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Abstract The main purpose of this paper is the study of sufficient and/or necessary
conditions for existence of solutions of equilibrium problems. We discuss some of
the assumptions of the problem, under which the introduced conditions are sufficient
and/or necessary, and also analyze the effect of these assumptions on the connec-
tion between the solution sets of the equilibrium problem and of a related convex
feasibility problem.
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1 Introduction

The problem of interest, called Equilibrium Problem, abbreviated EP, is defined as
follows. Given
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260 A. N. Iusem et al.

– a real Hausdorff topological vector space X ,
– a nonempty closed and convex subset K of X , and
– a function f : K × K → R,

EP consists of finding x ∈ K such that f (x, y) ≥ 0 for all y ∈ K .
EP has been extensively studied in recent years (e.g., [1–4,9,10,12,13,18–20]). One

of the reasons is that, under assumptions P1∗–P3∗ below, it has, among its particular
cases, convex optimization problems, variational inequalities (monotone or otherwise),
Nash equilibrium problems, and other problems of interest in many applications.
We mention parenthetically that in fact any optimization problem can be set in the
framework of EP even in the absence of any additional assumptions on f , but very
little can be said of EP in such a bare setting. We also comment that infinite dimensional
functional spaces are a natural framework for variational inequalities (see, e.g., [15]),
which leads us to present our results in as general spaces as possible.

Before formally introducing our results and their background, we will attempt
a rather informal presentation. Loosely speaking, EP has been traditionally studied
assuming that f is continuous in its first argument, convex in its second one and that
it vanishes on the diagonal of K × K . Under such assumptions, the issue of necessary
and/or sufficient conditions for existence of solutions of EP was the starting point
in the study of the problem. In 1972, Ky Fan proved existence of solutions assuming
compactness of K (see [8]), and a short time afterward the same result was established
in [6] assuming instead some form of coerciveness of f .

Recently, a necessary and sufficient condition was established in [12] for a sub-
class of equilibrium problems, namely those instances of EP which satisfy the basic
assumptions (presented as P1∗–P3∗ below), plus the following additional condition:
positive functional values of f change sign when both arguments are interchanged
(see property P4∗ below). In this situation, it was proved in [12] that condition P5∗
below is both sufficient and necessary for existence of solutions of EP.

Property P5∗ seems rather involved in its general statement, but it has some inter-
esting consequences, even for particular cases of EP as thoroughly studied as convex
optimization. Consider the problem CO of minimizing a convex function defined on
R

n over a closed and convex subset C ⊂ R
n , and the auxiliary problem AP consisting

of finding a unitary vector x ∈ R
n such that h(x + y) ≤ h(y) for all y ∈ C . It follows

from the relation between P5∗ and EP that if problem AP does not have solutions then
CO does (see [12]).

Thus, condition P5∗ seems to be interesting enough, and it is the departure point for
this paper, whose goals are threefold. In the first place, we will consider an alternative
to P5∗, namely condition P5 below. P5 is much simpler that P5∗ and more easily
checkable. It also seems less demanding than P5∗, but in fact it is equivalent to it,
because it is also, as we prove in Sect. 4, both necessary and sufficient for existence
of solutions of EP under P1∗–P4∗.

Next we perform some sort of sensitivity analysis on the new necessary and suffi-
cient condition P5: we want to check whether it is robust enough to persist under some
perturbations of the problem assumptions. For reasons explained in the sequel, we
concentrate in the (somewhat nonstandard) property P4∗. First we weaken it, obtai-
ning P4 below, under which P5 turns out to be still sufficient, but no longer necessary,
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On certain conditions for the existence of solutions of EP 261

for the existence of solutions of EP. Then we introduce two slightly strengthened
versions of P4, namely P4′ and P4′′ below, under which P5 becomes again necessary.

At this point we have three conditions, namely the old P4∗, and the new P4′ and
P4′′, which ensure that P5 is both necessary and sufficient, and P4, weaker than the
previous three, under which P5 is only sufficient. Our third task consists of exploring
the relations among the former three, i.e., P4∗, P4′ and P4′′. We show, with appropriate
examples, that they are independent, in the sense that no one of them implies any of
the remaining two.

Finally, we also pursue this sensitivity analysis beyond property P4∗, and we pro-
ceed to weaken also the classical properties P2∗ and P3∗, respectively, to P2 and P3
below. This is perhaps a minor point, but anyway we show that P5 remains indeed
necessary and sufficient when P2∗ and P3∗ are replaced by their weaker versions.

We introduce now formally the setting considered in [12]. In this reference, X is
taken as a reflexive Banach space, and the function f of EP is required to satisfy the
following assumptions:

P1∗: f (x, x) = 0 for all x ∈ K ,
P2∗: f (x, ·) is convex and lower semicontinuous for all x ∈ K ,
P3∗: f (·, y) is upper semicontinuous for all y ∈ K ,
P4∗: f is pseudomonotone, i.e., if f (x, y) ≥ 0 for some x, y ∈ K , then f (y, x) ≤ 0.

The existence condition analyzed in [12] is the following:
P5∗: For all sequences {xn} ⊂ K \ {0} such that

(i) limn→∞ ‖xn‖ = ∞,
(ii) the sequence {‖xn‖−1 xn} converges weakly to a point x̄ ∈ K such that f (y, y+

x̄) ≤ 0 for all y ∈ K ,

there exists another sequence {un} ⊂ K such that, for large enough n,

(a) ‖un‖ < ‖xn‖,
(b) f (xn, un) ≤ 0.

Theorem 3.12 in [12] establishes that, assuming that P1∗, P2∗, P3∗ and P4∗ hold,
P5∗ is necessary and sufficient for the existence of solutions of EP.

We will concentrate our sensitivity analysis on variations of property P4∗, due to
the following reasons:

(i) Differently from P1∗–P3∗, which can be considered “classical”, since they
appear (perhaps with slight variations), in practically all the literature on the
subject, P4∗ is to some extent a “newcomer”, and thus its incorporation to the
set of assumptions deserves some careful analysis.

(ii) P4∗ is rather demanding, since it excludes certain relevant problems which
are particular cases of EP under P1∗–P3∗, like most non-monotone variatio-
nal inequalities. Thus, it is interesting to consider alternative options which
encompass some of these excluded instances.

(iii) P4∗ is a condition on f as a joint function of its two arguments, while P2∗ and
P3∗ deal with f as a function of each of its arguments separately.
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Parenthetically, we comment that P4∗ was introduced in [3] as a form of pseudo-
monotonicity. It extends the notion of pseudomonotonicity introduced in [14]. It holds
for complementarity problems or variational inequality problems (seen as particular
cases of EP) when the operator of interest is monotone (or more generally, pseudomo-
notone in the sense of Karamardian). A fortiori, it also holds for convex optimization
problems.

A recurrent theme in the analysis of the aforementioned conditions for the existence
of solutions of EP is the connection between them and the solutions of the following
convex feasibility problem (CFP in the sequel), often called the “dual equilibrium
problem” find x̄ ∈ ∩y∈K L f (y) where L f (y) = {x ∈ K : f (y, x) ≤ 0}. Note that x̄
solves CFP iff f (y, x̄) ≤ 0 for all y ∈ K . It was proved in [12] that under P1∗–P3∗
every solution of CFP solves EP, and then both solution sets trivially coincide under
P4∗. We also prove in this paper that they still coincide under either P4′ or P4′′, but
not under P4.

The paper is organized as follows: in Sect. 2 we present the new assumptions under
consideration: P1–P5, P4′ and P4′′, and establish the relations between P4∗, P4, P4′
and P4′′. In Sect. 3 we discuss the connections between EP and CFP under different
sets of assumptions. In Sect. 4 we prove that P5 is sufficient for the existence of
solutions of EP under P1–P4, and necessary and sufficient when P4 in replaced either
by P4′ or by P4′′.

2 The new assumptions and the connection between the variants of P4∗

We start with the statement of our new set of assumptions, which will replace P1∗–P4∗.
We recall the following two definitions:

Definition 1 A function h : K → R is said to be pseudoconvex if for all x, y ∈ K
and all t ∈ (0, 1) it holds that

h(z) ≥ h(x) implies h(y) ≥ h(z), (1)

where z := t x + (1 − t)y.

Definition 2 A function h : K → R is said to be upper hemicontinuous if it is upper
semicontinuous on any segment contained on K .

In connection with Definition 1, we mention that it is implied by the usual notion of
pseudoconvexity, in the differentiable case. It is easy to verify that convexity implies
pseudoconvexity, which implies quasiconvexity. It follows that the sublevel sets of a
pseudoconvex function are convex. Also, the maximum of a finite family of pseudo-
convex functions is pseudoconvex.

Regarding Definition 2, it is worthwhile to comment that hemicontinuous functions
which are not continuous appear in many significant applications in infinite dimensio-
nal spaces.

In the sequel we assume that the function f : K × K → R satisfies the following
conditions:
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P1 f (x, x) = 0 for each x ∈ K ,

P2 f (x, ·) : K → R is pseudoconvex and lower semicontinuous for all x ∈ K ,
P3 f (·, y) : K → R is upper hemicontinuous for all y ∈ K .

Note that P1 coincides with P1∗, and that P2 and P3 are weaker versions of P2∗ and
P3∗, which were the ones used in [12], as explained in Sect. 1. Observe also that, due to
the lower semicontinuity requirement included in P2, it does not make any difference
if pseudoconvexity is replaced by semistrict quasiconvexity in condition P2. Now we
discuss our announced three alternatives for the pseudomonotonicity assumption P4∗.
We begin with a definition.

Definition 3 The function f : K × K → R is said to be properly quasimonotone if
for all x1, . . . , xn ∈ K and all λ1, . . . , λn ≥ 0 such that

∑n
i=1 λi = 1 it holds that

min
1≤i≤n

f

⎛

⎝xi ,

n∑

j=1

λ j x j

⎞

⎠ ≤ 0. (2)

Proper quasimonotonicity was introduced by Zhou and Chen in [21]. In the case
of variational inequalities, it is stronger than quasimonotonicity, as defined, e.g., in
[14]. In the general case, as considered here, it neither implies quasimonotonicity nor
is implied by it (appropriate examples are given in [1]).

We introduce next the announced variations of property P4∗.

P4 f is properly quasimonotone.

It is easy to check that P4 is equivalent to condition C1 in Lemma 3.1, with L f (y)

instead of C(y). We will consider also the following variants of P4:

P4′: f satisfies P4, with strict inequality in (2) if the xi s are pairwise distinct and the
λi s are all strictly positive.

P4′: For every x1, . . . , xn ∈ K and λ1, . . . , λn ≥ 0 such that
∑n

i=1 λi = 1, it holds
that

n∑

i=1

λi f

⎛

⎝xi ,

n∑

j=1

λ j x j

⎞

⎠ ≤ 0. (3)

We start with the following elementary result.

Proposition 2.1 Under P1 and P2, anyone among P4∗, P4′ and P4′′ implies P4.

Proof For P4∗, we remark that, as commented above, pseudoconvexity of f (x, ·)
implies semistrict quasiconvexity of the same function, and then we invoke Proposition
1.1 of [1], where it is proved that under P1 and semistrict quasiconvexity of f (x, ·),
P4∗ implies P4. The result is trivial for P4′. For P4′′, use the fact that any convex
combination of α1, . . . , αn ∈ R is greater than or equal to min1≤i≤nαi .
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Now we proceed to prove that P4∗, P4′ and P4′′ are mutually independent, meaning
that under P1–P3 none of them implies any of the remaining ones. For this we construct
three examples, for all of which we take K = [0, 1].
Example 1 Define f1 : K × K → R as

f1(x, y) =
{

(y + 1 − x)(y − x) if y ≤ x
y(y − x) if x ≤ y

(4)

Note that f1(x, y) ≥ 0 for x ≤ y, f1(x, y) ≤ 0 for y ≤ x .

Example 2 Define f2 : K × K → R as

f2(x, y) = 0. (5)

Example 3 Define f3 : K × K → R as

f3(x, y) =
{ 1

2 (y − x) if y ≤ x
y − x if x ≤ y

(6)

These functions provide all the needed counterexamples. The analysis of f1 is more
delicate, and we encapsulate it in the following proposition.

Proposition 2.2 f1 satisfies P1, P2, P3, P4′, P4′′ but not P4∗.

Proof (i) P1 and P3 hold trivially (note that f1 is indeed continuous)
(ii) For P2, we claim that if a function h : [0, 1] → R is unimodal in the follo-

wing way: there exists t∗ ∈ [0, 1] such that h is strictly decreasing in [0, t∗]
and strictly increasing in [t∗, 1], then h is pseudomonotone. For the sake of
completeness, we proceed to prove this elementary claim (which is very likely
to be already known), for which we must verify that (1) holds for any choice
of x, y, z ∈ [0, 1]. Without loss of generality, we may assume that x < z < y.
If both x and y belong to [0, t∗], then we have h(x) > h(z) > h(y) and (1)
is vacuous. If they both belong to [t∗, 1], then h(x) < h(z) < h(y) and (1)
holds. If x ≤ t∗ ≤ y and h(z) ≥ h(x), then unimodality implies that z belongs
to [t∗, y], and hence that h(z) ≤ h(y), establishing (1) and consequently the
claim. Next, observe that f1(x, ·) is a continuous function with two pieces: a
convex quadratic function continuously followed by an increasing quadratic
one, i.e., a unimodal function with the shape prescribed in the claim above. It
follows that f1 satisfies P2.

(iii) Note that f1(1, 0) = 0, f1(0, 1) = 1, so that P4∗ does not hold.
(iv) We prove that P4′ holds. Take t1, . . . , tm ∈ (0, 1), 0 ≤ x1 < x2 < · · · < xm ≤

1, and let x̄ = ∑m
i=1 ti xi . It follows that 0 < x̄ < xm , so that

f1(xm, x̄) = (x̄ + 1 − xm)(x̄ − xm) < 0,

because 1 − xm ≥ 0. Thus min1≤i≤m f1(xi , x̄) < 0, and P4′ holds.
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(v) We prove that P4′′ holds. Take 0 ≤ x1 ≤ x2 ≤ · · · ≤ xm ≤ 1, t1, . . . , tm ∈
[0, 1], and let x̄ = ∑m

i=1 ti xi . Note that x1 ≤ x̄ ≤ xm . Take k such that
xk ≤ x̄ ≤ xk+1, so that xi ≤ x̄ for 1 ≤ i ≤ k, and x̄ ≤ xi for k + 1 ≤ i ≤ m. It
follows from (4) that

f1(xi , x̄) =
{

x̄(x̄ − xi ) if 1 ≤ i ≤ k
(x̄ + 1 − xi )(x̄ − xi ) if k + 1 ≤ i ≤ m

(7)

Thus

m∑

i=1

ti f1(xi , x̄) =
k∑

i=1

ti f1(xi , x̄) +
m∑

i=k+1

ti f1(xi , x̄)

= x̄
k∑

i=1

ti (x̄ − xi ) +
m∑

i=k+1

ti (x̄ + 1 − xi )(x̄ − xi )

≤ x̄
k∑

i=1

ti (x̄ − xi ) + (x̄ + 1 − xm)

m∑

i=k+1

ti (x̄ − xi )

= x̄
k∑

i=1

ti (x̄ − xi ) − (x̄ + 1 − xm)

m∑

i=k+1

ti (xi − x̄) (8)

using in the inequality the facts that xi ≤ xm for all i , and that x̄ − xi ≤ 0 for
k + 1 ≤ i ≤ m. We claim now that

k∑

i=1

ti (x̄ − xi ) =
m∑

i=k+1

ti (xi − x̄). (9)

Indeed, (9) is equivalent to

m∑

i=1

ti x̄ =
m∑

i=1

ti xi ,

which holds because both sides are clearly equal to x̄ . Replacing (9) in (8) we get

m∑

i=1

ti f1(xi , x̄) ≤
[

k∑

i=1

ti (x̄ − xi )

]

[x̄ − x̄ − (1 − xm)]

= −
[

k∑

i=1

ti (x̄ − xi )

]

(1 − xm) ≤ 0 (10)

which holds because x̄ − xi ≥ 0, ti ≥ 0 (1 ≤ i ≤ k) and 1 − xm ≥ 0. In view
of (10), P4′′ holds.

Next we establish the announced independence result.
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Proposition 2.3 Assuming P1–P3, none among P4′, P4′′ and P4∗ implies any of the
remaining ones.

Proof The function f1 of Example 1 shows that neither P4′ nor P4′′ imply P4∗. Clearly,
f2 of Example 2 satisfies P1, P2, P3, P4∗ and P4′′, but not P4′, so that neither P4∗ nor
P4′′ imply P4′. Finally we look at f3 in Example 3. It satisfies P1, it is continuous in
K × K and f3(x, ·) is convex, being the maximum of two affine functions. Hence, it
satisfies P2 and P3. It satisfies P4∗, because f3(x, y) ≥ 0 iff x ≤ y, in which case
f3(y, x) ≤ 0. It is easy to check that it satisfies P4′, but it does not satisfy P4′′: take
x1 = 1/3, x2 = 2/3, t1 = t2 = 1/2. Then x̄ = t1x1 + t2x2 = 1/2 and

t1 f3(x1, x̄) + t2 f3(x2, x̄) = 1

12
− 1

24
= 1

24
> 0.

It follows that neither P4∗ nor P4′ imply P4′′.

In order to complete the analysis of the relations among P4, P4′, P4′′ and P4∗, it
remains to check whether P4 implies any of the others. It does not, but we leave this
result for Sect. 4.

3 Equilibrium problems and convex feasibility problems

We are interested now in the following convex feasibility problem (to be denoted CFP),
and its relation with EP.

CFP consists of finding x̄ ∈ ∩y∈K L f (y), where L f (y) = {x ∈ K : f (y, x) ≤ 0}.
Note that for each y ∈ K , L f (y) is a nonempty, closed and convex subset of K ,

because f (y, y) = 0 for all y ∈ K , K is closed and convex, and f is lower semi-
continuous and pseudoconvex in the second argument, so that it has convex sublevel
sets.

Note also that x̄ solves CFP iff

f (y, x̄) ≤ 0 ∀ y ∈ K . (11)

The following lemma was proved by Ky Fan in 1961, and gives a sufficient condition
for existence of solutions of CFP.

Lemma 3.1 ([7], Lemma 1) Let Y be a nonempty subset of a real Hausdorff topo-
logical vector space X. For each y ∈ Y , consider a closed subset C(y) of X. If the
following two conditions hold:

C1. the convex hull of any finite subset {x1, . . . , xn} of Y , denoted as co{x1, . . . xn},
is contained in

⋃n
i=1 C(xi ),

C2. C(x) is compact for at least some x ∈ Y ,

then
⋂

y∈Y C(y) �= ∅.

Proof See Lemma 1 in [7].

The connection between EP and CFP is established in the following result.
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On certain conditions for the existence of solutions of EP 267

Lemma 3.2 Under P1–P3, the solution set of CFP is contained in the solution set of
EP.

Proof Let x̄ be a solution of CFP, and take any y ∈ K . For each t ∈ (0, 1), define
wt := t y + (1 − t)x̄ . Since K is convex, wt belongs to K . Using P1 and the fact that
x̄ solves CFP, we get f (wt , x̄) ≤ 0 = f (wt , wt ). By P2, f (wt , ·) is pseudoconvex
and thus, using P1 again, 0 = f (wt , wt ) ≤ f (wt , y) for all t ∈ (0, 1). Taking limits
as t → 0 we conclude, using P3, that 0 ≤ f (x̄, y), i.e., x̄ solves EP.

We comment that Lemma 3.2 has been proved in [1] under another generalized
convexity assumption, called semistrict quasiconvexity, first introduced in 1993 in
[11], and used later on in, e.g., [2,9] and [10]. The function h : K → R is said to be
semistrictly quasiconvex, if for all x, y ∈ K it holds that

h(x) < h(y) implies h(x + t (y − x)) < h(y), (12)

for all t ∈ (0, 1). It is easy to check that pseudoconvexity implies semistrict quasicon-
vexity, and that both notions coincide when h is lower semicontinuous, as in our case.
In order to avoid further dealing with semistrict quasiconvexity, we chose the option
of proving Lemma 3.2 from scratch.

We remark that the converse of the previous lemma does not hold (a counterexample
can be found in [12]).

Next we prove that under any of the variants of P4 under consideration, both solution
sets coincide.

Proposition 3.3 If f satisfies P1–P3, and either P4∗, P4′ or P4′′, then the solution
sets of EP and CFP coincide.

Proof The solution set of CFP is included in the solution set of EP by Lemma 3.2.
We analyze the reciprocal inclusion under each of the three variants of P4.

(i) Under P4∗, the reciprocal inclusion is immediate, in view of (11).
(ii) Assume that P4′ holds. Let x̄ be a solution of EP, and take any y ∈ K , y �= x̄ . For

each t ∈ (0, 1), define wt := t y +(1− t)x̄ . By P4′, min{ f (x̄, wt ), f (y, wt )} <

0. Since f (x̄, wt ) ≥ 0 because x̄ solves EP, we get that f (y, wt ) < 0 for all
t ∈ (0, 1). Taking the limit as t → 0, we conclude, using P2, that f (y, x̄) ≤ 0,
i.e., in view of (11), that x̄ solves CFP.

(iii) Assume that P4′′ holds, and take x̄ , y and wt as in item (ii). By P4′′, (1 −
t) f (x̄, wt ) + t f (y, wt ) ≤ 0. Again, f (x̄, wt ) ≥ 0 because x̄ solves EP, so that
f (y, wt ) ≤ 0. As in item (ii) we get the result by taking the limit as t → 0,
invoking P2 and (11).

In [12], a sort of reciprocal of Proposition 3.3 was conjectured, namely, that if f
satisfies P1∗–P3∗ and the solution sets of EP and CFP coincide, then f satisfies P4∗.
Assuming P2 instead of P2∗, the function f1 of Example 1 disproves the conjecture:
by Proposition 2.2, it does not satisfy P4∗, but it does satisfy P4′, so that the solution
sets of CFP and EP coincide, in view of Proposition 3.3. However, f1 does not satisfy
P2∗, because for x ∈ (0, 1), f1(x, ·), consisting of a convex quadratic piece followed
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268 A. N. Iusem et al.

by an increasing quadratic one, is pseudoconvex but not convex. We construct next
another counterexample for which f (x, ·) is indeed convex.

Example 4 Let X be R
2 with the Euclidean inner product, and consider the set

K := co{(0, 0), (1, 0), (0,−1)}, (13)

where “co” denotes the convex hull. Let K0 be the set K \ {(x1, 0) : 0 ≤ x1 ≤ 1}, i.e.,
we take off the upper side of the triangle. Let f4 : K × K → R be defined by

f4(x, y) := 〈T (x), y − x〉, (14)

where the operator T : K → R
2 is defined as follows:

1. If x = (x1, 0) ∈ K \ K0, we take T (x) = (− sin(x1π/4), cos(x1π/4)) (rotation
of the vector (0, 1) with an angle equal to x1π/4).

2. If x = (x1, x2) ∈ K with x2 < 0 (i.e., x ∈ K0), then we construct T (x) by making
use of the following property: There exists a unique vector u = (u1, 0) ∈ K \ K0
with x1 < u1 ≤ 1 such that the vector x −u is orthogonal to T (u) (T (u) has been
defined in step 1). Indeed, denote by t = (t1, 0) an arbitrary vector belonging to
K \ K0 and let ϕ(t) be the cosine of the angle between the vectors x − t and T (t)
(defined also in step 1). Then ϕ((x1, 0)) < 0, ϕ((1, 0)) ≥ 0 and ϕ is continuous
and strictly increasing on the line segment joining (x1, 0) and (1, 0). Thus, there
exists a unique u1 with x1 < u1 ≤ 1 such that ϕ((u1, 0)) = 0, i.e., denoting
by u the vector (u1, 0) we have that x − u and T (u) are orthogonal. Now define
T (x) := T (u) = T ((u1, 0)), where u is the unique vector attached to x using the
procedure above.

The operator T which appears in the definition of f4 in Example 4 was introduced
in [17] for different purposes. We comment also that EP with a function f defined as
f4 in (14), for an arbitrary T : K → X , where X is a Hilbert space, is equivalent to
the variational inequality problem with operator T and feasible set K .

Proposition 3.4 The function f4 of Example 4 satisfies P1∗–P3∗ and the solution sets
of the instances of EP and CFP associated to it coincide, but it does not satisfy P4∗.

Proof It is immediate from (14) that f4(x, x) = 0 for all x ∈ K . It is easy to check
that T is well-defined and continuous on K . Therefore f4 is continuous with respect
to each of its variables. Since f (x, ·) is affine, it is certainly convex. Thus P1∗–P3∗
are satisfied.

Observe also that the triangle K has been decomposed into infinitely many line
segments on which our operator T is constant and that these line segments (level
lines) are disjoint (each two lines have empty intersection). By this property it is easy
to show that the solution sets of CFP and EP are equal, namely, they coincide with the
closed line segment [(1, 0), (0,−1)].

Finally, f4 does not satisfy P4∗. Indeed, for x = (0, 0) and y = (1, 0) we have that
f4(x, y) = 〈T (x), y − x〉 = 0 while f4(y, x) = 〈T (y), x − y〉 > 0.
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4 Existence results

In this section we assume that X is a reflexive Banach space. For each n ∈ N let Kn :=
{x ∈ K : ‖x‖ ≤ n}. Since Kn is nonempty for sufficiently large n, in what follows, for
the sake of simplicity, we suppose without loss of generality that Kn is nonempty for
all n ∈ N. Define, for each y ∈ K , the set L f (n, y) := {x ∈ Kn : f (y, x) ≤ 0}. Note
that, applying Lemma 3.2 with Kn instead of K , we have that ∩y∈Kn L f (n, y) ⊂ {x ∈
Kn : f (x, y) ≥ 0, ∀y ∈ Kn}, i.e., each solution of the convex feasibility problem
restricted to Kn is a solution of the equilibrium problem restricted to Kn . We will also
use in the sequel the sets K o

n ⊂ K , defined as the intersection of K with the open ball
of radius n around the origin, i.e., K o

n := {x ∈ K : ‖x‖ < n}. We need the following
technical lemma for our existence result.

Lemma 4.1 Suppose that P1-P3 hold. If for some n ∈ N and some x̄ ∈ ∩y∈Kn L f (n, y)

there exists ȳ ∈ K o
n such that f (x̄, ȳ) ≤ 0, then f (x̄, y) ≥ 0 for all y ∈ K , i.e., x̄

solves the Equilibrium Problem associated to K .

Proof If x̄ belongs to ∩y∈Kn L f (n, y), then, by the above observation, we have that
f (x̄, w) ≥ 0 for all w ∈ Kn . Thus, we only need to show that f (x̄, w) ≥ 0 for all
w ∈ K \ Kn . Take any w ∈ K \ Kn . Since ȳ belongs to K o

n , there exists t ∈ (0, 1) such
that z := tw + (1 − t)ȳ belongs to Kn . It follows that 0 ≤ f (x̄, z). Since f (x̄, ȳ) ≤ 0
by assumption, we conclude from the pseudoconvexity of f that 0 ≤ f (x̄, w).

Next we present the condition which will be sufficient (or necessary and sufficient,
depending on the variant of P4 used as assumption), for the existence of solutions of EP.

P5: For any sequence {xn} ⊂ K satisfying limn→∞ ‖xn‖ = +∞, there exists u ∈ K
and n0 ∈ N such that f (xn, u) ≤ 0 for all n ≥ n0.

We remark that P5 looks stronger than P5∗, because it does not include the require-
ment on the sequence {xn} in item (ii) of the definition of P5∗, and demands existence
of a fixed u ∈ K , instead of a sequence {un}, as is the case in items (a) and (b) in
the definition of P5∗. In fact P5 turns out to be equivalent to P5∗, because it is also
necessary and sufficient for the existence of solutions of EP, under P1∗–P4∗, and also
under P1–P3 plus either P4′ or P4′′, as we prove below. In any case it is apparent that
P5 has a much simpler statement and is more easily checkable than P5∗.

Now we proceed to prove the following result.

Theorem 4.2 Suppose that P1-P5 hold. Then EP admits a solution.

Proof Let n ∈ N be arbitrary. We intend to invoke Lemma 3.1 with Y = Kn , C(y) =
L f (n, y), and thus we must check the validity of its hypotheses (it is here where the
reflexiveness of X plays its role). We consider the Banach space X with its weak
topology, which certainly makes it a Hausdorff topological vector space.

Next we verify C1. Take x1, . . . , xk ∈ Kn and λ1, . . . , λk ∈ [0, 1] such that∑k
j=1 λ j = 1. Let x̄ = ∑k

j=1 λ j x j . We must verify that x̄ belongs to ∪k
i=1L f (n, xi ),

i.e., that x̄ belongs to Kn and that f (xi , x̄) ≤ 0 for some i . The first of this facts
follows from convexity of Kn and the second one from P4, which ensures that
min1≤ j≤k f (x j , x̄) ≤ 0.
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Regarding C2, since C(y) = L f (n, y) = {x ∈ Kn : f (y, x) ≤ 0}, C(y) is closed in
the norm-topology by P2 (which entails the lower semicontinuity of f (y, ·)), convex
because it is a sublevel set of the pseudoconvex function f (y, ·) (invoking again
P2), and bounded because it is contained in Kn , which is itself bounded, being the
intersection of K with a ball. It is well known that in a reflexive Banach space any
closed, convex and bounded set is compact in the weak topology (e.g., [16], vol. I, p.
248). Thus, C(y) is compact in the weak topology for all y ∈ Kn , and C2 holds.

Thus, we are within the hypotheses of Lemma 3.1, and we conclude that
∩y∈Kn L f (n, y) is nonempty for each n ∈ N, so that for each n we may choose
xn ∈ ∩y∈Kn L f (n, y). We distinguish two cases.

(i) There exists n ∈ N such that ‖xn‖ < n. In this case xn belongs to K o
n , and it

solves EP by Lemma 4.1.
(ii) ‖xn‖ = n for all n ∈ N. In this case assumption P5 ensures the existence of

u ∈ K and n0 such that f (xn, u) ≤ 0 for all n ≥ n0. Take n̂ ≥ n0 such that
‖u‖ < n̂. Then f (xn̂, u) ≤ 0 and u ∈ K o

n̂ . Again, xn̂ turns out to be a solution
of EP by Lemma 4.1.

It is natural to ask whether P5 is also necessary for the existence of solutions of EP,
under P1-P4. The following example gives a negative answer to this question.

Example 5 Let X = R, K := [0,∞). Define f5 : K × K → R as

f5(x, y) = x(x − y). (15)

It is clear that f5 satisfies P1, P2 and P3, and it is easy to check that it also satisfies
P4. Note that x = 0 is a solution of EP. On the other hand, for the sequence xn := n
there exists no u ∈ [0,∞) such that f5(n, u) = n(n − u) ≤ 0 for large enough n, i.e.,
P5 does not hold (observe also that CFP does not have solutions).

On the other hand, it was proved in Theorem 3.12 of [12], that condition P5∗
(presented in Sect. 1) is indeed necessary and sufficient for existence of solutions of
EP, under P1∗–P4∗. It turns out that the same holds for P5, even if we replace P2∗
and P3∗ by its weaker versions P2 and P3. In fact, this is also the case if instead of
P4∗ we assume any of the slightly stronger versions of P4, namely P4′ or P4′′. We
mention again that P5 looks more demanding than P5∗, because it asks for the existence
of a fixed u (instead of a variable un) associated to any sequence {xn} divergent to
infinity (and not only to those whose normalizations converge to a point with specific
properties). However, at least in the ambience defined by P1-P3 and either P4′, P4′ or
P4∗, both P5 and P5∗ have exactly the same strength, since both are equivalent to the
existence of solutions of EP.

Theorem 4.3 Assume that P1, P2 and P3 hold. Assume also that any one among P4∗,
P4′ and P4′′ holds. Then EP has solutions if and only if P5 holds.

Proof Sufficient condition By Proposition 2.1, any one among P4∗, P4′ and P4′′ implies
P4. Since P4 holds, by Theorem 4.2 EP has solutions.

Necessary condition. Assume that EP has solutions and that any one among P4∗,
P4′ and P4′′ holds. We must verify P5. Take any sequence {xn} ⊂ K \ {0} with
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‖xn‖ → +∞. Let x̄ ∈ K be a solution of EP. By Proposition 3.3, x̄ is also a solution
of CFP. Take u := x̄ . Since u solves CFP, we have that f (xn, u) ≤ 0 for all n ∈ N,
and thus P5 holds.

As commented above, P5 and P5∗ are, in a certain sense, equally strong. P5 has
certainly a much simpler and appealing presentation, but there are cases in which P5∗
might be more useful, specially as a sufficient condition for the existence of solutions
of EP. For instance, Theorem 4.3. of [12] is a corollary of the existence result with
P5∗, for which item (ii) in the statement of P5∗ is essential. Thus, it is worthwhile to
check that the existence result related to P5∗ is preserved under the new conditions
P1–P4, P4′ and P4′′, because Theorem 3.12 in [12] assumes P1∗–P4∗. We deal with
this issue in our next result.

Theorem 4.4 (i) Under P1–P4, condition P5∗ is sufficient for the existence of
solutions of EP.

(ii) Under P1–P3, and either P4′ or P4′′, condition P5∗ is necessary and sufficient
for the existence of solutions of EP.

Proof (a) For the sufficient condition, either in item (i) or in (ii), we follow the
argument in the proof of sufficiency in Theorem 3.12 of [12], which remains valid
under the new assumptions. As in Theorem 4.2, we take xn ∈ ∩y∈Kn L f (n, y),
which exists by Lemma 3.1. If ‖xn‖ < n for some n, then xn solves EP, as in
item (i) of the proof of Theorem 4.2. Thus, we may assume that ‖xn‖ = n for
all n, which ensures that {xn} satisfies (i) in the statement of P5∗. We proceed
to establish that it also satisfies (ii). Since the unit ball of X is weakly compact,
without loss of generality we may assume that {n−1xn} is weakly convergent to
some x̄ ∈ K . Fix y ∈ K and m > ‖y‖. For n ≥ m, y belongs to Kn . Since
xn ∈ L f (n, y), we have

f (y, xn) ≤ 0. (16)

Let zn = (1 − 1/n)y + (1/n)xn . We invoke now P1 and P2, claiming that
f (y, zn) ≤ 0: otherwise, f (y, zn) > 0 = f (y, y) by P1, in which case, using
P2 and (16), we get f (y, zn) ≤ f (y, xn) ≤ 0, which is a contradiction. Thus,

0 ≥ f (y, zn) = f (y, (1 − 1/n)y + (1/n)xn). (17)

Clearly, lower semicontinuous functions have closed sublevel sets, and, as men-
tioned above, pseudoconvex functions have convex sublevel sets. Since closed
and convex sets are weakly closed (see, e.g., Theorem 3.7 in [5]), we obtain that
f (y, ·) is weakly lower semicontinuous, because it satisfies P2. Hence, taking
limits as n → ∞ in (17), we get 0 ≥ f (y, y + x̄). Since y is an arbitrary point in
K , we conclude that {xn} satisfies (ii) in the statement of P5∗. Now we invoke P5∗
to ensure that there exists {un} ⊂ K such that ‖un‖ < ‖xn‖ and f (xn, un) ≤ 0
for large enough n. Finally, Lemma 4.1 implies that any un satisfying these two
conditions is a solution of EP. Hence, EP has solutions.
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(b) For the necessary condition in item (ii), we invoke Theorem 4.3, which implies
that if EP has solutions then P5 holds. The result follows after observing that
P5 implies P5∗: since for any sequence {xn} ⊂ K divergent to infinity there
exists u ∈ K such that f (xn, u) ≤ 0 for large enough n, given a sequence {xn}
satisfying (i) and (ii) in the statement of P5∗, henceforth divergent to infinity,
such a u exists, and we can take un = u for all n. It is immediate that, for large
enough n, {un} satisfies (a) and (b) in the statement of P5∗.

Finally, we complete our analysis of the connections among P4, P4′, P4′′ and P4∗,
bringing together in a unique corollary all our results on the issue.

Corollary 4.5 Assuming, P1–P3,

(i) any one among P4∗, P4′ and P4′′ implies P4,
(ii) the three cases in item (i) are the only ones in which a property among P4∗, P4,

P4′ and P4′′ implies another one.

Proof Item (i) is just Proposition 2.1. In view of Proposition 2.3, for establishing (ii)
it suffices to prove that P4 implies none of the remaining three, which is indeed the
case in view of Example 5 and Theorem 4.3: f5 satisfies P4 but not P5, and EP with
f5 has solutions. Thus f5 does not satisfy either P4∗, P4′ or P4′′, because under any
of them existence of solutions of EP implies P5.
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