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Abstract We discuss local convergence of Newton’s method to a singular solution
x∗ of the nonlinear equations F(x) = 0, for F : R

n → R
n . It is shown that an existing

proof of Griewank, concerning linear convergence to a singular solution x∗ from a
starlike domain around x∗ for F twice Lipschitz continuously differentiable and x∗
satisfying a particular regularity condition, can be adapted to the case in which F ′ is
only strongly semismooth at the solution. Further, Newton’s method can be accelerated
to produce fast linear convergence to a singular solution by overrelaxing every second
Newton step. These results are applied to a nonlinear-equations reformulation of the
nonlinear complementarity problem (NCP) whose derivative is strongly semismooth
when the function f arising in the NCP is sufficiently smooth. Conditions on f
are derived that ensure that the appropriate regularity conditions are satisfied for the
nonlinear-equations reformulation of the NCP at x∗.
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1 Introduction

Consider a mapping F : R
n → R

n, and let x∗ ∈ R
n be a solution to F(x) = 0. We

consider the local convergence of Newton’s method when the solution x∗ is singular
(that is, ker F ′(x∗) �= {0}) and when F is once but possibly not twice differentiable.
We also consider an accelerated variant of Newton’s method that achieves a fast linear
convergence rate under these conditions. Our technique can be applied to a nonlinear-
equations reformulation of nonlinear complementarity problems (NCP) defined by

0 ≤ f (x), x ≥ 0, xT f (x) = 0, NCP( f )
(1)

where f : R
n → R

n . At degenerate solutions of the NCP (solutions x∗ at which
x∗

i = fi (x∗) = 0 for some i = 1, 2, . . . , n), the nonlinear-equations reformulation
considered in this paper is not twice differentiable at x∗, and weaker smoothness
assumptions are required. Our results show that (i) Newton’s method applied to the
nonlinear-equations reformulation of the NCP converges linearly inside a “starlike
domain” centered at a singular solution x∗; (ii) a simple technique can be applied
to achieve a faster linear rate. The simplicity of our approach contrasts with other
nonlinear-equations-based approaches to solving (1), which are either nonsmooth (and
hence require nonsmooth Newton techniques whose implementations are more com-
plex; see for example Josephy [14], Facchinei and Pan [6, p. 663–674] or else require
classification of the indices i = 1, 2, . . . , n into those for which x∗

i = 0, those for
which fi (x∗) = 0, or both.

Around 1980, several authors, including Reddien [20], Decker and Kelley [3], and
Griewank [8], proved linear convergence for Newton’s method to a singular solution
x∗ of F from special regions near x∗, provided that F is twice Lipschitz continuously
differentiable and a certain 2-regularity condition holds at x∗. (The “2” emphasizes
the role of the second derivative of F in this regularity condition.) In the first part of
this work, we show that Griewank’s analysis, which gives linear convergence from
a starlike domain of x∗ (defined below), can be extended to the case in which F ′ is
strongly semismooth at x∗; see Sect. 4. In Sect. 5, we consider a standard acceleration
scheme for Newton’s method, which “overrelaxes” every second Newton step. By
assuming that F ′ is at least strongly semismooth at x∗ and that a 2-regularity condition
holds, we show that this technique yields arbitrarily fast linear convergence from a
partial neighborhood of x∗.

In the second part of this work, beginning in Sect. 6, we consider a nonlinear-
equations reformulation of the NCP and interpret the regularity conditions for this
reformulation as conditions on the NCP. We show that they reduce to previously
known NCP regularity conditions in certain cases. We conclude in Sect. 7 by present-
ing computational results for some simple NCPs, including a number of degenerate
examples.
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Newton’s method for nonlinear equations with semismooth Jacobian 357

We start with definitions and terminology (Sect. 2) and a discussion of prior relevant
work (Sect. 3).

2 Definitions and properties

For G : Ω ⊆ R
n → R

p, we follow convention in writing the derivative G ′ as a map
from Ω → R

p×n when p > 1 and a map from Ω to R
n (equivalently R

n×1) when
p = 1. The Euclidean norm is denoted by ‖·‖, and the unit sphere is S = {t | ‖t‖ = 1}.

For any subspace X of R
n , dim X denotes the dimension of X . The kernel of a linear

operator M is denoted ker M , the image or range of the operator is denoted range M .
rank M denotes the rank of the matrix M , which is the dimension of range M .

A starlike domain with respect to x∗ ∈ R
n is an open set A with the property that

x ∈ A ⇒ λx + (1 − λ)x∗ ∈ A for all λ ∈ (0, 1). A vector t ∈ S is an excluded
direction for A if x∗ + λt /∈ A for all λ > 0.

We now list various definitions relating to the smoothness of a function.

Definition 1 Directionally differentiable. Let G : Ω ⊆ R
n → R

p, with Ω open,
x ∈ Ω , and d ∈ R

n . If the limit

lim
t↓0

G(x + td)− G(x)

t
(2)

exists in R
p, G has a directional derivative at x along d and we denote this limit

by G ′(x; d). G is directionally differentiable at x if G ′(x; d) exists for every d in a
neighborhood of the origin.

Definition 2 B-differentiable. ([6, Definition 3.1.2]) G : Ω ⊆ R
n → R

p, with
Ω open, is B(ouligand)-differentiable at x ∈ Ω if G is Lipschitz continuous in a
neighborhood of x and directionally differentiable at x .

Definition 3 Strongly semismooth. ([6, Definition 7.4.2]) Let G : Ω ⊆ R
n → R

p,

with Ω open, be locally Lipschitz continuous on Ω. G is strongly semismooth at
x̄ ∈ Ω if G is directionally differentiable near x̄ and

lim supx̄ �=x→x̄
‖G ′(x; x − x̄)− G ′(x̄; x − x̄)‖

‖x − x̄‖2 < ∞.

Further, G is strongly semismooth onΩ if G is strongly semismooth at every x̄ ∈ Ω .

If G is (strongly) semismooth at x̄ , then it is B-differentiable at x̄ . Further, if G
is B-differentiable at x̄ , then G ′(x̄; ·) is Lipschitz continuous [19]. Hence, for F ′ :
R

n → R
n×n strongly semismooth at x∗, there is some Lx∗ such that

‖(F ′)′(x∗; h1)− (F ′)′(x∗; h2)‖ ≤ Lx∗‖h1 − h2‖. (3)

If F ′ is strongly semismooth at x∗ and ‖x − x∗‖ is sufficiently small, we have the
following crucial estimate from equation (7.4.5) of [6]:

F ′(x) = F ′(x∗)+ (F ′)′(x∗; x − x∗)+ O(‖x − x∗‖2). (4)
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(We use p = n2 in order to apply Definition 3 to F ′.)
Lastly, we define 2-regularity and its variants. For F : R

n → R
n , suppose x∗ is a

singular solution of F(x) = 0 and F ′ is strongly semismooth at x∗. We define N :=
ker F ′(x∗). Let N⊥ denote the orthogonal complement of N , such that N ⊕ N⊥ = R

n,

and let N∗ := ker F ′(x∗)T with orthogonal complement N∗⊥. We denote by PN , PN⊥ ,
PN∗ , and PN∗⊥ the orthogonal projections onto N , N⊥, N∗, and N∗⊥ respectively, while
(·)|N denotes the restriction map to N . Let m := dimN > 0.

We say that F satisfies 2-regularity for some d ∈ R
n at a solution x∗ if

(PN∗ F ′)′(x∗; d)|N is nonsingular. (5)

The 2-regularity conditions of Reddien [20], Decker and Kelley [3], and Griewank [8]
require (5) to hold for certain d ∈ N . In fact, this property first appeared in the literature
as nonsingularity of (PN∗ F ′′(x∗)d)|N ; the form in (5) was introduced by Izmailov
and Solodov [11]. By applying PN∗ to F ′ before taking the directional derivative, the
theory of 2-regularity may be applied to problems for which PN∗ F ′ is directionally
differentiable but F ′ is not (see [13]).

Decker and Kelley [3] and Reddien [20] use the following definition of 2-regularity,
which we call 2∀-regularity.

Definition 4 2∀-regularity. 2∀-regularity holds for F at x∗ if (5) holds for every
d ∈ N \ {0}.
For F twice differentiable at x∗, 2∀-regularity implies (geometric) isolation of the
solution x∗ [3,20] and limits the dimension of N to at most 2 [4].

Next, we define a weaker 2-regularity that can hold regardless of the dimension of
N or whether x∗ is isolated.

Definition 5 2ae-regularity. 2ae-regularity holds for F at x∗ if (5) holds for almost
every d ∈ N .

Weaker still is the condition we call 21-regularity.

Definition 6 21-regularity. 21-regularity holds for F at x∗ if (5) holds for some
d ∈ N .

For the case in which F is twice Lipschitz continuously differentiable, Griewank
shows that 21-regularity and 2ae-regularity are actually equivalent [8, p. 110]. This
property fails to hold under the weaker smoothness conditions of this work. For exam-
ple, the smooth nonlinear equations reformulation (7) of the nonlinear complemen-
tarity problems quad2 and affknot1 (defined in Appendix A) are 21-regular but not
2ae-regular at their solutions.

Izmailov and Solodov [11, Theorem 5(a)] introduce a regularity condition and prove
that it implies isolation of the solution, provided that PN∗ F ′(x∗) is B-differentiable .
The following form of this condition, which we call 2T -regularity, is specific to our
case F : R

n → R
n and is due to Daryina, Izmailov, and Solodov [1, Def. 2.1].

Consider the set
T2 := {d ∈ N | (PN∗ F ′)′(x∗; d)d = 0}. (6)
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Newton’s method for nonlinear equations with semismooth Jacobian 359

Definition 7 2T-regularity [1, Def. 2.1]. 2T -regularity holds for F at x∗ if T2 = {0}.
As can be seen from Table 1 in Sect. 7, neither 2T -regularity nor 2ae-regularity implies
the other condition. By definition, 2∀-regularity implies the other three regularity
conditions. Therefore, since 2T -regularity implies isolation of the solution under our
smoothness conditions, so must 2∀-regularity. If dim N = 1, then 2T -regularity is
equivalent to 2∀-regularity (which is trivially equivalent to 2ae-regularity in this case).

3 Prior work

In this section, we summarize prior work relevant to this paper.

2-regularity conditions. 2-regularity has been applied to a variety of uses including
error bounds, implicit function theorems, and optimality conditions [11,13]. We focus
here on the use of 2-regularity conditions to prove convergence of Newton-like methods
to singular solutions.

The 21-regularity condition (Definition 6) was used by Reddien [21] and Griewank
and Osborne [10]. The proofs therein show convergence of Newton’s method (at a
linear rate of 1/2) only for starting points x0 such that x0 −x∗ lies approximately along
the particular direction d for which the nonsingularity condition (5) holds. The more
stringent 2∀-regularity condition (Definition 4) was used by Decker and Kelley [3]
to prove linear convergence of Newton’s method from starting points in a particular
truncated cone around N . The convergence analysis given for 2∀-regularity [2,3,20]
is much simpler than the analysis presented by Griewank [8], and in the current paper.

Griewank [8] proves convergence of Newton’s method from all starting points in a
starlike domain with respect to x∗. If 21-regularity holds at x∗ and F is twice Lipschitz
continuously differentiable at x∗, then the starlike domain is “dense” near x∗ in the
sense that the set of excluded directions has measure zero—a much more general set
than the cones around N analyzed prior to that time.

Acceleration techniques. When iterates {xk} generated by a Newton-like method
converge to a singular solution, the error xk − x∗ lies predominantly in the null space
N of F ′(x∗). Acceleration schemes typically attempt to stay within a cone around N
while lengthening (“overrelaxing”) some or all of the Newton steps.

We discuss several of the techniques proposed in the early 1980s. All require starting
points whose error lies in a cone around N , and all assume three times differentiability
of F . Decker and Kelley [4] prove superlinear convergence for a scheme in which
every second Newton step is essentially doubled in length along the subspace N .
Their technique requires 2∀-regularity at x∗, an estimate of N , and a nonsingularity
condition over N on the third derivative of F at x∗. Decker, Keller, and Kelley [2]
prove superlinear convergence when every third step is overrelaxed, provided that
21-regularity holds at x∗ and the third derivative of F at x∗ satisfies a nonsingularity
condition on N . Kelley and Suresh [16] require 21-regularity at x∗ and the third
derivative of F at x∗ bounded over the truncated cone about N . Overrelaxing every
other step by a factor approaching 2 results in superlinear convergence.
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By contrast, the acceleration technique given in Sect. 5 of our paper does not require
the starting point x0 to be in a cone about N , and requires only strong semismoothness
of F ′ at x∗. On the other hand, we obtain only fast linear convergence. We believe,
however, that our analysis can be extended to a superlinear scheme like that of Kelley
and Suresh [16].

Smooth nonlinear-equations reformulation of the NCP. In the latter part of this paper,
we discuss a nonlinear-equations reformulation of the NCP Ψ based on the function
ψs(a, b) := 2ab − (min(0, a + b))2, which has the property that ψs(a, b) = 0 if and
only if a ≥ 0, b ≥ 0, and ab = 0. The function Ψ : R

n → R
n is defined by

Ψi (x) := 2xi fi (x)− [min(0, xi + fi (x))]2, i = 1, 2, . . . , n. (7)

This reformulation is apparently due to Evtushenko and Purtov [5] and was studied
further by Kanzow [15]. The first derivative Ψ ′ is strongly semismooth at a solution
x∗ if f ′ is strongly semismooth at x∗. If x∗

i = fi (x∗) = 0 for some i , x∗ is a singular
root of Ψ , which fails to be twice differentiable.

Recently, Izmailov and Solodov [11–13] and Daryina, Izmailov, and Solodov [1]
have investigated the properties of the mapping Ψ and designed algorithms around
it. (Some of their investigations, like ours, have taken place in the more general
setting of a mapping F for which F ′ has semismoothness properties.) Izmailov and
Solodov [11,13] show that an error bound for NCPs holds whenever 2T -regularity
holds. Using this error bound to classify the indices i = 1, 2, . . . , n, Daryina,
Izmailov, and Solodov [1] present an active-set Gauss-Newton-type method for NCPs.
They prove superlinear convergence to singular points which satisfy 2T -regularity as
well as another condition known as weak regularity, which requires full rank of a
certain submatrix of f ′(x∗). In [12], Izmailov and Solodov augment the reformula-
tion Ψ (x) = 0 by adding a nonsmooth function containing second-order information.
They apply the generalized Newton’s method to the resulting function and prove super-
linear convergence under 2T -regularity and another condition called quasi-regularity,
discussed further in Subsect. 6.3 below.

In contrast to the algorithms of [1] and [12], our approach has fast linear conver-
gence rather than superlinear convergence. Our regularity conditions are comparable
and may be weaker in some cases. (For example, the problem munson4 in Appendix A
satisfies both 2T -regularity and 2ae-regularity but not weak regularity.) We believe that
our algorithm has the advantage of simplicity. Near the solution, it modifies Newton’s
method only by incorporating a simple check to detect linear convergence and pos-
sibly overrelaxing every second step. There is no need to classify the constraints,
add “bordering” terms, or switch to a different step computation strategy in the final
iterations.

4 Convergence of the Newton step to a singularity

Griewank [8] extended the work of others [3,20] to prove local convergence of
Newton’s method from a starlike domain R of a singular solution x∗ of F(x) = 0.
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Specialized to the case of k = 1 (Griewank’s notation), he assumes that F ′′(x) is
Lipschitz continuous near x∗ and x∗ is a 21-regular solution. Griewank’s convergence
analysis shows that the first Newton step takes the initial point x0 from the original
starlike domain R into a simpler starlike domain Ws , a wedge around a vector s in the
null space N . The domain Ws is similar to the domains of convergence found in earlier
works [3,20]. Linear convergence is then proved inside Ws . For F twice continuously
differentiable, the convergence domain R is much larger than Ws . In fact, the set of
directions excluded from R has zero measure.

We weaken the smoothness assumption of Griewank in replacing the second deriv-
ative of F in (5) by a directional derivative of F ′. Our assumptions follow:

Assumption 1 For F : R
n → R

n , x∗ is a singular, 21-regular solution of F(x) = 0
and F ′ is strongly semismooth at x∗.

We show that Griewank’s convergence results hold under this assumption.

Theorem 1 Suppose Assumption 1 holds. There exists a starlike domain R about
x∗ such that, if Newton’s method for F(x) is initialized at any x0 ∈ R, the iterates
converge linearly to x∗ with rate 1/2. If the problem is converted to standard form (8)
and x0 = ρ0t0, where ρ0 = ‖x0‖ > 0 and t0 ∈ S, then the iterates converge inside a
cone with axis g(t0)/‖g(t0)‖, for g defined in (30).

Only a few modifications to Griewank’s proof [8] are necessary. We use the
properties (3) and (4) to show that F is smooth enough for the steps in the proof
to hold. Finally, we make an insignificant change to a constant required by the proof
due to a loss of symmetry in R. (Symmetry is lost in moving from derivatives to
directional derivatives because directional derivatives are positively but not negatively
homogeneous.) The proof in [8] also considers regularities larger than 2, for which
higher derivatives are required. We restrict our discussion to 2-regularity because we
are interested in the application to a nonlinear-equations reformulation of NCP, for
which such higher derivatives are unavailable.

In the remainder of this section, we develop some preliminaries, discuss domains of
invertibility of the Jacobian and convergence of the Newton iterates, analyze the form
of a Newton step, and finally sketch the proof of Theorem 1. The proof is presented in
full in the extended technical report [18], where its points of departure from Griewank’s
proof are highlighted.

4.1 Preliminaries

For simplicity of notation, we start by standardizing the problem. The Newton iteration
is invariant with respect to nonsingular linear transformations of F and nonsingular
affine transformations of the variables x . As a result, we can assume that

x∗ = 0, F ′(x∗) = F ′(0) = (I − PN∗), and N∗ = R
m × {0}n−m . (8)

(We revoke assumption (8) in our discussion of an equation reformulation of the NCP
in Sects. 6 and 7.)
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For x ∈ R
n \ {0}, we write x = x∗ + ρt = ρt, where ρ = ‖x‖ is the 2-norm

distance to the solution and t = x/ρ is a direction in the unit sphere S. From the third
assumption in (8), we have

PN∗ =
[

Im×m 0m×n−m

0n−m×m 0n−m×n−m

]
,

where I represents the identity matrix and 0 the zero matrix, with subscripts indicating
their dimensions. By substituting in the second assumption of (8), we obtain

F ′(0) =
[

0m×m 0m×n−m

0n−m×m In−m×n−m

]
. (9)

Since F ′(0) is symmetric, the null space N is identical to N∗.
Using (8), we partition F ′(x) as follows:

F ′(x) =
[

PN∗ F ′(x)|N PN∗ F ′(x)|N⊥
PN∗⊥ F ′(x)|N PN∗⊥ F ′(x)|N⊥

]
=:

[
B(x) C(x)
D(x) E(x)

]
.

In conformity with the partitioning in (9), the submatrices B,C, D, and E have
dimensions m × m,m × n − m, n − m × m, and n − m × n − m, respectively.
Using x∗ = 0, we define

B̄(x) = B̄(x − x∗) = (PN∗ F ′)′(x∗; x − x∗)|N = (PN∗ F ′)′(0; x)|N , (10a)

C̄(x) = C̄(x − x∗) = (PN∗ F ′)′(x∗; x − x∗)|N⊥ = (PN∗ F ′)′(0; x)|N⊥ . (10b)

From x = ρt , the expansion (4) with x∗ = 0 yields

B(x) = B̄(x)+ O(ρ2) = ρ B̄(t)+ O(ρ2),

C(x) = C̄(x)+ O(ρ2) = ρC̄(t)+ O(ρ2), (11)

D(x) = O(ρ), and E(x) = I + O(ρ).

The constants that bound the O(·) terms in these expressions can be chosen indepen-
dently of t , by compactness of S. This is the first difference between our analysis and
Griewank’s analysis: We use (4) to arrive at (11), while he uses Taylor’s theorem.

For some rb > 0, E is invertible for all ρ < rb and all t ∈ S, with E−1(x) =
I + O(ρ). Invertibility of F ′(x) is equivalent to invertibility of the Schur complement
of E(x) in F ′(x), which we denote by G(x) and define by

G(x) := B(x)− C(x)E(x)−1 D(x).

This claim follows from the determinant formula det(F ′(x)) = det(G(x))det(E(x)).
By reducing rb if necessary to apply (11), we have

G(x) = B(x)+ O(ρ2) = ρ B̄(t)+ O(ρ2). (12)
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Hence,

det(F ′(x)) = ρmdetB̄(t)+ O
(
ρm+1

)
.

As in the proof of [8, Lemma 3.1(iii)], we note that all but the smallest m singular
values of F ′(x) are close to 1 in a neighborhood of x∗. Letting ν(s) denote the smallest
singular value of F ′(s), we have that

ν(ρt) = O((detF ′(ρt))1/m) =
{

O(ρ), if B̄(t) is nonsingular,

o(ρ), if B̄(t) is singular.
(13)

For later use, we define γ to be the smallest positive constant such that

‖G(x)− ρ B̄(t)‖ ≤ γρ2, for all x = ρt , all t ∈ S, and all ρ < rb.

Following Griewank [8], we define the function σ(t) to be the minimum of 1 and
the smallest (in magnitude) singular value of B̄(t), that is,

σ(t) :=
{

0, if B̄(t) is singular
min(1, ‖B̄−1(t)‖−1), otherwise.

(14)

The individual singular values of a matrix vary continuously with respect to
perturbations of the matrix [7, Theorem 8.6.4]. By (3), B̄(t) is Lipschitz continu-
ous in t , so that σ(t) is continuous in t. This is the second difference between our
analysis and Griewank’s analysis: we require (3) to prove continuity of the singular
values of B̄(t), while he uses the fact that B̄(t) is linear in t , which holds under his
smoothness assumptions.

Let
Π0(d) := detB̄(d), for d ∈ R

n . (15)

In contrast to the smooth case considered by Griewank, Π0(d) is not a homogeneous
polynomial in d, but rather a positively homogeneous, piecewise-smooth function.
Hence, 21-regularity does not imply 2ae-regularity. Since the determinant is the product
of singular values, we can use the same reasoning as for σ(t) to deduce that Π0(t) is
continuous in t for t ∈ S.

4.2 Domains of invertibility and convergence

In this section we define the domains Ws and R. These definitions depend on several
functions that we now introduce. If we define min(∅) = π , the angle

φ(s) := 1

4
min{cos−1(t T s) | t ∈ S ∩Π0

−1(0)}, for s ∈ N ∩ S (16)

is a well defined, nonnegative continuous function, bounded above by π
4 . For the

smooth case considered by Griewank, if t ∈ Π0
−1(0), then −t ∈ Π0

−1(0) and

123



364 C. Oberlin, S. J. Wright

the maximum angle if Π0
−1(0) �= ∅ is π

2 . This is no longer true in our case; the
corresponding maximum angle is π . Hence, we have defined min(∅) = π (instead
of Griewank’s definition min(∅) = π

2 ) and the coefficient of φ(s) is 1
4 instead of 1

2 .
(This is the third and final difference between our analysis and Griewank’s.) Now,
φ−1(0) = N ∩ S ∩Π0

−1(0) because the set {s ∈ S |Π0(s) �= 0} is open in S since
Π0(·) is continuous on S, by (3).

In [8, Lemma 3.1], Griewank defines the auxiliary starlike domain of invertibility
R̄,

R̄ := {x = ρt | t ∈ S, 0 < ρ < r̄(t)}, (17)

where

r̄(t) := min

{
rb,

1

2
γ−1σ(t)

}
. (18)

The excluded directions of R̄, t ∈ S for which σ(t) = 0, are the directions along
which the smallest singular value of the determinant of F ′(ρt) is o(ρ), by (13) and
(14). This set of directions may have measure that is positive but less than one in S.
This is the case for the smooth nonlinear equations reformulation (7) of the nonlinear
complementarity problem quad2 (defined in Appendix A). For this problem, σ(t) �= 0
for almost every t = (t1, t2)T ∈ S with t1 < 0 and t2 �= 0, while σ(t) = 0 for any
t ∈ S with t1 > 0.

As in [8, Lemma 5.1], we define

r̂(s) := min{r̄(t) | t ∈ S, cos−1(t T s) ≤ φ(s)}, for s ∈ N ∩ S, (19)

σ̂ (s) := min{σ(t) | t ∈ S, cos−1(t T s) ≤ φ(s)}, for s ∈ N ∩ S. (20)

These minima exist and both are nonnegative and continuous on S ∩ N with σ̂−1(0) =
r̂−1(0) = φ−1(0). Since σ(t) ≤ 1 by definition, we have σ̂ (s) ≤ 1 for s ∈ N ∩ S.

Let c be the positive constant defined by

c := max{‖C̄(t)‖ + σ(t) | t ∈ S}. (21)

In the following, we use the abbreviation

q(s) := 1

4
sin φ(s) ≤ 1

4
, for s ∈ N ∩ S. (22)

We define the angle φ̂(s), for which 0 ≤ φ̂(s) ≤ π/2, by the equality

sin φ̂(s) := min

{
q(s)

c/σ̂ (s)+ 1 − q(s)
,

2δr̂(s)

(1 − q(s))σ̂ 2(s)

}
, for s ∈ N ∩ S, (23)

where δ is a problem-dependent, positive number specified in (39). We define

ρ̂(s) := (1 − q(s))σ̂ 2(s)

2δ
sin φ̂(s), for s ∈ N ∩ S. (24)
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Both φ̂ and ρ̂ are nonnegative and continuous on N ∩ S with

φ̂−1(0) = ρ̂−1(0) = φ−1(0) = Π−1
0 (0) ∩ N ∩ S. (25)

Now we can define the starlike domains Ws and Is as follows:

Ws := {x = ρt | t ∈ S, cos−1(t T s) < φ̂(s), 0 < ρ < ρ̂(s)}, (26)

Is := {x = ρt | t ∈ S, cos−1(t T s) < φ(s), 0 < ρ < ρ̂(s)}. (27)

By the first inequality in (23), sin φ̂(s) ≤ sin φ(s). Since both φ̂(s) and φ(s) are
acute angles, we have φ̂(s) ≤ φ(s) and thus Ws ⊆ Is . For s ∈ S ∩ N , Ws = ∅ if
and only if Π0(s) = 0. The second implicit inequality in the definition of sin φ̂(s),
ensures that ρ̂(s) satisfies

ρ̂(s) ≤ r̂(s) ≤ r̄(t) ≤ rb, for all t ∈ S with cos−1 t T s ≤ φ(s). (28)

It follows that
Is ⊂ R̄, for all s ∈ S ∩ N \Π−1

0 (0). (29)

(The justification given in [8] that r̂(s) ≤ r̄(s) is insufficient.)
Consider the positively homogeneous vector function g : (Rn \Π−1

0 (0)) → N ⊆
R

n ,

g(x) = ρg(t) =
[

I B̄−1(t)C̄(t)
0 0

]
x . (30)

It is shown in (40) that the Newton iteration from a point x near x∗ = 0 is, to first
order, the map 1

2 g(x), provided g(x) is defined at x .
The starlike domain of convergence R,which lies inside the domain of invertibility

R̄, is defined as follows (where x = ρt as usual):

R := {x = ρt | t ∈ S, 0 < ρ < r(t)}, (31)

where

r(t) := min

{
r̄(t),

σ 2(t)ρ̂(s(t))

2δrb + cσ(t)+ σ 2(t)
,
‖g(t)‖σ 2(t) sin φ̂(s(t))

2δ

}
, (32)

where we define

s(t) := g(t)

‖g(t)‖ ∈ N ∩ S,

and δ is the constant defined below in (39). (The coefficient 2, or k + 1 for the general
case, in front of δrb in the denominator of the second term of r(t) is missing in [8] but
is necessary for the proof of convergence.)

We conclude this subsection by characterizing the excluded directions of R, that
is, t ∈ S for which r(t) = 0. By the definition of r(t) (32), these are directions for
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which at least one of r̄(t), σ(t), ‖g(t)‖, ρ̂(s(t)), or sin φ̂(s(t)) is zero. By definition,
r̄(t) (18) is zero if and only if σ(t) is zero. If σ(t) is nonzero, that is, t /∈ Π−1

0 (0)
then g(t) is well defined. If additionally ‖g(t)‖ �= 0, then s(t) is well defined. Since
s(t) ∈ N ∩ S, by (25) ρ̂(s(t)) or sin φ̂(s(t)) is zero if and only if s(t) ∈ Π−1

0 (0). To
summarize, r(t) is zero for t ∈ S if and only if one of the following conditions is true:

t ∈ Π−1
0 (0), g(t) = 0, or g(t)/‖g(t)‖ ∈ Π−1

0 (0). (33)

By the definition of Π0 (see (15) and (10a)), the first condition fails if F satisfies
2-regularity (5) for t , and the third condition fails if F satisfies 2-regularity (5) for
g(t)/‖g(t)‖. For the second condition, by the definition of g (30), we have for d ∈
R

n \Π−1
0 (0) that

g(d) = 0 ⇔ B̄(d)dN + C̄(d)dN⊥ = 0,

where dN is the orthogonal projection of d onto N and dN⊥ is the orthogonal projection
of d onto N⊥. By the definitions (10a) and (10b), we have

g(d) = 0 ⇔ (PN∗ F ′)′(x∗; d)d = 0, for d ∈ R
n \Π−1

0 (0). (34)

The right-hand side of this condition is identical to the condition defining the set T2 (6),
though the domain of d differs. Due to the limited smoothness of F , it is possible for
either Π0, g, or Π0(g(·)) to map a set of positive measure in R

n to 0. Hence, the set
of excluded directions can have positive measure.

4.3 The form of a Newton step from x ∈ R̄

The content of this subsection is taken directly from Griewank [8] (with k set to 1);
we include it here for readability of this section and for further reference in Sect. 5.

We consider the form of the Newton step from a point x = ρt in the domain of
invertibility R̄ defined in (17) to the point x̄ , where

x̄ := x − F ′(x)−1 F(x). (35)

For x ∈ R̄, we have σ(t) > 0. In the remainder of this discussion, we drop the
argument t from σ(t) and the argument x from various matrix quantities such as
G(x), C(x), etc. Using positivity of σ and (11), it can be checked that the following
expressions from [8] are also true here. We have

F ′(x)−1 =
[

G−1 −G−1C E−1

−E−1 DG−1 E−1 + E−1 DG−1C E−1

]
,

(see [8, (12)]), where

G−1(x) = ρ−1 B̄−1(t)+ σ−2 O(ρ0) = σ−2 O(ρ−1), (36)
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(see [8, (13)]). As in the proof of [8, Lemma 4.1] with k = 1, we have

F(x) =
[

1
2 G + O(ρ2) 1

2 C + O(ρ2)

1
2 D + O(ρ2) E + O(ρ)

]
x .

Using (11) to aggregate the order terms, as in [8], we have

F ′(x)−1 F(x) =
[ 1

2 I + ‖G−1‖O(ρ2) − 1
2 G−1C + ‖G−1‖O(ρ2)

O(ρ)+ ‖G−1‖O(ρ3) I + O(ρ)+ ‖G−1‖O(ρ2)

]
x .

Due to (11), (36), and the positivity of σ , we have

G−1(x)C(x) = B̄−1(t)C̄(t)+ σ−2 O(ρ).

Hence,

F ′(x)−1 F(x) =[ 1
2 I + ‖G−1‖O(ρ2) − 1

2 B̄−1(t)C̄(t)+ σ−2 O(ρ)+ ‖G−1‖O(ρ2)

O(ρ)+ ‖G−1‖O(ρ3) I + O(ρ)+ ‖G−1‖O(ρ2)

]
x . (37)

Since ‖G−1‖ = σ−2 O(ρ−1), we can write

F ′(x)−1 F(x) =
[ 1

2 I − 1
2 B̄−1(t)C̄(t)

0 I

]
x − e(x), (38)

where the remainder vector e(x) can be bounded as follows:

‖e(x)‖ ≤ δ
ρ2

σ 2 , (39)

where the constant δ is positive and finite; in fact, it is a product of finite powers of the
constants in the O(·) terms in (11) which, as we have already noted, are finite. The
definition of r(t) (32) uses this value of δ.

Using (38), we have

x̄ = x − F ′(x)−1 F(x) =
[ 1

2 I 1
2 B̄−1(t)C̄(t)

0 0

]
x + e(x) = 1

2
g(x)+ e(x), (40)

where g(x) is defined in (30). In other words, if xk = ρk tk for tk ∈ S is sufficiently
close to x∗ and σ(tk) is bounded below by a positive number, then the Newton iterate
xk+1 satisfies

xk+1 = 1

2
g(xk)+ O(‖xk‖2).

The proof provides a single positive lower bound for σ(tk) for all subsequent Newton
iterates {xk}. Hence, 1

2 g(xk) is a first order approximation to the Newton step from xk .
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4.4 Outline of the proof of Theorem 1

Consider the Newton iterates {x j = ρ j t j } j≥0 with t j ∈ S. For s ∈ S, letψ j (s) denote
the angle between t j and s, that is,

ψ j (s) = cos−1 t T
j s. (41)

Let s j = g(x j )/‖g(x j )‖. The first phase of the proof is to show from (40) and the
definition of R that if x0 = ρ0t0 ∈ R, then

ψ1(s0) < φ̂(s0) and ρ1 < ρ̂(s0),

so that x1 ∈ Ws0 .
The second phase of the proof analyzes convergence from inside the domain Ws0 .

Letting θ j denote the angle between x j and the null space N , it is shown that the
sequence of Newton iterates {x j = ρ j t j } j≥1 starting from any point x1 ∈ Ws0 main-
tains the properties

ρ j < ρ̂(s0), θ j < φ̂(s0), ψ j (s0) < φ(s0). (42)

By the first and third properties, the iterates remain in Is0 (27). Further, because of
(20), the third property implies that

σ(t j ) ≥ σ̂ (s0) > 0, (43)

a fact that is used often in the proof. Finally, it can be shown that ρ j and θ j go to zero
as j goes to infinity and

lim
j→∞

ρ j+1

ρ j
= 1

2
.

These facts are formally stated in Lemma 5.1 of [8]:

Lemma 1 Suppose Assumption 1 and the standardizations (8) are satisfied. Then for
any s ∈ N ∩ S \Π0

−1(0) the Newton iteration converges linearly with common ratio
1/2 from all points in the nonempty starlike domain Ws . Further, the iterates remain
in the starlike domain Is .

Theorem 1 is obtained by combining this result with the analysis of the first step
from x0 to x1, discussed above.

5 Acceleration of Newton’s method

Overrelaxation is known to improve the rate of convergence of Newton’s method to a
singular solution [9]. The overrelaxed iterate is

x j+1 = x j − αF ′(x j )
−1 F(x j ), (44)
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where α is some parameter in the range [1, 2). (Of course, α = 1 corresponds to the
usual Newton step.)

We focus on a technique in which overrelaxation occurs only on every second
step; that is, standard Newton steps are interspersed with steps of the form (44) for
some fixed α ∈ [1, 2). Broadly speaking, each pure Newton step refocuses the error
along the null space N . Kelley and Suresh [16] prove superlinear convergence for this
method when α is systematically increased to 2 as the iterates converge. However,
their proof requires the third derivative of F evaluated at x∗ to satisfy a boundedness
condition.

In this section, we state our main result and motivate its proof, highlighting some
key points. The lengthy proof appears in full in [18, Sect. 5].

We assume that 21-regularity holds at x∗, F ′ is strongly semismooth at x∗, and that
x0 ∈ Rα , where Rα is a starlike domain defined in (60) whose excluded directions
are identical to those of R defined in Sect. 4 but whose rays are shorter. In fact, as α
is increased to 2, the rays of the starlike domain Rα shrink in length to zero.

Theorem 2 Suppose Assumption 1 holds and let α ∈ [1, 2). There exists a starlike
domain Rα ⊆ R about x∗ such that if x0 ∈ Rα and with iterates defined by

x2 j+1 = x2 j − F ′(x2 j )
−1 F(x2 j ) and (45)

x2 j+2 = x2 j+1 − αF ′(x2 j+1)
−1 F(x2 j+1), (46)

for j = 0, 1, 2, . . . , then the iterates {xi } for i = 0, 1, 2, . . . converge linearly to x∗
and

lim
j→∞

‖x2 j+2 − x∗‖
‖x2 j − x∗‖ = 1

2

(
1 − α

2

)
.

We first describe a key step of the proof. Since the problem is in standard form,
we have from (40) that the Newton step (45) satisfies the following relationships for
x2k ∈ R̄:

x2k+1 = 1

2

[
I B̄(t2k)

−1C̄(t2k)

0 0

]
x2k + e(x2k) = 1

2
g(x2k)+ e(x2k), (47)

for all k ≥ 0, where g(·) is defined in (30) and the remainder term e(·) is defined in
(38). As in (39), we have

‖e(x2k)‖ ≤ δ
ρ2

2k

σ 2
2k

. (48)

For the accelerated Newton step (46), using manipulations similar to those leading
to (40), we have for x2k+1 ∈ R̄ that

x2k+2 =
[
(1 − α

2 )I
α
2 B̄(t2k+1)

−1C̄(t2k+1)

0 (1 − α)I

]
x2k+1 + αe(x2k+1), (49)

123



370 C. Oberlin, S. J. Wright

for all k ≥ 0. By substituting (47) into (49), we obtain

x2k+2 = 1
2

[
(1 − α

2 )I
α
2 B̄(t2k+1)

−1C̄(t2k+1)

0 (1 − α)I

] [
I B̄(t2k)

−1C̄(t2k)

0 0

]
x2k

+ ẽα(x2k, x2k+1), (50)

where

ẽα(x2k, x2k+1) =
[
(1 − α

2 )I
α
2 B̄(t2k+1)

−1C̄(t2k+1)

0 (1 − α)I

]
e(x2k)+ αe(x2k+1). (51)

Multiplying the matrices in (50), we have

x2k+2 = 1

2

(
1 − α

2

) [
I B̄(t2k)

−1C̄(t2k)

0 0

]
x2k + ẽα(x2k, x2k+1)

= 1

2

(
1 − α

2

)
g(x2k)+ ẽα(x2k, x2k+1), (52)

To bound the remainder term, note that |1 − α
2 | + |1 − α| = α

2 for α ∈ [1, 2), so we
have from (51) that

‖ẽα(x2k, x2k+1)‖ ≤ α

2

(
1 + ‖B̄(t2k+1)

−1‖‖C̄(t2k+1)‖
)

‖e(x2k)‖ + α‖e(x2k+1)‖

≤
(
σ2k+1 + ‖C̄(t2k+1)‖

σ2k+1

)
δ
ρ2

2k

σ 2
2k

+ αδ
ρ2

2k+1

σ 2
2k+1

from α < 2, (14), and (39)

≤ cδ
ρ2

2k

σ2k+1σ
2
2k

+ αδ
ρ2

2k+1

σ 2
2k+1

from (21)

≤ δ̃
ρ2

2k + ρ2
2k+1

µ3
2k

, (53)

where
µ2k := min(σ2k, σ2k+1) (54)

and δ̃ := δmax(c, α). If x2k = ρ2k t2k for t2k ∈ S and x2k+1 = ρ2k+1t2k+1 for
t2k+1 ∈ S are sufficiently close to x∗ and σ(t2k) and σ(t2k+1) are bounded below by
a positive number, then x2k+2 satisfies

x2k+2 = 1

2
(1 − α

2
)g(x2k)+ O(‖x2k‖2).

The proof provides a single positive lower bound for σ(t2k) and σ(t2k+1) for all
subsequent iterates. Hence, 1

2

(
1 − α

2

)
g(x2k) is a first order approximation to the
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double step achieved by applying a Newton step followed by an overrelaxed Newton
step from x2k .

We introduce the following new parameters:

qα(s) := 1 − α/2

4
sin φ(s), for s ∈ N ∩ S, (55)

We define the angle φ̃α(s), for which 0 ≤ φ̃α(s) ≤ π/2, by the equality

sin φ̃α(s) := min

{
qα(s)

c/σ̂ (s)+ 1 − qα(s)
,

2δr̂(s)

(1 − qα(s))σ̂ 2(s)

}
, for s ∈ N ∩ S. (56)

We further define

ρ̃α(s) := (1 − α/2 − qα(s))σ̂ 3(s)

4δ̃
sin φ̃α(s) for s ∈ N ∩ S, (57)

Ws,α := {x = ρt | t ∈ S, cos−1(t T s) < φ̃α(s), 0 < ρ < ρ̃α(s)}, (58)

and
Is,α := {x = ρt | t ∈ S, cos−1(t T s) < φ(s), 0 < ρ < ρ̃α(s)}. (59)

It can be shown that Ws,α ⊆ Is,α ⊆ R̄. The starlike domain of convergence is defined
as follows:

Rα := {x = ρt | t ∈ S, 0 < ρ < rα(t)}, (60)

where

rα(t) := min

{
r̄(t),

σ 2(t)ρ̃α(s(t))

2δrb + cσ(t)+ σ 2(t)
,
‖g(t)‖σ 2(t)(1 − α/2) sin φ̃α(s(t))

8δ

}

(61)

and s(t) = g(t)/‖g(t)‖ ∈ N ∩ S.
As in Sect. 4, the angle between iterate xi = ρi ti and the null space N is denoted

by θi , while ψi (s0) denotes the angle between xi and s0 (41). The proof of Theorem 2
is by induction. The induction step consists of showing that if

ρ2k+ι < ρ̃α(s0), θ2k+ι < φ̃α(s0), and ψ2k+ι(s0) < φ(s0),

for ι ∈ {1, 2}, all k with 0 ≤ k < j , (62)

then

ρ2 j+ι < ρ̃α, θ2 j+ι < φ̃α(s0), and ψ2 j+ι(s0) < φ(s0) for ι ∈ {1, 2}. (63)

For all i = 1, 2, . . . , the third property in (62) and (63), ψi (s0) < φ(s0), implies that
σ(ti ) ≥ σ̂ (s0) > 0; see (20) and (43). By the first and third properties, the iterates
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remain in Is0,α . Since Is0,α ⊆ R̄, the bounds of Subsect. 4.3 together with (47) and
(49) are valid for our iterates.

The anchor step of the induction argument consists of showing that for x0 ∈ Rα ,
we have x1 ∈ Ws0,α and x2 ∈ Is0,α with θ2 < φ̃α . Indeed, these facts yield (62) for
j = 1.

The convergence rate claimed in the theorem is a byproduct of the proof of the
induction step.

6 Application to nonlinear complementarity problems

The nonlinear complementarity problem for the function f : R
n → R

n is as follows:
Find an x ∈ R

n such that

0 ≤ f (x), x ≥ 0, xT f (x) = 0. NCP( f )

Let x∗ be a solution of NCP( f ). We assume that f ′ is well defined and strongly
semismooth at x∗. We apply a nonlinear-equations reformulation to the NCP. We
do not standardize the resulting equations (as we did earlier in (8) to simplify the
discussions of Sects. 4 and 5), as the rescaling and shifting needed to enforce this
assumption would complicate this section considerably.

We tailor the convergence results of previous sections to this reformulation, interpret
the 2-regularity condition for the NCP( f ), and provide conditions under which the
starlike domain of convergence is “directionally dense” at the solution.

6.1 NCP notation

We use ei to denote the i th column of the identity matrix. The notation 〈·, ·〉 denotes
the inner product between two vectors. For any x ∈ R

n , we use diag x to denote the
R

n×n diagonal matrix formed from the components of x .
We define the inactive, biactive, and active index sets, α, β, and γ respectively, at

a solution x∗ of NCP( f ) as follows,

⎧⎨
⎩

i ∈ α, if x∗
i = 0, fi (x∗) > 0,

i ∈ β, if x∗
i = 0, fi (x∗) = 0,

i ∈ γ, if x∗
i > 0, fi (x∗) = 0.

For the vector function f and its derivatives, we give a sample of the notational
conventions used below. fγ (x∗) denotes the |γ |-vector whose components are fi (x∗),
i ∈ γ . We use f ′

i,γ (x
∗)to denote the vector in R

|γ | with elements d fi
dx j
(x∗), j ∈ γ ,

while f ′
γ,α(x

∗) denotes the matrix in R
|γ |×|α| whose elements are d fi

dx j
(x∗), for i ∈ γ

and j ∈ α. The notation f ′
γ (x

∗) represents the matrix in R
|γ |×n whose elements are

d fi
dx j
(x∗), for i ∈ γ and j = 1, 2, . . . , n.
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6.2 The nonlinear-equations reformulation

Recall the nonlinear-equations reformulation Ψ (7) of the NCP (1), and consider the
use of Newton’s method for solving Ψ (x) = 0. Taking the derivative of Ψ , we have

Ψ ′
i (x) = 2{( fi (x)− min(0, xi + fi (x)))ei

+ (xi − min(0, xi + fi (x))) f ′
i (x)}, for i = 1, 2, . . . , n. (64)

It can be seen that Ψ ′ is strongly semismooth when f ′ is strongly semismooth by
applying the following two facts: From [6, Proposition 7.4.4], the composition of
strongly semismooth functions is strongly semismooth, and from [6, Proposition 7.4.7],
every piecewise-affine map is strongly semismooth.

At the solution x∗, Ψ ′
i simplifies to

Ψ ′
i (x

∗) = 2{ fi (x
∗)ei + x∗

i f ′
i (x

∗)}.

By inspection, we have

⎧⎨
⎩
Ψ ′

i (x
∗) = 2 fi (x∗)ei , i ∈ α,

Ψ ′
i (x

∗) = 0, i ∈ β,
Ψ ′

i (x
∗) = 2x∗

i f ′
i (x

∗), i ∈ γ.

The null space of Ψ ′(x∗) (whose i th row is the transpose of Ψ ′
i ) is

N ≡ kerΨ ′(x∗) = {ξ ∈ R
n | f ′

γ (x
∗)ξ = 0, ξα = 0}, (65)

so that

dim N = dim ker f ′
γ,β∪γ (x∗).

In particular, if β �= ∅, then dim N > 0 and x∗ is a singular solution of Ψ (x) = 0.
The null space of Ψ ′(x∗)T is

N∗ = {ξ ∈ R
n | ξα = −(diag fα(x

∗))−1( f ′
γ,α(x

∗))T (diag x∗
γ )ξγ , (66)

f ′
γ,β∪γ (x∗)T (diag x∗

γ )ξγ = 0}.

If rank f ′
γ,β∪γ (x∗) = |γ |, then N∗ = {ξ ∈ R

n | ξα = 0, ξγ = 0}.
The 2-regularity condition (5) for Ψ at x∗ and d ∈ R

n is

(PN∗Ψ
′)′(x∗; d)|N is nonsingular. (67)

By direct calculation, we have

1

2
(Ψ ′)′i (x; d) = (〈 f ′

i (x), d〉 − ηi )ei + (di − ηi ) f ′
i (x)

+ (xi − min(0, xi + fi (x)))( f ′
i )

′(x; d),
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where ηi := min(0, xi + fi (x))′(x; d). We calculate this quantity using the result [6,
Proposition 3.1.6] for the composition of B-differentiable functions:

ηi =
⎧⎨
⎩

min(0, di + 〈 f ′
i (x), d〉), if xi + fi (x) = 0,

0, if xi + fi (x) > 0,
di + 〈 f ′

i (x), d〉, if xi + fi (x) < 0.

At a solution x∗, we have ηi = 0 for i ∈ α ∪ γ , and ηi = min(0, di + 〈 f ′
i (x

∗), d〉)
for i ∈ β. Hence, we have

1

2
(Ψ ′

i )
′(x∗; d) =

⎧⎪⎪⎨
⎪⎪⎩

〈 f ′
i (x

∗), d〉ei + di f ′
i (x

∗), i ∈ α,
(〈 f ′

i (x
∗), d〉 − min(0, di + 〈 f ′

i (x
∗), d〉))ei

+ (di − min(0, di + 〈 f ′
i (x

∗), d〉)) f ′
i (x

∗), i ∈ β,
〈 f ′

i (x
∗), d〉ei + di f ′

i (x
∗)+ x∗

i ( f ′
i )

′(x∗; d), i ∈ γ.
(68)

By noting that for any scalars s1, s2 we have

s1 − min(0, s2) = s1 + max(0,−s2) = max(s1, s1 − s2) = − min(−s1, s2 − s1),

we can rewrite (68) as follows

1

2
(Ψ ′

i )
′(x∗; d)=

⎧⎨
⎩

〈 f ′
i (x

∗), d〉ei + di f ′
i (x

∗), i ∈ α,
max(〈 f ′

i (x
∗), d〉,−di )ei −min(〈 f ′

i (x
∗), d〉,−di ) f ′

i (x
∗), i ∈ β,

〈 f ′
i (x

∗), d〉ei +di f ′
i (x

∗)+x∗
i ( f ′

i )
′(x∗; d), i ∈ γ.

(69)

Using the notation

r = rank f ′
γ,β∪γ (x∗),

we define an orthonormal matrix Z of dimension |γ |×r such that the columns of Z span
range f ′

γ,β∪γ (x∗), and another orthonormal matrix Z⊥ of dimensions |γ | × (|γ | − r)

such that the columns of Z⊥ span ker f ′
γ,β∪γ (x∗)T . Note that [Z | Z⊥] is an orthogonal

matrix of dimensions |γ |×|γ |. (The matrices Z and Z⊥ are not uniquely defined by the
conditions above, but the properties discussed below are independent of the particular
choices used).

In the remainder of this section, we often drop the argument x∗ from f and f ′, for
clarity.

Proposition 1 2-regularity (67) holds for d ∈ R
n at a solution x∗ of Ψ (x) = 0 if and

only if the matrix

⎡
⎢⎢⎢⎢⎣

[
eT

i

]
i∈α[

max(〈 f ′
i , d〉,−di )ei − min(〈 f ′

i , d〉,−di ) f ′
i

]T
i∈β

Z T f ′
γ

Z T⊥
[
( f ′

i )
′(x∗; d)+ (1/x∗

i )〈 f ′
i , d〉eT

i − f ′
i,αdiag (d j/ f j ) j∈α f ′

α

]
i∈γ

⎤
⎥⎥⎥⎥⎦ (70)
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is nonsingular. Further, for d ∈ N, 2-regularity holds if and only if the simpler matrix

⎡
⎢⎢⎢⎣

[
eT

i

]
i∈α[

max(〈 f ′
i , d〉,−di )ei − min(〈 f ′

i , d〉,−di ) f ′
i

]T
i∈β

Z T f ′
γ

Z T⊥( f ′
γ )

′(x∗; d)

⎤
⎥⎥⎥⎦ (71)

is nonsingular.

Proof The claim that (PN∗Ψ
′)′(x∗; d)|N is nonsingular for some d ∈ R

n (67) is
equivalent to

PN∗(Ψ
′)′(x∗; d)v = 0 and v ∈ N ⇒ v = 0.

For v ∈ N , we have from (65) and (69) that

1

2
(Ψ ′

i )
′(x∗; d)v =

⎧⎨
⎩

di 〈 f ′
i , v〉, i ∈ α

max(〈 f ′
i , d〉,−di )vi − min(〈 f ′

i , d〉,−di )〈 f ′
i , v〉, i ∈ β

〈 f ′
i , d〉vi + x∗

i 〈( f ′
i )

′(x∗; d), v〉, i ∈ γ.
(72)

Since N∗ is defined in (66) to have the form {ξ ∈ R
n | Aξ = 0} for some matrix A,

we have that PN∗w = 0 if and only if w = AT z for some z. In our case, we have

1

2
(Ψ ′)′(x∗; d)v =

⎡
⎣ diag fα 0 0

0 0 0
(diag x∗

γ ) f ′
γ,α (diag x∗

γ ) f ′
γ,β (diag x∗

γ ) f ′
γ,γ

⎤
⎦

⎡
⎣zα

zβ
zγ

⎤
⎦ , (73)

for some z ∈ R
n . By matching components from this expression and (72), we have

that PN∗(Ψ
′)′(x∗; d)v = 0 if for some z ∈ R

n we have

di 〈 f ′
i , v〉= zi fi , i ∈ α,

max(〈 f ′
i , d〉,−di )vi −min(〈 f ′

i , d〉,−di )〈 f ′
i , v〉=0, i ∈ β,

〈 f ′
i , d〉vi +x∗

i 〈( f ′
i )

′(x∗; d), v〉= x∗
i

[
〈 f ′

i,α, zα〉 + 〈 f ′
i,β , zβ〉 + 〈 f ′

i,γ , zγ 〉
]
, i ∈ γ.

Rearranging the first equation above yields an expression for zα , which can be substi-
tuted into the third equation to give the following:

0 = max(〈 f ′
i , d〉,−di )vi − min(〈 f ′

i , d〉,−di )〈 f ′
i , v〉, i ∈ β, (74a)

〈 f ′
i , d〉vi + x∗

i 〈( f ′
i )

′(x∗; d), v〉 − x∗
i 〈 f ′

i,α, diag
(
d j/ f j

)
j∈α f ′

αv〉
= x∗

i

[
f ′
i,β zβ + f ′

i,γ zγ
]
, i ∈ γ. (74b)
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Using the definition of Z , we can rewrite (74b) as follows:

[
(1/x∗

i )〈 f ′
i , d〉vi + 〈( f ′

i )
′(x∗; d), v〉 − 〈 f ′

i,α, diag
(
d j/ f j

)
j∈α f ′

αv〉
]

i∈γ = Zt,

for some t ∈ R
r , so that

Z T⊥
[
(1/x∗

i )〈 f ′
i , d〉eT

i + ( f ′
i )

′(x∗; d)− f ′
i,α, diag (d j/ f j ) j∈α f ′

α

]
i∈γ v = 0. (75)

Since v ∈ N , we have from (65) that

vα = 0, f ′
γ v = 0. (76)

The second condition of (76) is equivalent to

[
Z T

Z T⊥

]
f ′
γ v =

[
Z T

Z T⊥

] [
f ′
γ,α f ′

γ,β f ′
γ,γ

]
v = 0. (77)

Because

Z T⊥
[

f ′
γ,α f ′

γ,β f ′
γ,γ

]
v = [

Z T⊥ f ′
γ,α 0 0

]
v = Z T⊥ f ′

γ,αvα

and vα = 0, the second block row in the system (77) does not add any information
and can be dropped. Hence, we can write (76) equivalently as

vα = 0, Z T f ′
γ v = 0. (78)

By gathering the conditions equivalent to v ∈ N and PN∗(Ψ
′)′(x∗; d)v = 0, namely,

(74a), (75), and (78), we have

⎡
⎢⎢⎢⎢⎣

[
eT

i

]
i∈α[

max(〈 f ′
i , d〉,−di )ei − min(〈 f ′

i , d〉,−di ) f ′
i

]T
i∈β

Z T f ′
γ

Z T⊥
[
( f ′

i )
′(x∗; d)+ (1/x∗

i )〈 f ′
i , d〉eT

i − f ′
i,αdiag (d j/ f j ) j∈α f ′

α

]
i∈γ

⎤
⎥⎥⎥⎥⎦ v = 0,

from which we deduce that v = 0 whenever the coefficient matrix in this expression
is nonsingular. Hence x∗ is 2-regular for Ψ with respect to d ∈ R

n if the matrix (70)
is nonsingular. For d ∈ N , we have by the definition of N (65) that 〈 f ′

i , d〉 = 0 for
i ∈ γ and dα = 0. Upon applying these simplifications to the above matrix, we have
precisely the matrix (71). ��

Recall from Definition 6 that Ψ (7) is 21-regular at x∗ if (PN∗Ψ
′)′(x∗; d)|N is

nonsingular for some d in N , that is, if the matrix (71) is nonsingular for some d ∈ N .
The following theorem specializes Theorems 1 and 2 for applying Newton’s method
to the nonlinear-equations reformulation Ψ (x) of NCP( f ).

123



Newton’s method for nonlinear equations with semismooth Jacobian 377

Theorem 3 Consider a solution x∗ of NCP( f ) for f : R
n → R

n with f ′ strongly
semismooth at x∗. Suppose that x∗ is a singular solution in the sense that N =
ker f ′

γ,β∪γ (x∗) is nontrivial. Suppose also that the matrix (71) is nonsingular for
some d ∈ N. Then there exists a starlike domain R about x∗, such that, if Newton’s
method for the nonlinear-equations reformulation Ψ (x) is initialized at any x0 ∈ R,
the iterates converge linearly to x∗ with rate 1/2. Furthermore, if Newton’s method is
accelerated according to (45) and (46) for some α ∈ [1, 2), then there exists a starlike
domain Rα ⊆ R about x∗, such that if x0 ∈ Rα then the accelerated iterates {xi } for
i = 0, 1, 2, . . . , converge linearly to x∗ and

lim
j→∞

‖x2 j+2 − x∗‖
‖x2 j − x∗‖ = 1

2

(
1 − α

2

)
.

6.3 2-regularity conditions for special cases of the NCP

In this section we show that the regularity conditions (70) and (71) simplify to more
familiar regularity conditions in special cases of the NCP.

Nondegenerate NCP. Consider the case of nondegenerate NCP. We obtain a simpler
regularity condition, related to 2-regularity for nonlinear equations, that ensures that
2-regularity holds for some d ∈ N , and hence that the conditions of Theorem 3 are
satisfied.

Theorem 4 Suppose that β = ∅. Then the NCP satisfies 21-regularity at the solution
x∗ if and only if

P
N f∗γ
( f ′
γ,γ )

′(x∗; d)|
N f
γ

(79)

is nonsingular for d ∈ N, where

N f
γ = {ξγ ∈ R

|γ | | f ′
γ,γ ξγ = 0}, N f∗γ = {ξγ ∈ R

|γ | | ( f ′
γ,γ )

T ξγ = 0}.

Proof Let the orthonormal matrices Z⊥ and Z be as in (71), and define two additional
orthonormal matrices Z̄ and Z̄⊥ such that the columns of Z̄⊥ span ker f ′

γ,γ (and hence

the space N f
γ ), the columns of Z̄ span range ( f ′

γ,γ )
T , and

[
Z̄ | Z̄⊥

]
is orthogonal. We

have Z̄ ∈ R
|γ |×r and Z̄⊥ ∈ R

|γ |×(|γ |−r). Specializing 2-regularity for d ∈ N (71) to
the case of β = ∅, we have that 21-regularity is equivalent to nonsingularity of the
following matrix for some d ∈ N :

⎡
⎣

[
eT

i

]
i∈α

Z T
[

f ′
γ,α(x

∗) f ′
γ,γ (x

∗)
]

Z T⊥( f ′
γ )

′(x∗; d)

⎤
⎦

[
Iα 0
0

[
Z̄ Z̄⊥

]
]
,

where Iα is the identity matrix of dimension |α|. By forming the matrix product, we
find that it is block lower triangular. Therefore, nonsingularity of the matrix product
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is equivalent to nonsingularity of the three (square) diagonal blocks, which are

Iα, Z T f ′
γ,γ (x

∗)Z̄ , Z T⊥( f ′
γ,γ )

′(x∗; d)Z̄⊥,

which have dimensions |α|, r , and |γ |−r , respectively. It is easy to see that Z T f ′
γ,γ (x

∗)
Z̄ is nonsingular by the definition of Z and Z̄ . Since the columns of Z⊥, as defined
earlier, must span the subspace N f∗γ , and since the columns of Z̄⊥ span the subspace

N f
γ , nonsingularity of Z T⊥( f ′

γ,γ )
′(x∗; d)Z̄⊥ is equivalent to condition (79). ��

Nonlinear equations. We now consider the case in which α = β = ∅, so that the
NCP reduces essentially to a system of nonlinear equations f (x) = 0 whose solution
is at x = x∗. In the nondegenerate case in which f ′

γ,γ (x
∗) ≡ f ′(x∗) has full rank n,

we have from definition (65) that N = {0}, so that x∗ is a nonsingular solution and
Theorem 3 does not apply. Therefore, suppose that f ′(x∗) has rank less than n and
α = β = ∅—essentially the case of singular nonlinear equations. By specializing the
discussion of nondegenerate NCP, we have from the definitions in Theorem 4 that

N f = ker f ′(x∗), N f∗ = ker f ′(x∗)T ,

where we have dropped the subscript γ . Hence, 2-regularity is satisfied for some d ∈ N
if

P
N f∗
( f ′)′(x∗; d)|N f is nonsingular for some d ∈ N .

This is the 21-regularity condition for nonlinear equations (Definition 6).

NCP with a modified weak regularity condition. We now consider another special
case in which we remove the condition β = ∅ and assume that the matrix f ′

γ,β∪γ (x∗)
has full rank. This assumption is similar to the weak regularity condition of Daryina
et al. [1], which is a full-rank assumption on f ′

β∪γ,γ (x∗). (The two assumptions are
identical when β = ∅ or f ′ is symmetric, as is the case when f is the gradient of a
scalar function).

Theorem 5 If for d ∈ R
n the set of n vectors in R

n

{ei }i∈α ∪ { f ′
i (x

∗)}i∈γ ∪ {〈 f ′
i (x

∗), d〉ei + di f ′
i (x

∗)}i∈β1

∪ {〈 f ′
i (x

∗), d〉 f ′
i (x

∗)+ di ei }i∈β2 , (80)

where β1 := β1(d) and β2 := β2(d), with

β1(d) := {i ∈ β | 〈 f ′
i (x

∗), d〉 > −di }, (81a)

β2(d) := {i ∈ β | 〈 f ′
i (x

∗), d〉 ≤ −di }, (81b)

123



Newton’s method for nonlinear equations with semismooth Jacobian 379

is linearly independent, then 2-regularity (70) is satisfied by the NCP at x∗ for d ∈ R
n.

Conversely, if f ′
γ,β∪γ (x∗) has full rank and 2-regularity holds for d ∈ R

n at x∗, then
the set of vectors (80) is linearly independent.

Proof Observe that if f ′
γ,β∪γ (x∗) has full rank, we can set Z = I and Z⊥ null, so the

matrix in (70) reduces to

⎡
⎢⎣

[
eT

i

]
i∈α[

max(〈 f ′
i (x

∗), d〉,−di )ei − min(〈 f ′
i (x

∗), d〉,−di ) f ′
i (x

∗)
]T

i∈β
f ′
γ (x

∗)

⎤
⎥⎦ .

By partitioning the index set β according to (81), we see that nonsingularity of this
matrix is equivalent to linear independence of the vectors (80). ��

As discussed at the end of Sect. 4, 2-regularity for almost every d ∈ R
n is nec-

essary for “directional denseness” of the starlike domain of convergence. According
to Theorem 5, it is sufficient to require linear independence of the vectors (80) for
the partition (β1, β2) of β defined in (81) for almost every d ∈ R

n . This condition is
similar to the quasi-regularity condition of Izmailov and Solodov [12, Definition 4.1],
which requires linear independence of the vectors (80) for every partition (β1, β2) of
β for some fixed d ∈ R

n .

6.4 “Directional denseness” of the starlike domain

In this subsection, we give sufficient conditions for the starlike domain of convergence
R (31) (or Rα (60)), to be “directionally dense” at the solution x∗ in terms of f .

Definition 8 A starlike domain R about x∗ ∈ R
n is directionally dense at x∗ if for

almost every t ∈ S,

there exists Ct > 0 such that x = x∗ + ρt ∈ R for all ρ ∈ (0,Ct ). (82)

A direction t satisfies (82) if and only if t is not an excluded direction, as defined in
Sect. 2.

We recall the characterization of the excluded directions of R from (33): A direction
t ∈ S is excluded if and only if one of the following is true:

t ∈ Π−1
0 (0), g(t) = 0, or g(t)/‖g(t)‖ ∈ Π−1

0 (0). (83)

The first condition of (83) fails if Ψ satisfies the 2-regularity condition (67) for t ,
and the third condition of (83) fails if Ψ satisfies the 2-regularity condition (67) for
g(t)/‖g(t)‖. Applying Proposition 1 and noting that range g = N , the first condition
of (83) fails if the matrix (70) is nonsingular for d = t and the third condition of (83)
fails if the simpler matrix (71) is nonsingular for d = g(t)/‖g(t)‖.

Now consider the second condition of (83). For x ∈ R
n with Π0(x − x∗) �= 0

and ‖x − x∗‖ sufficiently small, recall from (30) that the Newton iterate from x is
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x∗ + 1
2 g(x − x∗) + O(‖x − x∗‖2), where g : (Rn \ Π−1

0 (0)) → N ⊆ R
n is the

positively homogeneous vector defined by

g(x − x∗) = ρg(t) = PN (x − x∗)
+ ((PN∗Ψ

′)′(x∗; t)|N )
−1(PN∗Ψ

′)′(x∗; t)|N⊥ PN⊥(x − x∗), (84)

for x = x∗ + ρt , ρ = ‖x − x∗‖, and t ∈ S. As in (34), we have

g(d) = 0 ⇔ (PN∗Ψ
′)′(x∗; d)d = 0, for d ∈ R

n \Π−1
0 (0). (85)

From (69), dividing the set β into β1(d) and β2(d) (81) for d ∈ R
n , we have

1

2
(Ψ ′

i )
′(x∗; d)d =

⎧⎪⎪⎨
⎪⎪⎩

2di 〈 f ′
i (x

∗), d〉, i ∈ α,
2di 〈 f ′

i (x
∗), d〉, i ∈ β1(d),

−d2
i − 〈 f ′

i (x
∗), d〉2, i ∈ β2(d),

2di 〈 f ′
i (x

∗), d〉 + x∗
i 〈( f ′

i )
′(x∗; d), d〉, i ∈ γ.

(86)

To express (PN∗Ψ
′)′(x∗; d)d = 0 in terms of f , we recall from the proof of Propo-

sition 1 that PN∗w = 0 if and only if w = AT z for some z ∈ R
n , where AT z is the

right-hand side of (73). That is, (PN∗Ψ
′)′(x∗; d)d = 0 for d ∈ R

n if and only if there
is some z ∈ R

n for which

2di 〈 f ′
i (x

∗), d〉 = fi zi , i ∈ α, (87a)

2di 〈 f ′
i (x

∗), d〉 = 0, i ∈ β1(d), (87b)

d2
i + 〈 f ′

i (x
∗), d〉2 = 0, i ∈ β2(d), (87c)

2di 〈 f ′
i (x

∗), d〉 + x∗
i 〈( f ′

i )
′(x∗; d), d〉 = x∗

i 〈 f ′
i , z〉, i ∈ γ. (87d)

Thus, if t ∈ R
n \Π−1

0 (0) and (87) has no solution z for t = d, then g(t) �= 0 and the
second condition of (83) fails. In fact, it seems quite likely that (87) has no solution
z ∈ R

n for most d ∈ R
n . If β �= ∅ and f ′

i �= 0 for every i ∈ β, then (87b) and (87c)
fail almost surely. This is because, for any d ∈ R

n , di is almost surely nonzero for
i = 1, 2, . . . , n, and, if f ′

i �= 0 for every i ∈ β, then 〈 f ′
i , d〉 is almost surely nonzero

for i ∈ β. If β = ∅, the conditions (87) can be simplified as follows. Solving (87a)
for zα and substituting zα into (87d), we find that a solution of (87) requires some
zγ ∈ R

|γ | that solves

2diag (di/x∗
i )〈 f ′

i (x
∗), d〉 + 〈( f ′

i )
′(x∗; d), d〉 − 〈 f ′

i,α(x
∗), zα〉 (88)

= 〈 f ′
i,γ (x

∗), zγ 〉, all i ∈ γ .

Equation (88) is solvable only if the left-hand side, which is an element of R
|γ |,

lies in the subspace spanned by range f ′
γ,γ (x

∗) as is required by the right-hand side.
Since, by assumption, the (left) null space N∗ is nontrivial, we have from (66) that
ker( f ′

γ,γ (x
∗))T is nontrivial. Hence, the complementary space range f ′

γ,γ (x
∗) must
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be a strict subspace of R
|γ |. It seems likely that this containment will typically fail for

almost all directions d ∈ R
n .

In summary, the starlike domain of convergence R is directionally dense at the
solution x∗ if (1) nonsingularity of (70) holds for almost every d = t ∈ S, (2) for
almost every d ∈ R

n , the system of equations (87) fails to have a solution z ∈ R
n ,

and (3) nonsingularity of (71) holds for almost every d = g(t)/‖g(t)‖ with t ∈ S.
Conditions (1) and (2) involve only the NCP function f , while condition (3) involves
Ψ through the definition of g. If we assume that N ∩Π−1

0 (0) = {0}, then condition
(3) is trivially satisfied because range g = N . The assumption N ∩ Π−1

0 (0) = {0}
appears in Sect. 1 under the name 2∀-regularity (Definition 4). As discussed in Sect. 1,
2∀-regularity is a strong form of 2-regularity which, in particular, implies isolation
of the solution. However, this assumption allows us to write the conditions ensuring
directional denseness of the starlike domain of convergence entirely in terms of f , as
we now state formally.

Theorem 6 Consider a solution x∗ of NCP( f ) for f : R
n → R

n with f ′ strongly
semismooth at x∗. Suppose that x∗ is a singular solution in the sense that N =
ker f ′

γ,β∪γ (x∗) is nontrivial. The starlike domain of convergence R for Newton’s
method (orRα forα ∈ [1, 2) for the 2-step accelerated Newton’s method (45) and (46))
applied to the nonlinear-equations reformulation Ψ (x) of NCP( f ) is directionally
dense if the following conditions hold:

(i) the matrix (70) is nonsingular for almost every d ∈ R
n,

(ii) the system of equations (87) has no solution z ∈ R
n for almost every d ∈ R

n,
and

(iii) the matrix (71) is nonsingular for every d ∈ N \ {0}.

7 Numerical results on simple NCPs

We describe here some computational results obtained from a simple test set of NCPs
of small dimension, defined in Appendix A. Properties of the problems are shown
in Table 1. If the problem has more than one default starting point/solution pair, a
numerical code is appended to the problem name. (These starting points and solutions
are listed in Table 2.) The convergence rate shown in Table 1 is for Newton’s method
with unit step length. We also tabulate the sizes of the sets α, β, and γ , and the
satisfaction of various rank and regularity properties at the solution in question. (2T -
regularity is defined in Definition 7, and 2ae-regularity in Definition 5. For a definition
of b-regularity, see [6, Definition 3.3.10].)

The solutions of our test problems are all isolated except for the solution x∗ = (0, 1)
of the problems affknot1 and quadknot. 2T -regularity fails at this solution for both of
these problems, consistently with the fact that 2T -regularity is sufficient for isolation.
The 2ae-regularity condition holds for quadknot at x∗ = (0, 1) and, as suggested by
our theory, Newton’s method converges from arbitrary, nearby starting points to this
solution. For affknot1, 2ae-regularity fails at x∗ = (0, 1), and we observe convergence
to this solution only from points x0 for which the projection of x0 − x∗ onto the null
space N (65) gives a direction for which 2-regularity holds. Specifically, for affknot1,
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Table 1 Convergence rate of Newton’s method onΨ for the simple NCP test problems, showing regularity
properties

Problem, s.p. n dim N cgce rate |α| |β| |γ | full rank regularity

f ′
γ,γ f ′

γ,β∪γ b 2T 2ae

quarp, 1 1 0 suplin 1 0 0 — — • — —

aff1 2 0 suplin 1 0 1 • • • — —

DIS61, 2 2 0 suplin 1 0 1 • • • — —

quarquad, 1 2 1 1/2 0 1 1 • • • • •
affknot1 2 1 1/2 0 1 1 •
affknot2 2 1 1/2 0 1 1 • • • • •
quadknot 2 2 1/2 0 1 1 •
munson4 2 2 1/2 0 0 2 • •
DIS61, 1 2 2 1/2 0 1 1 • •
DIS64 2 2 1/2 0 2 0 — — • • •
ne-hard 3 2 1/2 0 2 1 • • •
doubleknot 4 2 1/2 0 2 2 • • • • •
quad1,1 2 1 1/2 0 1 1 • •
quad2,1 2 2 1/2 0 2 0

quad1,2 2 1 2/3 0 1 1 • •
quad2,2 2 2 2/3 0 2 0

quarquad, 2 2 1 3/4 1 0 1

quarp, 2 1 1 3/4 0 0 1

quarn 1 1 3/4 0 0 1

• = property satisfied, blank = property not satisfied, — = property not applicable

we have N = {δe2 | δ ∈ R}, and 2-regularity along d = δe2 fails if δ ≥ 0 and holds
if δ < 0. Accordingly, Newton’s method converges to x∗ = (0, 1) with rate 1/2
from starting points x0 = (x1

0 , x2
0 ) with x2

0 < 1, while if x2
0 > 1, Newton’s method

converges in one step to the solution (0, x2
0 ).

Only affknot1, quad1, and quad2 satisfy 2-regularity on a set of directions in N
(or R

n) having measure that is positive but less than 1. For affknot1, 2-regularity holds
for half of the directions in N but almost every direction in R

n . The problems quad1
and quad2 satisfy 2-regularity for half of the directions in both N and R

n . As a result,
convergence to the solutions of these problems occurs with two different rates. The first
starting points for quad1 and quad2 in Table 1 demonstrate convergence along a direc-
tion satisfying 2-regularity with rate 1/2, while the second starting points demonstrate
convergence along a direction failing 2-regularity with slower convergence rate.

All problems but quarquad2, quarp,2, and quarn satisfy 2-regularity (67) for some
d ∈ R

n . Further, most of the problems also satisfy 2-regularity for almost every
d ∈ R

n ; only the problems failing 2ae-regularity, except for affknot1, fail to be 2-
regular for almost every d ∈ R

n .
In Table 3, we report the numbers of iterations required for local convergence of

Newton’s method and the Accelerated Newton method of Sect. 5 for the subset of
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Table 2 Performance of accelerated Newton method (with α = 1.9) for the NCP test problems for which
the convergence rate of pure Newton is linear with factor 1/2

problem, starting point Newton iters Accel Newton iters Accel phase iters

quarquad,1 16 10 5

affknot1 20 10 7

affknot2 19 10 5

quadknot 18 8 5

munson4 19 12 4

DIS61, 1 19 12 5

DIS64 21 11 7

ne-hard 25 19 5

doubleknot 22 14 5

quad1, 1 15 9 4

quad2, 1 20 13 5

We show iterations for the pure Newton method, iterations for accelerated Newton method, and the iterations
required by the accelerated Newton method in the accelerated phase, after a convergence rate of 1/2 had
been detected in the pure Newton method

Simple NCP test problems and starting points giving convergence rates for Newton’s
method of 1/2. This is the subset of problems with a nontrivial null space N for which
2ae-regularity may hold. (In fact, affknot1, quad1,1, and quad2,1 have convergence
rates of 1/2 for Newton’s method but do not satisfy 2ae-regularity. Despite the absence
of 2ae-regularity, the acceleration technique of Sect. 5 hastens the convergence.) We
detect linear convergence at a rate of 1/2 by applying the following tests to successive
Newton steps pi :

∣∣∣∣ ‖pi‖
‖pi−1‖ − ‖pi−1‖

‖pi−2‖
∣∣∣∣ < cCauchy and

∣∣∣∣ ‖pi‖
‖pi−1‖ − 1

2

∣∣∣∣ < cLinear

with cCauchy = .005 and cLinear = .01. If both tests are satisfied at iteration
i , we scale the next step pi+1 (and every second step thereafter) by the acceleration
factor α = 1.9. Convergence is declared when ‖Ψ (x)‖ ≤ 10−11.

The final column of Table 3 shows the number of steps taken in the “accelerated
phase,” following detection of a linear convergence rate in the pure Newton method.
Note that the accelerated phase was present for all problem instances and that the
number of steps taken in this phase is similar for all problems. For α = 1.9, the
convergence rate in the accelerated phase predicted by Theorem 2 was observed for
all problems.

Appendix A: Simple NCP test set—problem descriptions

Below we list the simple NCP test problems, their solutions, and the corresponding
starting points used to initialize Newton’s method. A solution is any x satisfying

0 ≤ x ⊥ f (x) ≥ 0,
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and we denote such x by x∗. Table 3 lists the starting point x0 that was used for each
solution x∗.

1. quarp

f (x) = (1 − x)4

2. aff1

f (x) =
[

x1 + 2x2
x2 − 1

]

3. DIS61 ([1, Example 6.1])

f (x) =
[

(x1 − 1)2

x1 + x2 + x2
2 − 1

]

4. quarquad

f (x) =
[−(1 − x1)

4 + x2

1 − x2
2

]

5. affknot1

f (x) =
[

x2 − 1
x1

]

6. affknot2

f (x) =
[

x2 − 1
x1 + x2 − 1

]

7. quadknot

f (x) =
[

x2 − 1
x2

1

]

8. munson4 (from MCPLIB [17])

f (x) =
[−(x2 − 1)2

−(x1 − 1)2

]

9. DIS64 ([1, Example 6.4])

f (x) =
[−x1 + x2

−x2

]
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Table 3 Starting point/Solution pairs

Problem, s.p. x0 x∗

quarp, 1 0.1 0

aff1 (0.1, 0.9) (0,1)

DIS61, 2 (0.2, 0.85) (0, (
√

5 − 1)/2)

quarquad, 1 (0.1, 0.9) (0, 1)

affknot1 (0.9, 0.1) (0, 1)∗
affknot2 (0.5, 0.5) (0, 1)

quadknot (0.5, 0.5) (0, 1)∗
munson4 (0, 0) (1, 1)

DIS61, 1 (1.5, −0.5) (1, 0)

DIS64 (2, 4) (0, 0)

ne-hard (10, 1, 10) (0, 0,
√

200)

doubleknot (0.5, 0.5, 0.5, 0.5) (1, 0, 0, 1)

quad1, 1 (0.9, −0.1) (1, 0)

quad2, 1 (−1, −1) (0, 0)

quad1, 2 (0.9, 0.1) (1, 0)

quad2, 2 (1, 1) (0, 0)

quarquad, 2 (0.9, 0.1) (1, 0)

quarp, 2 0.9 1

quarn 0.9 1
∗Full solution set is (0, δ) for δ ≥ 1

10. ne-hard (from MCPLIB [17])

f (x) =
⎡
⎣ sin x1 + x2

1
x3

2 + x1x3

x2
3 − 200 + x1x2

⎤
⎦

11. doubleknot

f (x) =

⎡
⎢⎢⎣

1 − x1 + x2 + x3
x1 − 1
x4 − 1

1 + x3 − x4

⎤
⎥⎥⎦

12. quad1

f (x) =
[

x1 − 1
x2

2

]
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13. quad2

f (x) =
[

x2
1

x2

]

14. quarn

f (x) = −(1 − x)4
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