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164 F. Facchinei et al.

1 Introduction

In this paper we consider the Generalized Nash Equilibrium Problem (GNEP for
short). The GNEP extends the classical Nash equilibrium problem by assuming that
each player’s feasible set can depend on the rival players’ strategies. There are N
players, and each player ν controls the variables xν ∈ R

nν . We denote by x the vector
formed by all these decision variables

x :=
⎛
⎝

x1
...

x N

⎞
⎠ ,

which has dimension n := ∑N
ν=1 nν and by x−ν the vector formed by all the players’

decision variables except those of player ν. To emphasize the ν-th player’s variables
within x we sometimes write (xν, x−ν) instead of x. As a general mnemonic rule we
note that if a denotes a vector attached to a single player, we denote by a the vector
comprising the a of all (or of a certain subset of) the players.

Each player’s strategy must belong to a set Xν(x−ν) ⊆ R
nν that depends on the

rival players’ strategies. The aim of player ν, given the other players’ strategies x−ν ,
is to choose a strategy xν that solves the minimization problem

minimizexν θν(xν, x−ν) subject to xν ∈ Xν(x−ν), (1)

where −θν is often called payoff function of player ν. For any x−ν , the solution set
of problem (1) is denoted by Sν(x−ν). The GNEP is the problem of finding a vector
x̄ such that

x̄ν ∈ Sν(x̄−ν) for all ν.

Such a point x̄ is called a (generalized) Nash equilibrium or, more simply, a solution
of the GNEP.

There are many interesting issues related to this kind of problem, some arising
from its mathematical challenges some from its typical applications. When GNEPs
are used to establish “behavioral rules” for example, modelers often want the solution
to be unique, so that the study of this problem has an important role, even if unique-
ness is a very strong condition. When a manifold of solutions exists, one might be
interested in computing a selection of solutions that in some sense approximates the
set of all solutions. In other applications it can be important to find a solution that
satisfies additional, desirable properties. For example, in some cases it is sensible to
look for a “normalized equilibrium” (see for example Sect. 3.2 and [18]). In other
cases a more general approach can be envisaged where a Mathematical Program with
Equilibrium Constraints may allow the modeler to find a generalized Nash equilibrium
that minimizes a certain additional criterion.

The main aim of this paper is algorithmic. We focus on the study of several Newton
methods for the computation of one generalized Nash equilibrium (of possibly infi-
nitely many existing ones). Using the Karush–Kuhn–Tucker (KKT) systems for the
player’s optimization problems, one can show that a necessary condition for a point
x to be a solution of the GNEP is that it satisfies, together with suitable multipliers,
a structured mixed complementarity problem. To this system we apply appropriate
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Generalized Nash equilibrium problems and Newton methods 165

semismooth Newton-type methods requiring, at each iteration, the solution of a linear
system of equations. In spite of the many similarities to optimization/variational
inequalities (VI) problems, the GNEP presents challenging peculiarities that make
its analysis especially demanding. The natural extension of standard conditions and
assumptions normally used in optimization/VI theory may turn out to be inappropriate
in many cases and care must be exercised so that realistic assumptions are made in
dealing with GNEPs. For example, in large and interesting classes of GNEP local
uniqueness of the solutions is not likely to be encountered. Therefore, classical condi-
tions and techniques for the development of Newton methods must be abandoned in
favor of more sophisticated ones. We not only develop a local convergence theory
for several cases of the GNEP, but also identify specific structures that are likely to
occur in GNEPs and analyze their properties and peculiarities. We hope that this study
of a largely uncharted territory may be useful to other researchers and will stimulate
further interest in GNEPs.

Since Arrow and Debreu’s 1954 classical paper [1] on the existence of equilibria
for a competitive economy, GNEPs have been the subject of a constant if not intense
interest. There have been further studies on existence [2,22,30], and connections to
quasi-variational inequalities have been highlighted [3,18]. Furthermore the GNEP
has been used to model a host of interesting problems arising in economy and, more
recently, computer science, telecommunications, and deregulated markets. However,
probably due to the daunting difficulty of the problem, advancements on the algorith-
mic side have been rather scarce, and essentially only amount to the development
of the so-called relaxation algorithm (see [4,21,31]) based on the Nikaido–Isoda
function [24].

With a few notable exceptions (see [18,28,29]), the interest of the mathematical
programming community in generalized Nash equilibrium problems is recent, see
[14,17,25,26], and stems principally from the desire to attack some very hard pro-
blems describing complex competition situations, especially in the energy markets,
see for example [5,6,8,17] and references therein. In turn, the development of effi-
cient numerical methods for this kind of problems rests on recent advancements in the
study of variational inequalities, semismooth methods, and mathematical programs
with equilibrium constraints.

The paper is organized as follows. In the next section we recall some preliminary and
basic facts and definitions. In Sect. 3 three approaches to the development of Newton
methods for the solution of the GNEP are described, i.e., we discuss the setting in which
each method can be applied and introduce the required assumptions. The latter are
discussed and compared in detail in Sect. 4. Finally, in Sect. 5 we illustrate the various
methods and conditions on an interesting application coming from computer science.

For a continuously differentiable function H : R
s → R

s the Jacobian of H at
y ∈ R

s is denoted by J H(y) and its transposed by ∇H(y). Throughout the paper ‖ ·‖
denotes the Euclidean norm and B(y, δ) the closed Euclidean ball with center y and
radius δ. For a nonempty set Ω ⊆ R

s the Euclidean distance of y to Ω is defined by
dist[y,Ω] := inf z∈Ω ‖z − y‖. Let M = (Mi j ) be an s × s matrix. Then, for index sets
I, J ⊆ {1, . . . s}, MI,J denotes the |I | × |J | submatrix of M consisting of elements
Mi j , i ∈ I , j ∈ J . For w ∈ R

s , wJ is the subvector with components w j , j ∈ J . Is
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166 F. Facchinei et al.

denotes the s × s identity matrix, whereas 0s is the s × s matrix and 0s×t the s × t
matrix with zero entries only.

2 Basic facts, definitions and assumptions

In this section we will introduce a system that is naturally associated with the GNEP and
discuss the relations between these two problems. This system is then reformulated as a
nonsmooth system of equations, and this will be the basis of many of the developments
in the paper.

In practical applications the feasible set Xν(x−ν) of player ν is defined by a finite
number of constraints. Let gν : R

n → R
mν denote the constraint mapping associated

with player ν (where we recall that n = ∑N
ν=1 nν), the feasible set of player ν is then

given by
Xν(x−ν) := { xν ∈ R

nν : gν(xν, x−ν) ≤ 0 }, (2)

where gν(x) ≤ 0 is understood componentwise. We denote by m the total number
of constraints in the GNEP, i.e., m := ∑N

ν=1 mν . Throughout the paper we make the
following blanket assumption:

Smoothness assumption. For each ν = 1, . . . , N the functions θν : R
n → R and

gν : R
n → R

mν are twice differentiable with locally Lipschitz continuous second
order derivatives.

Remark 1 If the local Lipschitz continuity of the second order derivatives is repla-
ced by their simple continuity, the convergence results in the paper still hold with
superlinear convergence instead of a quadratic rate.

Suppose that x̄ is a solution of the GNEP. Then, if for player ν a suitable constraint
qualification holds (for example the Mangasarian–Fromovitz or the Slater constraint
qualification), there is a vector λ̄ν ∈ R

mν of multipliers so that the classical KKT
conditions

∇xν Lν(xν, x̄−ν, λν) = 0

0 ≤ λν ⊥ −gν(xν, x̄−ν) ≥ 0

are satisfied by (x̄ν, λ̄ν), where Lν(x, λν) := θν(x) + gν(x)	λν is the Lagrangian
associated with the ν-th player’s optimization problem. Concatenating these N KKT
systems, we obtain that if x̄ is a solution of the GNEP and if a suitable constraint
qualification holds for all players, then a multiplier λ̄ ∈ R

m exists that together with
x̄ satisfies the system

L(x,λ) = 0

0 ≤ λ ⊥ −g(x) ≥ 0,
(3)

where

λ :=
⎛
⎜⎝

λ1

...

λN

⎞
⎟⎠ , g(x) :=

⎛
⎜⎝

g1(x)
...

gN (x)

⎞
⎟⎠ , and L(x,λ) :=

⎛
⎜⎝

∇x1 L1(x, λ1)
...

∇x N L N (x, λN )

⎞
⎟⎠ .
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For simplicity no distinction will be made between

z := (x,λ) and

(
x
λ

)
.

Moreover, we indicate by Z the set of all solutions of system (3).
Under a suitable constraint qualification system (3) can be regarded as a first order

necessary condition for the GNEP and indeed system (3) is akin to a KKT system.
However, its structure is different from that of a classical KKT system. Under further
convexity assumptions it can be easily seen that the x-part of a solution of system
(3) solves the GNEP so that (3) then turns out to be a sufficient condition as well. To
formulate this result we first introduce some further terminology. Let fν : R

n → R

be a function attached to player ν and depending on all players’ variables. We say that
fν is player convex if, for every fixed x−ν , the function fν(·, x−ν) is convex in xν . If,
instead, fν is convex with respect to x, fν is called jointly convex.

Let a GNEP be given where each player’s minimization problem is defined by (1)
with the feasible set given by (2). We call this GNEP player convex if each player’s
objective function θν and constraint functions gν

i , for i = 1, . . . , mν , are player convex.
Note that if a GNEP is player convex then, given x−ν , the minimization problem of
player ν is convex. Therefore, the minimum principle applied to every player readily
yields the following result.

Proposition 1 Let the GNEP be player convex. Then, for each solution (x̄, λ̄) of
system (3) the vector x̄ solves the GNEP.

Player convexity is the standard setting under which GNEPs are usually investigated
in the literature. With the exception of Sect. 3.2 we will not make use of any convexity
assumptions for the functions defining the GNEP.

The key to our approach in this paper is a reformulation of system (3) as a possibly
nonsmooth system of equations by using complementarity functions. A complemen-
tarity function φ : R

2 → R is a function such that

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

If φ is a complementarity function then (3) can be reformulated as the system

�(z) :=
(

L(z)
φ(−g(x),λ)

)
= 0, (4)

where φ : R
m+m → R

m is defined, for all a, b ∈ R
m, by

φ(a, b) :=
⎛
⎜⎝

φ(a1, b1)
...

φ(am, bm)

⎞
⎟⎠ .
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168 F. Facchinei et al.

Many complementarity functions are known (see, e.g., [13]). In this paper we will
always use the min function and therefore set

φ(a, b) := min{a, b} for all a, b ∈ R.

Since φ is not everywhere differentiable the mapping � and equation (4) are called
nonsmooth. The use of this complementarity function usually leads to the definition
of Newton type methods that can be proven to have a fast local convergence under
conditions that are among the weakest possible (see for example [13]). However, we
emphasize that in principle another complementarity function could be used leading
to a different Newton method. As a pointer to this fact we write φ instead of min. The
classical Newton method cannot be applied to the solution of the equation �(z) = 0
because of its possible nonsmoothness at a solution. However methods have been
developed in the past 20 years to cope with several kinds of nonsmoothness. One
method we are interested in is the renowned semismooth Newton method. We refer
the reader to [13] for a more complete exposition and for historical background. Among
the many papers on the implementation of semismooth methods and their practical
application we highlight [7,9,12,23].

By Rademacher’s theorem a locally Lipschitzian function H : R
s → R

s is diffe-
rentiable almost everywhere. Let DH ⊆ R

s indicate the set where H is differentiable.
Then,

Jac H(y) :=
{

V : V = lim
k→∞ J H(yk) with {yk} ⊂ DH , lim

k→∞ yk = y

}
.

defines the limiting Jacobian (or B-subdifferential) of H at y. The convex hull of
Jac H(y) is known as Clarke generalized Jacobian, denoted by ∂ H(y).

Definition 1 Let H : R
s → R

s be Lipschitzian around y ∈ R
s and directionally

differentiable at y. H is said to be strongly semismooth at y if for any V ∈ ∂ H(y +d),

V d − H ′(y; d) = O(‖d‖2),

where H ′(y; d) is the directional derivative of H in y along the direction d.

In the study of algorithms for locally Lipschitzian systems of equations, the following
regularity condition plays a role similar to that of the nonsingularity of the Jacobian
in the study of algorithms for smooth systems of equations.

Definition 2 Let H : R
s → R

s be Lipschitzian around y. H is said to be BD-regular
at y if all the elements in Jac H(y) are nonsingular. If ȳ is a solution of the system
H(y) = 0 and H is BD-regular at ȳ then ȳ is called a BD-regular solution of this
system.

A generalized Newton method for the solution of a locally Lipschitzian system of
equations H(y) = 0 can be defined as

yk+1 := yk − (V k)−1 H(yk), V k ∈ Jac H(yk); (5)
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(V k can be any element in Jac H(yk)). The following result holds.

Theorem 1 Let H : R
s → R

s be strongly semismooth at a BD-regular solution
ȳ of H(y) = 0. Then, a neighborhood N of ȳ exists so that if y0 ∈ N then the
iteration method (5) is well defined and generates a sequence {yk} that converges
Q-quadratically to ȳ, i.e., there is a C > 0 so that

‖yk+1 − ȳ‖ ≤ C‖yk − ȳ‖2 for k = 0, 1, 2, . . .

It is well known that both the min function and any differentiable function with a
locally Lipschitzian derivative are strongly semismooth. Since the composition of
strongly semismooth functions is again strongly semismooth our general smoothness
assumption on the GNEP implies that � is strongly semismooth everywhere. However,
referring to Sect. 3.3 we note that Theorem 1 is not the only source of results on
quadratic convergence.

3 Newton methods for GNEPs: general description

In this section we examine three settings in which we develop Newton methods and
show their fast local convergence. The settings represent, we believe, meaningful
situations that are likely to be encountered often in practical applications. While we
describe, for each setting, a corresponding Newton method and the assumptions needed
for their analysis, a detailed investigation of the assumptions and of their relations is
postponed to Sect. 4.

3.1 Semismooth Newton method for system (4)

The first and simplest Newton method we consider is nothing else than the semismooth
Newton method applied to the reformulation (4) of system (3). Starting with an initial
point z0 = (x0,λ0), this method generates a sequence {zk} according to the iteration

Newton Method I

zk+1 := zk + dk,

where, for some V k ∈ Jac �(zk), dk solves the linear system

V k d = −�(zk) (6)

According to Theorem 1 and the discussion we made after it, this algorithm is well
defined and has a quadratic convergence rate if z0 is sufficiently close to a BD-regular
solution z̄ of (4). Therefore, we introduce the following definition.

Definition 3 A point z̄ = (x̄, λ̄) is called quasi-regular if �( z̄) is BD-regular at z̄,
i.e., if all the matrices in Jac �( z̄) are nonsingular.
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170 F. Facchinei et al.

Theorem 1 now immediately gives us the following result.

Theorem 2 Let z̄ = (x̄, λ̄) be a quasi-regular solution of system (3). Then, a neigh-
borhood N of z̄ exists so that if z0 ∈ N then Newton Method I is well defined and
generates a sequence {zk} that converges Q-quadratically to z̄.

In the case of optimization problems, quasi-regularity is a rather weak condition [10].
However, as we shall analyze in detail in Sect. 4, in the case of system (3) quasi-
regularity is a rather stringent assumption that might not be satisfied for several
important classes of problems (see also Remark 3). In particular, we will see that
quasi-regularity is never satisfied if even just two players share a constraint that is
active.

3.2 Shared constraints: the “common multipliers” case

In this subsection we start a deeper investigation of what can happen when the players
share some constraints, a most common circumstance. Then, as we mentioned at the
end of the previous subsection, the quasi-regularity assumption is not likely to be
satisfied. Below we suggest an alternative and simple Newton method that can be used
under a set of conditions that, although somewhat restrictive, are often met in practice.
Specifically, following [30], we assume that the feasible sets of the players are defined
as

Xν(x−ν) := { xν ∈ R
nν : s(x) ≤ 0, hν(xν) ≤ 0 }. (7)

Here s : R
n → R

m0 defines those constraints that are shared by all players and that
can depend on all variables. We call the constraints s(x) ≤ 0 the shared constraints.
In other words, the constraints s(x) ≤ 0 are the same for all players. Instead, the
hν represent constraints that depend only on the variables of a single player. Note
that (7) is a most common case in practice. In particular, it often happens that each
player has its own constraints hν depending on his own decisions only plus additional
constraints that represent the use of some common resource (a transmission channel for
electricity or information, for example) that has a certain capacity. Then, the constraints
s(x) ≤ 0 would simply be (linear) constraints that express that the capacity of the
shared resources is limited (see Sect. 5 for an example of this type).

For any given x−ν the ν-th player’s KKT conditions can be rewritten as

∇xν θν(xν, x−ν) + ∇xν hν(xν)σ ν + ∇xν s(xν, x−ν)µν = 0
0 ≤ σν ⊥ −hν(xν) ≥ 0

0 ≤ µν ⊥ −s(xν, x−ν) ≥ 0.

Concatenating these KKT conditions for all players, we reobtain system (3), just with
a different notation to take into account the specific structure (7) of the sets Xν(x−ν).
Assume further that a solution (x̄, σ̄ 1, . . . , σ̄ N , µ̄1, . . . , µ̄N ) of the concatenated KKT
systems satisfies µ̄1 = · · · = µ̄N := µ̄, i.e., the multipliers of the shared constraints
are equal for all players. This might appear as a “strange” requirement. We will see
shortly that under appropriate conditions this is not so. For the time being we just accept
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the existence of such a solution. It is now easy to verify that (x̄, σ̄ 1, . . . , σ̄ N , µ̄) solves

F(x) +∑N
ν=1 ∇xhν(x)σ ν + ∇xs(x)µ = 0

0 ≤ σν ⊥ −hν(x) ≥ 0
0 ≤ µ ⊥ −s(x) ≥ 0

(8)

with F : R
n → R

n defined by F(x) := (∇xi θi (x)
)N

i=1. For uniformity of notation, we
wrote hν(x) instead of hν(xν). Following the usual pattern we can now reformulate
this system using the (min) complementarity function φ and rewrite it as the square
system

�VI(x, σ , µ) :=

⎛
⎜⎜⎜⎜⎜⎝

F(x) +∑N
ν=1 ∇xhν(x)σ ν + ∇xs(x)µ

φ(−h1(x1), σ 1)
...

φ(−hN (x N ), σ N )

φ(−s(x), µ)

⎞
⎟⎟⎟⎟⎟⎠

= 0. (9)

At this point we can proceed as in the previous subsection and apply the semismooth
Newton method to solve system �VI(x, σ , µ) = 0. Thus, starting with an initial
point w0 = (x0, σ 0, µ0), the semismooth Newton method generates a sequence {wk}
according to the iteration

Newton Method II

wk+1 := wk + dk,

where, for some V k
VI ∈ Jac �VI(w

k), dk solves the linear system

V k
VId = −�VI(w

k) (10)

Newton Methods I and II result from the application of the same semismooth Newton
method to two different systems of equations. To ensure that the Newton Method II is
locally well defined and converges Q-quadratically to a solution of (9) we introduce
the following assumption.

Definition 4 A point w̄ = (x̄, σ̄ , µ̄) is called VI-quasi-regular if all the matrices in
Jac �VI(w̄) are nonsingular.

Theorem 1 immediately gives us:

Theorem 3 Let w̄ = (x̄, σ̄ , µ̄) be a VI-quasi-regular solution of system (9). Then, a
neighborhood N of w̄ exists so that if w0 ∈ N the Newton Method II is well defined
and generates a sequence {wk} that converges Q-quadratically to w̄.
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Obviously, an important question must be answered before we can consider this as an
acceptable approach: when does a solution of the GNEP exist such that the multipliers
of the shared constraints are the same? To answer this question and also to better
understand the nature of system (9) we study a particular setting that is common in
practical applications. Let

X := { x ∈ R
n : s(x) ≤ 0, hν(xν) ≤ 0, ν = 1, . . . , N }

and assume that s1, . . . , sm0 are jointly convex while the hν (ν = 1, . . . , N ) are
componentwise convex so that X is convex. Then, it is easy to check that system (9)
is nothing else than the KKT system of the VI(X, F), that is the problem of finding
an x ∈ X such that

F(x)T ( y − x) ≥ 0 for all y ∈ X .

Based on these elements, it is possible to show the following result (see [11] for
details).

Theorem 4 Suppose that, for every player ν, the function θν is player convex and the
set Xν(x−ν) is defined by (7) with a componentwise convex function hν .
Moreover, assume that s1, . . . , sm0 are jointly convex. Then, every solution x̄ of the
VI(X, F) is a solution of the GNEP. Furthermore, if x̄ satisfies (9) for some multi-
pliers (σ̄ 1, . . . , σ̄ N , µ̄) then x̄ is a solution of the GNEP such that the multipliers of
the shared constraints are identical.

An immediate consequence of this result is that if the VI(X, F) has a solution satisfying
its KKT conditions, the existence of a solution of the GNEP with identical multipliers
for the shared constraint is guaranteed. To ensure that the VI(X, F) has a solution, we
can apply, in principle, any standard condition for the existence of a solution of VI.
However, one must pay attention to the fact that the VI(X, F) has a special structure
and so many classical conditions for the existence of a solution of a VI could not
be satisfied in practice. We do not dwell on these issues here, but simply observe
that a reasonable condition is the compactness of the set X (see e.g., [13]). We now
summarize the discussion so far in the following proposition.

Proposition 2 Assume that the sets Xν(x−ν) are defined by (7) with componentwise
convex functions hν and jointly convex functions s1, . . . , sm0 . If x̄ is a solution of
the VI(X, F) it also solves the GNEP. If any constraint qualification holds at x̄ the
multipliers of the shared constraints are identical.

The existence of a solution with identical multipliers for the shared constraints in
the case of a compact X has long been known. In the seminal paper [30], Rosen
analyzed (although from a rather different perspective) GNEPs with feasible sets
defined by (7) with s jointly convex and hν componentwise convex. Among many
interesting results he proved the existence of solutions with identical multipliers for
the shared constraints and called them normalized equilibria. Rosen’s paper has been
very influential and his setting has been used in many subsequent works. Theorem 4,
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together with Theorem 3, shows that we can develop Newton methods in Rosen’s
setting. The search of a normalized equilibrium is meaningful from the practical point
of view since this solution has a special interest in many applications, see [18].

Example 1 1 To illustrate the developments in this subsection we consider

minx (x − 1)2

x + y ≤ 1

miny(y − 1
2 )2

x + y ≤ 1.

The optimal solution sets of the two players are given by

S(y) =
{

1 if y ≤ 0

1 − y if y ≥ 0
and S(x) =

{
1/2 if x < 1/2

1 − x if x ≥ 1/2.

It is easy to check that this GNEP has infinitely many solutions given by (α, 1−α) for
α ∈ [1/2, 1]. Since at each solution the linear independence constraint qualification
holds, for each such solution there are unique multipliers λ(α), for the first player, and
µ(α), for the second player, that together with (α, 1 − α) satisfy the KKT conditions.
Setting the gradients of the Lagrangians of the two problems to zero, we get λ(α) =
2 − 2α, µ(α) = 2α − 1. Thus, only one solution exists with λ(α) = µ(α) which is
obtained for α = 3/4 with (x̄, ȳ) = (3/4, 1/4), λ̄ = 1/2 = µ̄. Consider now the
VI(X, F), where

X := { (x, y) ∈ R
2 : x + y ≤ 1 }, F (x, y) :=

(
2x − 2
2y − 1

)
.

F is clearly strictly monotone. Thus, the VI has a unique solution which is given
by (3/4, 1/4); just check by using the definition of a VI. Furthermore, if we write
down the KKT conditions for this VI, we see that the multiplier corresponding to the
sole constraint that defines X is 1/2 (i.e., the common value of the multipliers of the
generalized Nash game in the solution (3/4, 1/4)). We see then that the original GNEP
has infinitely many solutions while the VI(X, F) has only one solution: the solution
of the generalized game for which the shared constraint has equal multipliers.

3.3 Shared constraints: the hard case

In Sect. 3.2 we discussed Newton methods for normalized equilibria. Unfortunately,
the favorable feature of the existence of a solution with “common” multipliers can get
lost as soon as any of the assumptions of Proposition 2 is violated. We illustrate this
point by three examples. The first has shared constraints that are not jointly convex.
In other words, the set X is not convex, although the sets Xν(x−ν) = {xν ∈ R

nν :
(xν, x−ν) ∈ X} are convex.

1 In order to make this and the following examples more readable we deviate from the general notation
adopted and indicate the variables of the first player with x , those of the second with y and so forth. Similarly,
the multipliers of the first player are λ, those of the second µ and so on.
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Example 2 Consider the game with two players:

minx −x

xy ≤ 1

g(x) ≤ 0

miny (2y − 1)2

xy ≤ 1

0 ≤ y ≤ 1

with g(x) :=

⎧⎪⎪⎨
⎪⎪⎩

(x − 1)2 if x < 1

0 if 1 ≤ x ≤ 2

(x − 2)2 if x > 2.

Obviously, the feasible sets of the players are convex and can be expressed in the form
of (7). Moreover, X = {(x, y) : xy ≤ 1, g(x) ≤ 0, 0 ≤ y ≤ 1} is compact but not
convex. With the solution sets of the players given by:

S(y) =

⎧⎪⎨
⎪⎩

2 if y < 1/2

1/y if 1/2 ≤ y ≤ 1

∅ if y > 1

and S(x) =
{

1/2 if x < 2

1/x if x ≥ 2

it can be seen that the GNEP has only one solution: (2, 1/2). Equalling the gradients
of the Lagrangians to zero we find that the multipliers of the shared constraint are
λ = 2 for the first player and µ = 0 for the second. Thus, if a shared constraint is
not convex with respect to the variables of all players, common multipliers might not
exist even if the feasible set X is compact.

In the next example the set X is convex, but the third player does not share a constraint
that is shared by the first two players.

Example 3 For the game with three players

minx −x

z ≤ x + y ≤ 1
x ≥ 0

miny (2y − 1)2

z ≤ x + y ≤ 1
y ≥ 0

minz (2z − 3x)2

0 ≤ z ≤ 2

the solution sets are given by

S(y, z) =
{

1 − y if y ≤ 1, z ≤ 1

∅ otherwise,
S(x, z) =

⎧⎪⎨
⎪⎩

1/2 if z − x ≤ 1/2, x ≤ 1/2

1 − x if 1/2 ≤ x ≤ 1, z ≤ 1

∅ otherwise,

and S(x, y) =

⎧⎪⎨
⎪⎩

3x/2 if 0 ≤ x ≤ 4/3

2 if x > 4/3

0 if x < 0.

This GNEP has infinitely many solutions given by (α, 1−α, (3/2)α) forα ∈ [1/2, 2/3].
Let the multipliers of the constraints x + y ≤ 1 and z ≤ x + y be denoted by λ1 and
λ2 for the first player and by µ1 and µ2 for the second player. We want to check that
(λ1, λ2) = (µ1, µ2) never occurs. In fact, equalling the gradient of the Lagrangian of
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the first player to zero, we obtain λ1 = 1 + λ2 (with λ2 = 0 if α < 2/3), while we
get µ1 = 2α − 1 + µ2 (with µ2 = 0 if α < 2/3) for the second player. From these
relations it is trivial to see that for no value of α ∈ [1/2, 2/3] we can have λ1 = µ1
and λ2 = µ2.

Remark 2 A key issue in the previous example is that the constraint z ≤ x + y shared
only by the first two players depends also on the variables of the third player. If this
was not the case we could append the constraint shared by the first two players to
those of the third one without changing his feasible set, thus reducing the problem to
the setting of Sect. 3.2. Generalizing this observation, we see that the setting of Sect.
3.2 covers also those cases where if a constraint si (x) ≤ 0 actually depends on the
variables of a subset of players, then si is shared by all the players in this subset.

The last example shows that even when the GNEP has jointly convex constraints and
player convex objective functions, if X is not bounded then a solution to (3) with
common multipliers may not exists.

Example 4 For the game

minx −x

x + y ≤ 1

miny −2y

x + y ≤ 1

the players’ solution sets are S(y) = 1− y and S(x) = 1−x . Moreover, each solution
of the GNEP is given by (α, 1−α) with α ∈ R. For all solutions the common constraint
is active. The multipliers are 1 for the first player and 2 for the second player and do
not depend on the solution.

Examples 2–4 convincingly show that the approach of Sect 3.2 cannot be easily
extended to other cases. We are then left with the question: what can we do if we
have shared constraints but (possibly) no “common multiplier”?

To motivate our approach, we first show that a solution x̄ of the GNEP at which a
shared constraint is active is not likely to be an isolated solution (see also Examples
1, 3, and 4). To this end suppose that z̄ = (x̄, λ̄) is a solution of system (3) at which
strict complementarity (see Assumption 1 below) holds. Then, � is continuously
differentiable around z̄, so that ∂�( z̄) reduces to the singleton J�( z̄). If a constraint
is active and shared by more than one player, this entails the singularity of J�( z̄)
(see the next section for a formal proof). Consider the function �z̄ obtained from �

by removing all the rows corresponding to this repeated and active constraint except
one; repeat the procedure for all the repeated and active constraints. This amounts to
leaving in the system � z̄(z) = 0 only one copy for each active repeated constraint. We
call � z̄(z) = 0 the reduced system (to be described in more detail in Sect. 4.3). Due to
the strict complementarity assumption it is not difficult to see that in a neighborhood
of z̄, a point z is a solution of system (3) if and only if � z̄(z) = 0 (see Lemma 1 for
details). The Jacobian J� z̄ has more columns than rows. Assume now that J� z̄( z̄)
has full row rank. This condition appears to be rather natural and favorable. However,
by the implicit function theorem we see that the solution z̄ is not locally unique.
Therefore any standard Newton method will have serious difficulties in this case. In
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the field of Nonlinear Programming there are developments that deal with Newton
methods for cases when nonisolated KKT points occur. However, these developments
are mainly concerned with the nonisolatedness of the multiplier part of the KKT
system, whereas the primal solution of the minimization problem is locally unique. In
our case we might often expect that even the primal part is not locally unique. In fact,
if in the setting we are considering in this paragraph the LICQ (Linear Independence
Constraint Qualification) holds at z̄ for every player, then for any fixed x̄ there is a
unique multiplier λ̄. Thus, if z̄ = (x̄, λ̄) is a nonisolated solution of (3), the x-part
must be nonisolated. We now summarize the discussion.

Proposition 3 Let a GNEP be given as described in Sect. 2. Assume that a constraint
is shared by at least two players. Let z̄ = (x̄, λ̄) be a solution of (3) at which this
shared constraint is active and assume that strict complementarity holds at z̄ for all
constraints of all players. Assume further that the matrix J� z̄( z̄) has full row rank
and that the LICQ holds for every player. Then the solution x̄ and the KKT point (x̄, λ̄)

are nonisolated.

Now it is clear that to develop a Newton method in the case of repeated, non jointly
convex constraints a non standard approach is needed: the choice is very restricted. We
consider a recently developed Levenberg–Marquardt type method [32] that can deal
with the nonisolatedness of solutions. Since we are interested in the local convergence
behavior, a solution z̄ of (3) is fixed throughout this subsection. The following two
assumptions will be needed.

Assumption 1 Strict complementarity holds at z̄ = (x̄, λ̄), i.e., gν
i (x̄) = 0 implies

λ̄ν
i > 0 for arbitrary ν = 1, . . . , N and i = 1, . . . , mν .

This assumption guarantees the differentiability of � and the Lipschitz continuity of
J� in a neighborhood of z̄. By now, in principle, such a smoothness condition is
needed for proving quadratic convergence of Levenberg–Marquardt type methods in
the case of nonisolated solutions, see [15,16,32].

Assumption 2 There are c, δ > 0 so that ‖�(z)‖ ≥ c dist[z, Z] for all z ∈ B( z̄, δ).

We recall that Z is the solution set of system (3). Assumption 2 requires that ‖�‖
be a local error bound. Conditions under which this assumption is satisfied will be
discussed in Sect. 4.3. The Levenberg–Marquardt method starts from some z0 and
generates a sequence {zk} as follows:

Newton Method III

zk+1 := zk + dk,

where, with α(zk) := ‖�(zk)‖, dk solves the linear system

J�(zk)	�(zk) + (J�(zk)	 J�(zk) + α(zk)I )d = 0 (11)
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Newton Method III is well defined (as long as zk does not belong to the solution set
Z) since the subproblems (11) always have a unique solution if α(zk) > 0.

Theorem 5 Let z̄ be a solution of the system (3) at which Assumptions 1 and 2 hold.
If z0 is sufficiently close to z̄, then the sequence {zk} produced by the Levenberg–
Marquardt either generates a solution in Z after a finite number of steps or converges
Q-quadratically to some ẑ ∈ Z.

Proof If α(z) in Newton Method III is replaced by ‖�(z)‖2 the quadratic convergence
follows from [32, Theorem 2.1]. For α(z) = ‖�(z)‖ as in Newton Method III the
quadratic convergence is shown in [15, Theorem 2.2] and [16, Theorem 10]. The
result in [16] makes use of α̃(z) := ‖J�(z)T �(z)‖. However, by [16, Theorem 9]
it can be easily seen that κ0α(z) ≤ α̃(z) ≤ κ1α(z) holds in a neighborhood of z̄ for
some κ0, κ1 > 0. ��

The Assumption 2 that ‖�‖ is a local error bound seems to be the crucial assumption in
Theorem 5. Unfortunately, not much is known of error bounds for a generalized Nash
equilibrium problem and the related system (3). In the next section we will undertake
a preliminary study of this issue.

4 Newton methods for GNEPs: Analysis of the assumptions

In this section we analyze in detail the conditions used in the Sect. 3 to establish the
convergence rates of the three Newton methods. We also discuss how these conditions
are related and compare them to results in the literature.

4.1 Quasi-regularity

Our first task is to calculate the limiting Jacobian of � at a solution z̄ of (4), where φ

is the min-function. Standard nonsmooth calculus yields

Jac �( z̄) = {H(γ ) : γ ∈ Γ } with H(γ ) =
(

A B
C(γ ) D(γ )

)
. (12)

Here A and B are fixed matrices given by:

A := JxL(x̄, λ̄) and B := JλL(x̄, λ̄) = diag
(
Jxν gν(x̄)	

)
.

The matrix A can be expanded in the following form

A :=
⎛
⎜⎝

A11 · · · A1ν · · · A1N
...

...
...

AN1 · · · ANν · · · AN N

⎞
⎟⎠
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with

Aν1ν2 = Jxν2 ∇xν1 Lν1(x̄, λ̄ν1) = Jxν2

(
∇xν1 θν1(x̄) +

mν1∑
�=1

∇xν1 gν1
� (x̄)λ̄

ν1
�

)
.

To describe instead the matrices C(γ ) and D(γ ), that depend on a parameter γ , let
us first define for each player ν the sets of active, strongly active, degenerate, and non
active indices by:

I ν
0 := { i ∈ {1, . . . mν} : gν

i (x̄) = 0 }, I ν+ := { i ∈ I ν
0 : λ̄ν

i > 0 },
I ν
00 := { i ∈ I ν

0 : λ̄ν
i = 0 }, I ν

< := { i ∈ {1, . . . mν} : gν
i (x̄) < 0 }.

For any subset γ ν ⊆ I ν
00 (empty set included), we set

αν := I ν+ ∪ γ ν and βν := I ν
< ∪ (I ν

00 \ γ ν).

Then, for any

γ ∈ Γ := {(γ 1, . . . , γ N ) : γ ν ⊆ I ν
00 for ν = 1, . . . , N },

the matrices C(γ ) and D(γ ) are given by

C(γ ) := −

⎛
⎜⎜⎜⎜⎜⎝

Jx1 g1
α1(x̄) · · · Jxν g1

α1(x̄) · · · Jx N g1
α1(x̄)

0|β1|×n1
· · · 0|β1|×nν

· · · 0|β1|×nN
...

...
...

Jx1 gN
αN (x̄) · · · Jxν gN

αN (x̄) · · · Jx N gN
αN (x̄)

0|βN |×n1
· · · 0|βN |×nν

· · · 0|βN |×nN

⎞
⎟⎟⎟⎟⎟⎠

(13)

and

D(γ ) := diag(Dν(γ )),

where Dν(γ ) is an mν × mν matrix with

Dν(γ ) :=
(

0|αν | 0|αν |×|βν |
0|βν |×|αν | I|βν |

)
. (14)

This completes the description of formula (12). To facilitate the understanding of the
results that follow it is useful to show the structure of the matrices H(γ ) in more
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detail; for simplicity the dependence on x̄ is suppressed.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Jx1∇x1 L1 · · · Jx N∇x1 L1 Jx1 [g1
α1 ]	 Jx1 [g1

β1 ]	
.
.
.

.

.

.
. . .

Jx1∇x N L N · · ·Jx N∇x N L N Jx N [gN
αN ]	 Jx N [gN

βN ]	

−Jx1 g1
α1 · · · −Jx N g1

α1
0|α1| 0|α1|×|β1|

0|β1|×n1
0|β1|×nN

0|β1|×|α1| I|β1|
.
.
.

.

.

.
. . .

−Jx1 gN
αN −Jx N gN

αN
0|αN | 0|αN |×|βN |

0|βN |×n1
· · · 0|βN |×nN

0|βN |×|αN | I|βN |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

Remark 3 A look at this matrix, in particular to the two lower blocks C and D,
clearly shows that if a shared constraint is active at (x̄, λ̄) there are some matrices
in Jac �(x̄, λ̄) that are singular. These are those matrices that correspond to γ ∈ Γ

for which there are at least two players νa and νb with a shared constraint for which
the (index of the) shared constraint belongs to ανa and ανb . This will generate two
identical rows in the matrix H(γ ) (the gradient of the shared constraints with respect
to x followed by zeros).

To better understand quasi-regularity, it is useful to study some characterizations. To
this end we define a family of reduced matrices HR(γ ), that are obtained from H(γ )

by deleting the rows and the columns corresponding to the identity matrices in D(γ ).
Note therefore that the matrices HR(γ ) may have different dimensions according to
the cardinality of the sets γ ν . Due to the Laplace formula for the calculation of the
determinant of a matrix the following proposition holds.

Proposition 4 Let z̄ = (x̄, λ̄) be a solution of system (3). The point z̄ is quasi-regular
if and only if all the matrices HR(γ ) are nonsingular.

Consider the case of a GNEP with only one player, i.e., an optimization problem.
Then, Proposition 4 shows that our definition of quasi-regularity is an extension of
the one introduced in [10] (see also [13]) for the KKT triples of a VI. The definition
of quasi-regularity in [10], in fact, is phrased directly in terms of what we call here
reduced matrices HR(γ ). Note also that the definition of quasi-regularity in [10] refers
to a KKT point of any VI.

Having defined the notion of quasi-regularity for system (3), it is in order to
understand the relation between this condition and what can be considered as the
most standard and fundamental regularity condition in the field of variational inequa-
lities: Robinson’s strong regularity. The following theorem extends to system (3) a
result that is well known in the case of a KKT system of a VI (or of an optimization
problem), see [13]. To facilitate its proof, (3) is considered as a mixed complementarity
problem MiCP(K, G) with

G(z) :=
(

L(z)
−g(x)

)
and K := R

n × R
m+ (16)
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(recall that the MiCP(K, G) is the VI(K, G), the name mixed complementarity being
normally used for this variational inequality with the set K having the special struc-
ture in (16)). Note that z is a solution of system (3) if and only if it is a solution
of the MiCP(K, G). This point of view will be used also in some other technical
developments later in this section.

Theorem 6 Let z̄ be a solution of system (3). Then, z̄ is strongly regular if and only
if all the matrices HR(γ ), γ ∈ Γ , have the same nonzero determinantal sign.

Proof We will make use of Theorem 5.3.24 in [13] which requires some complica-
ted matrices and sets which are defined in [13] just before Theorem 5.3.24. Below
we review these definitions and the relevant part of Theorem 5.3.24 taking into
account that in our case, due to the simple structure of the MiCP(K, G), things simplify
considerably.

First note that the constraints (λ ≥ 0) of the MiCP(K, G) are linear and their
gradients are linearly independent. Therefore the KKT conditions for the MiCP(K, G)

hold at (x̄, λ̄) and, by the linear independence of the active gradients, there is a unique
corresponding multiplier denoted by µ̄ ∈ R

m . Let

I0 := { i : µ̄i > 0 = λ̄i }, I00 := { i : µ̄i = 0 = λ̄i }

and define the family of index sets J := {J : I0 ⊆ J ⊆ I0 ∪I00} (this is, in our setting,
what is called J (λ) on p. 470 of [13]). Consider now the family of matrices BJ given,
for each J ∈ J, by the |J | × (n + m) matrix whose rows are −ei

	, i ∈ J , where the
components of ei ∈ R

n are 0 except the i-th one which is equal to 1; in other words,
ei is the gradient with respect to z of the i-th constraint in J (the set of all matrices
BJ forms what is called Bλ

bas(C) on p. 470 of [13]). Under our conditions, Theorem
5.3.24 in [13] states (among other things) that (x̄, λ̄) is strongly stable if and only if
the matrices (

Jz G( z̄) B	
J−BJ 0

)
(17)

have the same nonzero determinantal sign for all J ∈ J.
From the KKT conditions for MiCP(K, G) one has µ̄ = −g(x̄). This implies

I0 = ∪N
ν=1 I ν

< and I00 = ∪N
ν=1 I ν

00. Therefore, applying Laplace’s formula to a column
of B	

J and to the corresponding row of −BJ , recursively until all the columns of
B	

J and all the rows of −BJ have been eliminated, one can check that the matrices
(17) having the same nonzero determinantal sign is equivalent to the matrices HR(γ ),
γ ∈ Γ , having the same nonzero determinantal sign. Since the equivalence of strong
stability and strong regularity is a standard result (see for example [13, p. 447]) this
concludes the proof. ��

This result, together with Proposition 4 shows that quasi-regularity is implied by strong
regularity. In Sect. 5 we will also give an example showing that the reverse is not true,
so that quasi-regularity is weaker than strong regularity.
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4.2 VI-quasi-regularity

VI-quasi-regularity is in some sense easier to analyze, because it is just quasi-regularity
of a KKT system of the VI(X, F) and as such has been already analyzed in [10,13].
The interesting thing we are left to do is to establish how VI-quasi-regularity relates
to quasi-regularity. Since the comparison is meaningful only under the conditions for
which VI-quasi-regularity can be defined we use the notation of Sect. 3.2, assume that
every player in the GNEP has the feasible set defined by (7), and that x̄ is a normalized
equilibrium of the GNEP with multipliers σ̄ and µ̄ so that (x̄, σ̄ , µ̄) solves (8).

In order to perform this comparison we have to write down the explicit expression
of Jac �VI(x̄, σ̄ , µ̄). To this end let us define some set of indices:

I ν
0 := {i ∈ {1, . . . mν} : hν

i (x̄ν) = 0}, I ν+ := {i ∈ I ν
0 : σ̄ ν

i > 0},
I ν
00 := {i ∈ I ν

0 : σ̄ ν
i = 0}, I ν

< := {i ∈ {1, . . . mν} : hν
i (x̄ν) < 0},

I s
0 := {i ∈ {1, . . . m0} : si (x̄) = 0}, I s+ := {i ∈ I s

0 : µ̄i > 0},
I s
00 := {i ∈ I s

0 : µ̄i = 0}, I s
< := {i ∈ {1, . . . m0} : si (x̄) < 0 }.

For any subset γ ν ⊆ I ν
00 we set αν := I ν+ ∪ γ ν and βν := I ν

< ∪ (I ν
00 \ γ ν). In a similar

way, for any subset γ s ⊆ I s
00 we set αs := I s+ ∪ γ s and βs := I s

< ∪ (I s
00 \ γ s). Then,

for all possible γ := (γ 1, . . . , γ N ), and γ s , the matrix

H(γ , γ s) :=
⎛
⎝

A B E
C(γ ) D(γ ) 0
F(γ s) 0 M(γ s)

⎞
⎠ (18)

belongs to Jac �VI(x̄, σ̄ , µ̄). Vice versa, any matrix in this limiting Jacobian can be
obtained by (18) for suitably chosen (γ , γ s). To point out the differences between the
matrices in (12) and those in (18) we use slightly different notations. The matrices in
(18) are given by

A := JxL(x̄, σ̄ , µ̄) with L(x, σ , µ) := F(x) +
N∑

ν=1
∇xhν(x)σ ν + ∇xs(x)µ,

B := Jσ L(x̄, σ̄ , µ̄) = diag(Jxν hν(x̄ν)	),

E := JµL(x̄, σ̄ , µ̄) = Jxs(x̄)	,

C(γ ) := diag(Cν(γ )) with Cν(γ ) := −
(

Jxν hν
αν (xν)

0|βν |×nν

)
,

D(γ ) := diag(Dν(γ )) with Dν(γ ) :=
(

0|αν | 0|αν |×|βν |
0|βν |×|αν | I|βν |

)
,

F(γ s) := −
(

Jxsαs (x̄)

0|βs |×n

)
and M(γ s) :=

(
0|αs | 0|αs |×|βs |

0|βs |×|αs | I|βs |

)
.

We are now able to show the fact we already hinted at above, that if we are in a
solution of system (8), then VI-quasi-regularity is weaker than quasi-regularity. In
fact, suppose that we are in the setting of this subsection and suppose also that a
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solution (x̄, σ̄ , µ̄1, . . . , µ̄N ) is quasi-regular (for system (3)). This obviously implies
that no shared constraint is active (see Remark 3), and hence µ̄1 = · · · = µ̄N = 0.
Then, we get I s

00 = I s+ = ∅ and γ s = ∅ and for the matrices in (18) we have
M(γ s) = Im0 and F(γ s) = 0m0×n . Thus, the nonsingularity of the matrices (18) is
equivalent to the nonsingularity of

( A B
C(γ ) D(γ )

)
. (19)

It is easy to show that the nonsingularity of all matrices (15) (suitably reduced due
to the absence of shared active constraints) implies the nonsingularity of the matrices
(19). Vice versa, it is rather intuitive that the inverse implication cannot hold. We
illustrate this by considering again Example 1.

Example 1 (continued) As shown in Sect. 3.2 this game has infinitely many solutions
given by (α, 1 − α) for α ∈ [1/2, 1]. At none of them quasi-regularity holds. This
can be verified directly or deduced by observing that quasi-regularity implies the
local uniqueness of the solution, which is not satisfied. Consider now the solution
(x̄, ȳ, µ̄) := (3/4, 1/4, 1/2) of the VI-KKT system (8). Since each player has exactly
one constraint (the shared one) and by µ̄ = 1/2 > 0 it holds that I s

00 = ∅. Therefore,
VI-quasi-regularity at (x̄, ȳ, µ̄) simply amounts to the nonsingularity of the matrix

( A E
F(∅) M(∅)

)
=
⎛
⎝

2 0 1
0 2 1

−1 −1 0

⎞
⎠

which obviously holds. Note that at the solution (3/4, 1/4, 1/2, 1/2) of the KKT
system (3), γ ν = ∅ for ν = 1, 2, and the corresponding matrix HR(γ ) with γ = (∅,∅)

is given by

HR(γ ) = H(γ ) =
( A B

C(γ ) D(γ )

)
=

⎛
⎜⎜⎝

2 0 1 1
0 2 1 1

−1 −1 0 0
−1 −1 0 0

⎞
⎟⎟⎠

which is obviously singular.

In Sect. 5.2 we give another example where VI-quasi-regularity is satisfied while there
are shared constraints that are active so that quasi-regularity cannot hold. Therefore
we can conclude that the following theorem is valid.

Theorem 7 Assume that for every player the feasible set is defined by (7), and let
(x̄, σ̄ , µ̄) be a solution of system (8). Then, if the corresponding solution (x̄, λ̄) of
system (3) with λ̄ := (σ̄ , µ̄, . . . , µ̄) is quasi-regular, (x̄, σ̄ , µ) is VI-quasi-regular. On
the contrary, if (x̄, σ̄ , µ̄) is VI-quasi-regular then (x̄, λ̄) is a solution of (3) which is
not necessarily quasi-regular.
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4.3 Error bounds

Our aim here is not to perform an exhaustive analysis, which would be impossible,
but rather to show that there are important cases where the error bound condition of
Assumption 2 holds, thus indicating the reasonability of the assumption itself. Our
first result regards a special, but interesting case.

Theorem 8 Suppose that the G : R
n+m → R

n+m (see (16)) is an affine map. Then,
Assumption 2 holds for any z̄ ∈ Z.

Proof If G is affine then, by Corollary 6.2.2 in [13], the mixed complementarity
problem MiCP(K, G) has a local error bound with the natural residual (denoted Gnat

K )
if Z is nonempty. More in detail, there are ĉ, κ̂ > 0 so that

‖Gnat
K (z)‖ ≥ ĉ dist[z, Z]

holds for all z with ‖Gnat
K (z)‖ ≤ κ̂ . Since in our setting Gnat

K = � the continuity of �

yields that there are c, δ > 0 so that Assumption 2 is satisfied for any z̄ ∈ Z. ��
Theorem 8 covers the class of GNEP that have quadratic objective function and affine
constraints for each player. This is an important class of problems with applications in
microeconomics and that could also be used to approximate more complex problems,
see Sect. 4.6 in [2]. The ν-th player of such GNEPs has the following minimization
problem

minimizexν
1

2
x	Qν x + (dν)	x subject to Aν x ≤ cν

with appropriate dimensions of vectors and matrices.
We now consider a more general case. For a given z̄ in Z, assume that at least

one constraint is shared by two players and is active. Let us first make the discussion
preceding Theorem 3 more notationally precise. To this end we define the mapping
� z̄ : R

n+m → R
n+m−� by

� z̄(z) :=

⎛
⎜⎜⎜⎝

L(z)
φ(−g1

R1
(x), λ1

R1
)

...

φ(−gN
RN

(x), λN
RN

)

⎞
⎟⎟⎟⎠ ,

where Rν is an index set satisfying I ν
<(x̄) ⊆ Rν ⊆ {1, . . . , mν}. Moreover, an index

i ∈ I ν
0 (x̄) = {1, . . . , mν} \ I ν

<(x̄) belongs to Rν if and only if, for any player µ =
1, . . . , ν−1, there is no j ∈ I µ

0 (x̄) with gν
i = gµ

j . Thus, to obtain �z̄ from �, consider
a constraint that is active at x̄ and that is shared by at least two players. Except for the
first of these players we remove all those complementarity functions φ from � that
belong to this constraint. Obviously, � = ∑N

ν=1(mν − |Rν |) is the number of those
complementarity functions φ that have been dropped from �. The next lemma states
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that under strict complementarity at z̄ the solution sets of the systems �(z) = 0 and
� z̄(z) = 0 are the same if z is sufficiently close to z̄.

Lemma 1 Let z̄ be a solution of system (3) and suppose that Assumption 1 holds at
z̄. Then, there is δ0 > 0 so that

{z ∈ B( z̄, δ0) | � z̄(z) = 0} = Z ∩ B( z̄, δ0).

Proof Choose any player ν ∈ {1, . . . , N } and an index i ∈ {1, . . . , mν} \ Rν , i.e., the
equation φ(−gν

i (x), λν
i ) = 0 does not appear in the system � z̄(z) = 0. For δ0 > 0

sufficiently small we know by Assumption 1 and by the continuity of φ and gν
i that

φ(−gν
i (x), λν

i ) = min{−gν
i (x), λν

i } = −gν
i (x)

holds for all z ∈ B( z̄, δ0). Since, by the definition of Rν , there is a µ ∈ {1, . . . , ν − 1}
and j ∈ I µ

0 (x̄) so that gν
i = gµ

j we either have that j ∈ Rµ or, if not, we can repeat
the reasoning above a finite number of times and eventually will end up with some
smaller µ and a certain j ∈ Rµ so that gν

i = gµ
j . Then, using Assumption 1 again we

see that

φ(−gµ
j (x), λ

µ
j ) = min{−gν

j (x), λ
µ
j } = −gµ

j (x) = −gν
i (x) for all z ∈ B( z̄, δ0).

Moreover, it follows that equation φ(−gµ
j (x), λ

µ
j ) = 0 appears in the system � z̄(z) =

0 and is the same as φ(−gν
i (x), λν

i ) = 0 if z is restricted to B( z̄, δ0). Thus, for any
z ∈ B( z̄, δ0), we have � z̄(z) = 0 if and only if �(z) = 0. ��
Due to Lemma 1 it is reasonable to seek for a condition under which an error bound
holds for the mapping � z̄ around z̄. The next lemma presents such a condition. Since
the result is valid for a general differentiable mapping and not only for � z̄ , we state
it at a more general level than that needed here.

Lemma 2 Let H : R
p → R

q with p ≥ q be given and let z∗ denote a solution of
H(z) = 0. Assume that, in some neighborhood of z∗, H is continuously differentiable
and ∇H is locally Lipschitz continuous. Moreover, suppose that there is a partition
(u, v) of the vector z so that u ∈ R

q , v ∈ R
p−q , and the matrix ∇u H(z∗) ∈ R

q×q is
nonsingular. Then, denoting with Z the solution set of the system H(z) = 0, there are
c1, δ1 > 0 so that, for all z ∈ B(z∗, δ1),

‖H(z)‖ ≥ c1 dist[z, Z ].

Proof By the classical implicit function theorem there is δ1 > 0 so that a continuously
differentiable function u(·) : B(v∗, δ1) → R

q exists with u(v∗) = u∗ and

H(u(v), v) = 0 for all v ∈ B(v∗, δ1). (20)

Without loss of generality δ1 > 0 is assumed to be small enough so that∇u H(u(v), v)−1

exists on B(v∗, δ1). Then, since ∇u H(u(v), v) depends continuously on v on the ball

123



Generalized Nash equilibrium problems and Newton methods 185

B(v∗, δ1) the same is true for ∇u H(u(v), v)−1. Thus, there is C0 > 0 so that

‖∇u H(u(v), v)−1‖ ≤ C0 for all v ∈ B(v∗, δ1). (21)

Due to the local Lipschitz continuity of ∇H , u(v∗) = u∗, and the continuity of u(·)
in B(v∗, δ1) there is L0 > 0 so that

‖∇u H(u(v) + t (u − u(v)), v) − ∇u H(u(v), v)‖ ≤ t L0‖u − u(v)‖ (22)

for all (u, v) ∈ B(z∗, δ1) and all t ∈ [0, 1].
Now, for any v ∈ B(v∗, δ1), a Taylor expansion of H(·, v) at u(v) yields

H(u, v) = H(u(v), v) + ∇Hu(u(v), v)	(u − u(v))

+
∫ 1

0
(∇u H(u(v) + t (u − u(v)), v) − ∇Hu(u(v), v))	 (u − u(v))dt.

for all u ∈ R
q . Therefore, using (20), (21), and (22) we obtain

‖u(v) − u‖ ≤ C0‖H(u, v)‖ + 1

2
L0C0‖u − u(v)‖2 (23)

for all (u, v) ∈ B(z∗, δ1). For δ1 > 0 sufficiently small it follows by u(v∗) = u∗ and
the continuity of u(·) that ‖u − u(v)‖ ≤ 2/L0 and, with (23), that

dist[(u, v), Z ] ≤ ‖(u, v) − (u(v), v)‖ = ‖u − u(v)‖ ≤ 2C0‖H(u, v)‖

for all (u, v) ∈ B(z∗, δ1). Setting c1 := 2C0 completes the proof. ��

We are now able to give a sufficient condition for Assumption 2 to hold.

Theorem 9 Suppose that z̄ is a solution of system (3) that satisfies Assumption 1 and
J� z̄( z̄) has full row rank. Then, Assumption 2 holds.

Proof By Assumption 1 there is some neighborhood where the mapping �z̄ is dif-
ferentiable with locally Lipschitz continuous derivative. Then, we apply Lemma 2 to
H := �z̄ and z∗ := z̄. Taking into account the full rank assumption and Lemma 1 we
get

‖�(z)‖ = ‖� z̄(z)‖ ≥ c1 dist[z, Z]

for all z sufficiently close to z̄. ��

Note that the map � z̄ is used only for analysis purposes and it is never necessary to
actually calculate it (which would be obviously impossible).
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Remark 4 It is possible to further weaken the assumptions in Theorem 9. To this end
let z̄ again be a solution of system (3) and �̃ : R

n+m → R
n+m−l be any continuously

differentiable mapping so that J �̃( z̄) has full row rank and

{z ∈ B( z̄, δ0) | �̃(z) = 0} = Z ∩ B( z̄, δ0).

Then, obviously, Assumption 2 holds.

Consider now a quasi-regular solution; then, we are able to get quadratic convergence
for the classical semismooth method, see Sect. 3.1. However, while quasi-regularity
ensures the error bound condition (see [13]), strict complementarity might not be
satisfied, and thus the convergence properties of the Levenberg–Marquardt method, as
studied here, may be in jeopardy. However, quasi-regularity ensures local uniqueness
and this makes the situation much simpler: in fact [12, Theorem 3] provides the
following result.

Theorem 10 Let z̄ be a quasi-regular solution of �(z) = 0. Then, there is a neigh-
borhood N of z̄ so that, for any starting point z0 ∈ N , the sequence {zk} generated
by the Newton Method III converges to z̄ Q-quadratically.

5 Analysis of a model for internet switching

In this section we illustrate the theory developed so far by considering a model proposed
by Kesselman et al. [20]. To better exemplify our results we also propose several
extensions of the basic model.

5.1 The basic model and quasi-regularity

The model proposed in [20] analyzes the problem of internet switching where traffic
is generated by selfish users. The model concerns the behavior of users sharing a
first-in-first-out buffer with bounded capacity. The utility of each user depends on its
transmission rate and the congestion level. More precisely we assume that there are
N users and the buffer capacity is B. Each user ν controls the amount of his “packets”
in the buffer; denote by xν ∈ [0,∞) this number (for simplicity we assume that xν

can take any nonnegative real value). It is assumed that the buffer is managed with
drop-tail policy, which means that if the buffer is full, further packets are lost and
should be resent. The utility of user ν is given by

θν(x) :=
⎧⎨
⎩

xν∑N
ν=1 xν

(
1 −

∑N
ν=1 xν

B

)
if
∑N

ν=1 xν > 0

0 if
∑N

ν=1 xν = 0

which is to be maximized. The term (xν)/(
∑N

ν=1 xν) represents the transmission rate
of user ν; the utility of the user increases with the increase of his transmission rate.
The term (

∑N
ν=1 xν)/B is the congestion level of the buffer and therefore the term

1−(
∑N

ν=1 xν)/B in the utility of the user weights the decrease in the utility of the user
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as the congestion level increases. Note that if the buffer is full (“congestion collapse”)
the utility of each user is zero. Taking into account the drop-tail policy we can see that
the ν-th user’s problem is

minimizexν −θν(x)

subject to xν ≥ 0,
∑N

ν=1 xν ≤ B.
(24)

This is the model dealt with in [20]2. We also consider the following variant:

minimizexν −θν(x)

subject to xν ≥ lν,
∑N

ν=1 xν ≤ B,
(25)

where lν ≥ 0 for each ν. It is clear that if lν = 0 for each ν, (25) coincides with (24).
The problem (25) however also models the case in which users do not enter the game
if they don’t have a minimal amount of data to send (lν > 0). In the sequel we will
always assume that

∑N
ν=1 lν < B, i.e., we exclude the uninteresting cases in which

the feasible set is either empty or reduces to a singleton.
It is shown in [20] that the model (24) has a unique solution x̄ which is given by

x̄ν = B(N − 1)/N 2. We therefore see that the solution of the generalized Nash game
(24) is unconstrained. Taking into account that each player controls only one variable
and the objective function has the same structure for each player, it can be checked that
γ ν = ∅ for every ν and there is only one matrix H in the family {HR(γ ) : γ ∈ Γ },
this matrix is given by

H = JxL(x̄) = −P/X 3 (26)

with

P :=

⎛
⎜⎜⎜⎜⎝

−2X −1 x̄1 − X −1 · · · x̄1 − X −1

x̄2 − X −2 −2X −2 · · · x̄2 − X −2

...
. . .

...

x̄ N − X −N x̄ N − X −N · · · −2X −N

⎞
⎟⎟⎟⎟⎠

,

X := ∑N
ν=1 x̄ν, and X −ν := ∑N

j=1
j �=ν

x̄ j ,

where we set for notational convenience xν
1 := xν (i.e., xν is the unique variable

controlled by the ν-th player).
In order to verify that quasi-regularity is satisfied at (x̄, λ̄) with λ̄ = 0 ∈ R

N+1,
the nonsingularity of the matrix P has to be shown. This is done by means of the
following known formula for the determinant of the sum of a matrix M and of a
diagonal matrix D:

det(D + M) =
∑
α

det Dαα det Mᾱᾱ,

2 The constraint
∑N

ν=1 xν ≤ B is not considered explicitly in [20], but rather dealt with implicitly. For the
sake of clarity we have included this constraint explicitly.
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where the summation ranges over all subsets of indices α with complement ᾱ. Included
in the summation are the two extreme cases corresponding to α being the empty set
and the full set; the convention for these cases is that the determinant of an empty
matrix is set equal to 1. We can write

P =

⎛
⎜⎜⎜⎜⎝

x̄1 − X −1 x̄1 − X −1 · · · x̄1 − X −1

x̄2 − X −2 x̄2 − X −2 · · · x̄2 − X −2

...
...

...

x̄ N − X −N x̄ N − X −N · · · x̄ N − X −N

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

−X
−X

. . .

−X

⎞
⎟⎟⎟⎟⎠

. (27)

Therefore, applying the determinantal formula above, we get

det P = (−X )N +
N∑

ν=1

(−X )N−1(x̄ν − X −ν) = (−X )N−1
[
−X +

N∑
ν=1

(x̄ν −X −ν)

]

= (−X )N−1
N∑

ν=1

X −ν = −(N − 1)(−X )N−1X = (N − 1)(−X )N .

We then conclude that quasi-regularity and (according to Theorem 6) strong regularity
are satisfied at the solution (x̄, λ̄).

Remark 5 It is important to note that given any nonempty principal submatrix of the
matrix P , say Pββ , of order q := |β| we can still calculate the determinant of Pββ

along the same lines, thus getting:

det Pββ = (−X )q−1
[
(q + 1)(−X ) + 2

∑
ν∈β

x̄ν

]
.

We now consider the more interesting case of the constrained problem (25).

Theorem 11 The GNEP (25) has at least one solution. For every solution x̄ there is λ̄

so that z̄ := (x̄, λ̄) satisfies system (3) associated with the GNEP and quasi-regularity
holds at z̄.

Proof The only case of interest is when at least one lν is positive since otherwise the
model reduces to the previous one. Consider the set

X = {x ∈ R
N : xν ≥ lν, ν = 1, . . . , N ,

N∑
ν=1

xν ≤ B}.

Given the other players’ variables x−ν , the ν-th player’s feasible set is given by
Xν(x−ν) = {xν ∈ R : (xν, x−ν) ∈ X}. Since we assumed that at least one lν is
positive, the objective functions of all players are continuous on X , which is obviously
convex and compact. The existence of a solution then follows from [2, Theorem 4.4].
Since the constraints in (25) are linear, the KKT conditions hold at a solution x̄. Let
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z̄ := (x̄, λ̄) be a KKT point for the GNEP (25). The constraint
∑N

ν=1 xν ≤ B can not
be active at x̄ since otherwise there is at least one player for which xν > lν (because
we assumed that

∑N
ν=1 lν < B) that can therefore improve his objective function by

decreasing the value of his variable. Then, each player can have at most one active
constraint. This implies that the linear independence assumption holds for each player,
so that there is a unique multiplier λ̄ associated with x̄.

Since each player has only one variable and at most one active constraint, we
simplify the notation introduced in Sect. 4.1 and write

I0 := { i ∈ {1, . . . N } : x̄ i = li }, I+ := { i ∈ I0 : λ̄i > 0 },
I00 := { i ∈ I0 : λ̄i = 0 }, I< := { i ∈ {1, . . . N } : x̄ i > li },

where λ̄i is the multiplier associated with the constraint xi ≥ li . If I0 = ∅ then quasi-
regularity at z̄ can be shown as in the case of lower bounds all equal to zero. Assume that
I0 �= ∅. We further assume, without loss of generality, that the first |I0| players have the
lower bound constraint active and that of these the first |I+| are strongly active while
the remaining |I00| have zero multiplier. Quasi-regularity amounts to checking that
the matrices HR(γ ) are nonsingular. But these matrices have the following structure:3

α

︷ ︸︸ ︷

α

{

⎛
⎜⎝

−P/X 3 −It

0N−t,t

It 0t,N−t 0t

⎞
⎟⎠ ,

where we set α := I+ ∪ γ with γ ⊆ I00 and t := |α|. We now consider three cases. If
t = N then the two block matrices 0t,N−t and 0N−t,t vanish so that HR(γ ) is obviously
nonsingular because the columns of HR(γ ) are linearly independent. If 0 < t < N
we can calculate the determinant of H(γ ) by applying Laplace’s rule iteratively to the
t right columns and the t bottom rows. Setting β := I< ∪ (I00 \ γ ), q := |β|, taking
into account Remark 5, and t < N (which implies |β| ≥ 1) we then get

det HR(γ ) = (−X )q−1
[
(q + 1)(−X ) + 2

∑
ν∈β

x̄ν

]
�= 0.

The �= in the formula above can be derived in the following way. Because x̄ is a Nash
equilibrium all the components of x̄ are positive. In fact, if the player ν had x̄ν = 0
his objective value would be 0. But since we already know that

∑N
ν=1 lν < B, the

ν-th player could increase x̄ν and improve his objective function. Thus, x̄ > 0 and
X > 0 follows. We now consider the term (q +1)(−X )+2

∑
ν∈β x̄ν . Since (a) q ≥ 1,

(b) β is a proper subset of all the players since 0 < |I+ ∪ γ |, and (c) X > 0, we see
that (q + 1)(−X ) + 2

∑
ν∈β xν < 0. This fully justifies that det HR(γ ) �= 0. In the

3 We assume that if we consider a subset γ of players/constraints in I00 the players/constraints in γ are
placed immediately after the strongly active ones.
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third case, if I+ ∪ γ = ∅, it follows that HR(γ ) = −P/X 3 which is nonsingular as it
has been already shown in this subsection. ��
Remark 6 We note that the last part of the proof shows clearly that if I00 �= ∅,
i.e., if there are degenerate constraints, strong regularity can not be satisfied, In fact,
in this case we can take two different γ in Γ , say γ ′ and γ ′′, such that |γ ′| =
|γ ′′| + 1 and q ′ = q ′′ + 1. But then it is clear from the last part of the proof that
(det HR(γ ′))(det HR(γ ′′)) = −1, so that by Theorem 6 strong regularity can not
hold.

5.2 Avoiding saturation and the common multipliers case

Consider again the problem of internet switching and generalize it in the following
way

minimizexν −θν(x)

subject to xν ≥ lν,
∑N

ν=1 xν ≤ B̄.
(28)

Note that the constant B in the definition of θν is not replaced by B̄. Therefore, problem
(28) generalizes problem (25) by permitting the possibility to introduce a security
margin B̄ < B in order to avoid approaching the congestion collapse. This a common
requirement in modelling this kind of situations. We will assume that

∑N
ν=1 lν < B̄,

i.e., we exclude the uninteresting cases in which the feasible set is either empty or
reduces to a singleton. We want to show that the matrices (18) are nonsingular at a
solution (x̄, σ̄ , µ̄) of system (8), so that VI-quasi-regularity is satisfied at every such
solution. As just discussed, the only case of interest is when the shared constraint is
active. With the same notation and conventions introduced in the previous subsection
the matrices (18) in this case have the form

α ∪ β
︷ ︸︸ ︷

α

{

β

{

⎛
⎜⎜⎜⎜⎜⎜⎝

−P/X 3 −IN e

It 0t,N−t 0t,N 0t,1

0q,N 0q,t Iq 0q,1

−a eT 01,N 1 − a

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where e := (1, . . . , 1)T and t and q are defined as in the proof of Theorem 11.
Moreover, a = 1 if the shared constraint has a positive multiplier and 0 otherwise.
This matrix is nonsingular if and only if the (q + 1, q + 1)-matrix

M :=

⎛
⎜⎜⎝

2X −(t+1)/X 3 · · · −(x̄ t+1 − X −(t+1))/X 3 1
...

. . .
...

...
−(x̄ N − X N )/X 3 · · · 2X −N /X 3 1

−a · · · −a 1 − a

⎞
⎟⎟⎠ (29)
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is nonsingular. The matrix in the upper left corner of M is just a submatrix of −P/X 3

(see (26)), namely (−P/X 3)β,β . If a = 0 the nonsingularity of (29) is readily seen
to be equivalent to the nonsingularity of the matrix (−P/X 3)β,β . The nonsingularity
of the latter matrix has already been shown in the last part of the proof of Theorem
11. Therefore (29) is nonsingular. Consider then the case a = 1. The matrix (29) is
nonsingular if My = 0 implies y = 0. Suppose then that y ∈ R

q+1 is such that
My = 0. The last row of M shows that

∑q
i=1 yi = 0. Recalling (27), the first q rows

of the equation My = 0 can be written as:

−1

X 3

⎛
⎜⎝

x̄ t+1 − X −(t+1)

...
x̄ N − X −N

⎞
⎟⎠

q∑
i=1

yi + 1

X 2

⎛
⎝

y1
...

yq

⎞
⎠ = −

⎛
⎝

yq+1
...

yq+1

⎞
⎠

and, by using
∑q

i=1 yi = 0, we get

1

X 2

⎛
⎝

y1
...

yq

⎞
⎠ = −

⎛
⎝

yq+1
...

yq+1

⎞
⎠ .

This yields y1 = y2 = · · · = yq . Thus, again by
∑q

i=1 yi = 0, we get y1 = y2 =
· · · = yq = 0, which, obviously, also implies yq+1 = 0 so that we conclude that y = 0
and hence M is nonsingular. Therefore, VI-quasi-regularity holds at every solution of
system (8).

5.3 Quality of Service and the hard case

In this last subsection we consider one further modification of the problem we are
dealing with that will allow us to illustrate also the hard case of Sect. 3.3. We assume
that one user, say the first one, has a better treatment and is allowed to freely use
the buffer up to M < B̄, independent of what the remaining users do. Thus, while
the optimization problems of users 2, 3, . . . , N remain (28), the first user’s problem
becomes

minimizex1 −θ1(x) subject to 0 ≤ x1 ≤ M. (30)

This may be viewed as a simple example of the Quality of Service approach, where
the users are divided in classes with different characteristics. Mathematically, the
resulting GNEP falls in what we called the “hard case” since the group of players
{2, . . . , N } shares a constraint that depends also on the variable of the first player
who, however is not sharing this constraint. Our aim is to show that at any solution
where strict complementarity holds, the sufficient full rank condition of Theorem 9 is
verified. Actually we will not give a detailed proof of this fact, because an analysis of
all possible situations would be simple but long. We prefer to show on a specific case
the result and leave to the reader to examine, in a similar way, the remaining cases.

Assume then that x̄ is a solution of the GNEP just described at which strict com-
plementarity holds. Obviously the interesting case to analyze is when the constraint
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∑N
ν=1 xν ≤ B̄ is active. Furthermore, we consider the case in which x1 = M and

none of the variables x2, . . . , x N is at its lower bound. Under these conditions the
“reduced” � z̄ in Sect. 4.3 becomes

� z̄(z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−∇xθ(x) −∑N
ν=1 eνλν

1 +∑N
ν=1 eνλν

2

λ1
1
...

λN
1

M − x1

B̄ −∑N
ν=1 xν

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where the multipliers λν
1 correspond to the constraints xν ≥ lν and the multipliers

λν
2 correspond to the second constraint of player ν. Moreover, there is exactly one

multiplier vector λ̄ so that z̄ := (x̄, λ̄) solves �(z) = 0. Differentiating � z̄ yields

Jz� z̄( z̄) =

⎛
⎜⎜⎜⎝

−P/X 3 −IN IN

0N IN 0N

−1 01,N−1 0N 0N

−eT 01,N 01,N

⎞
⎟⎟⎟⎠ ∈ R

(2N+2)×3N

with e := (1, . . . , 1)T . We can easily verify that the rank of this rectangular matrix is
2N +2 by showing that the rows of Jz� z̄( z̄) are linearly independent. Proceeding in a
similar fashion we can analyze other cases (the constraint x1 ≤ M is not active, some
of the xν are at their lower bounds, etc.). This tedious but not difficult examinations
lead us to conclude that the following result holds (we are also using the fact that the
feasible set is compact, so a solution exists).

Proposition 5 In the setting of this subsection, the GNEP we are considering always
has a solution and any solution at which strict complementarity holds, satisfies the
sufficient condition of Theorem 9, which implies that Assumption 2 is satisfied.

6 Conclusions

In this paper we have analyzed in detail the applicability of semismooth Newton
methods to the GNEP. To the best of our knowledge, the only other investigation
of Newton’s method for the GNEP has been carried out by Pang [26] who, under
suitable convexity and regularity assumptions, begins with the same reduction to a
structured mixed complementarity problem we also use. However, he then applies the
Josephy–Newton method to this problem (see [13,19,27]), giving rise to an approach
that requires the solution of a linearized mixed complementarity problem at every
iteration.

We believe that the next big issue one has to study is the development of a globally
convergent algorithm for the solution of a GNEP. To date, little is known in this field.
It is interesting to note that the two provably globally convergent algorithms, see
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[21,25,31] are applicable to subclasses of what we called the jointly convex GNEPs.
Since we showed that these GNEPs can be solved by solving an appropriate VI, a
problem for which a rich theory exists, we believe that a promising research direction
will be to study the application of the theory of VIs to this specific VI reformulation
of jointly convex GNEPs.
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