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Abstract We study the weak domination property and weakly efficient solutions in
vector optimization problems. In particular scalarization of these problems is obtained
by virtue of some suitable merit functions. Some natural conditions to ensure the
existence of error bounds for merit functions are also given.
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1 Introduction

We consider the following vector optimization problem denoted by P(F, A, C) (or
simply by P):
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216 C. G. Liu et al.

minC F(x)

s.t. x ∈ A,
(1.1)

where F is a continuous linear map from a Banach space X into a Banach space Y ,
A is a closed convex subset of X , and C is a closed convex cone in Y with nonempty
interior, that is, intC �= ∅. To solve a vector optimization problem such as that in (1.1)
the most important methods are probably the methods of scalarization, and research
in this area has been very active. Let us discuss briefly a few of them here. The first is
on the linear scalarization (cf. [21, Theorem 4.2.10]) by which we know that ā ∈ A is
a weakly efficient solution (namely F(ā) /∈ F(A) + intC) of the problem (1.1) if and
only if there exists ξ ∈ C+\{0} such that it is a solution of the scalarized problem

min (ξ ◦ F)(x)

s.t. x ∈ A
, (1.2)

where C+ := {y∗ ∈ Y ∗ : 〈y∗, c〉 ≥ 0,∀c ∈ C}, Y ∗ denotes the dual space of Y
and 〈y∗, c〉 := y∗(c). Note that, in order to find all weakly efficient solutions of P ,
one has potentially to consider numerous scalarized problems of the type (1.2), and
if ξ is fixed some weakly efficient solutions may very well be of large distance to
the solution set of the problem (1.2). Similar remarks can be said for the scalarized
methods respectively proposed by Jahn [18,19] and by Zaffaroni [29]. In the approach
of Zaffaroni, he made use of the Hiriart-Urruty function �C of C (see (3.1)). Then
ā ∈ A is a weakly efficient solution of (1.1) if and only if there exists l ∈ Y such that
ā is a solution of the following scalarized problem Pl :

min �C (l − F(a))

s.t. a ∈ A
.

Though one still has to work on possibly all the problems Pl(l ∈ Y ) in order to get
all weakly efficient solutions of (1.1), a big advantage of Zaffaroni’s method is that
different types of solutions of (1.1) can be described by the same function �C .

Borrowing a terminology from the Variational Inequality Problems (cf. [9]), we
say that ϕ : A → [0,+∞] is a merit function for problem (1.1) if ϕ−1(0) = {a ∈
A : ϕ(a) = 0} coincides with the set of all the weakly efficient solutions of P .
We study some merit functions (defined in terms of Hiriart-Urruty functions) and
establish their dual representations. For a class of merit functions we present some
necessary/sufficient conditions for them to have error bounds. In particular we show
that these error bound properties are equivalent to the linear regularity of the pair
{A, X\(A+int(F−1(C)))}, and are related to the WDP (the weak domination property)
of F(A).

2 Notations and preliminary results

In general for any normed vector space Z and x ∈ Z , we use B(x, r) to denote the
closed ball with center x and radius r . Let BZ denote the closed unit ball in Z and let
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Merit functions in vector optimization 217

SZ = {z ∈ Z : ‖z‖ = 1}. Let Z∗ denote the Banach dual space of Z and, for z ∈ Z
and z∗ ∈ Z∗, let 〈z∗, z〉 := z∗(z). Given any subset K in a normed vector space, S(K )

denotes the subset of K consisting of all k ∈ K with ‖k‖ = 1. Let intK , bd(K ),
cl(K ), co(K ), co(K ), lin(K ) and aff(K ) respectively denote the interior, boundary,
closure, convex hull, closed convex hull, linear hull and affine hull of K . Let rint(K )

and ri(K ) be defined by

rint(K ) = {k ∈ K : ∃r > 0 s.t. aff(K ) ∩ B(k, r) ⊂ K }

and

ri(K ) :=
{

rint(K ) if aff(K ) is closed
∅ otherwise

(cf. [31, pp. 14–15]). The negative polar of a set K in a normed vector space Z is
defined by

K � := {z∗ ∈ Z∗ : 〈z∗, z〉 ≤ 0, ∀z ∈ K }

(thus K � is the usual polar of K if K is a cone). For convenience, we also use the
notation K + := −K �. Let dK (·) (or d(·, K )) denote the distance function of K , i.e.,

dK (z) := inf{‖z − y‖ : y ∈ K }

with the convention that dK (·) = +∞ when K is the empty set. The indicator function
of K is

ιK (z) :=
{

0 if z ∈ K ,

+∞ if z ∈ Z\K ,

and the projection of z onto K is defined by

PK (z) = {z̄ ∈ K : ‖z − z̄‖ = dK (z)}.

For a convex subset K , the tangent cone and the normal cone of K at z ∈ K are
respectively defined by (cf. [1, p. 166])

TK (z) := cl (∪t>0t (K − z))

and

NK (z) := {z∗ ∈ Z∗ : 〈z∗, h〉 ≤ 0, ∀h ∈ TK (z)}.

For a proper function f : Z → R ∪ {+∞}, D ⊂ Z and τ > 0, we say that f has
an error bound (more precisely, has an error bound τ ) on D if f ≥ 0 on D and

dD∩ f −1(0)(z) ≤ τ f (z), ∀z ∈ D. (2.1)
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218 C. G. Liu et al.

This is a condition ensuring that z ∈ D is near to the solution set f −1(0) if f (z) is
sufficiently small.

Given a partial order ≤K defined by a closed convex cone K in Z , a function
f : D → (−∞,+∞] is said to be monotone (K -monotone, more precisely) if
f (z1) ≤ f (z2) whenever z1 ≤K z2 and z1, z2 ∈ D.

For any two closed convex cones K1, K2 in a normed vector space Z we use
�(K1, K2) to denote the quantity

�(K1, K2) =
{

inf{d(k, K2) : k ∈ S(K1)} if K1 �= {0} and K2 �= {0}
1 if K1 = {0} or K2 = {0} . (2.2)

So

�(K1, K2) ∈ [0, 1].

Moreover we have the following lemma:

Lemma 1 Let Z be a normed vector space and let K1 and K2 be two closed convex
cones in Z. Then

1

2
�(K2, K1) ≤ �(K1, K2) ≤ 2�(K2, K1) (2.3)

Proof If K1 or K2 is {0}, then (2.3) holds trivially. Suppose that K1, K2 �= {0} and
define

γ (K1, K2) := inf{‖k1 − k2‖ : k1 ∈ S(K1), k2 ∈ S(K2)}. (2.4)

We claim that

�(K1, K2) ≤ γ (K1, K2) ≤ 2�(K1, K2). (2.5)

Granting this (2.3) follows because γ (K1, K2) = γ (K2, K1). The first inequality of
(2.5) is obviously true by (2.2) and (2.4). Let k1 ∈ S(K1). For any ε > 0, there exists
kε ∈ K2 such that

‖k1 − kε‖ < d(k1, K2) + ε. (2.6)

Since K2 �= {0}, there exists k2 ∈ S(K2) such that kε = ‖kε‖k2. Then

‖k1 − k2‖ ≤ ‖k1 − kε‖ + ‖kε − k2‖
= ‖k1 − kε‖ + |‖kε‖ − 1|
≤ ‖k1 − kε‖ + |‖kε‖ − ‖k1‖|
≤ 2‖k1 − kε‖.
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Merit functions in vector optimization 219

By (2.6), we have that

γ (K1, K2) ≤ ‖k1 − k2‖ ≤ 2‖k1 − kε‖ < 2d(k1, K2) + 2ε.

Let ε converge to zero and take the infimum of d(k1, K2) for k1 ∈ S(K1), the second
inequality of (2.5) holds and the proof is complete. ��

3 Hiriart-Urruty function

We give in this section some dual representation results for Hiriart-Urruty functions
�D . Recall that (cf. [14,15,29]) for a set D in normed vector space Z , the function
�D : Z → R ∪ {±∞} is defined by

�D(z) := dD(z) − dZ\D(z) =
{

dD(z), z ∈ Z\D
−dZ\D(z), z ∈ D

(3.1)

(thus �D ≡ +∞ if D is empty and �D ≡ −∞ if D = Z ). It is easy to verify that

�D = −�Z\D. (3.2)

From (3.1) we note that, if D is a non-trivial subset of Z (that is, ∅ �= D �= Z ), then,
as the difference of two continuous functions, �D is continuous on the whole space.
The authors are indebted to the referee for pointing out the following lemma which is
basically known:

Lemma 2 Let A be a nonempty convex subset of a normed vector space Z. Then the
following assertions hold for any x ∈ Z :

(i) dA(x) = dcl(A)(x) = supx∗∈BX∗ infu∈cl(A)〈x∗, x − u〉 = supx∗∈BX∗ infu∈A

〈x∗, x − u〉.
(ii) dA(x) = max{0, supx∗∈SX∗ infu∈A〈x∗, x − u〉}.

(iii) dA(x) = supx∗∈SX∗ infu∈A〈x∗, x − u〉 ⇐⇒ supx∗∈SX∗ infu∈A〈x∗, x − u〉 ≥ 0.
(iv) If int A �= ∅ and x ∈ Z\int A then

dA(x) = sup
x∗∈SX∗

inf
u∈A

〈x∗, x − u〉.

(v) If A = D + K with K a convex cone, int A �= ∅, and if x ∈ Z\int A, then

dA(x) = sup
x∗∈S(K +)

inf
u∈A

〈−x∗, x − u〉 = sup
x∗∈S(K +)

inf
z∈D

〈−x∗, x − z〉.

Proof Part (i) is from [31, Theorem 3.8.2], and (ii) follows immediately because
BX∗ = ∪0≤t≤1t SX∗ . (iii) follows from (ii). (iv) follows from (iii) together with a
classical separation theorem. Since infk∈K 〈x∗, k〉 = −∞ if and only if x∗ /∈ K +, (v)
follows from (iv). ��
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Remark 1 By the usual Hahn-Banach argument, the assumption int A �= ∅ in (iv) and
(v) can be replaced by the weaker assumption that ri(A) �= ∅.

Proposition 1 Let A be a convex subset of Z and suppose that ri(A) �= ∅. Then

�A(x) = sup
x∗∈SX∗

inf
u∈A

〈x∗, x − u〉, ∀x ∈ Z . (3.3)

Consequently, if D + K is a convex subset of Z with K a convex cone such that
intK �= ∅, then

�D+K (x) = sup
x∗∈S(K +)

inf
u∈D+K

〈−x∗, x − u〉 = sup
x∗∈S(K +)

inf
u∈D

〈−x∗, x − u〉 (3.4)

for all x ∈ Z.

Proof As in Lemma 2(v), the second assertion follows from the first. By Lemma 2(iv)
(and Remark 1), to prove the first assertion it is sufficient (since −SX∗ = SX∗ ) to show
that

dZ\A(x) = inf
x∗∈SX∗

sup
u∈A

〈x∗, x − u〉, ∀x ∈ A.

To do this let x ∈ A and consider any r > dZ\A(x). Then there exists z1 ∈ Z\A such
that r > ‖z1 − x‖. Since dA(z1) = supx∗∈SX∗ infu∈A〈x∗, z1 − u〉 by Lemma 2(iv), for
each ε > 0 there exists x∗

ε ∈ SX∗ such that

dA(z1) − ε < inf
u∈A

〈x∗
ε , z1 − u〉.

Then, for all u ∈ A, one has

〈−x∗
ε , x − u〉 = 〈−x∗

ε , x − z1〉 + 〈−x∗
ε , z1 − u〉 ≤ ‖x − z1‖ − (dA(z1) − ε)

< r − dA(z1) + ε.

This implies that inf
x∗∈SX∗

sup
u∈A

〈x∗, x − u〉 < r − ε. Letting ε → 0 and r → dZ\A(x) it

follows that inf
x∗∈SX∗

sup
u∈A

〈x∗, x − u〉 ≤ dZ\A(x). For the proof of the converse inequa-

lity we may assume that dZ\A(x) > 0. Consider positive real numbers r ′, r ′′ such
that dZ\A(x) > r ′ > r ′′. Let x∗ ∈ SX∗ . Then there exists w ∈ B(0, r ′) such that
〈x∗, w〉 > r ′′. Moreover, since B(x, r ′) ⊂ A, one has B(0, r ′) ⊂ A − x and so
w ∈ B(0, r ′) ⊂ A − x . Consequently

r ′′ < 〈x∗, w〉 ≤ sup
u∈A

〈x∗, x − u〉

and so r ′′ ≤ inf
x∗∈SX∗

sup
u∈A

〈x∗, x − u〉. The proof is completed by letting r ′′ → dZ\A(x).

��

123



Merit functions in vector optimization 221

Since cl(D + intK ) = cl(int(D + K )) = cl(D + K ) (provided that intK �= ∅),
the following corollaries follow immediately from the preceding proposition.

Corollary 1 Suppose that D is a nonempty convex set and that K is a nonempty
convex cone with intK �= ∅. Then

�D+intK (z) = sup
z∗∈S(K +)

inf
a∈D

〈−z∗, z − a〉, ∀z ∈ Z , (3.5)

that is,

�D+intK (·) = �D+K (·) on Z . (3.6)

Corollary 2 For a convex cone K with intK �= ∅, we have that

�K (z) = sup
z∗∈S(K +)

〈−z∗, z〉, ∀z ∈ Z .

Remark 2 (a) This corollary is known [10] in the special case when Z ia finite
dimensional.

(b) The referee kindly pointed out that formula (3.3) in Proposition 1 is known [6]
for the special case when A is a proper closed convex solid subset of R

n , and that
(3.4) is known [11] for K = {0}.

For the remainder of this section we assume that K is a closed convex cone in a
normed vector space Z such that intK �= ∅. Let D ⊂ Z be such that D + K is convex
and let

D̂ = Z\(D + intK ).

For our convenience we list below some properties of the Hiriart-Urruty function �D̂
defined by D̂, that is,

�D̂ = dD̂ − dD+intK . (3.7)

Proposition 2 The following assertions hold:

(i) �D̂(z) = dD̂(z) for all z ∈ D.
(ii) �D̂(z) = inf

z∗∈S(K +)
sup
a∈D

〈z∗, z − a〉 = inf
z∗∈S(K +)

{〈z∗, z〉 − inf
a∈D

〈z∗, a〉}, ∀z ∈ Z.

(iii) �D̂ is K -monotone.

Proof (i) Let z ∈ D. Since intK is assumed nonempty, there exists e ∈ intK .
Since limn→∞(z + 1

n e) = z it follows that z ∈ cl(D + intK ) and hence that
dD+intK (z) = 0. Thus (i) holds by (3.7).

(ii) By (3.2), �D̂ = −�D+intK and so the first equality in (ii) follows immediately
from (3.4) and (3.6), while the second equality is obvious.

(iii) (iii) follows from (ii). ��
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It is well known and easy to verify that (cf. [31, Theorem 1.1.9])

K = {x ∈ X : 〈x∗, x〉 ≥ 0,∀x∗ ∈ K +}. (3.8)

Let rext(K +) denote the union of all extreme rays of K + but deleting the origin, that
is, x∗ ∈ rext(K +) if and only if x∗ �= 0 such that R+x∗ is an extreme ray of K +. Note
that

cow∗ [rext(K +)] = w∗-cl {�n
i=1x∗

i : each x∗
i ∈ rext(K +)}.

Proposition 3 Let e ∈ intK with e + δBZ ⊂ K for some δ > 0. Then the following
assertions hold:

(i)

〈z∗, e〉 ≥ δ‖z∗‖, ∀z∗ ∈ K +. (3.9)

(ii)

K + = cow∗ [
rext(K +)

] = cow∗{t x∗ : t > 0, x∗ ∈ rext(K +) and ‖x∗‖ = 1}.
(3.10)

(iii)

K = {x ∈ X : 〈x∗, x〉 ≥ 0,∀x∗ ∈ S(K +) ∩ rext(K +)}. (3.11)

(iv)

inf
x∗∈S(K +)

〈x∗, k〉 = inf
z∗∈S(K +)∩rext(K +)

〈z∗, k〉, ∀k ∈ K . (3.12)

Proof It is routine to verify (i) and the second equality in (3.10) is evident. To prove
the first equality in (3.10), let H := {x∗ ∈ X∗ : 〈x∗, e〉 = 1}. Then H ∩ K +
is norm-bounded by (3.9), and is clearly a w∗-closed convex set disjoint from {0}.
Consequently, by an elementary result (cf. [26, Exercise 2.30]) the first equality in
(3.10) holds. Combining (3.8) and (3.10), we have (3.11). To prove (3.12), we need
only to show the “≥” part. Let x∗ ∈ S(K +) and k ∈ K . We have to show that

〈x∗, k〉 ≥ inf
z∗∈S(K +)∩rext(K +)

〈z∗, k〉. (3.13)

Fix x∗ and k. By (3.10), there exist {λi }∞i=1 ⊂ (0,+∞) and {x∗
i }∞i=1 ⊂ co[S(K +) ∩

rext(K +)] such that λi x∗
i

w∗−→ x∗. Then ‖x∗
i ‖ ≤ 1 for any i ∈ N, and

lim inf
i→+∞ λi ≥ lim inf

i→+∞ ‖λi x∗
i ‖ ≥ ‖x∗‖ = 1, (3.14)
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thanks to the w∗-lower semicontinuity of the norm on X∗. Note that for any i ∈ N,

〈λi x∗
i , k〉 ≥ λi

[
inf

z∗∈co[S(K +)∩rext(K +)]
〈z∗, k〉

]
= λi

[
inf

z∗∈S(K +)∩rext(K +)
〈z∗, k〉

]
.

Passing to the lower limits, it follows from (3.14) that

lim inf
i→+∞〈λi x∗

i , k〉 ≥ inf
z∗∈S(K +)∩rext(K +)

〈z∗, k〉,

which implies (3.13) because λi x∗
i

w∗−→ x∗. ��

Another useful function defined in terms of Hirrart-Urruty functions is ξ defined
by

ξD,K (z) := − inf
a∈D

�K (z − a), ∀z ∈ Z . (3.15)

Proposition 4 The following assertions hold:

(i)

ξD,K (z) = sup
a∈D

inf
z∗∈S(K +)

〈z∗, z − a〉, ∀z ∈ Z . (3.16)

(ii) ξD,K (z) ≥ 0 for all z ∈ D.
(iii) ξD,K is K -monotone.
(iv) �D̂ ≥ ξD,K on Z.
(v) ξD,K (z) = supa∈D inf z∗∈S(K +)∩rext(K +)〈z∗, z − a〉, ∀z ∈ Z.

Proof By (3.15) and Corollary 2, (3.16) follows. It is also clear that (i) implies (ii) and
(iii). Moreover, comparison of (i) with Proposition 2(ii) gives (iv). Finally (v) follows
from (i) and (3.12). ��

4 Weakly efficient points and weak domination property

Given a subset A of a normed vector space Z with a closed convex cone K such that
intK �= ∅, we use WMin(A, K ) to denote the set of all weakly efficient points of A,
that is

WMin(A, K ) := {z ∈ A : z /∈ A + intK }. (4.1)

It is well known (and easy to verify) that

WMin(A, K ) ⊂ bd(A). (4.2)
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For x ∈ Z , Ax denotes the section of A at x (cf. [21, p. 43]), that is, Ax := A∩(x−K ) =
{a ∈ A : a ≤K x}, where ≤K denotes the partial ordering induced by K while �K

will serve to denote the stronger relation defined by

a1 �K a2 ⇐⇒ a2 − a1 ∈ intK .

For any a ∈ Ax , we note that z ∈ Ax whenever z ≤K a and z ∈ A. We recall a well
known concept that A is said to have the weak domination property (WDP) if for any
z ∈ A\WMin(A, K ) there exists z′ ∈ WMin(A, K ) such that z′ ≤K z. This implies
a (formally) stronger property that for any z ∈ A\WMIN(A, K ) there exists

z′′ ∈ WMin(A, K ) s.t. z′′ �K z.

Indeed if z ∈ A\WMin(A, K ) then by (4.1) there exists y ∈ A such that z ∈ y + intK
(that is y �K z). If this y is not already in WMin(A, K ) then y ∈ A\WMin(A, K )

and it follows from the assumption (applied to y in place of x) that there exists y′ ∈
WMin(A, K ) such that y′ ≤K y. Since y �K z this implies that y′ �K z and so y′
has the desired property stated for z′′.

It is known [21, Proposition 2.4.10] that if A is compact then it has the WDP.
Another sufficient condition is provided by Atlouch-Riahi Theorem (cf. [12, Theorem
3.2.36]). If Z is a Banach space and there exists x∗ ∈ Z∗ such that K ⊂ {x ∈ Z :
〈x∗, z〉 ≥ δ‖x‖} (δ > 0, e.g., if x∗ ∈ intC+) and x∗ is bounded below on A then A
has the WDP. Theorem 2 will present further sufficient conditions.

For the remainder of this section, let X, Y, C, A, F be as explained in Sect. 1, and
we consider P := P(F, A, C) as in (1.1). Let Ew(P(F, A, C)) (or Ew(P) for short if
no confusion can arise) denote the set of all weakly efficient solutions of the problem
(1.1), that is

Ew(P(F, A, C)) = {a ∈ A : F(a) ∈ WMin(F(A), C)}.

Thus, for any a ∈ A, a is a weakly efficient solution if and only if there does not exist
a′ ∈ A such that F(a′) �C F(a). To avoid the triviality we always assume that

F(X) ∩ intC �= ∅ (4.3)

(otherwise Ew(P) = A). Let

CX := F−1(C).

It is known and easy to verify that

intCX = F−1(intC) �= ∅, (4.4)

thanks to the assumption (4.3). Let F∗ : Y ∗ → X∗ denote the adjoint of F , that is,

〈F∗(y∗), x〉 = 〈y∗, F(x)〉, ∀y∗ ∈ Y ∗, x ∈ X.
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It is also known [30] that

F∗(C+) = CX
+. (4.5)

Theorem 1 It holds that

A\(A + intCX ) = WMin(A, CX ) = Ew(P) ⊂ bd(A), (4.6)

and for any a ∈ A, the following assertions are equivalent:

(i) a ∈ Ew(P), (ii) NA(a) ∩ [−F∗(C+)] �= {0},
(iii) NA(a) ∩ [−CX

+] �= {0}.
Proof Note that for any a ∈ A,

a /∈ WMin(A, CX ) ⇔ ∃a′ ∈ A s.t. a − a′ ∈ intCX

⇔ ∃a′ ∈ A s.t. F(a − a′) ∈ intC

⇔ a /∈ Ew(P).

This together with (4.2) makes (4.6) clear.
Moreover by (1.2), we have the following equivalences:

a ∈ WMin(A, CX ) ⇔ ∃ξ ∈ CX
+\{0} s.t. ξ(a) ≤ ξ(x), ∀x ∈ A

⇔ ∃ξ ∈ CX
+\{0} s.t. − ξ ∈ NA(a).

Thus (i)⇔(iii) by (4.6). The equivalence (ii)⇔(iii) follows from (4.5). ��
From the proof for (4.6), the first assertion of the following proposition is clear.

The second assertion then follows easily.

Corollary 3 Let A ⊂ X be a nonempty convex set, F ∈ L(X, Y ) and C ⊂ Y a closed
cone with I m F ∩ intC �= ∅. Then

WMin(A, F−1(C)) = A ∩ F−1(WMin(F(A), C)),

and A has the WDP with respect to F−1(C) if and only if F(A) has the WDP with
respect to C.

Theorem 2 F(A) has the WDP if (at least) one of the following conditions is satisfied:

(i) A is a polyhedron, and there exists x∗ ∈ CX
+\{0} such that x∗ is bounded below

on A.
(ii) A is a polyhedron and Ew(P) �= ∅.

Proof (i) Let x∗
0 ∈ CX

+\{0} be bounded below on A, and suppose that

A = [∩i∈I {〈x∗
i , ·〉 ≥ bi }

] ∩
[
∩ j∈J {〈x∗

j , ·〉 = b j }
]
, (4.7)
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where I and J are disjoint finite sets. Denote by |I | the number of elements in I . To
prove (i) we apply the mathematical induction on |I |. First, for the case when I = ∅,
we have A = ∩ j∈J {〈x∗

j , ·〉 = b j }. For any a ∈ A, we have NA(a) = lin{x∗
j : j ∈ J }

and A = a + H , where H := ∩ j∈J {〈x∗
j , ·〉 = 0}. Since inf A〈x∗

0 , ·〉 > −∞, x∗
0

must vanish at the vector subspace H . Thus x∗
0 ∈ lin{x∗

j : j ∈ J }, that is, −x∗
0 ∈

NA(a). Since x∗
0 ∈ CX

+\{0} we have NA(a) ∩ [−CX
+] �= {0} and it follows from

Theorem 1 that a ∈ Ew(P) for all a ∈ A. Therefore we have Ew(P) = A and
so WMin(F(A), C) = F(A) by (4.1). In particular F(A) has the weak domination
property provided that |I | = 0 in (4.7).

We suppose that F(A) has the weak domination property whenever A is a subset of
X expressible in the form (4.7) with |I | ≤ m (and with any finite set J ). Now consider
the case that A is defined by (4.7) but with |I | = m + 1. For contradiction we suppose
that F(A) does not have the WDP; that is, there exists x̂ ∈ A\Ew(P) such that for
any x ′ ∈ A,

F(x ′) �C F(x̂) ⇒ x ′ /∈ Ew(P). (4.8)

For any k ∈ I , define Ak by

Ak := [∩i∈I\{k}{〈x∗
i , ·〉 ≥ bi }

] ∩
[
∩ j∈J∪{k}{〈x∗

j , ·〉 = b j }
]
. (4.9)

Thus Ak ⊂ A. We claim that for any x ∈ A\Ew(P), there exist k ∈ I and a ∈ Ak

such that F(a) ∈ WMin(F(Ak), C) and F(a) �C F(x). Indeed, fix x ∈ A\Ew(P);
then x /∈ WMin(A, CX ), and there exists c ∈ intCX such that x − c ∈ A. Let
T := {t > 0 : x − tc ∈ A} and t̄ := sup T . Then t̄ ≥ 1. Moreover,

〈x∗
0 , x − tc〉 ≥ inf

A
〈x∗

0 , ·〉 > −∞, ∀t ∈ T .

Noting 〈x∗
0 , c〉 > 0 by (3.9), it follows that

t ≤ 〈x∗
0 , x〉 − inf A〈x∗

0 , ·〉
〈x∗

0 , c〉 < +∞, ∀t ∈ T ,

and so t̄ < +∞. Let x̄ = x − t̄ c. Then x̄ ∈ A and x̄ �CX x . We show next that there
exists k ∈ I such that

〈x∗
k , x̄〉 = bk . (4.10)

In fact if there does not exist such k then for each i ∈ I , 〈x∗
i , ·〉 > bi at x̄ and so there

exists ε > 0 such that

〈x∗
i , x̄ − εc〉 > bi , ∀i ∈ I. (4.11)

On the other hand, since x̄, x, x − c ∈ A ⊂ ∩ j∈J {〈x∗
j , ·〉 = b j }, it is easy to verify

that 〈x∗
j , x̄ − εc〉 = b j for each j ∈ J . Together with (4.11) and (4.7), this implies
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that x − (t̄ + ε)c = x̄ − εc ∈ A, which contradicts the definition of t̄ . Therefore
there must exist some k ∈ I such that (4.10) holds and so x̄ ∈ Ak by (4.9). By the
mathematical induction assumption, F(Ak) has the weak domination property. Thus
there exists a ∈ Ak such that F(a) ∈ WMin(F(Ak), C) and F(a) �C F(x̄). Since
x̄ �CX x it follows that F(a) �C F(x). Therefore our claim is true.

In particular applying this established claim to x̂ in place of x , there exist k1 ∈ I
and a1 ∈ Ak1 with F(a1) ∈ WMin(F(Ak1), C) such that F(a1) �C F(x̂). Since
Ak1 ⊂ A it follows from (4.8) that a1 ∈ A\Ew(P). Applying the established claim
(to a1 in place of x) there exist k2 ∈ I and a2 ∈ Ak2 with F(a2) ∈ WMin(F(Ak2), C)

such that F(a2) �C F(a1) (�C F(x̂)). Repeating this process, we obtain sequences
{kn}+∞

n=1 ⊂ I and {an}+∞
n=1 ⊂ A\Ew(P) with each an ∈ Akn such that

F(an) ∈ [WMin(F(Akn ), C)], ∀n ∈ N,

and

F(an+1) �C F(an), ∀n ∈ N. (4.12)

Since |I | < +∞, there must exist distinct natural numbers n1, n2 (say n1 < n2) such
that kn1 = kn2 . So

F(an1) ∈ WMin(F(Akn1
), C) = WMin(F(Akn2

), C).

This contradicts the facts that an2 ∈ Akn2
and F(an2) �C F(an1) (see (4.12)). Thus

F(A) has the weak domination property and the proof is completed by the mathema-
tical induction.

(ii) Let a ∈ Ew(P). By Theorem 1, there exists x∗ ∈ [(−NA(a)) ∩ CX
+]\{0}.

Then minA〈x∗, ·〉 = x∗(a) is finite and so (ii) follows immediately form (i). ��

5 Merit functions

We continue our discussion on problem (1.1), with notation being the same as in the
preceding section. For the remainder of this paper, let

Â := X\(A + intCX ) (5.1)

and suppose that the set Ew(P) = Ew(P(F, A, C)) of weakly efficient solutions of
(1.1) is nonempty. Recalling (4.6), this means that

Ew(P) = A ∩ Â �= ∅. (5.2)
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By virtue of the function ξ studied in Sect. 3, we define θ : A → [0,+∞] by

θ(x) := ξF(A),C (F(x)) = − inf
a∈A

�C (F(x) − F(a))

= sup
a∈A

inf
y∗∈S(C+)

〈y∗, F(x) − F(a)〉
= sup

a∈A
inf

y∗∈S(C+)∩rext(C+)
〈y∗, F(x) − F(a)〉, ∀x ∈ X. (5.3)

(see Proposition 4).

Example 1 Let (Y, C) = (Rm, R
m+); thus (Y ∗, C+) is identified with (Y, C) and

S(C+) ∩ rext(C+) is simply {e1, . . . , em}, where ei is the i th unit vector in R
m , that

is, its i th coordinate is 1 and the other coordinates are zero. Represent F : X → R
m

in the form F = ( f1, . . . , fm) with each fi continuous linear functional on X :

F(x) = ( f1(x), . . . , fm(x)), x ∈ X.

Thus, 〈ei , F(x) − F(a)〉 = fi (x) − fi (a) and

θ(x) = sup
a∈A

min
1≤i≤m

{ fi (x) − fi (a)}, ∀x ∈ A.

The importance of the function θ define in (5.3) lies in the following result.

Theorem 3 Consider problem (1.1) and let θ be defined as in (5.3). Then θ is a CX

monotone merit function for (1.1) such that

θ(x) ≤ ‖F‖ · dÂ(x), ∀x ∈ A, (5.4)

and, for some constant r > 0,

r · dÂ(x) ≤ θ(x), ∀x ∈ A. (5.5)

Proof Let x1 ≤CX x2. Since CX := F−1(C), it follows that F(x1) ≤C F(x2). By
the definition of θ given in (5.3), we then have θ(x1) ≤ θ(x2). Moreover, for any
x ∈ A we have from (5.3) that θ(x) > 0 if and only if there exists ax ∈ A such that
�C (F(x) − F(ax )) < 0, that is, by (3.1), there exists ax ∈ A such that

F(x) − F(ax ) ∈ C and dY\C (F(x) − F(ax )) > 0,

equivalently F(x)− F(ax ) ∈ intC , that is x �∈ Ew(P). Since, as already noted, θ ≥ 0
on A. This implies that θ−1(0) = Ew(P); thus θ is a merit function for problem (1.1).
To prove (5.4), let x ∈ A and we may suppose further that θ(x) > 0. By (5.3) and
(3.5) we note that

− θ(x) = inf
a∈A

sup
y∗∈S(C+)

〈−y∗, F(x) − F(a)〉
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and

�F(A)+intC (F(x)) = sup
y∗∈S(C+)

inf
a∈A

〈−y∗, F(x) − F(a)〉.

Comparing the right-hand members of the above two equalities we have

�F(A)+intC (F(x)) ≤ −θ(x).

Since θ(x) > 0 and by (3.1), this means that

− dY\(F(A)+intC) (F(x)) ≤ −θ(x). (5.6)

On the other hand, since Â := X\(A + intCX ) and thanks to (4.4), one can easily
check that

F( Â) ⊆ Y\(F(A) + intC)

and so (5.6) entails that

θ(x) ≤ dF( Â) (F(x)) ≤ ‖F‖ · dÂ(x),

which proves (5.4).
By (4.4), there exists h ∈ X such that

0 �= h ∈ intCX = F−1(intC). (5.7)

Let α := ‖h‖ and let c := F(h). Then there exist δ > 0 such that c + δBY ⊂ C and
it follows from Proposition 3 (i) that

δ ≤ inf
y∗∈S(C+)

〈y∗, c〉. (5.8)

Let r := δ
α

. Since θ ≥ 0 on A, to prove (5.5) we may assume that dÂ(x) > 0. Take
r ′ > 0 such that r ′ < α−1dÂ(x). Then

dÂ(x − r ′h) ≥ dÂ(x) − ‖r ′h‖ = dÂ(x) − r ′α > 0

and hence we have that x − r ′h ∈ A + intCX . Thus there exists a′ ∈ A such that
x − r ′h ∈ a′ + intCX , and it follows from (5.7) that F(x) − F(a′) ∈ r ′c + intC .
Consequently, (5.8) entails that

r ′δ ≤ inf
y∗∈S(C+)

〈y∗, r ′c〉 ≤ inf
y∗∈S(C+)

〈y∗, F(x) − F(a′)〉

and it follows from (5.3) that r ′δ ≤ θ(x). Letting r ′ → α−1dÂ(x), (5.5) is seen to
hold with r = δα−1. ��

123



230 C. G. Liu et al.

Motivated by (5.4) and (5.5), we say that a merit function g for problem (1.1) is
said to be regular if there exist some constants τ1, τ2 > 0 such that

τ1dÂ(x) ≤ g(x) ≤ τ2dÂ(x) ∀x ∈ A (5.9)

(thus, e.g., θ is regular). By (5.9) and (2.1), clearly a regular merit function g for
problem (1.1) has an error bound on A if and only if dÂ does.

Example 2 By (3.1), (3.2) and (3.5), we note that, for all x ∈ X ,

dÂ(x) − dA+intCX (x) = � Â(x) = −�A+intCX (x) = inf
x∗∈S(C+

X )

sup
a∈A

〈x∗, x − a〉.
(5.10)

We define g(x) = dÂ(x) if x ∈ A and g(x) = +∞ otherwise. Since A ⊆ cl(A +
intCX ), it follows from (5.10) that

g(x) = dÂ(x) = inf
x∗∈S(C+

X )

sup
a∈A

〈x∗, x − a〉, ∀x ∈ A. (5.11)

In particular g is CX -monotone, g−1(0) = A ∩ Â = Ew(P). It is now easily seen that
g is a regular CX -monotone merit function for problem (1.1).

Recall that two sets A1, A2 in X are said to be linearly regular if there exists a
constant τ > 0 such that

dA1∩A2(x) ≤ τ max
{
dA1(x), dA2(x)

} ∀x ∈ X.

Theorem 4 Let Â be defined as in (5.1). Then the following statements are equivalent:

(i) The pair {A, Â} is linearly regular, that is, there exists τ > 0 such that

dA∩ Â(x) ≤ τ max{dA(x), dÂ(x)} ∀x ∈ X.

(ii) dÂ has an error bound on A.

Proof (ii) ⇒ (i). By (5.2), A ∩ Â = A ∩ d−1
Â

(0) and so (ii) implies that there exists
τ > 0 such that

dA∩ Â(x) ≤ τdÂ(x) ∀x ∈ A. (5.12)

By [23, Theorem 3.1(b)], this implies that (i) holds. Similarly (i) ⇒ (ii) can be proved
with ease. ��
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6 Error bounds

To prepare for our main results of this section, we first establish a preparatory propo-
sition. Regarding its assumptions, note that, by Theorem 2(ii), if A is a polyhedron
then F(A) has the weak domination property.

Proposition 5 Suppose that F(A) has the WDP. Then dÂ has an error bound if and
only if there exists τ > 0 such that for any x∗ ∈ S(CX

+) ∩ bd(CX
+),

d(x, Ew(P)) ≤ τ sup
a∈A

〈x∗, x − a〉 = τ

[
〈x∗, x〉 − inf

A
〈x∗, ·〉

]
, ∀x ∈ A. (6.1)

((6.1) holds trivially for those x∗ with inf A〈x∗, ·〉 = −∞.)

Proof The second equality in (6.1) is obvious. Suppose that d(·, Â) has an error bound
on A, that is, there exists τ > 0 such that (5.12) holds. Then (6.1) holds for the same
τ and for any x∗ ∈ S(CX

+), thanks to (5.2) and (5.11).
Conversely suppose that there exists τ > 0 such that (6.1) holds for any x∗ ∈

S(CX
+) ∩ bd(CX

+). Let ε > 0. It suffices to show that

dEw(P)(x) ≤ max{1, τ }dÂ(x) + ε, ∀x ∈ A. (6.2)

To show this, let x ∈ A\Ew(P). Then x /∈ Â and hence there exists x1 ∈ bd( Â) such
that

‖x − x1‖ < dÂ(x) + ε. (6.3)

If x1 happens to belong to Ew(P) then (6.2) holds. We may therefore assume that
x1 /∈ Ew(P). Let r := d(x1, Ew(P)). Then r > 0. Moreover by (5.1) we have
bd( Â) = bd(A + intCX ), and so x1 is a boundary point of A + intCX . Thus by the
Separation Theorem (cf. [16, p. 63]), there exists x∗

0 ∈ SX∗ such that

〈x∗
0 , x1〉 = inf

A+intCX
〈x∗

0 , ·〉. (6.4)

This implies that x∗
0 ∈ CX

+, infc∈intCX 〈x∗
0 , c〉 = 0 and

〈x∗
0 , x1〉 = inf

A
〈x∗

0 , ·〉. (6.5)

We claim that x∗
0 ∈ bd(CX

+) (and so the proof will be complete because (6.2) follows
from (6.1), (6.3), (6.4) and (6.5)). Let us assume on the contrary that x∗

0 ∈ int(CX
+),

that is, x∗
0 + δBX∗ ⊂ CX

+ for some δ > 0. This implies that

〈x∗
0 , c〉 − δ‖c‖ = inf

x∗
0 +δBX∗

〈·, c〉 ≥ inf
CX

+〈·, c〉 = 0, ∀c ∈ CX . (6.6)
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On the other hand, since x1 ∈ bd(A + intCX ), there exists x2 ∈ A + intCX such that

‖x2 − x1‖ <
rδ

1 + δ
. (6.7)

Let a ∈ A be such that x2 ∈ a + intCX , that is, F(x2)− F(a) ∈ intC (see (4.4)). Since
F(A) has the WDP, we may suppose that a ∈ WMin(F(A), C), that is, a ∈ Ew(P).
Applying (6.6) to x2 − a in place of c, we have

〈x∗
0 , x2 − a〉 ≥ δ‖x2 − a‖ ≥ δ‖x1 − a‖ − δ‖x1 − x2‖,

and hence that

〈x∗
0 , x1 − a〉 = 〈x∗

0 , x1 − x2〉 + 〈x∗
0 , x2 − a〉 ≥ δ‖x1 − a‖ − (1 + δ)‖x1 − x2‖.

Since ‖x1 − a‖ ≥ d(x1, Ew(P)) = r , it follows from (6.7) that 〈x∗
0 , x1 − a〉 > 0.

Therefore

〈x∗
0 , x1〉 > 〈x∗

0 , a〉 ≥ inf
A

〈x∗
0 , ·〉.

This contradicts (6.5). Thus our claim x∗
0 ∈ bd(CX

+) stands and the proof is complete.
��

The following result is known (see, for example, [17, Prop 2.1], with S = cl(D)).

Lemma 3 Let f : X → R be a proper lower semicontinuous function which is
bounded from below, D ⊂ dom f and r > 0. Assume that for any u ∈ dom f \cl(D),
there exists v ∈ X\{u} such that γ ‖u − v‖ ≤ f (u) − f (v). Then D is nonempty and

γ dD(x) ≤ f (x) − inf f ∀x ∈ X.

Recall that the notation � in the following theorem is defined in (2.2).

Theorem 5 Suppose F(A) has the WDP and that there exists γ with 0 < γ ≤ 1 such
that for any x ∈ bd(A)\Ew(P) one has that �(−CX

+, NA(x)) ≥ γ , that is

inf
x∗∈S(CX

+)
d(−x∗, NA(x)) ≥ γ. (6.8)

Then dÂ has an error bound on A.

Proof We suppose that bd(A) �= Ew(P) (otherwise the result holds trivially). By (6.8),
the condition γ ≤ 1 is automatically satisfied. Let τ = γ −1, x∗ ∈ S(CX

+)∩bd(CX
+)

and α := inf A〈x∗, ·〉. By Proposition 5, it suffices to show that for all x ∈ A

d(x, Ew(P)) ≤ τ [〈x∗, x〉 − α]. (6.9)
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We may assume that α > −∞. Let ε1 ∈ (0,
γ
2 ). We claim that

d(x, Ew(P)) ≤ 1 + ε1

γ − 2ε1
[〈x∗, x〉 − α] ∀x ∈ bd(A). (6.10)

Granting this and letting ε1 → 0, (6.9) is seen to hold provided that x is a boundary
point of A.

Recall from (4.6) that Ew(P) is contained in bd(A). In view of Lemma 3 (applied
to x∗ + ιbd(A),

γ−2ε1
1+ε1

, Ew(P) in place of f , γ , and D), (6.10) will follow if one can
show that for any u ∈ bd(A)\Ew(P) there exists v ∈ bd(A)\{u} such that

γ − 2ε1

1 + ε1
‖u − v‖ ≤ 〈x∗, u − v〉. (6.11)

To do this let u ∈ bd(A)\Ew(P). Then by (6.8), −x∗ + (γ − ε1)BX∗ is disjoint from
NA(u). Hence, by the Alaoglu Theorem and the Separation Theorem (cf. [16, p. 70
and p. 63]), there exists an element h ∈ X of norm 1 such that

sup
x∗+NA(u)

〈·, h〉 ≤ inf
(γ−ε1)BX∗

〈·, h〉 = −(γ − ε1). (6.12)

Since NA(u) is a cone it follows that supNA(u)〈·, h〉 ≤ 0 and so h ∈ TA(u) because
TA(u) and NA(u) are polars to each other (see [31, p. 87]). Hence there exists h1 ∈
∪t>0

1
t [A − u] such that ‖h − h1‖ < ε1. Then ‖h1‖ ≤ 1 + ε1 and T1 := {t > 0 :

u + th1 ∈ A} is nonempty. Moreover (6.12) implies that

〈x∗, h1〉 = 〈x∗, h〉 + 〈x∗, h1 − h〉 < −(γ − ε1) + ε1 = −γ + 2ε1 < 0

and hence that limt→+∞〈x∗, th1〉 = −∞. Since inf A〈x∗, ·〉 is finite it follows that
T1 must be bounded and hence has a maximum element which will be denoted by t1.
Then 0 < t1 < +∞ and u + t1h1 ∈ bd(A). Consequently v := u + t1h1 has the
desired property stated in (6.11) because

γ − 2ε1

1 + ε1
‖u − v‖ ≤ ‖u − v‖

‖h1‖ (γ − 2ε1) = t1(γ − 2ε1) < t1〈x∗,−h1〉 = 〈x∗, u − v〉.

Therefore (6.10) is established and so is (6.9) for x ∈ bd(A).
It remains to show (6.9) for x ∈ int A. Let x ∈ int A and let ε ∈ (0, 1

2 ). Then there
exists hε ∈ X of norm 1 such that

〈x∗, hε〉 > (1 − ε) >
1

2
. (6.13)

Let Tε := {t ≥ 0 : x − thε ∈ A}. Recalling α = inf A〈x∗, ·〉 it follows that

t ≤ 〈x∗, x〉 − α

〈x∗, hε〉 ≤ 2
[〈x∗, x〉 − α

] ∀t ∈ Tε .
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Thus Tε is a nonempty bounded closed set contained in the interval [0, 2〈x∗, x〉−2α].
Let tε denote the maximum element of Tε , and let xε := x − tεhε . Then xε ∈ bd(A)

and by what has already been proved,

d(xε, Ew(P)) ≤ τ [〈x∗, xε〉 − α]. (6.14)

Moreover,

〈x∗, x − xε〉 = 〈x∗, tεhε〉 ≤ tε ≤ 2[〈x∗, x〉 − α]. (6.15)

On the other hand, since τ = γ −1 ≥ 1 and by (6.13), we have

1

1 − ε
= ε

1 − ε
+ 1 ≤ ε

1 − ε
+ τ,

and (1 − ε) < 〈x∗, hε〉 = 〈
x∗, x−xε‖x−xε‖

〉
. Thus ‖x − xε‖ ≤ ( ε

1−ε
+ τ)〈x∗, x − xε〉 and

it follows from (6.14) and (6.15) that

d(x, Ew(P)) ≤ ‖x − xε‖ + d(xε, Ew(P))

≤
(

ε

1 − ε
+ τ

)
〈x∗, x − xε〉 + τ [〈x∗, xε〉 − α]

= ε

1 − ε
〈x∗, x − xε〉 + τ [〈x∗, x〉 − α]

≤ 2ε

1 − ε
[〈x∗, x〉 − α] + τ [〈x∗, x〉 − α].

Letting ε → 0, we see that (6.9) is satisfied for any interior point x in A. The proof is
complete. ��
Remark 3 Recall (cf. [31, p. 5]) that x ∈ A is called a support point of A if NA(x) �=
{0}, that is, there exists x∗ ∈ X∗\{0} such that

〈x∗, x〉 = sup
A

〈x∗, ·〉.

Denote by supp(A) the set of all support points of A. Note that supp(A) ⊂ bd(A).
Theorem 5 remains true if one assumes (6.8) to hold for all x ∈ supp(A)\Ew(P)

rather than for all x ∈ bd(A)\Ew(P). In fact if x ∈ bd(A)\supp(A), then NA(x) = {0}
and so the infimum in (6.8) is simply 1 and hence (6.8) is automatically satisfied for
this x .

Corollary 4 Suppose F(A) has the WDP and that there exists γ with 0 < γ ≤ 1
such that for any x ∈ bd(A)\Ew(P) one has that �(NA(x),−CX

+) ≥ γ , that is, for
any x ∈ supp(A)\Ew(P),

inf
x∗∈S(NA(x))

d(−x∗, CX
+) ≥ γ. (6.16)

123



Merit functions in vector optimization 235

Then dÂ has an error bound on A.

Proof By Lemma 1 and (6.16), (6.8) is satisfied with γ
2 in place of γ , and one can

apply Theorem 5 to conclude the proof. ��

In view of Example 1 and Theorems 3 and 5, the following corollary (when res-
tricted to the finite dimensional case) immediately implies a main result in [7] (see
Theorem 2.5 therein).

Corollary 5 Suppose Ew(P) �= ∅ and that A is a polyhedron (thus F(A) has the
WDP; see Theorem 2). Then dÂ has an error bound on A.

Proof In view of Corollary 4, it suffices to prove that (6.16) holds for some γ > 0.
Let A = ∩m

i=1{〈x∗
i , ·〉 ≥ bi }, where bi ∈ R and x∗

i ∈ X∗\{0} for all i ∈ 1, m :=
{1, 2, . . . , m}. For each nonempty subset I of 1, m, define N (I ) to be the convex hull
of {−x∗

i : i ∈ I }. Let NA := {N (I ) : ∅ �= I ⊂ 1, m}. Clearly NA is a finite family.
For any x ∈ bd(A), let Ix denote the set of ′′active indices′′ at x , that is, Ix := {i ∈

1, m : 〈x∗
i , x〉 = bi }. Clearly Ix is nonempty and

NA(x) = co{−x∗
i : i ∈ Ix }.

Thus

NA(x) ∈ NA ∀x ∈ bd(A).

Moreover, by Theorem 1 we have

NA(x) ∩ (−CX
+) = {0} ∀x ∈ bd(A)\Ew(P). (6.17)

Let F denote the family {NA(x) : x ∈ supp(A)\Ew(P)}. Then F is a subfamily of
NA. We claim that for any N ∈ F there exists γN > 0 such that

inf
x∗∈S(N )

d(−x∗, CX
+) ≥ γN . (6.18)

Granting this and letting γ := min{γN : N ∈ F}, one sees that γ > 0 satisfies
(6.16) for each x ∈ supp(A)\Ew(P). Thus, in view of Corollary 4, it remains to prove
(6.18) for some γN > 0. To do this let us suppose on the contrary that there exists a
sequence {y∗

j }∞j=1 ⊂ S(N ) such that d(−y∗
j , CX

+) converges to 0. Note that N is a
closed cone in a finite dimensional subspace of X∗ and hence that S(N ) is compact.
Hence we may suppose without generality that y∗

j converges to some y∗
0 ∈ S(N ).

Then d(−y∗
0 , CX

+) = 0 and hence y∗
0 ∈ −CX

+; that is, y∗
0 is a nonzero element of

N ∩ (−CX
+). This contradicts (6.17), and completes the proof. ��
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7 Conclusion

For vector optimization problem (1.1) defined by the data F, A and C , we considered a
class of what we called regular merit functions. The importance of such functions lies
in the fact that the set of minimizers of each such a function coincides with the set of
all weakly efficient solutions of the problem (1.1), and their error bound properties are
shown to be equivalent to the linear regularity of the pair {A, X\(A + int(F−1(C)))}.
Two functions defined in terms of Hiriart-Urruty functions are examples regular merit
functions and are provided with dual representations.

Acknowledgments The authors would like to thank the associate editor and referees for their constructive
comments leading to many improvements and for pointing out the references [6,11,30].
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