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276 A. Jofré, R. J. -B. Wets

1 Variational convergence of bivariate functions

A fundamental component of ‘Variational Analysis’ is the analysis of the properties
of bivariate functions. For example: the analysis of the Lagrangians associated with
an optimization problem, of the Hamiltonians associated with Calculus of Variations
and Optimal Control problems, the reward functions associated with cooperative or
non-cooperative games, and so on. In a series of articles, we deal with the stability
of the solutions of a wide collection of problems that can be re-cast as finding the
maxinf-points of such bivariate functions.

So, more explicitly: given a bivariate function F : C × D → R, we are interested
in finding a point, say x̄ ∈ C , that maximizes with respect to the first variable x ,
the infimum of F , inf y∈D F(·, y), with respect to the second variable y. We refer to
such a point x̄ as a maxinf-point. In some particular situations, for example when the
bivariate function is concave–convex, such a point can be a saddle point, but in many
other situation its just a maxinf-point, or a minsup-point when minimizing with respect
to the first variable the supremum of F with respect to the second variable. To study the
stability, and the existence, of such points, and the sensitivity of their associated values,
one is lead to introduce and analyze convergence notion(s) for bivariate functions that
in turn will guarantee the convergence either of their saddle points or of just their
maxinf-points.

This paper is devoted to the foundations. Two accompanying papers deal with the
motivating examples [10,11]: variational inequalities, fixed points, Nash equilibrium
points of non-cooperative games, equilibrium points of zero-sum games, etc. We make
a distinction between the situations when the bivariate function is generated from a
single-valued mapping [11] or when the mapping can also be set-valued [10].

The major tool is the notion of lopsided convergence, that was introduced in [2], but
is modified here so that a wider class of applications can be handled. The major adjust-
ment is that bivariate functions are no longer as in [2], defined on all of R

n × R
m with

values in the extended reals, but are now only finite-valued on a specific product C × D
with C, D subsets of R

n and R
m . Dealing with ‘general’ bivariate functions defined

on the full product space was in keeping with the elegant work of Rockafellar [13]
on duality relations for convex–concave bivariate functions and the subsequent work
[3] on the epi/hypo-convergence of saddle functions. However, our present analysis
actually shows that notwithstanding its esthetic allurement one should not cast bivari-
ate functions, even in the convex–concave case, in the general extended-real valued
framework. In some way, this is in contradiction with the univariate case where the
extension, by allowing for the values ±∞, of functions defined on a (constrained) set
to all of R

n has been so effectively exploited to derive a ‘unified’ convergence and
differentiation theory [5,14]. We shall show that some of this can be recovered, but one
must first make a clear distinction between max-inf problems and min-sup ones, and
only then one can generate the appropriate extensions; after all, also in the univariate
case one makes a clear distinction when extending a function in a minimization setting
or a maximization setting.

In order to be consistent in our presentation, and to set up the results required
later on, we begin by a presentation of the theory of epi-convergence for real-valued
univariate functions that are only defined on a subset of R

n . No ‘new’ results are
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Variational convergence of bivariate functions 277

actually derived although a revised formulation is required. We make the connection
with the standard approach, i.e., when these (univariate) functions are extended real-
valued. We then turn to lopsided convergence and point out the shortcomings of an
‘extended real-valued’ approach. Finally, we exploit our convergence result to obtain
a extension of Ky Fan inequality [7] to situations when the domain of definition of the
bivariate function is not necessarily compact.

2 Epi-convergence

One can always represent an optimization problem, involving constraints or not, as
one of minimizing an extended real-valued function. In the case of a constrained-
minimization problem, simply redefine the objective as taking on the value ∞ out-
side the feasible region, the set determined by the constraints. In this framework, the
canonical problem can be formulated as one of minimizing on all of R

n an extended
real-valued function f : R

n → R. Approximation issues can consequently be stud-
ied in terms of the convergence of such functions. This has lead to the notion of
epi-convergence1 that plays a key role in ‘Variational Analysis’ [1,5,14]; when deal-
ing with a maximization problem, it is hypo-convergence, the convergence of the
hypographs, that is the appropriate convergence notion.

Henceforth, we restrict our development to the ‘minimization setting’ but, at the
end of this section, we translate results and observations to the ‘maximization’ case.

As already indicated, in Variational Analysis, one usually deals with

fcn(Rn) = {
f : R

n → R
}

the space of extended real-valued functions that are defined on all of R
n , even allowing

for the possibility that they are nowhere finite-valued. Definitions, properties, limits,
etc., generally do not refer to the domain on which they are finite. For reasons that will
become clearer when we deal with the convergence of bivariate functions, we need to
depart from this simple, and very convenient, paradigm. Our focus will be on

f v-fcn(Rn) = {
f : D → R

∣
∣ for some ∅ �= D ⊂ R

n}
,

the class of all finite-valued functions with non-empty domain D ⊂ R
n . It must be

understood that in this notation, R
n does not refer to the domain of definition, but to

the underlying space that contains the domains on which the functions are defined.
The epigraph of a function f is always the set of all points in R

n+1 that lie on
or above the graph of f , irrespective of f belonging to f v-fcn(Rn) or fcn(Rn). If
f : D → R belongs to f v-fcn(Rn), then

epi f = {
(x, α) ∈ D × R

∣
∣ α ≥ f (x)

} ⊂ R
n+1,

1 For extensive references and a survey of the field one can consult [1,5], and in particular, the Commentary
section that concludes [14, Chap. 7].
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278 A. Jofré, R. J. -B. Wets

and if f belongs to fcn(Rn) then

epi f = {
(x, α) ∈ R

n+1
∣
∣α ≥ f (x)

}
.

A function f is lsc (=lower semicontinuous) if its epigraph is closed as a subset of
R

n+1, i.e., epi f = cl(epi f ) with cl denoting closure [14, Theorem 1.6].2

So, when f ∈ f v-fcn(Rn), lsc implies3 that for all xν ∈ D → x :

– if x ∈ D: liminfν f (xν) ≥ f (x), and
– if x ∈ cl D \ D: f (xν) → ∞.

In our ‘minimization’ framework: cl f denotes the function whose epigraph is the
closure relative to R

n+1 of the epigraph of f , i.e., the lsc-regularization of f . Its
possible that when f ∈ f v-fcn, cl f might be defined on a set thats strictly larger than
D but always contained in cl D.

Lets now turn to convergence issues. Recall that set-convergence, in the Painlevé–
Kuratowski sense [14, Sect. 4.B], is defined as follows: Cν → C ⊂ R

n if

– (a-set) all cluster points of a sequence
{

xν ∈ Cν
}
ν∈IN belong to C ,

– (b-set) for each x ∈ C , one can find a sequence xν ∈ Cν → x .

When just condition (a-set) holds, then C is then the outer limit of the sequence{
Cν

}
ν∈IN , and when its just (b-set) that holds, then C is the inner limit [14, Chap. 4,

Sect. 2]. Note, that whenever C is the limit, the outer- or the inner-limit, its closed
[14, Proposition 4.4] and that C = ∅ if and only if the sequence Cν eventually ‘es-
capes’ from any bounded set [14, Corollary 4.11]. Moreover, if the sequence

{
Cν

}
ν∈IN

consists of convex sets, its inner limit, and its limit if it exists, are also convex [14,
Proposition 4.15].

Definition 1 (epi-convergence) A sequence of functions
{

f ν, ν ∈ IN
}
, whose

domains lie in R
n , epi-converges to a function f when epi f ν → epi f as subsets

of R
n+1; again irrespective of f belonging to f v-fcn(Rn) or fcn(Rn). One then writes

f ν →e f .

Figure 1 provides an example of two functions f and f ν that are close to each
other in terms of the distance between their epigraphs—i.e., the distance between the
location of the two jumps—but are pretty far from each other pointwise or with respect
to the �∞-norm,—i.e., the size of the jumps.

Let { f ν}ν∈IN be a sequence of functions with domains in R
n . When,

– epi f is the outer limit of {epi f ν}ν∈IN , one refers to f as the lower epi-limit of the
functions f ν ,

– epi f is the inner limit of the epi f ν , one refers to f as the upper epi-limit of the
functions f ν .

Of course, f is the epi-limit of the sequence if its both the lower and upper epi-limit.

2 Throughout its implicitly assumed that R
n is equipped with its usual Euclidiean topology.

3 Indeed, if liminfν f (xν) < ∞, then for some subsequence {νk }, f (xνk ) → α ∈ R and because epi f is
closed, it implies that (x, α) ∈ epi f which would place x in the domain of f , contradicting x /∈ D.
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x

f

f

Fig. 1 f and f ν epigraphically close to each other

Proposition 1 (properties of epi-limits) Let { f ν}ν∈IN be a sequence of functions with
domains in R

n. Then, the lower and upper epi-limits and the epi-limit, if it exists, are
all lsc. Moreover, if the functions f ν are convex, so is the upper epi-limit, and the
epi-limit, if it exists.

Proof Follows immediately from the properties of set-limits. �	
The last proposition implies in particular that the family of lsc functions is closed

under epi-convergence.
The definition of epi-convergence for families of functions in fcn(Rn) is the usual

one [14, Chap. 7, Sect. B] with all the implications concerning the convergence of
the minimizers and infimal values [14, Chap. 7, Sect. E]. But, in a certain sense, the
definition is ‘new’ when the focus is on epi-convergent families in f v-fcn(Rn), and
its for this class of functions that we need to know the conditions under which one can
claim convergence of the minimizers and infimums. We chose to make the presentation
self-contained, although as will be shown later, one could also embed f v-fcn(Rn) in
a subclass of fcn(Rn) and then appeal to the ‘standard’ results, but unfortunately this
requires that the non-initiated reader plows through a substantial amount of material.

When f is an epi-limit its necessarily a lsc function since its epigraph is the set-
limit of a collection of sets in R

n+1. Its epigraph is closed but its domain D is not
necessarily closed. Simply think of the collection of functions f ν = f for all ν with
D = (0,∞) and f (x) = 1/x on D. This collection clearly epi-converges to the lsc
function f on D with closed epigraph but not with closed domain.

Lemma 1 (epi-limit value at boundary points). Suppose f : D → R is the epi-limit
of a sequence

{
f ν : Dν → R

}
ν∈IN with all functions in f v-fcn(Rn). Then, for any

sequence xν ∈ Dν → x: liminfν f ν(xν) > −∞.

Proof We proceed by contradiction. Suppose that xν ∈ Dν → x and
liminfν f ν(xν) = −∞. By assumption f > −∞ on D, thus the xν cannot converge
to a point in D, i.e., necessarily x /∈ D. If thats the case and since epi f ν → epi f ,
the line {x} × R would have to lie in epi f contradicting the assumption that f , the
epi-limit of the f ν , belongs to f v-fcn(Rn). �	

123



280 A. Jofré, R. J. -B. Wets

Example 1 [an epi-limit thats not in f v-fcn(Rn)] Consider the sequence of functions{
f ν : [0,∞) → R

}
ν∈IN with

f ν(x) =

⎧
⎪⎨

⎪⎩

−ν2x if 0 ≤ x ≤ ν−1,

ν2x − 2ν if ν−1 ≤ x ≤ 2ν−1,

0 for x ≥ 2ν−1.

Detail The functions f ν ∈ f v-fcn(R) and for the sequence xν = ν−1, f ν(xν) → −∞
and f ν →e f where f : [0,∞) → R with f ≡ 0 on (0,∞) and f (0) = −∞. Thus, the
functions f ν epi-converge to f as functions in fcn(R), provided they are appropriately
extended, i.e., taking on the value ∞ on (−∞, 0). But they do not epi-converge to a
function in f v-fcn(R). �	

In addition to the ‘geometric’ definition, the next proposition provides an ‘analytic’
characterization of epi-converging sequences in f v-fcn(Rn).

Proposition 2 [epi-convergence in f v-fcn(Rn)] Let
{

f : D → R, f ν : Dν →
R, ν ∈ IN

}
be a collection of functions in f v-fcn(Rn). Then, f ν →e f if and only the

following conditions are satisfied:
(a) ∀ xν ∈ Dν → x in D, liminfν f ν(xν) ≥ f (x),
(a∞) for all xν ∈ Dν → x /∈ D, f ν(xν)↗∞,4

(b) ∀x ∈ D, ∃ xν ∈ Dν → x such that limsupν f ν(xν) ≤ f (x).

Proof If epi f ν → epi f and xν ∈ Dν → x either lim infν f ν(xν) = α < ∞ or
not; Lemma 1 reminds us that α = −∞ is not a possibility. In the first instance,
(x, α) is a cluster point of

{
(xν, f ν(xν)) ∈ epi f ν

}
ν∈IN and thus belongs to epi f ,

i.e., f (x) ≤ α and hence (a) holds; α > −∞ since otherwise f would not be finite
valued on D. If α = ∞ that means that f ν(xν)↗∞ and x cannot belong to D,
and thus (a∞) holds. On the other hand, if x ∈ D and thus f (x) is finite, there is
a

{
(xν, αν) ∈ epi f ν

}
ν∈IN such that xν ∈ Dν → x ∈ D and αν → f (x) with

αν ≥ f ν(xν), i.e., lim supν f ν(xν) ≤ f (x), i.e., (b) is also satisfied.
Conversely, if (a) and (a∞) hold, and (xν, αν) ∈ epi f ν → (x, α) then either x ∈ D

or not; recall also, that in view of Lemma 1, α cannot be −∞ since we are dealing
with epi-convergence in f v-fcn(Rn). In the latter instance, by (a∞) α = ∞, so we are
not dealing with a converging sequence of points (in Rn+1) and there is no need to
consider this situation any further. When x ∈ D, since then lim infν f ν(xν) ≥ f (x)

and αν ≥ f ν(xν), one has α ≥ f (x) and consequently (x, α) belongs to epi f ;
this means that condition (a-set) is satisfied. If (x, α) ∈ epi f , from (b) follows the
existence of a sequence xν ∈ Dν → x such that lim supν f ν(xν) ≤ f (x) ≤ α. We
can then choose the αν ≥ f ν(xν) so that αν → α that yields (b-set), the second
condition for the set-convergence of epi f ν → epi f . �	
Theorem 1 (epi-convergence: basic properties) Consider a sequence

{
f ν : Dν →

R, ν ∈ IN } ⊂ f v-fcn(Rn) epi-converging to f : D → R, also in f v-fcn(Rn). Then

4 ↗ means non-decreasing and converging to, i.e., not necessarily monotonically.
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Variational convergence of bivariate functions 281

lim sup
ν→∞

(inf f ν) ≤ inf f.

Moreover, if xk ∈ argminDνk f νk for some subsequence {νk} and xk → x̄ , then
x̄ ∈ argminD f and minDνk f νk → minD f .

If argminD f is a singleton, then every convergent subsequence of minimizers con-
verges to argminD f .

Proof Let {xl}∞l=1 be a sequence in D such that f (xl) → inf f . By 2(b), for each l
one can find a sequence xν,l ∈ Dν → xl such that lim supν f ν(xν,l) ≤ f (xl). Since
for all ν, inf f ν ≤ f ν(xν,l), it follows that for all l,

lim sup
ν

(inf f ν) ≤ lim sup
ν

f ν(xν,l) ≤ f (xl),

and one has, lim supν(inf f ν) ≤ inf f since f (xl) → inf f .
For the sequence xk ∈ Dνk → x̄ , from the above and 2(a),

inf f ≥ lim sup
k

f νk (xk) ≥ lim inf
k

f νk (xk) ≥ f (x̄),

i.e., x̄ minimizes f on D and f νk (xk) = minDνk f νk → minD f .
Finally, since every convergent subsequence of minimizers of the functions f ν

converges to a minimizer of f , it follows that it must converge to the unique minimizer
when argminD f is a singleton. �	

In most of the applications, we shall rely on a somewhat more restrictive notion
than ‘simple’ epi-convergence to guarantee the convergence of the infimums.

Definition 2 (tight epi-convergence) The sequence
{ f ν : Dν → R}ν∈IN ⊂ f v-fcn(Rn) epi-converges tightly to f : D → R ∈
f v-fcn(Rn), if f ν →e f and for all ε > 0, there exist a compact set Bε and an in-
dex νε such that

∀ ν ≥ νε : inf Bε∩Dν f ν ≤ inf Dν f ν + ε.

Theorem 2 (convergence of the infimums). Let { f ν : Dν → R}ν∈IN ⊂ f v-fcn(Rn)

be a sequence of functions that epi-converges to the function f : D → R also in
f v-fcn(Rn), with inf D f finite. Then, they epi-converge tightly

(a) if and only if inf Dν f ν → inf D f .
(b) if and only if there exists a sequence εν ↘ 0 such that εν-argmin f ν → argmin f .

Proof Lets start with necessity in (a). For given ε > 0, the assumptions and Theorem 1
imply

lim inf
ν

( inf
Dν∩Bε

f ν) ≤ lim inf
ν

(inf
Dν

f ν) + ε ≤ lim sup
ν

(inf
Dν

f ν) + ε ≤ inf
D

f + ε < ∞.

123



282 A. Jofré, R. J. -B. Wets

If there is a subsequence {νk} such that f (xk) < κ for some xk ∈ Dνk ∩ Bε, it would
follow that inf D f < κ . Indeed, since Bε is compact, the sequence {xk} has a cluster
point, say x̄ , and then conditions (a∞) and (a) of Proposition 2 guarantee f (x̄) < κ

with x̄ ∈ D, and consequently, also inf D f < κ . Since its assumed that inf D f is finite,
it follows that there is no such sequences with κ arbitrarily negative. In other words,
excluding possibly a finite number of indexes, the inf Dν∩Bε f ν stay bounded away
from −∞ and one can find xν ∈ ε- argminDν∩Bε

f ν . The sequence {xν}ν∈IN admits
a cluster point, say x̄ , that lies in Bε and again by 2(a∞,a), f (x̄) ≤ liminfν f ν(xν).
Hence,

inf D f − ε ≤ f (x̄) − ε ≤ liminfν f ν(xν) − ε ≤ liminfν(inf Dν f ν).

In combination with our first string of inequalities and the fact that ε > 0 can be
chosen arbitrarily small, it follows that indeed inf Dν f ν → inf D f .

Next, we turn to sufficiency in (a). Since inf f ν → inf f ∈ R by assumption, its
enough, given any δ > 0, to exhibit a compact set B such that lim supν

(
inf B∩Dν f ν

) ≤
inf D f + δ. Choose any point x such that f (x) ≤ inf D f + δ. Because f ν →e f in
f v-fcn(Rn), there exists a sequence, 2(a), xν → x such that lim supν f ν(xν) ≤ f (x).
Let B be any compact set large enough to contain all the points xν . Then inf B f ν ≤
f ν(xν) for all ν, so B has the desired property.

We derive (b) from (a). Let ᾱν = inf f ν → inf f = ᾱ that is finite by assump-
tion, and consequently for ν large enough, also ᾱν is finite. Since convergence of
the epigraphs implies the convergence of the level sets [14, Proposition 7.7], one can
find a sequence of αν ↘ ᾱ such that levαν f ν → levᾱ f = argmin f . Simply set
εν := αν − ᾱν .

For the converse, suppose there is a sequence εν ↘ 0 with εν-argmin f ν → argmin
f �= ∅. For any x ∈ argmin f one can select xν ∈ εν-argmin f ν with xν → x . Then
because f ν →e f , one obtains

inf f = f (x) ≤ lim infν f ν(xν) ≤ lim infν(inf f ν + εν)

≤ lim infν(inf f ν) ≤ limsupν(inf f ν) ≤ inf f,

where the last inequality comes from Theorem 1. �	
Remark 1 (convergence of domains) Although, epi-convergence essentially implies
convergence of the level sets [14, Proposition 7.7], it does not follow that it implies
the convergence of their (effective) domains. Indeed, consider the following sequence
f ν : R → R with f ν ≡ ν except for f ν(0) = 0 that epi-converges to δ{0} the indicator
function of {0}. We definitely do not have dom f ν = R converging to dom δ{0} = {0}.
This vigorously argues against the temptation of involving the convergence of their
domains in the definition of epi-convergence, even for functions in f v-fcn(Rn).

This concludes the presentation of the results that will be used in the sequel. As
indicated earlier, its also possible to derive these results from those for extended real-
valued functions. To do so, one identifies f v-fcn(Rn) with

pr -fcn(Rn) := {
f ∈ fcn(Rn)

∣
∣ − ∞ < f �≡ ∞}

,

123



Variational convergence of bivariate functions 283

the subset of proper functions in fcn(Rn); in a minimization context, a function f is
said to be proper if f > −∞ and f �≡ ∞, in which case, its finite on its (effective)
domain

dom f = {
x ∈ R

n
∣
∣ f (x) < ∞}

.

There is an one-to-one correspondence, a bijection5 denoted η, between the elements
of f v-fcn(Rn) and those of pr -fcn(Rn): If f ∈ f v-fcn(Rn), its extension to all of
R

n by setting η f = f on its domain and η f ≡ ∞ on the complement of its domain,
uniquely identifies a function in pr -fcn(Rn). And, if f ∈ pr -fcn(Rn), the restriction
of f to dom f , uniquely identifies a function η−1 f in f v-fcn(Rn). Its important to
observe that under this bijection, any function, either in pr -fcn(Rn) or f v-fcn(Rn),
and the corresponding one in f v-fcn(Rn) or pr -fcn(Rn), have the same epigraphs!

Since, epi-convergence for sequences in f v-fcn(Rn) or in in fcn(Rn) is always
defined in terms of the convergence of the epigraphs, there is really no need to verify
that the analytic versions (Proposition 2 and [14, Proposition 7.2]) also coincide.
However, for completeness sake and to highlight the connections, we go through the
details of an argument.

Proposition 3 (epi-convergence in f v-fcn(Rn) and fcn(Rn)) Let{
f : D → R, f ν : Dν → R, ν ∈ IN

}
be a collection of functions in f v-fcn(Rn).

Then, f ν →e f if and only η f ν →e η f where η is the bijection defined above.

Proof Now, η f ν →e η f ([14, Proposition 7.2]) if and only if for all x ∈ R
n :

(aη) liminfν η f ν(xν) ≥ η f (x) for every sequence xν → x ,
(bη) limsupν η f ν(xν) ≤ η f (x) for some sequence xν → x .

Since for x /∈ D, η f (x) = ∞, (aη) clearly implies (a) & (a∞). Conversely, if (a) and
(a∞) hold, x ∈ D and xν → x , when computing the liminfν η f ν(xν) one can ignore
elements xν /∈ Dν since then η f ν(xν) = ∞. Hence, for x ∈ D, actually (a) implies
(aη). If x /∈ D and xν → x , (a∞) and, again, the fact that η f ν(xν) = ∞ when x /∈ Dν ,
yield (aη).

If (bη) hold and x ∈ D, then the sequence xν → x must, at least eventually, have
xν ∈ Dν since otherwise the limsupν η f ν(xν) would be ∞ whereas f (x) = η f (x) is
finite. Thus, (bη) implies (b). Conversely, (b) certainly yields (bη) if x ∈ D. If x /∈ D,
η f (x) = ∞ and so the inequality in (bη) is also trivially satisfied in that case. �	

As long as we restrict our attention to pr -fcn(Rn), in view of the preceding
observations, all the basic results, cf. [14, Chap. 7, Sect. E] of the theory of epi-
convergence related to the convergence of infimums and minimizers apply equally
well to functions in f v-fcn(Rn) and not just those featured here. In particular, if one
takes into account the bijection between f v-fcn(Rn) and pr -fcn(Rn), then Theorem 1
is simply an adaptation of the standard results for epi-converging sequences in fcn(Rn),
cf. [14, Proposition 7.30, Theorem 7.31]. Similarly, again by relying on the bijection

5 In fact, this bijection is a homeomorphism when we restrict our attention to lsc functions. The continuity
of this correspondence is immediate if both of these function-spaces are equipped with the topology induced
by the convergence of the epigraphs, see below.
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284 A. Jofré, R. J. -B. Wets

η to translate the statement of Theorem 2 into an equivalent one for functions η f ν, η f
that belong to fcn(Rn), one comes up with [14, Theorem 7.31] about the convergence
of the infimal values.

Finally, in a maximization setting, one can simply pass from f to − f , or one can
repeat the previous arguments with the following changes in the terminology: min to
max (inf to sup), ∞ to −∞, epi to hypo, ≤ to ≥ (and vice-versa), lim inf to lim sup
(and vice-versa), and lsc to usc. The hypograph of f is the set of all points in R

n+1

that lie on or below the graph of f , f is usc (=upper semicontinuous) if its hypograph
is closed, and its proper, in the maximization framework, if −∞ �≡ f < ∞; in
the maximization setting cl f denotes the function whose hypograph is the closure,
relative to R

n+1 of hypo f , its also called its usc regularization.
A sequence is said to hypo-converge, written f ν →h f , when − f ν →e − f , or

equivalently if hypo f ν → hypo f , and it hypo-converge tightly if − f ν epi-converge
tightly to − f . And consequently, if the sequence hypo-converges tightly to f with
supD f finite, then supDν f ν → supD f .

When hypo f is the inner set-limit of the hypo f ν , then f is the lower hypo-limit
of the functions f ν and if its the outer set-limit then its their upper hypo-limit. It then
follows from Proposition 1 that the lower and upper hypo-limits, and the hypo-limit,
if it exists, are all usc. Moreover, if the functions f ν are concave, so is the lower
hypo-limit, and the hypo-limit, if it exists. Hence, one also has that the family of usc
functions is closed under hypo-convergence.

3 Lopsided convergence

Lopsided convergence for bivariate functions was introduced in [2]; we already relied
on this notion to formalize the convergence of pure exchange economies and to study
the stability of their Walras equilibrium points [9]. Its aimed at the convergence of
maxinf-points, or minsup-points but not at both; therefore the name lopsided, or lop-
convergence. However, our present, more comprehensive, analysis has lead us to adjust
the definition since otherwise some ‘natural’ classes of bivariate functions with domain
and values like those depicted in Fig. 2, would essentially be excluded, i.e., could not
be included in (lopsided or) lop-convergent families. And these are precisely the class
of functions that needs to be dealt with in many applications. Moreover, like in Sect.
2, the main focus will not be on extended real-valued functions but on finite-valued
bivariate functions that are only defined on a product of non-empty sets rather than
on extended real-valued functions defined on the full product space. The motivation
for proceeding in this manner, again, coming from the applications. But this time, its
not just one possible approach, its in fact mandated by the underlying structure of the
class of bivariates that are of interest in the applications. We shall, however, like in the
previous section, provide the bridge with the ‘extended real-valued’ framework that
was used in [2].

The definition of lop-convergence is necessarily one-sided. One is either inter-
ested in the convergence of maxinf-points or minsup-points but not both. In general,
the maxinf-points are not minsup-points, and vice-versa. When, they identify the
same points, such points are saddle-points. In this article, our concern is with the
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Fig. 2 Partition of the domain of a proper bivariate function: maxinf framework

‘lopsided’-situation, and will deal with the ‘saddle-point’-situation in the last section
of the article.

Definitions and results can be stated either in terms of the convergence of maxinf-
points or minsup-points with some obvious adjustments for signs and terminology.
However, its important to know if we are working in a ‘maxinf’ or a ‘minsup’ frame-
work, and this is in keeping with the (plain) univariate case where one has to focus
on either minimization or maximization. Because most of the applications we are
interested in, are more naturally formulated in terms of maxinf-problems, thats the
version that will be dealt with in this section. We provide, at the end of the section,
the necessary translations required to deal with minsup-problems.

Here, the term bivariate function always refers to functions defined on the product
of two non-empty subsets of R

n and R
m , respectively.6 We write

biv(Rn+m) = {
F : R

n × R
m → R

}

for the class of bivariate functions that are extended real-valued and defined on all of
R

n × R
m , and

f v-biv(Rn+m) = {
F : C × D → R

∣
∣ ∅ �= C ⊂ R

n, ∅ �= D ⊂ R
m}

for the class of bivariate functions that are real-valued and defined on the product
C × D of non-empty subsets of R

n and R
m , respectively; here, its understood that

R
n+m does not refer to the domain of definition but to the (operational) product space

that includes C × D.

6 In a follow-up paper, we deal with bivariate functions defined on the product of non-empty subsets of
two topological spaces potentially equipped with different topologies.
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For a bivariate function in biv(Rn+m) or f v-biv(Rn+m), one refers to x̄ as a maxinf-
point if

x̄ ∈ argmax
x∈C

[
inf
y∈D

F(x, y)
]
,

its a minsup-point if

x̄ ∈ argmin
x∈C

[
sup
y∈D

F(x, y)
];

C = R
n and D = R

m are not excluded.
Thus, for now, lets focus on f v-biv(Rn+m), keeping in mind that we are dealing

with the maxinf case.

Definition 3 (lop-convergence, f v-biv) A sequence in f v-biv(Rn+m),
{

Fν : Cν ×
Dν → R

}
ν∈IN lop-converges, or converges lopsided, to a function F : C × D → R,

also in f v-biv(Rn+m), if
(a) For all xν → x with xν ∈ Cν , x ∈ C and for all y ∈ D, there exists yν → y

with yν ∈ Dν such that limsupν Fν(xν, yν) ≤ F(x, y),
(a∞) For all xν → x with xν ∈ Cν and x /∈ C and for all y ∈ D, there exists

yν → y with yν ∈ Dν such that Fν(xν, yν) → −∞.
(b) For all x ∈ C , there exists xν → x with xν ∈ Cν such that for any sequence

{yν ∈ Dν}ν∈IN , liminfν Fν(xν, yν) ≥ F(x, y) when the sequence converges to a
point y ∈ D, and Fν(xν, yν) → ∞ when the sequence converges to a point y /∈ D.

Although a number of properties can be immediately derived from this convergence
notion, cf. Theorem 8 for example, to obtain the convergence of the maxinf-points,
however, we need to require (partial) ‘ancillary-tightness’, cf. Theorem 3, condition
(b–t).

This (partial) ancillary-tightness condition is new; it was inspired by the work
of Bagh [6] on approximation for optimal control problems. A more conventional
condition that implies ancillary-tightness would be the following: (b) holds and there
is a compact set B ⊂ R

m such that

∀x ∈ R
n : B ⊃ {

y
∣
∣ Fν(x, y) < ∞}

.

This last condition, suggested in [2], is too restrictive in many applications. Moreover,
the use of ancillary-tightness allows for a generalization of Ky Fan’s inequality, see
the next section, that can be exploited in situations when the domain of definition of
the bivariate function is not compact.

Now, lets turn to the convergence of the marginal functions

gν = inf y∈Dν Fν(·, y) to g = inf y∈D F(·, y);

in the extended real-valued framework, one can find a number of related results in the
literature, see in particular [12].
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Theorem 3 (hypo-convergence of the inf-projections) Suppose the sequence{
Fν

}
ν∈IN ⊂ f v-biv(Rn+m) lop-converges to F with condition 3(b) strengthened

as follows:
(b–t) not only, for all x ∈ C, ∃ xν ∈ Cν → x such that ∀ yν ∈ Dν → y,

liminfν Fν(xν, yν) ≥ F(x, y) or F(xν, yν) → ∞ depending on y belonging or not
to D, but also, for any ε > 0 one can find a compact set Bε, possibly depending on
the sequence {xν → x}, such that for all ν larger than some νε,

inf Dν∩Bε Fν(xν, ·) ≤ inf Dν Fν(xν, ·) + ε.

Let gν = inf y∈Dν Fν(·, y), g = inf y∈D F(·, y). Then gν →h g in f v-fcn(Rn)

assuming that their domains are non-empty, i.e., Cν
g = {

x ∈ Cν
∣
∣ gν(x) > −∞}

and Cg = {
x ∈ C

∣
∣ g(x) > −∞}

are non-empty sets, except possibly for a finite
number of indexes ν.

Proof The functions gν and g never take on the value ∞, so the proof does not have
to deal with that possibility. This means that gν and g belong to f v-fcn(Rn) whenever
they are defined on non-empty sets. Note, however, that in general, the function gν and
g are not necessarily finite-valued on all of Cν and C , since they can take on the value
−∞ implying that Cν

g = {
x

∣
∣ gν(x) > −∞}

and Cg = {
x

∣
∣ g(x) > −∞}

could be
strictly contained in Cν and C , even potentially empty, this later instance, however,
has been excluded by the hypotheses.

We need to verify the conditions of Proposition 2. Lets begin with (a) and (a∞).
Suppose xν ∈ Cν

g → x ∈ Cg . So, g(x) ∈ R and yε ∈ ε- argminD F(x, ·) for ε > 0.
By 3(a), one can find yν ∈ Dν → yε such that limsupν Fν(xν, yν) ≤ F(x, yε).
Hence,

limsupν gν(xν) ≤ limsupν Fν(xν, yν) ≤ F(x, yε) ≤ g(x) + ε.

Since, this holds for arbitrary ε > 0, it follows that limsupν gν(xν) ≤ g(x). When
g(x) = −∞ which means that x /∈ Cg . If x ∈ C , for any κ < 0 there is a yκ ∈ D
such that F(x, yκ ) < κ , and 2(a) then yields a sequence yν ∈ Dν → yκ such that

limsupν gν(xν) ≤ limsupν Fν(xν, yν) ≤ F(x, yκ ) < κ.

Since this holds for κ arbitrarily negative, it follows that limsupν gν(xν) = −∞.
When x /∈ C , one appeals directly to 3(a∞) to arrive at the same implication.

Lets now turn to the second condition 2(b) for hypo-convergence: for all x ∈ Cg

there exists xν ∈ Cν
g → x such that liminfν gν(xν) ≥ g(x). The inequality would

clearly be satisfied if g(x) = −∞ but then x /∈ Cg and that case does not need
to concern us. So, when g(x) ∈ R, let xν ∈ Cν → x be a sequence predicated
by condition (b–t) for ancillary-tight lop-convergence. It follows that the functions
Fν(xν, ·) : Dν → R epi-converge to F(x, ·) : D → R. Hence, one can apply Theo-
rem 2, since g(x) = inf D F(x, ·) is finite and the condition on tight epi-convergence
is satisfied as immediate consequence of (partial) ancillary-tight lop-convergence.
Hence, gν(xν) → g(x). �	
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Theorem 4 (convergence of maxinf-points, f v-biv) Let {Fν}ν∈IN and F be a family
of bivariate functions that satisfy the assumptions of Theorem 3, so, in particular the
Fν lop-converge to F and the condition (b–t) on ancillary-tightness is satisfied. For
all ν large enough, let xν be a maxinf-point of Fν and x̄ any cluster point of the
sequence {xν, ν ∈ IN }, then x̄ is a maxinf-point of the limit function F. Moreover,
with {xν, ν ∈ N ⊂ IN } the (sub)sequence converging to x̄ ,

lim
ν →N ∞

[
inf

y∈Dν
Fν(xν, y)

] = inf
y∈D

F(x̄, y) ],

i.e., there is also convergence of the ‘values’ of these maxinf-points.

Proof Theorem 3 tells us that with

gν(x) = inf y∈Dν Fν(x, y), g(x) = inf y∈D F(x, y),

the functions gν hypo-converge to g. Maxinf-points of Fν and F are then maximizers
of the corresponding functions gν and g. The assertions now follow immediately from
the convergence of the argmax of hypo-converging sequences, cf. Theorem 1 translated
to the ‘maximization’ framework. �	

However, a number of approximation results require ‘full tightness’ of the
converging sequence, not just ancillary-tightness.

Definition 4 (tight lopsided convergence, f v-biv) A sequence of bivariate functions{
Fν : Cν × Dν → R

}
ν∈IN in f v-biv(Rn+m) lop-converges tightly to a function

F : C × D → R, also in f v-biv(Rn+m), if they lop-converge, and in addition the
following conditions are satisfied:

(a–t) for all ε > 0 there is a compact set Aε such that for all ν large enough,

supx∈Cν∩Aε
inf y∈Dν Fν(x, y) ≥ supx∈Cν inf y∈Dν Fν(x, y) − ε,

(b–t) for x ∈ C and the corresponding sequence xν ∈ Cν → x identified in
condition 3(b), for any ε > 0 one can find a compact set Bε, possibly depending on
the sequence {xν → x}, such that for all ν larger enough,

inf Dν∩Bε Fν(xν, ·) ≤ inf Dν Fν(xν, ·) + ε.

Theorem 5 (approximating maxinf-points) Suppose the sequence of bivariate func-
tions

{
Fν : Cν × Dν → R

}
ν∈IN in f v-biv(Rn+m) lop-converges tightly to a function

F : C × D → R, also in f v-biv(Rn+m). Moreover, suppose the inf-projections
gν = inf y∈Dν Fν(·, y) and g = inf y∈D F(·, y) are finite-valued on Cν and C, respec-
tively, with sup g = supx inf y F(x, y) finite. Then

sup
x

inf
y

Fν(x, y) → sup
x

inf
y

F(x, y)
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and if x̄ is a maxinf point of F one can always find sequences
{
εν ↘ 0, xν ∈

εν-argmaxx (inf y Fν)
}
ν∈IN such that xν →N x̄ . Conversely, if such sequences exist, then

supx (inf y Fν)→N inf y F(x̄, ·).

Proof Tightness, in particular condition (b–t), implies that gν →h g, see Theorem 3.
From (a–t), it then follows that they hypo-converge tightly. The assertions then proceed
directly from Theorem 2 �	

Lets now turn to the situation when our bivariate functions are extended real-valued
and defined on all of R

n × R
m , keeping in mind that we remain in the maxinf setting.

To define convergence, we cannot proceed as in Sect. 2, where we tied the convergence
of functions with that of their epigraphs. Here, there is no easily identifiable (unique)
geometric object that can be associated with a bivariate function.

Recall that biv(Rn+m) is the family of all extended-real valued functions defined
on R

n × R
m . In our maxinf case, as in [13], the effective domain dom F of a bivariate

function F : R
n+m → R is

dom F = domx F × domy F,

where

domx F = {
x

∣
∣ F(x, y) < ∞, ∀ y ∈ R

m}
,

domy F = {
y
∣
∣ F(x, y) > −∞, ∀ x ∈ R

n}
.

Thus, F is finite-valued on dom F ; it does not exclude the possibility that F might be
finite-valued at some points that do not belong to dom F .

In the ‘maxinf’ framework, the term proper is reserved for bivariate functions with
non-empty domain and such that

F(x, y) = ∞ when x /∈ domx F

F(x, y) = −∞ when x ∈ domx F but y /∈ domy F,

see Fig. 2. If F is proper, we write F ∈ pr -biv(Rn+m), a sub-collection of biv(Rn+m).

Definition 5 (lopsided convergence, biv) A sequence of bivariate functions
{

Fν, ν ∈
IN

} ⊂ biv(Rn+m) lop-converges to a function F : R
n × R

m → R if
(a) ∀ (x, y) ∈ R

n+m, xν → x , ∃ yν → y: limsupν Fν(xν, yν) ≤ F(x, y),
(b) ∀x ∈ domx F , ∃ xν → x : liminfν Fν(xν, yν) ≥ F(x, y) ∀ yν → y ∈ R

m .

Observe that when the functions Fν and F do not depend on x , they lop-converge if
and only if they epi-converge, and that if they do not depend on y, they converge lop-
sided if and only if they hypo-converge. This later assertion follows from Proposition 3.
Moreover, if for all (x, y), the functions Fν(x, ·)→e F(x, ·) and Fν(·, y)→h F(·, y),
then the functions Fν lop-converge to F ; however, one should keep in mind that this
is a sufficient condition but by no means a necessary one.
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Remark 2 (’83 versus new definition). The definition of lop-convergence, in [2],
required condition 5(b) to hold not just for all x ∈ domx F but for all x ∈ R

n . The
implication is that then lop-convergent families must be restricted to those converging
to a function F with domx F = R

n .

Detail Indeed, consider the following simple example: For all ν ∈ IN ,

Fν(x, y) = F(x, y) =

⎧
⎪⎨

⎪⎩

0 if (x, y) ∈ [0.1] × [0, 1],
−∞ if y ∈ (0, 1), x /∈ [0, 1],
∞ elsewhere.

Then, in terms of Definition 5, the Fν lop-converge to F , but not if we had insisted
that condition 5(b) holds for all x ∈ R

n . Indeed, there is no way to find a sequence
xν → −1, for example, such that for all yν → 0, liminfν Fν(xν, yν) ≥ F(−1, 0) =
∞; simply consider yν = 1/ν → 0. �	

As in Sect. 2, we set up a bijection, also denoted η, between the elements of
f v-fcn(Rn+m) and the (max-inf) proper bivariate functions, pr -biv(Rn+m). For F ∈
f v-biv(Rn+m), set

ηF(x, y) =

⎧
⎪⎨

⎪⎩

F(x, y) when (x, y) ∈ C × D,

∞ when y /∈ D,

−∞ when y ∈ D but x /∈ C ,

i.e., ηF extends F to all of R
n ×R

m . Then, for F ∈ pr -biv, η−1 F will be the restriction
of F to its domain of finiteness, namely domx F × domy F .

Proposition 4 (lop-convergence in f v-biv and biv) A sequence

{
Fν : Cν × Dν → R, ν ∈ IN

} ⊂ f v-biv(Rn+m)

converges lopsided to F : C × D → R if and only the corresponding sequence of
extended real-valued bivariate functions

{
ηFν : R

n+m → R, ν ∈ IN
} ⊂ pr -biv(Rn+m)

lop-converges (Definition 5) to ηF : R
n × R

m → R, where η is the bijection between
f v-biv(Rn+m) and pr -biv(Rn+m) defined above.

Proof To show: conditions (a), (a∞) and (b) of Definition 3 for the sequence {Fν}∞ν=1
imply and are implied by the conditions (a) and (b) of 5 for the sequence {ηFν}∞ν=1 in
pr -biv(Rn+m); lets denote these later conditions (ηa) and (ηb).

We begin with the implications involving (ηa) and (a), (a∞) Suppose (ηa) holds,
(x, y) ∈ C × D and xν ∈ Cν → x , then there exists yν → y such that
lim supν ηFν(xν, yν) ≤ ηF(x, y) = F(x, y). Necessarily, for ν sufficiently large,
yν ∈ Dν since otherwise lim supν ηFν(xν, yν) = ∞ contradicting the possibility of
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having this upper limit less than or equal to F(x, y) that is finite. This takes care of (a).
If xν ∈ Cν → x /∈ C , y ∈ D this implies ηF(x, y) = −∞, and consequently there
exists yν → y such that lim supν ηFν(xν, yν) = −∞. Again, this sequence {yν}∞ν=1
cannot have a subsequence with yν /∈ Dν since otherwise this upper limit would be
∞. This yields (a∞)

Now, suppose (a) and (a∞) hold. As long as y /∈ D, ηF(x, y) = ∞ the inequality
in (ηa) will always be satisfied, henceforth we consider only the case when y ∈
D. If xν ∈ Cν → x ∈ R

n , then (a) or (a∞) directly guarantee the existence of a
sequence {yν}∞ν=1 such that lim supν ηFν(xν, yν) ≤ ηF(x, y). Finally, consider the
case when xν → x , but xν /∈ Cν for a subsequence N ⊂ IN ; there is no loss of
generality in actually assuming that N = IN . Pick any sequence yν ∈ Dν → y,
hence lim supν ηFν(xν, yν) = −∞ will certainly be less than or equal to ηF(x, y).
So, (ηa) holds also, trivially, in this situation.

When (ηb) holds and (x, y) ∈ C × D, hence ηF(x, y) = F(x, y) ∈ R. We
only have to consider sequences yν ∈ Dν → y ∈ D and for all such sequences:
∃ xν → x such that lim infν ηFν(xν, yν) ≥ F(x, y). This sequence xν → x cannot
have a subsequence whose elements do not belong to the corresponding sets Cν since
otherwise the lower limit of {ηFν(xν, yν)}∞ν=1 would be −∞ < F(x, y) ∈ R. This
means that for this sequence xν → x , the xν ∈ Cν for ν sufficiently large. Hence, (b)
holds when y ∈ D. When x ∈ C , y /∈ D, ηF(x, y) = ∞. For any yν ∈ Dν → y there
is a sequence xν → x such that lim infν ηFν(xν, yν) = ∞. Since yν ∈ Dν, xν /∈ Cν

would imply ηFν(xν, yν) = −∞, this sequence xν → x must be such that xν ∈ Cν

for ν sufficiently large, and consequently one must have Fν(xν, yν) → ∞ which
means that (b) is also satisfied when y /∈ D.

In the other direction that (b) yields (ηb) is straightforward. If y /∈ D and x ∈ C , then
lim infν ηFν(yν, xν) = ∞ = F(x, y) for the sequence xν ∈ Cν → x , predicated by
(b), irrespective of the sequence yν → y. Finally, if (x, y) ∈ C × D, then (b) foresees
a sequence xν ∈ Cν → x such that the inequality in (ηb) is satisfied as long as the
sequence yν → y is such that all ν, or at least for ν sufficiently large, the yν ∈ Dν .
But, if they do not ηFν(xν, yν) = ∞, and these terms will certainly contribute to
making lim infν ηFν(xν, yν) ≥ F(x, y). �	

Ancillary-tight Lop-convergence is also the key to the convergence of the maxinf-
points of extended real-valued bivariate functions.

Definition 6 (ancillary-tight lop-convergence, biv). A sequence of bivariate functions
in biv(Rn+m), ancillary-tight lop-converges if it converges lopsided and for all x ∈ C ,
the following augmented condition of 5(b) holds:

(b–t) not only ∃ xν → x such that ∀ yν → y, liminfν Fν(xν, yν) ≥ F(x, y),
but also, for any ε > 0 one can find a compact set Bε, possibly depending on the
sequence {xν → x}, such that for all ν larger than some νε,

inf Bε Fν(xν, ·) ≤ inf Fν(xν, ·) + ε.

Proposition 5 (ancillary-tight lop-convergence in f v-biv and biv). A sequence

{
Fν : Cν × Dν → R, ν ∈ IN

} ⊂ f v-biv(Rn × R
m)
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lop-converges ancillary-tightly to F : C × D → R in f v-biv(Rn × R
m) if and only

if the corresponding sequence

{
ηFν : R

n × R
m → R, ν ∈ IN

} ⊂ pr -biv(Rn × R
m)

lop-converges ancillary-tightly to ηF : R
n × R

m → R, where η is the bijection from
f v-biv(Rn × R

m) onto pr -biv(Rn × R
m) defined earlier.

Proof We already showed that lop-convergence in f v-biv and pr -biv are equivalent,
cf. Proposition 4, so there only remains to verify the ‘tightly’ condition. But thats
immediate because in both cases it only involves points that belong to C × R

m =
domx ηF × R

m and sequences converging to such points. �	

Theorem 6 (biv: hypo-convergence of the inf-projections). Suppose the sequence{
Fν

}
ν∈IN ⊂ biv(Rn+m) lop-converges ancillary-tightly to F and let gν = inf y∈Dν Fν(·, y),

g = inf y∈D F(·, y). Then, assuming that g < ∞, gν →h g in fcn(Rn).

Proof The proof is the same as that of Theorem 3 with the obvious adjustments when
the sequences do not belong to dom Fν and the limit point does not lie in dom F . �	

Theorem 7 (biv: convergence of maxinf-points) Let {Fν}ν∈IN and F be a family of
bivariate functions that satisfy the assumptions of Theorem 6, so, in particular the Fν

lop-converge ancillary-tightly to F, Then, if for all ν, xν is a maxinf-point of Fν and
x̄ is any cluster point of the sequence {xν, ν ∈ IN }, then x̄ is a maxinf-point of the
limit function F. Moreover, with {xν, ν ∈ N ⊂ IN } the (sub)sequence converging to
x̄ ,

limν →N ∞
[

inf
y∈Rm

Fν(xν, y)
] = inf [ sup

y∈Rm
F(x̄, y) ],

i.e., there is also convergence of the ‘values’ of the maxinf-points.

Proof Theorem 6 tells us that with

gν(x) = inf y∈Dν Fν(x, y), g(x) = inf y∈D F(x, y),

the functions gν hypo-converge to g. Maxinf-points for Fν and F are then maximizers
of the corresponding functions gν and g. The assertions now follow immediately
from the convergence of the argmax of hypo-converging sequences, cf. Theorem [14,
Theorem 7.31] translated to the ‘maximization’ framework. �	

To deal with a ‘minsup’ situations one can either repeat all the arguments changing
inf to sup, liminf to limsup and vice-versa, or simply re-integrate the questions to
the ‘maxinf’ framework by changing signs of the approximating and limit bivariate
functions.
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4 Ky Fan’s Inequality extended

The class of usc functions is closed under hypo-converge [14, Theorem 7.4], and so
is the class of concave usc functions [14, Theorem 7.17]. A class of functions that
is closed under lopsided convergence is the class of Ky Fan functions (Theorem 8).
We exploit this result to obtain a generalization of Ky Fan Inequality that allows us
to claim existence of maxinf-points in situations when the domain of definition of the
Ky Fan function is not necessarily compact.

Definition 7 A bivariate function F : C × D → R with Cand D convex sets, in
f v-biv(Rn+m), is called a Ky Fan function if

(a) ∀ y ∈ D: x �→ F(x, y) is usc on C ,
(b) ∀ x ∈ C : y �→ F(x, y) is convex on D.

Note that the sets C or D are not required to be compact.

Theorem 8 (lop-limits of Ky Fan functions) The lopsided limit F : C × D → R of a
sequence

{
Fν : Cν × Dν → R

}
ν∈IN of Ky Fan functions in f v-biv(Rn+m) is also a

Ky Fan function.

Proof For the convexity of y �→ F(x, y), let xν ∈ Cν → x ∈ C be the sequence set
forth by 3(b) and y0, yλ, y1 ∈ D with yλ = (1 − λ)y0 + λy1 for λ ∈ [0, 1]. In view
of 3(a), we can choose sequences

{
y0,ν ∈ Dν → y0

}
,
{

y1,ν ∈ Dν → y1
}

such that
Fν(xν, y0,ν) → F(x, y0) and Fν(xν, y1,ν) → F(x, y1). Let yλ,ν = (1 − λ)y0,ν +
λy1,ν ; yλ,ν ∈ Dν since the functions Fν(x, ·) are convex and the sequence {yλ,ν}ν∈IN

certainly converges to yλ. For all ν, one has

Fν(xν, yλ,ν) ≤ (1 − λ)Fν(xν, y0,ν) + λFν(xν, y1,ν),

Taking lininf on both sides yields

F(x, yλ) ≤ liminfν Fν(xν, yλ,ν) ≤ (1 − λ)F(x, y0) + λF(x, y1),

that establishes the convexity of F(x, ·).
To prove the upper semicontinuity of F with respect to x-variable, we show that

for y ∈ D,

hypo F(·, y) is the inner set-limit of the hypo Fν(·, yν),

where the limit is with respect to all sequences {yν ∈ Dν}ν∈IN converging to y and
ν → ∞. This yields the upper semicontinuity since the inner set-limit is always
closed and a function is usc if and only if its hypograph is closed. We have to show
that if (x, α) ∈ hypo F(·, y), then whenever yν ∈ Dν → y, one can find (xν, αν) ∈
hypo Fν(·, yν) such that (xν, αν) → (x, α). But that follows immediately from 3(a)
since we can adjust the αν ≤ Fν(xν, yν) so that they converge to α ≤ F(x, y). �	

Given a Ky Fan function with compact domain and non-negative on the diagonal,
we have the following important existence result:
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Lemma 2 (Ky Fan’s Inequality; [7], [4, Theorem 6.3.5]) Suppose F : C × C → R is
a Ky Fan function with C compact. Then, the set of maxinf-points of F is a nonempty
subset of C. Moreover, if F(x, x) ≥ 0 (on C × C), then for every maxinf-point x̄ of
C, F(x̄, ·) ≥ 0 on C.

One of the consequences of the lopsided convergence is an extension of the Ky Fan’s
Inequality to the case when it is not possible to apply it directly because one of the
conditions is not satisfied, for example the compactness of the domain. However, we are
able to approach the bivariate function F by a sequence {Fν}ν∈IN defined on compact
sets Cν . This procedure could be useful in many situation where the original maxinf-
problem is unbounded, and then the problem is approached by a family of truncated
maxinf-problems. Such is the case, for example, when we consider as variables in
the original problem the multipliers associated to inequality constraints, or when the
original problem is a Walras equilibrium with a positive orthant as consumption set;
in [8] one is precisely confronted with such situations. Another simple, illustrative
example follows the statement of the theorem.

Theorem 9 (Extension of Ky Fan’s Inequality) Let ∅ �= C ⊂ R
n and F a finite-valued

bivariate function defined on C×C. Suppose one can find sequences of compact convex
sets

{
Cν ⊂ R

n
}

and (finite-valued) Ky Fan functions {Fν : Cν × Cν → R}ν∈IN

lop-converging ancillary-tightly to F, then every cluster point x̄ of any sequence
{xν, ν ∈ IN } of maxinf-points of the Fν is a maxinf-point of F

Proof Ky Fan’s Inequality 2 implies that for all ν, the set of maxinf-points of Fν is
non-empty. On the other hand, in view of Theorems 8 and 4 any cluster point of such
maxinf-points will be a maxinf-point of F . �	
Example 2 (Extended Ky Fan’s Inequality applied) We consider a Ky Fan function
F(x, y) = sin x + (y + 1)−1 defined on the set [0,∞)2. Although,

inf y∈[0,∞) F(x, y) = sin x,

and the set maxinf-points is not empty, we cannot apply Ky Fan Inequality because
the domain of F is not compact; the function F(·, y) is not even sup-compact.

Detail If we consider the functions Fν(x, y) = sin x + (y + 1)−1 on the compact
domains [0, ν]2, one can apply Ky Fan’s Inequality. Indeed, in this case we have,

inf y∈[0,ν) F(x, y) = sin x + (ν + 1)−1,

that converges pointwise and hypo- to sin x , and

argmaxy∈[0,ν] inf y∈[0,ν] F(x, y) = {
π/2 + 2kπ

∣
∣ k ∈ IN

}
.

Thus, xν = π/2 and x̃ν = π/2 + 2νπ are maxinf-points of the Fν . The sequence
{xν}ν∈IN converges to a maxinf-point of F , the second sequence {x̃ν}ν∈IN does not.

�	
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