ′‖ denotes the distance from
point x to set D. For two compact sets C and D,

D(C,D) := sup
x∈C

d(x,D)

denotes the deviation from C to D (in some references [13] also called excess of C
over D) , and H(C,D) denotes the Hausdorff distance between the two sets, that is,

H(C,D) := max (D(C,D),D(D, C)) .

We use B(x, δ) to denote the closed ball in R
m with radius δ and center x , that is

B(x, δ) := {
x ′ ∈ R

m : ‖x ′ − x‖ ≤ δ
}
. When δ is dropped, B(x) represents a neigh-

borhood of point x . Finally, for a set-valued mapping A : R
m → 2R

m
, we use

limy→x A(y) to denote the outer limit of the mapping at point x .

2.1 Clarke generalized gradient and measurability

Let ξ ∈ � be fixed. The Clarke generalized gradient [8] of f (x, ξ) with respect to x
at x ∈ R

m is defined as

∂x f (x, ξ) := conv

⎧⎪⎪⎨
⎪⎪⎩

lim
y ∈ D f (·,ξ)

y → x

∇x f (y, ξ)

⎫⎪⎪⎬
⎪⎪⎭
,

where D f (·,ξ) denotes the set of points near x where f (x, ξ) is Frechét differentiable
with respect to x , ∇x f (y, ξ) denotes the usual gradient of f (x, ξ) in x and ‘conv’
denotes the convex hull of a set. It is well known that the Clarke generalized gradient
∂x f (x, ξ) is a convex compact set and it is upper semicontinuous [8, Proposition 2.1.2,
2.1.5]. In this paper, we assume that for every ξ ∈ �, f (x, ξ) is locally Lipschitz
continuous, hence ∂x f (x, ξ) is well defined.

In what follows, we fix x and discuss the measurability of the set-valued mapping
∂x f (x, ξ(·)) : � → 2R

m
.

Let B denote the space of nonempty, compact subsets of R
m equipped with the

Hausdorff distance. Then ∂x f (x, ξ(·)) can be viewed as a single valued mapping from
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� to B. By [29, Theorem 14.4], we know that ∂x f (x, ξ(·)) is measurable if and only
if for every B ∈ B, ∂x f (x, ξ(·))−1 B is F-measurable.

Proposition 2.1 Let f (x, ξ) be a locally Lipschitz continuous function in both x and
ξ . The Clarke generalized gradient ∂x f (x, ξ) is measurable.

Proof Let d ∈ R
m be fixed. By definition, the Clarke generalized derivative [8] of

f (x, ξ) with respect to x at a point x in direction d is defined as

f o(x, ξ ; d) := lim sup
y → x
t → 0

[ f (y + td, ξ)− f (y, ξ)]/t.

Since f is continuous in ξ and ξ is a random vector, then f is measurable and so is
f o(x, ξ ; d) [5, Lemma 8.2.12]. Since f o(x, ξ ; d) is the support function of ∂x f (x, ξ),
by [5, Theorem 8.2.14], ∂x f (x, ξ) is measurable. �	

Remark 2.1 The conclusion also holds when f (x, ξ) is a vector valued function, in
which case ∂x f (x, ξ) is the Clarke generalized Jacobian [8, Definition 2.6.1]. To see
this, notice that the Clarke generalized Jacobian at a point x is defined as the convex
hull of the limiting classical Jacobians of f at points near x where f is Frechét
differentiable while the classical Jacobians are measurable, by [29, Theorem 14.20]
and [5, Theorem 8.2.2], both the limit operation and the convex hull operation preserve
the measurability.

In some cases, one may consider the Clarke generalized gradient with respect to ξ ,
that is, ∂ξ f (x, ξ). In such a case, the Clarke generalized gradient is also measurable
in that ∂ξ f (x, ξ) is upper semicontinuous in ξ , hence it is measurable in ξ by [5,
Proposition 8.2.1]. The composition of measurable mappings is measurable.

Proposition 2.1 ensures that ∂x f (x, ξ) is a random set-valued mapping. We now
define the expectation of ∂x f (x, ξ). A selection from a random set A(x, ξ(ω)) is a
random vector A(x, ξ(ω)) ∈ A(x, ξ(ω)), which means A(x, ξ(ω)) is measurable.
Note that such selections exist, see [4]. The expectation of A(x, ξ(ω))which is widely
known as Aumann’s integral [4,13], is defined as the collection of E[A(x, ξ(ω))]
where A(x, ξ(ω)) is a selection. We denote the expected value by E[A(x, ξ(ω))]. We
regard E[A(x, ξ(ω))] as well defined if E[A(x, ξ(ω))] ∈ B. A sufficient condition of
the well definedness of the expectation is

E[‖A(x, ξ(ω))‖] := E[H(0,A(x, ξ(ω)))] < ∞,

see [2] and a comprehensive review by Hess [13] for the Aumann’s integral of a random
set-valued mapping. From discussions above, we immediately have the following.

Proposition 2.2 Let f (x, ξ) be a locally Lipschitz continuous function in both x and
ξ . Suppose that there exists a measurable function κ(ξ) such that E[κ(ξ)] < ∞ and
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‖∂x f (x, ξ)‖ ≤ κ(ξ)

for all x ∈ X and ξ ∈ �. Then E[∂x f (x, ξ)] is well defined.

This result can be generalized to the case when f is vector valued.

3 Smooth approximations

In this section, we introduce a smooth approximation to the nonsmooth stochastic
minimization problem (1.1). First we give a general definition of the smoothing.

Definition 3.1 Let φ : R
m → R be a locally Lipschitz continuous function and ε ∈ R

be a parameter. φ̂(x, ε) : R
m ×R → R is a smoothing of φ if it satisfies the following:

(a) for every x ∈ R
m , φ̂(x, 0) = φ(x);

(b) for every x ∈ R
m , φ̂ is locally Lipschitz continuous at (x, 0);

(c) φ̂ is continuously differentiable on R
m × R\{0}.

The properties specified in parts (a) and (c) are of common sense, that is, the
smoothing function must match the original function when the smoothing parameter
is zero and when the smoothing parameter is nonzero, the smoothing function is
continuously differentiable. The Lipschitz continuity in part (b) needs a bit specific
explanation: it implies that the Clarke generalized gradient ∂(x,ε)φ̂(x, 0) is well defined
and this allows us to compare the generalized gradient of the smoothed function at
point (x, 0) with that of the original function. If

πx∂(x,ε)φ̂(x, 0) ⊂ ∂xφ(x),

where πx∂(x,ε)φ̂(x, 0) denotes the set of all m-dimensional vectors a such that, for
some scalar c, the (m + 1)-dimensional vector (a, c) belongs to ∂(x,ε)φ̂(x, 0), then φ̂
is said to satisfy gradient consistency (which is known as Jacobian consistency when
f is vector valued, see [24] and references therein). This is a key property that will be
used in the analysis of the first order optimality condition later on.

The definition was first introduced in [24] for smoothing deterministic Lipschitz
continuous functions and it is shown that this type of smoothing covers a range of
interesting elementary smoothing functions in the literature. In practical applications,
some nonsmooth functions have specific structures. The proposition below addresses
the case when f (x, ξ) is a composition of a nonsmooth function and a smooth function.

Proposition 3.1 Let f (x, ξ) = ψ(g(x, ξ)), where ψ : R
n → R is a locally Lipschitz

continuous function and g : X×� → R
n be a continuously differentiable function. Let

ψ̂(z, ε) be a smoothing of ψ(z) and f̂ (x, ξ, ε) := ψ̂(g(x, ξ), ε). Then f̂ (x, ξ, ε) is a
smoothing of f (x, ξ). Moreover, if f̂i (x, ξ, ε) is a smoothing of fi (x, ξ), i = 1, . . . ,m,
then

∑m
i=1 f̂i (x, ξ, ε) is a smoothing of

∑m
i=1 fi (x, ξ).

We omit the proof as it is straightforward. In what follows, we use a simple example
to illustrate how it can be applied to a nonsmooth random function.
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Example 3.1 Consider a composite function f (x, ξ) = p(g(x, ξ)) where p(z) =
max(0, z) is the max-function and g(x, ξ) is a continuously differentiable function.
Obviously the nonsmoothness is caused by the max-function. To smooth f (x, ξ), it
suffices to smooth the max-function. Here we consider two well known smoothing
techniques for the max-function and demonstrate that they fit in the smoothing scheme
specified by Definition 3.1.

First we consider a smoothing technique used by Alexander et al. [1]. Let ε ∈ R+
and p̂1(z, ε) be such that for every ε > 0,

p̂1(z, ε) :=

⎧⎪⎨
⎪⎩

z, z > ε;
1
4ε (z

2 + 2zε + ε2), −ε ≤ z ≤ ε;
0, z < −ε;

(3.4)

and for ε = 0, p̂1(z, 0) := p(z). It is easy to check that limε→0 p̂1(z, ε) = p(z),
which implies that p̂1(z, ε) is continuous in ε at ε = 0 for every z. Note that the
continuity of p̂1 in ε on (0,∞) is obvious.

In what follows, we examine the Lipschitz continuity. To do this, we investigate the
Lipschitz continuity with respect to z and ε separately. First, let us fix z and discuss
| p̂1(z, ε′) − p̂1(z, ε)| for ε′, ε ∈ [0,∞). Observe that if ε′, ε > 0, then p̂1(z, ·) is
piecewise smooth, that is,

d p̂1(z, ε)/dε =

⎧⎪⎨
⎪⎩

0, z > ε;
1
4 (1 − z2

ε2 ), −ε ≤ z ≤ ε;
0, z < −ε.

(3.5)

This shows d p̂1(z, ε)/dε ≤ 1
4 for all z and ε > 0. In the case when ε′ is 0, we have

that

| p̂1(z, ε)− p̂1(z, 0)|/ε =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, z > ε,
1

4ε2 (z
2 − 2zε + ε2), 0 ≤ z ≤ ε,

1
4ε2 (z

2 + 2zε + ε2), −ε ≤ z < 0,
0, z < −ε,

≤ 1

4
. (3.6)

This shows that p̂1(z, ·) is uniformly globally Lipschit continuous with respect to ε
with module 1

4 . Similarly, we can show that p̂1(·, ε) is uniformly globally Lipschitz
continuous with module 1. This verifies part (a) and (b) of Definition 3.1.

The continuous differentiability of p̂1(z, ε) on R × (0,∞) is obvious. Thus (c) is
satisfied and hence p̂1(z, ε) is a smoothing in the sense of Definition 3.1.

Note that p̂1(z, ε) is not necessarily differentiable at (z, 0). In the convergence
analysis later on, we will consider the outer limit of ∇z p̂1(z′, ε) as(z′, ε) → (z, 0)
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for any z ∈ R. For this purpose, let us calculate the partial derivative of p̂1 in z when
ε > 0:

d p̂1(z, ε)

dz
=

⎧
⎨
⎩

1, z > ε,
1
2ε (z + ε), −ε ≤ z ≤ ε,

0, z < −ε.
(3.7)

It is easy to obtain that

lim
(z′,ε)→(z,0)

d p̂1(z, ε)

dz
= [0, 1] = ∂z p(z), (3.8)

which means p1 satisfies the gradient consistency [24] at z.
Peng [22] proposes another way to smooth a general max function max(z1, . . . , zn).

We apply the method to the max function in this example. For ε > 0, let

p̂2(z, ε) := ε ln(1 + ez/ε) (3.9)

and p̂2(z, 0) := p(z). Then p̂2(z, ε) is continuous in z ∈ R and ε ∈ R+\{0}. Moreo-
ver,

lim
ε→0

p̂2(z, ε) = lim
ε→0

z ln(1 + e
z
ε )

ε
z =

{
z, z ≥ 0,
0, z < 0,

which coincides with p(z) for any z. Furthermore, it follows from [22, Lemma 2.1]
that p̂2(x, ε) is continuously differentiable for ε > 0 and

d p̂2(z, ε)

dz
= dε ln(1 + ez/ε)

dz
= ez/ε

1 + ez/ε
∈ (0, 1). (3.10)

This and the fact that p̂2(z, 0) is globally Lipschitz continuous with a modulus of 1
imply that p̂2(z, ε) is uniformly globally Lipschtz continuous in z with a modulus 1.

In what follows, we show the uniform local Lipschitzness of p̂2(z, ·) near ε = 0.
By a simple calculation, we have

d p̂2(z, ε)

dε
= ln

(
1 + e−|z|/ε) + |z|

ε(1 + e|z|/ε)
≤ ln 2 + e|z|/ε

1 + e|z|/ε ≤ 1 + ln 2

for all z ∈ R. Therefore p̂2(z, ε) is locally Lipschitz continuous at point (z, 0) for any
z ∈ R and hence p̂2 is a smoothing in the sense of Definition 3.1.

Note that like p̂1, p̂2 is not necessarily differentiable at (z, 0). Peng proved in [22,
Lemma 2.1] the following gradient consistency

lim
(z′,ε)→(z,0)

d p̂2(z, ε)

dz
⊂ [0, 1] = ∂z p(z). (3.11)
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In what follows, we investigate the smooth approximation of (1.2)–(1.1) as the
smoothing parameter ε is driven to zero.

Suppose that E[ f (x, ξ)] is well defined and it is locally Lipschitz continuous. Then
the first order necessary condition of (1.1) in terms of Clarke generalized gradient can
be written as

0 ∈ ∂E[ f (x, ξ)] + NX (x),

where NX (x) denotes the normal cone (see e.g. [6]) of X at x , that is,

NX (x) := [TX (x)]− = {
ς ∈ R

m | 〈ς, z〉 ≤ 0 for all z ∈ TX (x)
}
,

where TX (x) := limt↓0(X − x)/t and xT y denotes the scalar product of two vectors.
It is well known that when X is convex, the normal cone reduces to

NX (x) :=
{

z ∈ R
m : zT (x ′ − x) ≤ 0, ∀ x ′ ∈ X

}
, if x ∈ X .

A point satisfying the above equation is called a stationary point of the true problem.
We make a blanket assumption that the set of stationary points of the true problem
is non-empty. This may be satisfied when X is compact or E[ f (x, ξ)] tends to ∞
as ‖x‖ → ∞. Suppose now that E[∂x f (x, ξ)] is well defined, then under some
boundedness conditions on ∂x f (x, ξ), we have that ∂E[ f (x, ξ)] ⊂ E[∂x f (x, ξ)] and
consequently we may consider a weaker first order necessary condition of (1.1)

0 ∈ E[∂x f (x, ξ)] + NX (x).

A point satisfying the above equation is called a weak stationary point of the true
problem. It is well known [15,38] that when f is Clarke regular [8, Definition 2.3.4]
on X , then E[∂x f (x, ξ)] = ∂E[ f (x, ξ)] and hence the set of weak stationary points
coincides with the set of stationary points. In particular, when f is convex in x , then
these points are optimal solutions of the true problem.

In correspondence to the weak first order necessary condition, we consider a weak
first order necessary condition of the smoothed problem (1.2)

0 ∈ E

[
∇x f̂ (x, ξ, ε)

]
+ NX (x). (3.12)

A point satisfying the above equation is called a weak stationary point of the smoothed
problem (1.2). By [33, Proposition 2, Chap. 2], if ∇x f̂ (x, ξ, ε) is integrably bounded
w.p.1, then E[∇x f̂ (x, ξ, ε)] = ∇xE[ f̂ (x, ξ, ε)] and hence (3.12) coincides with the
usual first order necessary condition

0 ∈ ∇E

[
f̂ (x, ξ, ε)

]
+ NX (x). (3.13)

A point satisfying the above equation is called a stationary point of the smoothed pro-
blem. In this paper, we will need the integrable boundedness condition for∇x f̂ (x, ξ, ε),
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hence the set of weak stationary points coincides with that of stationary points of the
smoothed problem. Let S denote the set of weak stationary points of (1.1) and S(ε)
denote the set of weak stationary points of (1.2).

Theorem 3.1 Let f̂ (x, ξ, ε) be a smoothing of f (x, ξ). Suppose that there exists an
integrable function κ(ξ) such that the Lipschitz module of f̂ (x, ξ, ε) with respect to
x is bounded by κ(ξ) and

lim
x ′→x,ε→0

{
∇x f̂ (x ′, ξ, ε)

}
⊂ ∂x f (x, ξ) (3.14)

for almost every ξ . Suppose also that S(ε) is nonempty. Then

lim
ε→0

S(ε) ⊂ S. (3.15)

In particular if f is convex with respect to x on X and X is a convex set, then any
point in set limε→0 S(ε) is an optimal solution of the true problem (1.1).

Proof Let x(ε) ∈ S(ε). Observe first that since the Lipschitz module of f̂ (x, ξ, ε)
with respect to x is bounded by an integrable function κ(ξ), S(ε) coincides with the set
of stationary points of the smoothed problem. By taking a subsequence if necessary,
we assume for the simplicity of notation limε→0 x(ε) = x . Since ∇x f̂ (x(ε), ξ, ε)
is bounded by the Lipschitz modulus of f̂ in x and hence κ(ξ), by the Lebesgue
dominated convergence theorem and (3.14),

lim
ε→0

{
E[∇x f̂ (x(ε), ξ, ε)]

}
= E

[
lim
ε→0

{
∇x f̂ (x(ε), ξ, ε)

}]
⊂ E [∂x f (x, ξ)] . (3.16)

Here we need to explain how the Lebesgue dominated convergence theorem is applied,

that is, equality (3.16). Let h̄ ∈ E

[
limε→0

{
∇x f̂ (x(ε), ξ, ε)

}]
. Then there exists

h ∈ limε→0

{
∇x f̂ (x(ε), ξ, ε)

}
such that h̄ = E[h]. By the definition of the outer limit,

there exists a subsequence
{
∇x f̂ (x(εk), ξ, εk)

}
such that

{
∇x f̂ (x(εk), ξ, εk)

}
→ h

w.p.1 as k → ∞. Therefore we have

h̄ = E

[
lim

k→∞ ∇x f̂ (x(εk), ξ, εk)

]
.

Since
{
∇x f̂ (x(εk), ξ, εk)

}
is bounded by an integrable function, by the Lebesgue

dominated convergence theorem, we can exchange the limit with the expectation ope-
rator in the equation above, that is,

h̄ = lim
k→∞ E

[
∇x f̂ (x(εk), ξ, εk)

]
.
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This shows h̄ ∈ limε→0

{
E

[
∇x f̂ (x(ε), ξ, ε)

]}
and hence

E

[
lim
ε→0

{
∇x f̂ (x(ε), ξ, ε)

}]
⊂ lim
ε→0

{
E

[
∇x f̂ (x(ε), ξ, ε)

]}
.

Conversely, let ℘ ∈ limε→0

{
E[∇x f̂ (x(ε), ξ, ε)]

}
. Then, there exists a convergent

subsequence
{
E[∇x f̂ (x(εk), ξ, εk)]

}
→ ℘ as k → ∞. By taking a further

subsequence if necessary, we may assume for the simplicity of notation that
∇x f̂ (x(εk), ξ, εk) → p w.p.1, as k → ∞ (p depends on x and ξ ). The integrable
boundedness of the sequence allows us to apply the Lebesgue dominated convergence
theorem, that is,

℘ = lim
k→∞ E

[
∇x f̂ (x(εk), ξ, εk)

]
= E

[
lim

k→∞ ∇x f̂ (x(εk), ξ, εk)

]

= E[p] ∈ E

[
lim
ε→0

{
∇x f̂ (x(ε), ξ, ε)

}]
.

This shows

lim
ε→0

{
E

[
∇x f̂ (x(ε), ξ, ε)

]}
⊂ E

[
lim
ε→0

{
∇x f̂ (x(ε), ξ, ε)

}]
,

hence the equality in (3.16) holds. The conclusion follows immediately from this and
the fact that the normal cone is upper semi-continuous. �	

4 Convergence of SAA stationary points

In this section, we study the convergence of the stationary points of the smoothed
SAA problem (1.3). For this purpose, we consider the first order necessary condition
of (1.3) which can be written as follows

0 ∈ 1

N

N∑
i=1

∇x f̂
(

x, ξ i , ε
)

+ NX (x). (4.17)

We assume that for almost every (a.e. for short)ω ∈ � there exists N (ω) > 0 such that
for all N > N (ω) (4.17) has a solution. This is guaranteed when X is compact. In the
case when X is unbounded, other conditions may be needed to ensure the existence
of a solution of (4.17). See [25] and references therein. We will discuss this issue in
Sect. 5 in the context of a CVaR problem.

In numerical implementation, there are two ways to set ε in (1.3): one is to fix ε,
the other is to let ε vary as N increases, that is, let ε = εN where εN → 0 as N → ∞.
In the following theorem, we establish the convergence results of stationary points in
both cases. We need the following assumption.
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Assumption 4.1 There exists a small positive constant ε0 > 0 and a measurable
function κ(ξ) such that

sup
x∈C,ε∈[0,ε0]

∥∥∥∂x f̂ (x, ξ, ε)
∥∥∥ ≤ κ(ξ),

for all ξ ∈ �,where E[κ(ξ)] < ∞ and C is a compact subset of X .

We first consider the case when ε is fixed.

Theorem 4.1 Let ε �= 0 be fixed and {xN (ε)} be a sequence of stationary points
which satisfies (4.17). Let x∗(ε) be an accumulation point of the sequence as N tends
to infinity. If there exists a compact set C such that w.p.1 it contains a neighborhood
of x∗(ε) and Assumption 4.1 holds, then w.p.1 x∗(ε) ∈ S(ε).

Proof For ε > 0,∇x f̂ (·, ξ, ε) is continuous on X for every ξ ∈ �. By Assumption
4.1, ∇x f̂ (x, ξ, ε) is bounded by κ(ξ) for x ∈ C. Since C is compact and ε is a constant,
by applying [31, Lemma A1] to ∇x f̂ (x, ξ, ε) componentwise, we have

lim
N→∞ max

x∈C

∥∥∥∥∥
1

N

N∑
i=1

∇x f̂ (x, ξ i , ε)− E[∇x f̂ (x, ξ, ε)]
∥∥∥∥∥ = 0, w.p.1. (4.18)

By taking a subsequence if necessary, we assume for the simplicity of notation that
xN (ε) → x∗(ε) as N → ∞. Since xN (ε) is a stationary point, then

0 ∈ 1

N

N∑
i=1

∇x f̂
(

xN (ε), ξ
i , ε

)
+ NX (xN (ε)) ,

which can be rewritten as

0 ∈ 1

N

N∑
i=1

∇x f̂
(

x∗(ε), ξ i , ε
)

+
[

1

N

N∑
i=1

∇x f̂
(

xN (ε), ξ
i , ε

)
− E

[
∇x f̂ (xN (ε), ξ, ε)

]]

+
[

E

[
∇x f̂ (xN (ε), ξ, ε)

]
− 1

N

N∑
i=1

∇x f̂
(

x∗(ε), ξ i , ε
)]

+ NX (xN (ε)).

Let N → ∞. By the strong law of large numbers, the first term on the right hand side

of the equation above tends to E

[
∇x f̂ (x∗(ε), ξ, ε)

]
w.p.1 and the third term tends to
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zero w.p.1. Now let us look at the second term. By the uniform convergence (4.18),

lim
N→∞

∥∥∥∥∥
1

N

N∑
i=1

∇x f̂
(

xN (ε), ξ
i , ε

)
− E

[
∇x f̂ (xN (ε), ξ, ε)

]∥∥∥∥∥

= lim
N→∞ max

x∈C

∥∥∥∥∥
1

N

N∑
i=1

∇x f̂
(

x, ξ i , ε
)

− E

[
∇x f̂ (x, ξ, ε)

]∥∥∥∥∥ = 0

w.p.1.The proof is complete. �	
Under some moderate conditions, it is possible to obtain an error bound d(xN (ε),

S(ε)). To this end, we need a notion of metric regularity of set-valued mapping.
Let� : X → 2R

m
be a set valued mapping.� is said to be closed at x̄ if for xk ⊂ X ,

xk → x̄ , yk ∈ �(xk) and yk → ȳ implies ȳ ∈ �(ȳ). For x̄ ∈ X and ȳ ∈ �(x̄), a
closed set-valued mapping � is said to be metrically regular at x̄ for ȳ if there exists
a constant σ > 0 such that

d(x, �−1(y)) ≤ σd(y, �(x)) for all (x, y) close to (x̄, ȳ).

Here the inverse mapping �−1 is defined as �−1(y) = {x ∈ X : y ∈ �(x)} and the
minimal σ which makes the above inequality hold is called regularity modulus [9].
The metric regularity is equivalent to the surjectivity of coderivative of � at x̄ for ȳ
or Aubin’s property of F−1 at ȳ and sufficed by the graphic convexity of F [9]. For
a comprehensive discussion of the history and recent development of the notion, see
[9], [29, Chap. 9] and references therein.

Theorem 4.2 Let

�(x) := E

[
∇x f̂ (x, ξ, ε)

]
+ NX (x).

Let the conditions of Theorem 4.1 hold. If {xN (ε)} converges to x∗(ε) w.p.1 and � is
metrically regular at x∗(ε) for 0, then for a.e. ω ∈ �, there exists N (ω) > 0 such that
for N > N (ω)

d(xN (ε), S(ε)) ≤ σ min
(∥∥∥E

[
∇x f̂ (xN (ε), ξ, ε)

]∥∥∥ ,
∥∥∥E

[
∇x f̂ (xN (ε), ξ, ε)

]

−∇x f̂N (xN (ε), ε)

∥∥∥
)
, (4.19)

where

f̂N (x, ε) := 1

N

N∑
i=1

f̂
(

x, ξ i , ε
)
,

and σ is the regularity modulus of � at x∗(ε) for 0.
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Proof Let N be sufficiently large such that xN (ε) is close to x∗(ε). Since� is metrically
regular at x∗(ε) for 0, there exists a constant σ > 0 such that

d (xN (ε), S(ε)) ≤ σd(0, �(xN (ε))). (4.20)

Observe that

d (0, �(xN (ε))) ≤ d
(

0,E
[
∇x f̂ (xN (ε), ξ, ε)

]
+ 0

)

=
∥∥∥E

[
∇x f̂ (xN (ε), ξ, ε)

]∥∥∥. (4.21)

Moreover, since

0 ∈ ∇x f̂N (xN (ε), ε)+ NX (xN (ε)),

then

d(0, �(xN (ε))) ≤ D

(
∇x f̂N (xN (ε), ε)+ NX (xN (ε)),E

[
∇x f̂ (xN (ε), ξ, ε)

]

+NX (xN (ε))
)

≤
∥∥∥∇x f̂N (xN (ε), ε)− E

[
∇x f̂ (xN (ε), ξ, ε)

]∥∥∥. (4.22)

Combining (4.20)–(4.22), we obtain (4.19). The proof is complete. �	
Remark 4.1 By Mordukhovich criterion, the regularity condition assumed in Theorem
4.2 is equivalent to the nonsingularity of the coderivative of� at x∗(ε) for 0 and detailed
characterization on this and the regularity modulus in deterministic case can be found
in [9, Theorem 5.1]. In the case when E[∇x f̂ (x, ξ, ε)] is continuously differentiable,
the regularity condition is satisfied if ∇E[∇x f̂ (x, ξ, ε)] is nonsingular at x∗(ε), see
[29, Exercise 9.44]. A stronger result may be obtained if E[∇x f̂ (x, ξ, ε)] is strongly
monotone at x∗(ε). See [12, Corollary 5.1.8].

The error bound obtained in Theorem 4.2 may be used to discuss exponential
convergence of {xN (ε)}. To see this, note that the right hand side of (4.19) is bounded
by

σ sup
x∈B(x∗(ε),δ)

min
(∥∥∥E

[
∇x f̂ (x, ξ, ε)

]∥∥∥ ,
∥∥∥E

[
∇x f̂ (x, ξ, ε)

]
− ∇x f̂N (x, ε)

∥∥∥
)
.

Under some appropriate conditions such as Hölder continuity of ∇x f̂ (x,ξ,ε)with res-

pect to x and finite expected value of the moment function E

[
e
‖∇x f̂ (x,ξ,ε)−E

[
∇x f̂ (x,ξ,ε)

]
‖t
]

for t close to zero, we can use [36, Theorem 5.1] to show that with probability approa-
ching 1 exponentially fast with the increase of N , ∇x f̂N (x, ε) uniformly approximates
E[∇x f̂ (x, ξ, ε)] in B(x∗(ε), δ) and consequently we can show that with probability
approaching 1 exponentially fast, {xN (ε)} converges to x∗(ε). We omit the details of
derivation since they are purely technical.
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Note also that

d(xN (ε), S(ε)) ≤ d(xN (ε), x∗(ε))

and equality holds when F is strongly metric regular at x∗(ε) for 0 in which case S(ε)
reduces to {x∗(ε)} in a small neighborhood of x∗(ε). See discussions in [9, Sect. 5]
for details about strong metric regularity.

Combining Theorem 4.1 with Theorem 3.1, we may expect that xN (ε) is a rea-
sonable approximation of the weak stationary point of the true problem. We now
consider the case when ε is driven to zero as N tends to infinity, that is, ε = εN → 0
as N → ∞. We need a uniform strong law of large numbers for random set-valued
mappings which is established by Shapiro and Xu in [37, Theorem 2].

Lemma 4.1 Let V ⊂ R
m be a compact set, and A(v, ξ) : V × � → 2R

m
be a

measurable, compact set-valued mapping that is upper semicontinuous with respect
to v on V for almost every ξ , and ξ : � → � ⊂ R

k is a random vector defined on
probability space (�,F , P). Let ξ1, . . . , ξ N be an i.i.d. sample of ξ and

AN (v) := 1

N

N∑
i=1

Ai (v, ξ
i ).

Suppose that there exists σ(ξ) such that

‖A(v, ξ)‖ := sup
A∈A(v,ξ)

‖A‖ ≤ σ(ξ), (4.23)

for all v ∈ V and ξ ∈ �, where E[σ(ξ)] < ∞. Then for any δ > 0

lim
N→∞ AN (v) ⊂ E[conv Aδ(v, ξ)], w.p.1 (4.24)

uniformly for v ∈ V , where Aδ(v, ξ) := ⋃
w∈B(v,δ) A(w, ξ).

Note that by the property of the Aumann’s integral [13, Theorem 5.4 (d)], when the
probability measure P is nonatomic, E[conv Aδ(v, ξ)] = E[Aδ(v, ξ)].
Theorem 4.3 Let A(v, ξ) and AN (v) be defined as in Lemma 4.1. Assume that all
conditions in the lemma are satisfied. Consider the following stochastic generalized
equation

0 ∈ E[conv A(v, ξ)] + NV (v) (4.25)

and its sample average approximation

0 ∈ AN (v)+ NV (v), (4.26)

where NV (v) denotes the normal cone of V at v, that is,

NV (v) := [TV (v)]− = {
ς ∈ R

m | 〈ς, d〉 ≤ 0 for all d ∈ TV (v)
}
,
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where TV (v) := lim
t↓0
(V − v)/t . Suppose that both (4.25) and (4.26) have nonempty

solution sets. Let vN be a solution of (4.26). Then w.p.1, an accumulation point of
{vN } is a solution of the true problem (4.25).

Note that when (�,F , P) is nonatomic, then (4.25) reduces to

0 ∈ E[A(v, ξ)] + NV (v).

Proof of Theorem 4.3 By Lemma 4.1, for any δ > 0

lim
N→∞ AN (v) ⊂ E [conv Aδ(v, ξ)] w.p.1 (4.27)

uniformly with respect to v ∈ V . By taking a subsequence if necessary, we assume
for the simplicity of notation that vN → v∗ w.p.1 as N → ∞. We prove that w.p.1

D

(
AN (v

N ),E
[
conv A2δ(v

∗)
]) → 0, as N → ∞.

Note that

D

(
AN (v

N ),E
[
conv A2δ(v

∗)
]) ≤ D

(
1

N

N∑
i=1

A
(
vN , ξ i

)
,

1

N

N∑
i=1

Aδ(v
∗, ξ i )

)

+D

(
1

N

N∑
i=1

Aδ(x
∗, ξ i ),E

[
conv A2δ(x

∗, ξ)
])
.

It follows from (4.27) that the second term on the right hand side of the equation above
tends to zero w.p.1 as N → ∞. On the other hand, since A(vN , ξ i ) ⊂ Aδ(v

∗, ξ i ),

for vN ∈ B(v∗, δ), then there exists N (ω) > 0 such that for N > N (ω), the first term
on the right is zero. This shows that

0 ∈ E
[
conv A2δ(v

∗, ξ)
] + NV (v

∗).

Driving δ to zero, we have by the Lebesgue dominated convergence theorem that

lim
δ→0

E
[
conv A2δ(v

∗, ξ)
] = E

[
lim
δ→0

conv A2δ(v
∗, ξ)

]
,

hence

0 ∈ E
[
conv A(v∗, ξ)

] + NV (v
∗).

The proof is complete. �	
Theorem 4.3 may be regarded as extension of consistency analysis of generalized
equations in [34, Sect. 7.1] to set valued mappings. In the case when A is single
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valued, the theorem is covered by [34, Proposition 19]. Here we use the result to
analyze the convergence of stationary points of the smoothed SAA problem.

Recall that a set-valued mapping � : X → 2R
m

is said to be uniformly compact
near x̄ ∈ X if there is a neighborhood B(x̄) of x̄ such that the closure of

⋃
x∈B(x̄) �(x)

is compact. The following result was established by Hogan [14].

Lemma 4.2 Let � : X → 2R
m

be uniformly compact near x̄ . Then � is upper semi-
continuous at x̄ if and only if � is closed.

Theorem 4.4 Let {x(εN )} be a sequence of stationary points satisfying (4.17) with
ε = εN and εN → 0 as N → ∞, let x∗ be an accumulation point of {x(εN )}. Let C
be a compact subset of X which contains a neighborhood of x∗ w.p.1 and Assumption
4.1 holds on C. Then w.p.1 x∗ satisfies

0 ∈ E

[
∂x f̂

(
x∗, ξ, 0

)] + NX (x∗). (4.28)

If, in addition, f̂ satisfies the gradient consistency, that is,

∂x f̂ (x∗, ξ, 0) ⊂ ∂x f (x∗, ξ),

then x∗ is a weak stationary point of the true problem.

Proof We prove the conclusion by applying Theorem 4.3. Define the set-valued map-
ping as follows

A(x, ξ, ε) :=
⎧⎨
⎩

∇x f̂ (x, ξ, ε), ε �= 0,

conv

{
lim

(x ′,ε)→(x,0)
∂x f̂ (x ′, ξ, ε)

}
, ε = 0,

where ∂x f̂ (x, ξ, ε) is the Clarke generalized gradient of f̂ with respect to x .
Note that (x(εN ), εN ) satisfies

0 ∈ 1

N

N∑
i=1

A
(

x(εN ), ξ
i , εN

)
+ NX (x(εN )). (4.29)

To apply Theorem 4.3, we need to verify that the set-valued mapping defined above
satisfies the conditions of Theorem 4.3.

Observe first that A(·, ξ, ·) : X × [−ε0, ε0] → 2R
m

is a random compact set-
valued mapping. Let ε0 > 0 be fixed. In what follows, we investigate the upper
semi-continuity of A(·, ξ, ·) on X × [−ε0, ε0] → 2R

m
with respect to variable (x, ε)

for every ξ ∈ �. Let (x, ε) ∈ X × [−ε0, ε0]. If ε �= 0, then for (x ′, ε′) close to
(x, ε), A(x ′, ξ, ε′) coincides with ∇x f̂ (x ′, ξ, ε′) and the latter is continuous at (x, ε).
It therefore suffices to consider the case when ε = 0. By the definition of A, it is
easy to observe that A(·, ξ, ·) is closed at (x, 0). Moreover, since f̂ (x, ξ, ε) is locally
Lipschitz with respect to x by assumption, the mapping ∂x f̂ (x ′, ξ, ε′) is bounded for
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all (x ′, ε′) close to (x, 0). Therefore the closure of
⋃
(x ′,ε′)∈B((x,0)) A(x ′, ξ, ε′) is a

compact set. By Lemma 4.2, A(·, ξ, ·) is upper semi-continuous at (x, 0). This shows
that A(·, ξ, ·) is upper semi-continuous in set X × [−ε0, ε0]. The conclusion follows
from Theorem 4.3 and the fact that ∂x f̂ (x∗, ξ, 0) is convex compact set-valued. �	

Our convergence analysis focuses on the stationary points. In some circumstances,
however, we may obtain an optimal solution x(εN ) of the smoothed SAA problem
(1.3). It is then natural to ask whether an accumulation points of the sequence {x(εN )}
is an optimal solution of the true problem (1.1). In what follows, we address this
question.

By definition, f̂ (x, ξ, ε) is locally Lipschitz continuous with respect to (x, ε), and
hence globally Lipschitz on C × [0, ε0] for any compact subset C of X and positive
number ε0 > 0. Therefore, there exists κ̃(ξ) > 0 such that

∥∥∥ f̂ (x ′, ξ, ε′)− f̂
(
x ′′, ξ, ε′′

)∥∥∥ ≤ κ̃(ξ)
(∥∥x ′ − x ′′∥∥ + ∣∣ε′ − ε′′

∣∣) , (4.30)

for all x ′, x ′′ ∈ C and ε′, ε′′ ∈ [0, ε0].
Theorem 4.5 Let x∗ denote an optimal solution of (1.1) and x(εN ) an optimal solution
of (1.3). Suppose that the following conditions hold:

(a) w.p.1. the sequence {x(εN )} is located in a compact subset C of X such that
(4.30) holds;

(b) E[κ̃(ξ)] < ∞;
(c) the moment generating function E

[
eκ̃(ξ)t

]
of the random variable κ̃(ξ) is finite

valued for t close to 0;
(d) for every x ∈ C and ε ∈ [0, ε0], the moment generating function

E

[
e

(
f̂ (x,ξ,ε)−E

[
f̂ (x,ξ,ε)

])
t
]

of the random variable f̂ (x, ξ, ε) − E

[
f̂ (x, ξ, ε)

]
is finite valued for t close

to 0.

Then with probability approaching one exponentially fast with the increase of sample
size N, x(εN ) becomes an approximate optimal solution of the true problem (1.1).

Proof We use the uniform strong law of large numbers [36, Theorem 5.1] to prove the
result. Under the conditions of (b)–(d), it follows from [36, Theorem 5.1] that for any
δ > 0, there exist positive constant C = C(δ) and β(δ), independent of N , such that

Prob

{
sup

x∈C,ε∈[0,ε0]

∣∣∣ f̂N (x, ε)− E

[
f̂ (x, ξ, ε)

]∣∣∣ > δ

}
≤ C(δ)e−Nβ(δ). (4.31)

Since f̂ (x, ξ, 0) = f (x, ξ), we have from (4.30) that

∣∣∣E
[

f̂ (x, ξ, ε)
]

− E[ f (x, ξ)]
∣∣∣ ≤ E

[
κ̃(ξ)

]
ε,

123



Smooth sample average approximation of stationary points 389

for all x ∈ C and ε ∈ [0, ε0]. Let σ := E[κ̃(ξ)]. Then

∣∣∣ f̂N (x, ε)− E[ f (x, ξ)]
∣∣∣ ≤

∣∣∣ f̂N (x, ε)− E[ f̂ (x, ξ, ε)]
∣∣∣

+
∣∣∣E

[
f̂ (x, ξ, ε)

]
− E[ f (x, ξ)]

∣∣∣
≤

∣∣∣ f̂N (x, ε)− E

[
f̂ (x, ξ, ε)

]∣∣∣ + σε.

Since εN → 0 as N → ∞, then there exists N (ω) > 0 such that for N > N (ω) and
εN ≤ δ/σ , we have from (4.31) and the inequality above that

Prob

{
sup
x∈C

∣∣∣ f̂N (x, εN )− E[ f (x, ξ)]
∣∣∣ > 2δ

}

≤ Prob

{
sup

x∈C,ε∈[0,ε0]

∣∣∣ f̂N (x, ε)− E

[
f̂ (x, ξ, ε)

]∣∣∣ > δ

}

≤ C(δ)e−Nβ(δ). (4.32)

Observe that

∣∣∣ f̂N (x(εN ), εN )− E[ f (x∗, ξ)]
∣∣∣ ≤ sup

x∈C,ε∈[0,ε0]

∣∣∣ f̂N (x, ε)− E

[
f̂ (x, ξ, ε)

]∣∣∣. (4.33)

To see this, we note that E[ f (x(εN ), ξ)] ≥ E[ f (x∗, ξ)] (since x∗ is optimal solution)
and hence

f̂N (x(εN ), εN )− E[ f (x∗, ξ)] = f̂N (x(εN ), εN )− E[ f (x(εN ), ξ)]
+E [ f (x(εN ), ξ)] − E[ f (x∗, ξ)]

≥ − sup
x∈C,ε∈[0,ε0]

| f̂N (x, εN )− E[ f (x, ξ)]|.

Likewise, we can show that

E[ f (x∗, ξ)] − f̂N (x(εN ), εN ) ≥ − sup
x∈C,ε∈[0,ε0]

∣∣∣ f̂N (x, εN )− E[ f (x, ξ)]
∣∣∣ .

Combining the two inequalities above, we obtain (4.33). Using (4.33) and (4.32), we
have

Prob
{∣∣∣ f̂N (x(εN ), εN )− E[ f (x∗, ξ)]

∣∣∣ > 2δ
}

≤ C(δ)e−Nβ(δ). (4.34)
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Note that

∣∣E [ f (x(εN ), ξ)] − E[ f (x∗, ξ)]∣∣ ≤
∣∣∣E [ f (x(εN ), ξ)] − E

[
f̂ (x(εN ), ξ, εN )

]∣∣∣
+

∣∣∣E
[

f̂ (x(εN ), ξ, εN )
]

− f̂N (x(εN ), εN )

∣∣∣
+

∣∣∣ f̂N (x(εN ), εN )− E[ f (x∗, ξ)]
∣∣∣, (4.35)

the first term on the right side of the above inequality is bounded by σεN . Combining
(4.31) and (4.35) and letting εN ≤ δ/σ , we have

Prob
{∣∣E [ f (x(εN ), ξ)] − E[ f (x∗, ξ)]∣∣ > 5δ

}

≤ Prob
{∣∣∣E [ f (x(εN ), ξ)] − f̂N (x(εN ), εN )

∣∣∣ ≥ 2δ
}

+Prob
{∣∣∣ f̂N (x(εN ), εN )− E[ f (x∗, ξ)]

∣∣∣ ≥ 2δ
}

≤ 2C(δ)e−Nβ(δ).

This implies that with probability at least 1 − 2C(δ)e−Nβ(δ) a global minimizer of
(1.3) becomes a 5δ-global minimizer of (1.1) hence the conclusion. �	

The theorem above shows that under some mild conditions, the sequence of optimal
solutions of the smoothed SAA problem converges to an optimal solution of the true
problem at an exponential rate. Note that condition (a) means that the optimal solution
sequence of the SAA problem is bounded hence it can be contained in a compact
set. Condition (b) requires that the Lipschitz module of the smoothed function be
integrable. Conditions (c) and (d) mean that the probability distribution of the random
variables κ̃(ξ) and f̂ (x, ξ, ε) die exponentially fast in the tails. In particular, they hold
if ξ has a distribution supported on a bounded subset of R

k . This kind of conditions
have been used in the literature. See for instance [36, Sect. 5.1].

5 Applications

In this section, we apply the smoothing method and convergence result discussed in
the previous sections to a CVaR problem and a supply chain problem.

5.1 Conditional value at risk

Value at risk (VaR) and conditional value at risk are two important risk measures in
risk management. VaR is defined as a threshold value that the probability of a loss
function exceeding the value is limited to a specified level. It is observed [28] that
VaR has a number of disadvantages such as being unstable, difficult to work with
numerically when losses are not normally distributed and providing no handle on the
extent of losses that might be suffered beyond the threshold. CVaR, introduced as
an improved risk measure [27], is defined as the expected losses under the condition
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that the probability of the loss function exceeding VaR value is limited to a specified
level. CVaR overcomes the disadvantages of VaR and more remarkably it provides an
optimization short-cuts. See [1,27,28].

Minimizing CVaR concerns finding an optimal solution of a nonsmooth stochastic
minimization problem. The nonsmoothness in the problem is essentially caused by a
max-function in the integrand of the objective function. Alexander et al. [1] propose a
smoothing method for getting around the nonsmoothness in the minimization of risk
for derivative portfolios, and show with numerical experiments that the smoothing
method is more efficient than a standard linear programming approach [27] when
either the number of instruments or the number of Monte-Carlo samples dramatically
increase. In this section, we present a theoretical convergence analysis of the smoothing
SAA method for CVaR using the established results in Sect. 4.

Let g(x, ξ(ω)) denote the loss function associated with the decision vector x ∈ X ⊂
R

m where X is a convex set and ξ : � → R
d is random vector with a probability

density function ρ(ξ). Here x is interpreted as a portfolio and X as a set of available
portfolios. ξ represents market uncertainties that can affect the loss.

For each portfolio x , let �(x, α) denote the probability of the loss function g(x, ξ)
not exceeding a particular value α ∈ R, that is,

�(x, α) = Prob{g(x, ξ) ≤ α} =
∫

g(x,ξ)≤α
ρ(ξ)dξ. (5.36)

Obviously �(x, α) is the cumulative distribution function of random variable g(x, ξ).
Let β ∈ (0, 1) be a confidence level. The value-at-risk is defined as

αβ(x) = inf{α ∈ R : �(x, α) ≥ β} (5.37)

and the conditional value-at-risk is defined as

φβ(x) = inf
α∈R

(
α + 1

1 − β
E[[g(x, ξ)− α]+]

)
. (5.38)

Note that [z]+ is essentially a max-function. To be consistent with the notation in
Example 3.1, we will use p(z) instead of [z]+ later on. Note also that if the random
variable g(x, ξ) has continuous distribution, then CVaR is the conditional expected
value of the loss under the condition g(x, ξ) ≥ αβ(x), that is,

φβ(x) = 1

1 − β

∫

g(x,ξ)≥αβ(x)
g(x, ξ)ρ(ξ)dξ. (5.39)

Here it is implicitly assumed that the integral is well defined, that is, finite valued
for all x ∈ X . Taking α as a variable, Rockafellar and Uryasev [27,28] consider an
augmented function
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Fβ(x, α) = α + 1

1 − β

∫

g(x,ξ)≥α
g(x, ξ)ρ(ξ)dξ = α + 1

1 − β
E[p(g(x, ξ)− α)].

(5.40)

and show that if Prob(g(x, ξ) = α) = 0, then φβ(x) = minα Fβ(x, α). See [28,
Theorem 10]. Consequently, they demonstrate that minimizing CVaR with respect to
x is equivalent to minimizing Fβ(x, α) with respect to (x, α), that is,

min
x∈X

φβ(x) = min
(x,α)∈X×R

Fβ(x, α). (5.41)

As observed in [27,28], if g(x, ξ) is convex in x , then Fβ(x, α) is convex and conti-
nuous in (x, α).

In the following discussion, we do not assume the convexity of g(x, ξ) in x , instead,
we assume that X is a convex compact set. Note that the model is slightly different
from Alexander et al. [1] where transaction and management costs are considered
since our main focus is on the smoothing method.

Let p̂1(z, ε) be the smoothing of p(z) as defined in Example 3.1. Alexander,
Coleman and Li’s smoothing problem can be written as

min F̂β(x, α, ε) = E
[
Gβ(x, α, ξ, ε)

]
s.t. (x, α) ∈ X × R,

(5.42)

where ε > 0 and

Gβ(x, α, ξ, ε) = α + 1

1 − β
p̂1(g(x, ξ)− α, ε).

Since g(x, ξ) − α is continuously differentiable on R
m × R

d × R\{0} and p̂1(x, ε)
is a smoothing, then F̂β(x, α, ε) is a smoothing of Fβ(x, α) in the sense of Definition
3.1. We first present a result on the compactness of the solution set of (5.42).

Proposition 5.1 Let X be a compact convex set. Suppose that there exists x ∈ X and
α ∈ R such that: (a) E[|g(x, ξ)|] < ∞, (b) Prob(g(x, ξ) = α) = 0. Then the optimal
solution set of (5.42) is a nonempty compact set.

Proof Since F̂β(x, α, ε) is continuous in x and X is compact, then the projection of
optimal solution set on x-axis is closed and bounded hence compact. In what follows,
we consider the minimizers with respect to α.

When ε = 0 and x is fixed, the compactness of the set of minimizers of Fβ(x, α)
in α is established in [27, Theorem 1]. By (3.6)

∣∣Gβ(x, α, ξ, ε)− Gβ(x, α, ξ, 0)
∣∣

≤ 1

1 − β
E

[∣∣ p̂1 (g(x, ξ)− α, ε)− p(g(x, ξ)− α, 0)
∣∣] ≤ ε

4(1 − β)
.
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Since

E[|Gβ(x, α, ξ, 0)|] ≤ E

[
|α| + 1

1 − β
|g(x, ξ)|

]
< ∞,

and

∣∣Gβ(x, α, ξ, ε)
∣∣ ≤ ∣∣Gβ(x, α, ξ, 0)

∣∣ + ε

4(1 − β)
,

then E
[∣∣Gβ (x, α, ξ, ε)

∣∣] < ∞ and F̂β(x, α, ε) is well defined. Moreover

∣∣∣F̂β(x, α, ε)− Fβ(x, α)
∣∣∣ ≤ 1

1 − β
E[| p̂1(g(x, ξ)− α, ε)− p(g(x, ξ)− α, 0)|]

≤ 1

4(1 − β)
ε.

Therefore

lim
ε→0

F̂β(x, α, ε) = Fβ(x, α)

uniformly with respect to x and α. By the Berge’s stability theorem, the set of glo-
bal minimizers of F̂β(x, α, ε) with respect to α is contained in the set of δ-global
minimizers of Fβ(x, α), hence it is compact when ε is sufficiently small. �	

Next we discuss the SAA method for solving (5.42). Let ξ1, . . . , ξ N be an i.i.d
sample of ξ . The sample average approximation of (5.42) can be written as

min 1
N

∑N
i=1 Gβ(x, α, ξ i , ε)

s.t. (x, α) ∈ X × R.
(5.43)

We first investigate the existence of optimal solutions of the SAA problem (5.43).

Proposition 5.2 Let X be a compact convex set. Suppose that: (a) there exists x ∈ X
and α ∈ R such that E[|g(x, ξ)|] < ∞; (b) Prob(g(x, ξ) = α) = 0; (c) g(x, ξ) is
Lipschitz continuous in x and there exists an integrable function c(ξ) such that

∣∣g(x ′, ξ)− g(x ′′, ξ)
∣∣ ≤ c(ξ)

∥∥x ′ − x ′′∥∥ , ∀x ′, x ′′ ∈ X .

Then there exists α0 > 0 such that for ε sufficiently small and N sufficiently large,
w.p.1 (5.43) has a global minimizer in X × [−α0, α0].
Proof By Proposition 5.1, Gβ(x, α, ξ, ε) is bounded by an integrable function. By the
strong law of large numbers,

lim
N→∞

1

N

N∑
i=1

Gβ(x, α, ξ
i , ε) = E

[
Gβ(x, α, ξ, ε)

] = F̂β(x, α, ε).
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Let α0 > 0 be sufficiently large and ε > 0 be sufficiently small such that the optimal
solution set of the smoothed problem (5.42) is contained in X ×[−α0, α0]. For ν > 0,
let (x̄1, ᾱ1), . . . , (x̄M , ᾱM ) ∈ X × [−α0, α0] be such that for any (x, α) ∈ X ×
[−α0, α0], there exists (x̄ j , ᾱ j ) such that ‖(x, α)− (x̄1, ᾱ1)‖ ≤ ν, i.e., {(x̄1, ᾱ1), . . . ,

(x̄M , ᾱM )} is a ν-net of X × [−α0, α0]. By assumption and property of p̂1,

∣∣Gβ(x, α, ξ, ε)−Gβ(x̄ j , ᾱ j , ξ, ε)
∣∣ ≤ ∣∣α−ᾱ j

∣∣ + 1

1 − β

[
c(ξ)

∥∥x − x̄ j
∥∥+∣∣α − ᾱ j

∣∣]

and

∣∣∣F̂β(x, α, ε)− F̂β(x̄ j , ᾱ j , ε)

∣∣∣ ≤ ∣∣α − ᾱ j
∣∣ + 1

1 − β

[
E[c(ξ)] ∥∥x − x̄ j

∥∥ + ∣∣α − ᾱ j
∣∣].

Therefore

∣∣∣∣∣
1

N

N∑
i=1

Gβ(x, α, ξ
i , ε)− F̂β(x, α, ε)

∣∣∣∣∣

≤ 1

N

N∑
i=1

∣∣∣Gβ(x, α, ξ
i , ε)− Gβ

(
x̄ j , ᾱ j , ξ

i , ε
)∣∣∣

+
∣∣∣∣∣

1

N

N∑
i=1

Gβ

(
x̄ j , ᾱ j , ξ

i , ε j

)
− E

[
Gβ

(
x̄ j , ᾱ j , ξ, ε

)]
∣∣∣∣∣

+ ∣∣E [
Gβ

(
x̄ j , ᾱ j , ξ, ε

)] − E
[
Gβ(x, α, ξ, ε)

]∣∣.

The first term in the right hand side of the above equation is bounded by

∣∣α − ᾱ j
∣∣ + 1

1 − β

(
1

N

N∑
i=1

c(ξ i )

) ∥∥x − x̄ j
∥∥ + 1

1 − β

∣∣α − ᾱ j
∣∣;

the second term tends to zero as N → ∞ by the strong law of large numbers; the third
term is bounded by

∣∣α − ᾱ j
∣∣ + 1

1 − β

[
E[c(ξ)] ∥∥x − x̄ j

∥∥ + ∣∣α − ᾱ j
∣∣].

This shows that

lim
N→∞

1

N

N∑
i=1

Gβ(x, α, ξ
i , ε) = F̂β(x, α, ε)

uniformly with respect to (x, α) ∈ X × [−α0, α0]. The rest is straightforward by the
Berge’s stability theorem. �	
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We are now ready to state a convergence result for the stationary points of the
smoothed SAA problem (5.43).

Proposition 5.3 Let W(εN ) denote the set of stationary points (x(εN ), α(εN )) of
(5.43) with ε = εN and εN → 0 as N → ∞. Let W denote the set of stationary points
of the true problem (5.41). Let conditions in Proposition 5.2 hold. If limN→∞ W(εN )

is bounded, then w.p.1
lim

N→∞ W(εN ) ⊂ W. (5.44)

Proof Let α0 be sufficiently large such that limN→∞ W(εN ) ⊂ X × [−α0, α0]. We
use Theorem 4.4 to prove the result. It therefore suffices to verify the conditions
of the theorem. The main condition we need to verify is Assumption 4.1. Let C =
X × [−α0, α0]. We calculate ∇x Gβ(x, α, ξ, ε). It is easy to derive that

∇x Gβ(x, α, ξ, ε) = 1

1 − β
× d p̂1(g(x, ξ)− α, ε)

dz
× ∇x g(x, ξ)

and

∂Gβ(x, α, ξ, ε)

∂α
= 1 − 1

1 − β
× d p̂1(g(x, ξ)− α, ε)

dz
.

Following the discussion in Example 3.1, we know that

∣∣∣∣
d p̂1 (g(x, ξ)− α, ε)

dz

∣∣∣∣ ≤ 1.

Consequently

∥∥∇(x,α)Gβ(x, α, ξ, ε)
∥∥ ≤ 1

1 − β
‖∇x g(x, ξ)‖ + 1+ 1

1 − β
≤ 1 + 1

1 − β
(κ(ξ)+ 1).

Therefore Assumption 4.1 is satisfied on the whole region X × R.
Finally, by the gradient consistency of p̂1 (3.8), we obtain the gradient consistency

of ∇x Gβ(x, α, ξ, ε) at ε = 0, that is,

lim
(x ′,ε)→(x,0)

∇(x,α)Gβ(x, α, ξ, ε) ⊂ ∂(x,α)G(x, α, ξ)

=
{(

1

1 − β
t, 1 + 1

1 − β
t

)T

: t ∈ [0, 1]
}
.

The conclusion follows from Theorem 4.4. �	

5.2 An inventory control problem

Objective functions in many supply chain problems are often nonsmooth [7,41,42]
and involve random factors. Here we consider an inventory control problem in supply
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chain where a supplier orders a perishable goods from external suppliers and then sells
them to retailers. The sale takes place over a short time period.

Let D(x, γ, ξ(ω)) denote retailer’s demand function. Here x ∈ X ⊂ R
m may be

interpreted as a vector of decision variables such as the supplier’s capital investment
on service and advertisement which influence the market demand, and X as a set of
feasible decisions. γ ∈ [w, γ̄ ] denotes the price set by the supplier with lower bound
w and upper bound γ̄ and ξ(ω) ∈ R

d represents a vector of random variables due to
various of uncertainties in the market. In practice w is interpreted as the (wholesale)
unit purchase cost.

The supplier needs to make a decision on x , Q and γ before the realization of the
market uncertainties. We assume that the supplier has a knowledge of the distribution
of ξ(ω) either from a prediction or from past experience. Suppose that ξ is a realization
of ξ(ω) and the market demand is D(x, γ, ξ). The supplier’s total sale to the retailers is
min(Q, D(x, γ, ξ)) at price γ hence the revenue is γ min(Q, D(x, γ, ξ)). At the end
of selling period, the leftover is max(Q − D(x, γ, ξ), 0). Assuming the leftovers can
be sold at a unit price of s. Then the total salvage value is s max(Q − D(x, γ, ξ), 0).
The total revenue is therefore

γ min(Q, D(x, γ, ξ))+ s max(Q − D(x, γ, ξ), 0).

The costs we consider in this model involve the usual purchase costs, holding cost
and delivery cost as well as capital investment cost and cost for losing a chance to
sell. With order size Q, the purchase cost is wQ (with w being unit purchase cost).
For the simplicity of discussion, we combine the holding cost and delivery cost which
totals πQ with π being the unit cost. The penalty cost for not meeting the demand is
h max(D(x, γ, ξ) − Q, 0) where h is unit penalty cost. Finally total investment cost
is K T x where K ∈ R

m is a vector with nonnegative components. Consequently the
total costs to the supplier is

(w + π)Q + h max(D(x, γ, ξ)− Q, 0)+ K T x .

Let

v(x, γ, Q, ξ) := γ min(Q, D(x, γ, ξ))+ s max(Q − D(x, γ, ξ), 0)

−(w + π)Q − h max(D(x, γ, ξ)− Q, 0)− K T x .

v(x, γ, Q, ξ) is the net profit by the supplier at scenario ξ . Since the supplier needs
to make a decision before the realization of the market uncertainties, what the sup-
plier can best do in selecting an optimal decision is to maximize the expected value of
v(x, γ, Q, ξ). For the convenience of notation, we let f (x, γ, Q, ξ) :=−v(x, γ, Q, ξ).
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Then the supplier’s optimal decision problem can be formulated as

min
(x,γ,Q)

E[ f (x, γ, Q, ξ)]
:= E[h max(D(x, γ, ξ)− Q, 0)+ (w + π)Q

−γ min(Q, D(x, γ, ξ))− s max(Q − D(x, γ, ξ), 0)+ K T x]
s.t.(x, γ, Q) ∈ X × [w, γ̄ ] × [0, Q̄].

Using the max-function, we can rewrite problem as:

min
(x,γ,Q)

E[ f (x, γ, Q, ξ)] = E[(h + γ − s)p(D(x, γ, ξ)− Q)

+(w + π − s)Q − (γ − s)D(x, γ, ξ)+ K T x]
s.t. (x, γ, Q) ∈ X × [w, γ̄ ] × [0, Q̄],

(5.45)

where p(z) := max(z, 0). Assume that D(x, γ, ξ) is a continuously differentiable on
X ×[w, γ̄ ]×R

k . We use p̂2(z, ε)which is introduced in Example 3.1 to smooth p(z).
The smooth approximation of problem (5.45) can be written as

min
(x,γ,Q)

E[ f̂ (x, γ, Q, ξ, ε)] = E[(h + γ − s) p̂2(D(x, γ, ξ)− Q, ε)

+(w + π − s)Q − (γ − s)D(x, γ, ξ)+ K T x]
s.t. (x, γ, Q) ∈ X × [w, γ̄ ] × [0, Q̄],

(5.46)

where ε > 0. Let ξ1, . . . , ξ N be an i.i.d sample of ξ . The sample average approxima-
tion of (5.46) can be written as

min
(x,γ,Q)

E

[
f̂ N (x, γ, Q, ξ, ε)

]
= 1

N

N∑
i=1

f̂ (x, γ, Q, ξ i , ε)

s.t. (x, γ, Q) ∈ X × [w, γ̄ ] × [0, Q̄].
(5.47)

Note that since the feasible solution set X × [w, γ̄ ] × [0, Q̄] is a compact set, the
existence of stationary point of (5.47) is guaranteed.

Proposition 5.4 Let (x(εN ), γ (εN ), α(εN )) be a stationary point of (5.47) with ε =
εN and εN → 0 as N → ∞. Let U(εN ) denote the set of stationary points
{(x(εN ), γ (εN ), α(εN ))} and U denote the set of stationary points of the true problem
(5.45). If there exists an integrable function κ2(ξ) > 0 such that ‖∇x D(x, γ, ξ)‖ +
|∂D(x, γ, ξ)/∂γ | ≤ κ2(ξ), then w.p.1

lim
N→∞ U(εN ) ⊂ U . (5.48)

Proof Similar to Proposition 5.3, we use Theorem 4.4 to prove the result. The main
condition to be verified is Assumption 4.1. For this purpose, we calculate ∇x f̂ (x, γ,
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Q, ξ, ε). It is easy to derive that

∇x f̂ (x, γ, Q, ξ, ε) = (h + γ − s)× d p̂2(D(x, γ, ξ)− Q, ε)

dz
×∇x D(x, γ, ξ)− (γ − s)∇x D(x, γ, ξ)+ K ,

∂ f̂ (x, γ, Q, ξ, ε)/∂γ = p̂2(D(x, γ, ξ)− Q, ε)+ (h + γ − s)

×d p̂2(D(x, γ, ξ)− Q, ε)/dz × ∂D(x, γ, ξ)/∂γ

−(γ − s)∂D(x, γ, ξ)/∂γ − D(x, γ, ξ),

and

∂ f̂ (x, γ, Q, ξ, ε)/∂Q = (w + π − s)− (h + γ − s)
d p̂2(D(x, γ, ξ)− Q, ε)

dz
.

Following the discussion in Example 3.1, we know that

∣∣∣∣
d p̂2(D(x, γ, ξ)− Q, ε)

dz

∣∣∣∣ ≤ 1 + ln 2.

Consequently

∥∥∥∇(x,γ,Q) f̂ (x, γ, Q, ξ, ε)
∥∥∥

≤ [
(1 + ln 2)|h + γ − s| + |γ − s|] κ2(ξ)+ ‖K‖ + |D(x, γ, ξ)|

+ p̂2(D(x, γ, ξ)− Q, ε)+ |w + π − s| + (1 + ln 2)|h + γ − s|.

The right hand side of the equation above is integrable as the demand function is
bounded by D̄ and p̂2 by max(ε ln 2, ε ln 2 + D(x, γ, ξ)− Q).

Finally, by the gradient consistency of p̂2 (3.11), we obtain the gradient consistency
∇x f̂ (x, γ, Q, ξ, ε) at ε = 0, that is,

lim
(x ′,γ ′,ε)→(x,γ,0)

∇(x,γ,Q) f̂ (x, γ, Q, ξ, ε) ⊂ ∂(x,γ,Q) f (x, γ, Q, ξ).

The conclusion follows from Theorem 4.4. �	
We have undertaken some numerical tests on the supply chain problem. In what

follows we report some preliminary results of the tests.
The tests are carried out in Matlab7.2 installed in a PC with Windows XP operating

system. We use the Matlab built-in optimization solver fmincon to solve the SAA
problem (5.47).

Example 5.1 Consider an inventory model (5.45) with unit penalty cost h = 6, unit
holding and delivery cost π = 6, unit salvage value s = 6, w = 40, γ̄ = 90 and
Q̄ = 60. The demand function is D(γ, ξ) = γ̄ + ξ − 1

2γ , where ξ is assumed to
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follow a uniform distribution with support set [0, 8]. Note that for the simplicity of
tests, we have set x = 0. The optimal decision problem becomes

min E
[

f (γ, Q, ξ)
]

= E

[
γ p

(
90 + ξ − 1

2
γ − Q

)
+ 40Q − (γ − 6)

(
90 + ξ − 1

2
γ

)]

s.t. (γ, Q) ∈ [40, 90] × [0, 60].

The objective function can be integrated explicitly, that is,

E
[

f (γ, Q, ξ)
] = γ

16

[
p

(
98 − 1

2
γ − Q

)]2

− γ

16

[
p

(
90 − 1

2
γ − Q

)]2

+ 40Q − (γ − 6)

(
94 − 1

2
γ

)
.

The exact solution of the true problem is (90, 445/9) and the optimal value is −2067.1.
Note that the negative value means that there is a profit for the supplier.

We use Peng’s smoothing function p̂2(z, ε) as discussed in Example 3.1. The smoo-
thed problem is

p̂2

(
90 + ξ − 1

2
γ − Q, ε

)
= ε ln

(
1 + e

90+ξ− 1
2 γ−Q
ε

)

= 90 + ξ − 1

2
γ − Q + ε ln

(
1 + e− 90+ξ− 1

2 γ−Q
ε

)
.

The test results are displayed in Table 1. Note that the objective function of the test
problem is nonconvex. However, the Matlab optimization solver fmincon returns an
optimal solution when an initial feasible solution is reasonably close to the optimal
solution.

Table 1 Numerical test results
of Example 5.1

ε N Optimal value Q∗ γ ∗

2 100 −2003.9 49.9390 88.9404

500 −1991.0 49.9444 88.9738

1, 000 −1988.2 49.9878 88.9880

0.2 100 −2088.3 49.7782 90.0000

500 −2050.7 49.5973 89.0079

1, 000 −2073.8 49.9252 89.8938

0.02 100 −2077.5 49.9339 88.9757

500 −2051.8 49.6094 89.0078

1, 000 −2073.4 49.8038 89.8674
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The initial results show that the convergence is not very sensitive to change of
the value of ε so long as ε is sufficiently small. Likewise there is no significant
improvement when the sample size is changed from 100 to 500 or 1000, which means
that the convergence is very fast against the increase of sample size and there is not
much improvement when the size is sufficiently large. This is consistent with the
observations obtained in the literature. See [19] and references.
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