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Abstract We consider the gradient system ẋ(t)+ ∇Φ(x(t)) = 0 and the so-called
heavy ball with friction dynamical system ẍ(t) + λẋ(t) + ∇Φ(x(t)) = 0, as well
as an implicit discrete (proximal) version of it, and study the asymptotic behavior of
their solutions in the case of a smooth and quasiconvex objective function Φ. Mini-
mization properties of trajectories are obtained under various additional assumptions.
We finally show a minimizing property of the heavy ball method which is not shared
by the gradient method: the genericity of the convergence of each trajectory, at least
when Φ is a Morse function, towards local minimum of Φ.

Keywords Quasiconvex function · Minimization · Continuous dynamical system ·
Proximal algorithm · Asymptotic behavior
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1 Introduction

We consider here the problem of minimizing a function Φ : H → R defined on H a
real Hilbert space, with real values. This writes

min
x∈H

Φ(x). (1)

We assume that the set of minimizers S := argmin Φ is nonempty. Let us denote by
〈·, ·〉 the scalar product on H and | · | the associated norm. Classically ∇Φ(x) will be
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174 X. Goudou, J. Munier

the gradient of Φ at x according to this scalar product. As this work deals with the
case of a quasiconvex objective function Φ, let us recall here the basic notions about
that concept.

Quasiconvexity of a function f (from some convex subset C of a vector space to
R) admits various definitions (see [17,18], or [11]). For example, in geometric terms,
the function f is said quasiconvex if

∀x, y ∈ C, f (t x + (1 − t)y) ≤ max( f (x), f (y))

which means that each sublevel sets Lα( f ) := {x ∈ C such that f (x) ≤ α } is convex.
When C is open, and f is continuously differentiable, an equivalent condition (see

[10] for more details) is that for all x and y in C ,

f (y) ≤ f (x) ⇒ 〈∇ f (x), y − x〉 ≤ 0. (2)

Remark 1 An other equivalent condition is that, for all x and y in C , f (y) < f (x) ⇒
〈∇ f (x), y − x〉 ≤ 0. This condition must not be confused with the following: ∀x, y ∈
C, f (y) < f (x) ⇒ 〈∇ f (x), y − x〉 < 0, which claims that f is pseudoconvex:
pseudoconvexity implies quasiconvexity, and a quasiconvex function f on some open
convex subset is pseudoconvex if each critical points of f is a local minimum. See for
example [9].

So quasiconvexity generalizes convexity. The interest of quasiconvex functions is
that, while retaining some important aspects of convex functions, they present the
advantage of having some stability properties that convex functions do not have. For
example, for each constant λ, the function min{ f, λ} is quasiconvex when f is quasi-
convex, but may not be convex even if f is convex.

The notion of quasiconvexity considered here must not be confused with the Morrey
quasiconvexity used in calculus of variations (see [20] for further details).

The notion of quasiconvexity appeared recently in control theory (see [13]). But its
main domain of application is the value theory in economics (see [3,19,21,22,24,33]
or [39]). In this area, each consumer is characterized by a preference 	 (which is
a reflexive and transitive binary relation on consumptions). A natural psychological
assumption is that the consumer tends to share out his consumption among all goods:
if x and y are two consumptions, the consumption t x + (1 − t)y is, for all t in [0, 1],
at least as desirable as the least desirable consumption between x and y. In other
words, for each consumption x , the set {y / y 	 x} is convex. A function U from the
consumption set to R is said to represent the preordering 	 if for every consumption
x and y, y is preferred to x if and only if U (y) ≥ U (x). Such a function is called a
utility function relatively to the consumer.

A utility function may not exist (consider for example the case of the lexicographic
ordering). Some additional assumptions are required to ensure existence of a utility
function. For example, it is shown in [22] that, when relation 	 is complete, the pref-
erence 	 can be represented by a continuous utility function if and only if, for each x ,
the sets {y / x 	 y} and {y / y 	 x} are closed. Of course, there is no uniqueness: if
U represents 	, every function h ◦ U represents also 	, as soon as function h strictly
increases from R to R.
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The gradient and heavy ball with friction dynamical systems 175

A consequence of the preceding psychological assumption is that the utility function
(when exists) is quasiconcave (i.e., −U is quasiconvex), and, for example, the classi-
cal consumer problem consists, for each consumer, in maximizing his utility function
among the set of accessible commodities, under some budget constraints.

In this paper, we only deal with a regular (this will be precised later) quasiconvex
function, defined from some real Hilbert space H to R: Φ could be the difference
between a desired level of utility, the goal, and the current utility

Φ(x) = ū − U (x)

and we want to minimize it.
This framework is interesting in decision sciences too. Such links between optimi-

zation and decision theory are developed in [7].
Classically, dynamical systems can be used to solve the minimization problem (1),

the most famous being the steepest descent equation

ẋ(t)+ ∇Φ(x(t)) = 0 (3)

in its continuous form. Many results exist relatively to that method, let us cite [14,15]
at least for the case of a convex function Φ.

More recently, second order methods have been introduced in link with the same
problem (1). We are working in this paper with the following one

ẍ(t)+ λẋ(t)+ ∇Φ(x(t)) = 0 (4)

together with initial conditions x(0) = x0 and ẋ(0) = v0. Here λ is a positive constant.
A complete reference on that method is [6], it presents the literature and the existing

results for a smooth Φ (existence and uniqueness of a solution, asymptotic conver-
gence in the case of a Morse function Φ, applications in unconstrained and global
optimization), as well as a mechanical interpretation of the model. The convex case,
which is the closest to our case is studied in [1]. Let us present the other works on the
topic. This continuous dynamical system appeared in the literature in the last twenty
years. Before, Polyack [36] introduced the terminology and studied an explicit discrete
version of it. Some results for an analytic function Φ are proved in [28]. Still for a
convex function, [5] deals with the asymptotic behavior of the solutions of a controlled
version of (4). Finally [4] generalizes (4) in finite dimensional case for a convex and
only lower semicontinuous Φ. In this case, the gradient ∇Φ has to be replaced by its
generalization in convex analysis, namely the subdifferential ∂Φ. Applications of the
nonsmooth case are first elastic shocks in mechanics, and optimization and control of
constrained problems.

Interest of that system lies in the inertial effects, which are quite clear in the mechan-
ical interpretation: this system approximately describes the motion of a material point
M(t) = (x(t),Φ(x(t))) (“a ball”) on a profile defined by Φ. While the first order
steepest descent system (3) is unable to cross any non-minimum critical point of Φ,
the presence in (4) of an inertial (second order in time) term captures some explorator-
ing properties of the ball’s motion. It is a step towards global optimization, as shown
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in [6]. Nevertheless, despite their explorating properting, (4) cannot ensure conver-
gence to a global minimizer in general. We obtain also in some cases a generic (with
respect to initial conditions: position and velocity) convergence of the trajectories to
local minima (see the Appendix), which is not the case of first order methods. That
is furthermore interesting in the framework of economics or decision sciences, in the
sense that it furnishes a model including inertia for agents behavior. Such models are
quite new and for more details, see [7].

In this paper, we also study the implicit discretization of (4), which leads to an
inertial proximal method. Indeed, given x0, x1 ∈ H × H , it writes for all k ≥ 1

xk+1−xk
hk

− xk−xk−1
hk−1

hk
+ λ

xk+1 − xk

hk
+ ∇Φ(xk+1) = 0

for adaptative positive time steps (hk)k∈N. We can see the sequence (xk)k∈N as a dis-
crete approximation of the sequence (x(tk))k∈N, where x(·) is the solution of (4) with
the initial conditions x(0) = x0 and ẋ(0) = x1−x0

h0
, and tk = ∑k−1

i=0 hi . The previous
equality is equivalent to

xk+1 − xk − αk(xk − xk−1)+ βk∇Φ(xk+1) = 0 (5)

with for every k ≥ 1, αk = hk−1
hk

1
1+λhk

and βk = h2
k

1+λhk
. This is indeed a proximal

method, since it can also be written

xk+1 ∈ argmin {Φ(x)+ 1

2βk
|x − xk − αk(xk − xk−1)|2, x ∈ H}.

As guideline we follow the direction of the paper [1], that introduced the algorithm
for nonsmooth convex minimisation, as well as [2] that extended it to general maxi-
mal monotone operators, and introduced the “prox-inertial” terminology. As for the
continuous system, the trajectories have good asymptotic properties, in regards with
the problem (1). The original proximal method appeared in the seminal works [32,37]
(see also [31]), as a sort of regularization technique in witch the original problem is
replaced with a sequence of better behaved problems of same type. Although it was
not its motivation, the proximal method can be viewed as an implicit discretization of
the steepest descent method (3), and is called proximal because the current iterate can
be seen as a solution of a minimization problem involving a distance function.

The results presented here have been obtained under similar hypotheses for an
integrodifferential equation of Volterra type (see [25])

ẋ(t)+ ∇Φ(x(t))+
t∫

0

a(t − s)∇Φ(x(s))ds = 0. (6)

The paper organizes as follows. We introduce in Sect. 2 the assumptions and the
main result in the continuous second order quasiconvex case. The proof of this result is
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The gradient and heavy ball with friction dynamical systems 177

the topic of Sect. 5. This section is preceded by a recall of the proof of the convergence
of the second order system (4) in the convex case (Sect. 3), and by an original proof of
the convergence of the first order system (3) in the quasiconvex case (Sect. 4). Then
Sect. 6 deals with the discrete version, that gives a “prox-inertial” method, and the
result in that case is proved in Sect. 7. The end of the paper is devoted to the genericity
of the convergence to a local minimum of Φ if the latter is a Morse function.

2 The continuous dynamical system

Throughout this case, we assume that the following hold

Φ is C1,1, quasiconvex and S := argmin Φ �= ∅. (7)

The first means that Φ is continuously differentiable with ∇Φ Lipschitz continuous
on the bounded subsets of H . These assumptions are those of Theorem 3.1 in [6],
whose conclusions are recalled here, using classical notations: L∞(0,+∞; H) =
{ f : [0,+∞) → H, supt≥0 | f (t)| < +∞} and L2(0,+∞; H) = { f : [0,+∞) →
H,

∫ ∞
0 | f (t)|2dt < +∞}

Proposition 1 Under Assumptions 7 the following hold.

(i) For all (x0, x1) in H × H, there exists a unique solution x(t) of the Cauchy prob-
lem associated with (4). This solution is defined on the whole interval [0,+∞)

and is of class C2.
(ii) For every trajectory x(t) of (4), the corresponding energy E(t) = 1

2 |ẋ(t)|2 +
Φ(x(t)) is decreasing on [0,+∞) and bounded from below, and hence converges
to some real value E∞. Moreover,

ẋ ∈ L∞(0,+∞; H) ∩ L2(0,+∞; H).

(iii) Assuming moreover that x is in L∞(0,+∞; H), then we have
• ẋ and ẍ belong to L∞(0,+∞; H),
• limt→+∞ ẋ(t) = 0 and limt→+∞ ẍ(t) = 0,
• limt→+∞ ∇Φ(x(t)) = 0 and limt→+∞Φ(x(t)) = E∞.

This result holds under our assumptions. It ensures that trajectories of (4) exist
globally. Quasiconvexity has not yet been used. It brings much more. Indeed the main
result stated here goes further.

Theorem 1 Under Assumptions 7, for every trajectory x(·) of the second order system
(4) the following properties hold.

(i) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞ ∇Φ(x(t)) = 0 and
limt→+∞Φ(x(t)) = E∞.

(ii) x(t) weakly converges in H towards some x∞.
(iii) ∇Φ(x∞) = 0.
(iv) If the limit point x∞ does not belong to S = argminΦ, the convergence is strong.
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Moreover

(v) If S has a nonempty interior, the convergence is strong.
(vi) If Φ is an even function, that is

∀x ∈ H, Φ(−x) = Φ(x)

the convergence is strong.

In [1] Alvarez established statements (i), (v) and (vi) for the dynamical system (4)
in case of convex potential Φ. Under this convexity hypothesis, the statements in the
two last items were introduced first in [14,15], respectively, for a first order differen-
tial inclusion generalizing (3). Afterwards Baillon in [12] exhibits a counterexample
showing that, in the first order case, no more than weak convergence could be expected.
It is worth noticing that Baillon’s counterexample has been used in [26] (Sect. 5) in
order to construct a counterexample for the strong convergence of the Proximal Point
Algorithm. Then Jendoubi and Polàcik proposed in [29] an elegant method to obtain
counterexample of convergence of (4) from any counterexample of convergence of
(3).

3 Convergence in the convex second order case

In order to enlighten the difficulties raised by the quasiconvex hypothesis, let us at
first recall the main ideas behind the proof of the weak convergence of trajectories
of (4) in the Convex case. Although the ideas are essentially the same, the following
demonstration is differently structured than the one proposed in [1].

The mean tool is a lemma due to Opial (see [34] or [6] and reference therein), which
can be formulated as follows:

Lemma 1 (Opial) In a Hilbert space H, let A be the set of limit points of some
trajectory x : [0,+∞) → H. Let us assume:

(1) A �= ∅
(2) ∀x̃ ∈ A, lim

t→+∞ |x(t)− x̃ | exists

Then there exists x∞ in A, such that w− lim
t→+∞ x(t) = x∞.

The proof of the convergence of the trajectories of the second order system (4)
consists in proving that:

(a) ∀x̂ ∈ S, lim
t→+∞ |x(t)− x̂ | exists;

(b) A ⊂ S

The property (a) together with the nonemptiness of S show that every trajectory x :
[0,+∞) → H is bounded, which implies Assumption 1 of Opial’s lemma.

In order to establish (a), consider for some x̂ ∈ S the function h(t) := 1
2 |x(t)− x̂ |2.

Let ŵ(t) = 〈x̂ − x(t),∇Φ(x(t))〉. An easy calculation leads to:

ḧ(t)+ λḣ(t) = |ẋ(t)|2 + ŵ(t)
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By monotonicity of ∇Φ, the function ŵ(t) is non negative, and then, as |ẋ | belongs
to L2(0,+∞; H), we conclude that (ḣ)+ ∈ L1(0,+∞; H). Since h is bounded from
below, property (a) follows.

In order to establish property (b), remark that property (a) leads to the boundedness
of the trajectory x(·), which implies from a general result concerning the steepest
descent dynamic (3) that limt→+∞ ∇Φ(x(t)) = 0. Since, by convexity, the gradient
G := ∇Φ(·) has a closed graph in w − H × s − H topology, we conclude that
∇Φ(x̃) = 0 for every x̃ in A, which together with the classical first order character-
ization of infima of a convex smooth function, leads to property (b).

The difficulty in attempting to extend this convergence result to the quasiconvex
case is due to the lack of closedness of G and of monotonicity of ∇Φ(·), and to the
fact that for general quasiconvex potential, the property (b) may fail.

4 Convergence in the first order quasiconvex case

We consider in this section the system (3) with a smooth potentialΦ. It is well known
that the steepest descent system admits for every initial condition x0 in H a unique
global solution x on [0,+∞) (cf [27]). Yet the following result seems not to appear
in the literature:

Theorem 2 Under Assumption 7, each trajectory x(·) of the first order system (3)
weakly converges towards some point x∞ such that ∇Φ(x∞) = 0. Moreover if at
least one of the following condition is satisfied:

(a) x∞ /∈ argmin Φ
(b) S as a nonempty interior
(c) Φ is even

then the convergence is strong.

Lemma 2 Let x(·) be a trajectory of (3). Suppose there exist x̃ ∈ H and T ≥ 0 such
that

∀t ≥ T, ( x(t) ∈ S or Φ(x̃) < Φ(x(t))).

Then the function w̃(t) := 〈x̃ − x(t),∇Φ(x(t))〉 is nonpositive on [T,+∞) and
belongs to L1(0,+∞; R), the function Φ(x(t)) is nonincreasing and converges
towards some E∞ ≥ inf Φ, the function h(t) := 1

2 |x(t) − x̃ |2 satisfies ḣ ∈ L1(0,+
∞; R) and thus h(t) converges when t → +∞.

Proof The nonnegative function h(t) := 1
2 |x(t) − x̃ |2 verifies ḣ(t) = 〈x̃ − x(t),

∇Φ(x(t)〉, which shows that ḣ(t) = w̃(t), so that by characterization (2) of quasicon-
vexity, we conclude that w̃(t) ≤ 0 for every t ≥ T and then that h is nonincreasing on
[T,+∞). The nonpositivity of ḣ on [T,+∞), together with nonnegativity of h implies
that ḣ belongs to L1(0,+∞; R), which leads to the existence of limt→+∞ h(t).

Moreover, the steepest descent dynamic implies that function Φ(x(·)) is nonin-
creasing. The potential Φ being minorized, E∞ := limt→+∞Φ(x(t)) exists.

So Lemma 2 results. ��
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We are now able to prove Theorem 2:
If in Lemma 2 we take x̃ ∈ argmin Φ, we conclude that trajectory x(·) is bounded,

so that the set A of its weak limit points is nonempty, which is Assumption 1 of the
preceding Opial’s lemma.

Moreover, in view of function Φ(x(t)) being decreasing, we have:

(α) ∀τ ≥ 0, lim
t→+∞Φ(x(t)) ≤ Φ(x(τ ))

Since Φ is continuous and quasiconvex, Φ is weakly continuous, and so:

(β) ∀x̃ ∈ A, Φ(x̃) ≤ lim
t→+∞Φ(x(t)) =: E∞

If E∞ = inf Φ, we conclude from (β) that for each x̃ ∈ A we haveΦ(x̃) ≤ E∞ =
inf Φ, and so A ∈ argmin Φ. Moreover, comparison of (α) and (β) shows that the
condition of Lemma 2 is fulfilled with x̃ ∈ argmin Φ and T = 0. Thus from Lemma
2 the function t �→ |x(t) − x̃ | converges for each x̃ ∈ A, which is Assumption 2
of Opial’s lemma. We then conclude that the trajectory x(·) weakly converges. Let
x∞ ∈ A be the limit. Since by hypothesis A = argmin Φ, the first order optimality
condition leads to ∇Φ(x∞) = 0.

If E∞ > inf Φ, let us first establish the following lemma:

Lemma 3 Let x : [0,+∞) → H be a C1 function such that there is some point x̃ in
H and a number r > 0 and T ≥ 0 satisfying:

∀t ≥ T ∀y ∈ B̄(x̃, r) Φ(y) ≤ Φ(x(t))

Then for all t ≥ T we have: r |∇Φ(x(t))| ≤ −w̃(t), where w̃(t)=〈x̃−x(t),∇Φ(x(t))〉
Proof For d ∈ H with |d| = 1, the point y := x̃ + rd lies in B̄(x̃, r). As Φ(y) ≤
Φ(x(t)) for all t ≥ T , we conclude by quasiconvexity of Φ that: 〈y − x(t),
∇Φ(x(t))〉 ≤ 0. This writes

w̃(t) := 〈x̃ − x(t),∇Φ(x(t))〉 ≤ −r〈d,∇Φ(x(t))〉.

If ∇Φ(x(t)) �= 0, choose d = ∇Φ(x(t))
|∇Φ(x(t))| , which gives

r |∇Φ(x(t))| ≤ −w̃(t),

this inequality being obviously true if ∇Φ(x(t)) = 0. ��
We are now able to prove:

Lemma 4 If x(·) is a trajectory of the steepest descent system (3) satisfying the
assumption of Lemma 3, then x(·) strongly converges, and the limit x∞ verifies
∇Φ(x∞) = 0.
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Proof Lemma 2 ensures that w̃ lies in L1(0,+∞; R). Together with Lemma 3 this
prove that |∇Φ(x(t))| is in L1(0,+∞; R). The steepest descent dynamic then implies
that ẋ is in L1(0,+∞; R), so that the trajectories x strongly converges. Let denote
x∞ the limit. From proposition (1) (iii) and the strong continuity of ∇Φ we conclude
that ∇Φ(x∞) = 0. ��

Each assumptions E∞ > inf Φ or int(argmin Φ) �= ∅ implies the condition of
Lemma 3 which by Lemma 4 achieves the proof of first part and points (a) and (b) of
Theorem 2.

Let us now prove part (c) of this theorem: we first consider, for some 0 ≤ t ≤ t0,
the function: µ(t) := |x(t)− x(t0)|2 − 2|x(t)|2.
An easy calculation show that: µ̇(t) = 2〈ẋ(t),−x(t) − x(t0)〉, which by steepest
descent dynamic leads to: µ̇(t) = −2〈∇Φ(x(t)),−x(t) − x(t0)〉. But as Φ(x(·))
is nonincreasing, we have Φ(x(t0)) ≤ Φ(x(t)). The symmetry of Φ then gives
Φ(−x(t0)) ≤ Φ(x(t)), and, by quasiconvexity: 〈∇Φ(x(t)),−x(t0) − x(t)〉 ≤ 0.
So, the function µ is nonincreasing, and µ(t0) ≥ µ(t). Hence, |x(t) − x(t0)|2 ≤
2(|x(t)|2 − |x(t0)|2). Finally, since 0 ∈ argmin Φ, lemma 2 shows that t �→ |x(t)|2
converges when t → +∞, which implies by preceding inequality that for any
sequence (τn)n with τn → +∞, the sequence x(τn) is a Cauchy sequence. Since x(·)
weakly converges, the weak limit is strong, which achieve the proof of Theorem 2.

5 The second order quasiconvex case: proof of Theorem 1

The proof is divided into four parts. The first concerns the first item of the theorem,
the second deals with the three following parts of Theorem 1, while the third and the
fourth ones prove items (v) and (vi), respectively.

5.1 Proof of (i)

The following lemma is an extended analogue of Lemma 2 in the second order case:

Lemma 5 Let x(·) be a trajectory of (4). Suppose there exist x̃ ∈ H and T ≥ 0 such
that

∀t ≥ T, (x(t) ∈ S or Φ(x̃) < Φ(x(t))).

Then we have

• The function w̃(t) = 〈x̃ − x(t),∇Φ(x(t))〉 is nonpositive on [T,+∞) and belongs
to L1(0,+∞; R).

• The function h(t) = 1
2 |x(t)− x̃ |2 satisfies ḣ ∈ L1(0,+∞; R). Then h(t) converges

when t → +∞.
• The following convergence results hold

lim
t→+∞ ẋ(t) = lim

t→+∞ ẍ(t) = lim
t→+∞ ∇Φ(x(t)) = 0

lim
t→+∞Φ(x(t)) = E∞.
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Proof • The fact that w̃(t) ≤ 0 for t ≥ T comes directly from characterization (2) of
quasiconvexity whenΦ(x̃) < Φ(x(t)), and is obvious when x(t) ∈ S. The function
w̃ is locally integrable. We prove the other items before proving the integrability
over all (0,+∞).

• As in the convex case, see [1], the scalar function h satisfies a useful differential
inequality. Indeed, computing the derivatives of h: ḣ(t) = 〈x(t) − x̃, ẋ(t)〉 and
ḧ(t) = |ẋ(t)|2 + 〈x(t)− x̃, ẍ(t)〉, we observe that

ḧ(t)+ λḣ(t) = |ẋ(t)|2 + w̃(t).

According to Proposition 1, |ẋ |2 ∈ L1(0,+∞; R). On the other hand, w̃ is locally
integrable, and nonpositive for t ≥ T . We can then construct a function g ∈
L1(0,+∞; R) such that ḧ(t) + λḣ(t) ≤ g(t). According to Lemma 4.2 in [6]
it implies that ḣ+, the positive part of ḣ, is integrable. Since h is nonnegative, ḣ−
is integrable too, and the conclusions follow.

• We just proved that the trajectory is bounded, thus the last part follows from Prop-
osition 1 (iii).

• Let us finish with proving that w̃ ∈ L1(0,+∞; R): As w̃ is of constant sign, it
suffices to show that

lim
t→+∞

t∫

T

w̃(s)ds

exists. But

t∫

T

w̃ =
t∫

T

ḧ + λ

t∫

T

ḣ −
t∫

T

|ẋ |2.

The last two terms clearly converge, and the first one is ḣ(t) − ḣ(T ), which con-
verges too because ḣ(t) = 〈x(t)− x̃, ẋ(t)〉 tends to 0. ��
Remark 2 Under the assumption S :=argmin Φ nonempty we made, each trajectory
of (4) satisfies assumptions of Lemma 5. It suffices indeed to pick some x̃ in S and
take T = 0. This proves part (i) of Theorem 1.

5.2 Proof of (ii), (iii) and (iv)

As in the first order case, let us distinguish two situations, depending on the limit
E∞ := lim

t→+∞Φ(x(t)):
First case E∞ = inf Φ.
We again apply the Opial’s lemma.That method is quite classical since [15] to obtain
weak convergence results.

We then consider the set A of the weak-limit points of the trajectory x(·). The first
condition of Opial’s lemma is true since S is nonempty, and so each x̃ in S satisfies the
assumptions of Lemma 5, together with T = 0, so that the trajectory x(·) is bounded.
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For the second condition of Opial’s lemma, let us observe that Φ(x(·)) converges
to E∞ and Φ is lower semicontinuous for the weak topology (because quasiconvex
and strongly l.s.c.)

Hence, for every x̃ ∈ A and every real sequence (tn)n such that limn→∞ tn = +∞
and limn→∞ x(tn) = x̃ , we have:

E∞ = lim
n→∞Φ(x(tn)) ≥ Φ(x̃)

which asserts, as E∞ = inf Φ, that A ⊂ S. From Remark 2 it follows that Assumption
2 in Opial’s lemma is fulfilled. So, the trajectory x(·)weakly converges towards some
point x∞. As x∞ ∈ A ⊂ S, it implies of course from first order optimality condition
that ∇Φ(x∞) = 0.
Second case E∞ > inf Φ.
The Lemma 6 below applies and x(·) strongly converges to some x∞ ∈ H . Finally,
∇Φ(x∞) = 0 because the function ∇Φ(x(·)) strongly converges to 0 and ∇Φ is
continuous.

Lemma 6 Let x(·) be a trajectory of 4. If there exists x̃ ∈ H, r > 0 and T ≥ 0 such
that:

∀y ∈ B̄(x̃, r), ∀t ≤ T, Φ(y) ≥ Φ(x(t))

then ∇Φ(x(·)) belongs to L1(0,+∞; H) and the trajectory strongly converges in H.

Proof The conditions of Lemma 3 are fulfilled with x̃ picked in S. So, for some reals
r > 0 and T > 0 we have, for all t ≥ T : r |∇Φ(x(t)| ≤ −w̃(t). According to Lemma
5, the right hand side is integrable. Thus so is ∇Φ(x(·)).

Integrate the differential equation satisfied by x between 0 and t to obtain

x(t) = x0 − 1

λ

(

ẋ(t)− x1 +
t∫

0

∇Φ(x(s))ds

)

.

Since ẋ(t) and the integral term strongly converge when t → +∞, so does x(t). ��

5.3 Proof of (v)

If the interior of argmin Φ is nonempty, there exist x̂ ∈ H and r > 0 such that
B(x̂, r) ⊂ argmin Φ. Thus

∀y ∈ B(x̂, r),∀t ≥ 0, Φ(y) ≤ Φ(x(t))

and Lemma 6 leads to conclusion.
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5.4 Proof of (vi)

Lemma 7 Let α : [0,+∞) → R be a continuous function such that

lim
t→+∞α(t) = inf

R+ α := α̂.

Then there exists a nondecreasing sequence (tn)n∈N that converges to +∞ such that

α(tn) = inf
t∈[t0,tn ]α(t).

Proof If there exists tn → +∞ such that ∀n, α(tn) = α̂ it is immediate. Else there
exists some T ≥ 0,∀t ≥ T, α(t) > α̂.

For each k ∈ N, k ≥ T , there exists sk ∈ [k, k + 1] such that α(sk) = inf [k,k+1] α.
Choose k0 > T , and if kn is fixed, define

kn+1 = inf{p ≥ kn, α(sp) < α(skn )}.

Such kn+1 exists (and is greater than kn) unless α(skn ) ≤ α(sp) ≤ α(p) for all p ≥ kn .
Letting p tend to +∞, it implies that α(skn ) = α̂ which contradicts the definition of
T . This construction yields

α(skn+1) < α(skn ) ≤ α(sp),∀kn ≤ p < kn+1

which together with the definition of the sequence (sk)k≥T implies

α(skn+1) ≤ inf[skn ,skn+1 ]α.

Thus the sequence tn = skn satisfies the desired conclusion. Indeed tn → +∞ as a
subsequence of (sk). On the other hand, α(tn) ≤ inf [t0,tn ] α by induction. ��

We have already seen that if E∞ > inf H Φ the convergence is strong, so we can
assume that E∞ = inf H Φ. Thus Φ(x(t)) satisfies condition of Lemma 7, and there
exists a nondecreasing sequence tn that converges to +∞ such that

∀n ∈ N, Φ(x(tn)) = inf
t∈[t0,tn ]Φ(x(t)).

As in [1], we define gn by

gn(t) = |x(t)|2 − |x(tn)|2 − 1

2
|x(t)− x(tn)|2.

Direct computations give for any p ≥ 1

g̈n+p(t)+ λġn+p(t) = 〈−∇Φ(x(t)), x(t)+ x(tn+p)〉 + |ẋ(t)|2.
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But the scalar product is nonpositive for t ∈ [t0, tn+p]. Indeed, asΦ is even, it is equal
to 〈∇Φ(−x(t)), x(tn+p)− (−x(t))〉 and Φ(x(tn+p)) ≤ Φ(x(t)) = Φ(−x(t)) on the
cited interval. Solving the differential inequality yields

exp(λ(t − tn))ġn+p(t)− ġn+p(tn) ≤
t∫

tn

exp(λ(s − tn))|ẋ(s)|2ds.

This provides an expression for ġn+p(t) which we integrate on [tn+1, tn+p]. It gives

gn+p(tn+p)− gn+p(tn+1) ≤ ġn+p(tn)

tn+p∫

tn+1

exp(−λ(t−tn))dt

+
tn+p∫

tn+1

t∫

tn

exp(λ(s−t))|ẋ(s)|2ds

︸ ︷︷ ︸
qn(t)

dt.

As gn+p(tn+p) = 0, the following estimate holds

−gn+p(tn+1) ≤ 2

λ
ġn+p(tn)+

tn+p∫

tn+1

qn(t)dt.

This means

1

2
|x(tn+1)− x(tn+p)|2 ≤ |x(tn+1)|2 − |x(tn+p)|2 + 2

λ
ġn+p(tn)+

tn+p∫

tn+1

qn(t)dt.

First, 0 belongs to argmin Φ because Φ is even. So, with help of Lemma 5, we know
that t �→ |x(t)|2 has a limit as t → +∞. Then

lim
n→∞ sup

p≥1
(|x(tn+1)|2 − |x(tn+p)|2) = 0.

Secondly, |ġn+p(tn)| ≤ 2|ẋ(tn)| supt≥0 |x(t)|, so that

lim
n→∞ sup

p≥1

2

λ
ġn+p(tn) = 0.
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Thirdly, 0 ≤ ∫ tn+p
tn+1

qn(t)dt ≤ 1
λ

∫ +∞
tn

|ẋ(s)|2ds and as Proposition 1 ensures that

ẋ(s) ∈ L2(0,+∞; H), it implies that

lim
n→∞ sup

p≥1

tn+p∫

tn+1

qn(t)dt = 0.

Combining these informations, we obtain that
(
x(tn)

)
n∈N

is a Cauchy sequence in H .
Then x has at least one strong cluster point, which is necessarily x∞ the weak limit
of the trajectory. But

h : t �→ |x(t)− x∞|2 = |x(t)|2 + |x∞|2 − 2〈x(t), x∞〉

converges as t → +∞. Use the sequence (tn) to conclude that the limit is necessarily
0, which means that x strongly converges to x∞.

6 The proximal inertial algorithm

In this part we consider the proximal algorithm (5) which is an implicit discretization
of Eq. (4). Like for the continuous method, we assume that the Assumption 7 hold.
Note that the condition Φ ∈ C1,1 can be weakened to Φ ∈ C1. The result is then

Theorem 3 Assume that the following hold

• The sequence (hk)k∈N is increasing and limk→∞ hk = +∞.
• There exists α ∈]0, 1[ such that for every k ∈ N, 0 ≤ αk ≤ α.

Under the condition

∞∑

k=1

αk |xk − xk−1|2 < +∞ (8)

we have

(i) The sequence (xk)k∈N weakly converges to some x∞ in H.
(ii) The limit satisfies ∇Φ(x∞) = 0.

(iii) If x∞ does not belong to S = argminΦ, the convergence is strong.

Remark 3 Coefficient αk can be chosen once xk and xk−1 have been computed, so
that αk can always iteratively be computed in order to have (8).

Remark 4 The class of quasiconvex functions is not closed by addition. So, in the
proximal method (5) applied to the quasiconvex potential Φ, the function to be mini-
mized may not be quasiconvex. In fact, for quasiconvex functions, operation ∨ (max)
seems to be better adapted than operation +. This leads to the consideration of suble-
vels sums in place of epigraphical sums (cf [38]). The price to be paid is that regularity
is lost.
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Remark 5 The case with αk = 0 for every k ∈ N leads to the classical proximal
method, that is the implicit discretization of the continuous equation (3). The conver-
gence of that method for a quasiconvex functionΦ can thus be shown with a proof of
the same type. In that case the condition (8) is obviously true. As far as we know, such
a result does not appear in the literature. The closest ones are obtained for an explicit
discretization in [23,30] and for a proximal like method in the case of Lotka–Volterra
dynamical system (cf. [8]).

7 Proof of Theorem 3

As for the continuous equation, we will separate the proof into two cases.
First case lim inf

k→∞ Φ(xk) = inf
H
Φ

We will apply the following version of Opial’s lemma corresponding to the discrete
case, see [34]

Lemma 8 In a Hilbert space H, let (xk)k∈N be a sequence such that there exists a set
∅ �= A ⊂ H satisfying

– if x(k j )
w
⇀ x̄ for a sequence k j → ∞, then x̄ ∈ A,

– ∀z ∈ A, lim
k→∞ |xk − z| exists.

Then there exists x∞ in A, such that xk weakly converges to x∞ when k → ∞.

We apply this lemma with the set A = argmin Φ. The first condition holds since
Φ is lower semicontinuous for the weak topology. For the proof of the second con-
dition, we use the same arguments as those in [2]. Take some z ∈ argmin Φ. The
sequence ϕk = 1

2 |xk − z|2 converges. This proves (i). Results (ii) and (iii) follow from
x∞ ∈ argmin Φ.
Second case lim inf

k→∞ Φ(xk) > inf
H
Φ

In that case, there exists a closed ball B(z, r) and a rank K ∈ N such that

∀k ≥ K , ∀y ∈ B(z, r), Φ(y) ≤ Φ(xk). (9)

Adapting the proof in [2], it shows that ϕk = 1
2 |xk − z|2 has a limit when k → ∞.

But (5) is equivalent to

xk+1 − xk

hk
− xk − xk−1

hk−1
+ λ(xk+1 − xk)+ hk∇Φ(xk+1) = 0

and the sum of those equalities for 1 ≤ k ≤ n gives

xn+1 = x1 − 1

λ

(
xn+1 − xn

hn
− x1 − x0

h0
+

n∑

k=1

hk∇Φ(xk+1)

)

. (10)
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Since the sequence xn is bounded and limn→∞ hn = +∞ by assumption, xn+1 con-
verges if and only if

∑n
k=1 hk |∇Φ(xk+1)| is finite. But for k ≥ K we have

r |∇Φ(xk+1)| =
〈

∇Φ(xk+1), r
∇Φ(xk+1)

|∇Φ(xk+1)|
〉

= 〈∇Φ(xk+1), y − xk+1〉 − 〈∇Φ(xk+1), z − xk+1〉
≤ −〈∇Φ(xk+1), z − xk+1〉

where y = z + r ∇Φ(xk+1)
|∇Φ(xk+1)| belongs to B(z, r). Then

n∑

k=K

hk |∇Φ(xk+1)| ≤ −1

r

n∑

k=K

hk

βk
〈βk∇Φ(xk+1), z − xk+1〉. (11)

But on one hand hk
βk

≤ λ−1 and on the other hand

−〈βk∇Φ(xk+1), z − xk+1〉 = −〈xk+1 − xk − αk(xk − xk−1), xk+1 − z〉
= −θk+1 + αkθk − 1

2
|vk+1|2 + 1

2
(αk + α2

k )|xk − xk−1|2

≤ −θk+1 + αkθk − 1

2
|vk+1|2 + δk

The notations and the arguments are the same as in [2]: θk = ϕk − ϕk−1, vk+1 =
xk+1 − xk − αk(xk − xk−1) and δk = αk |xk − xk−1|2. The series in (11) is then
convergent since

• ∑∞
k=1 δk < +∞ by Assumption 8,

• ∑N
k=1 θk = ϕN − ϕ0 converges, thus

∑∞
k=1 |vk+1|2 < +∞, see [2],

• αk |θk | ≤ α(2[θk]+ − θk), where [θ ]+ = max{θ, 0}, and it is also shown in [2] that
the series

∑∞
k=1[θk]+ is convergent. Then

∑∞
k=1 αk |θk | < +∞.

This achieves to prove both (i) and (iii). The point (ii) follows from the convergence
of the series

∑n
k=K hk |∇Φ(xk+1)| and the continuity of ∇Φ.

Acknowledgements The authors thank the anonymous referees for their helpful comments.

Appendix: Genericity result for a Morse function in finite dimension case

We now consider the case where H = R
N for some N ≥ 1 and Φ : R

N → R is a
coercive C2 Morse function. So, for each critical point x̂ of Φ, the hessian HΦ(x̂) of
Φ at x̂ is nonsingular, and each critical points ofΦ is isolated, so that denoting CΦ the
set of these points, there exists some ∅ �=⊂ I ⊂ N such that CΦ = {

x̂k, k ∈ I
}
.

Our purpose is to prove the following:

Theorem 4 Under the former assumptions, the heavy ball system (4) converges
towards some local minimum of Φ, generically with respect to the initial conditions
(x0, ẋ0).
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Let us notice that such genericity result has been established fort more general
systems, even in infinite dimensional spaces (cf. [16]). Our purpose here is only to
propose a self contained proof of Theorem 4.

In order to prove this theorem, let us first recall the stable manifold Theorem (cf.
[35, p. 223]): Let F : R

p → R
p be a C map and consider the dynamical system:

ż(t) = F(z(t)) (12)

Let us denote ψ(z0, t) the value at t of the solution of (12) with initial condition
z0.

Assume that ẑ is a hyperbolic equilibrium point of F , meaning that F(ẑ) = 0 and
that no (complex) eigenvalue of ∇F(ẑ) has zero real part. Consider the invariant set:

W s(ẑ) =
{

y0 ∈ R
N / lim

t→+∞ψ(z0, t) = ẑ

}

The global stable manifold theorem claims that W s(ẑ) is an immersed submanifold
of R

p, whose dimension equals the number of (complex) eigenvalues of ∇F(ẑ) with
negative real parts.

The dynamical system (4) can classically be written under the form (12) in which,
for all (x, y) ∈ R

N × R
N , F(x, y) = (y,−λy − ∇Φ(x)). It is easily seen that the set

CF of the critical points of F is:

CF =
{
(x̂, 0) ∈ R

N × R
N such that x̂ ∈ CΦ

}
.

If ẑ = (x̂, 0) ∈ CF , an easy calculation shows that ν ∈ C is a proper value of
∇F(ẑ) if and only if −ν(λ + ν) is a proper value of HΦ(x̂), i.e., if and only if there
exists some α ∈ HΦ(x̂) such that ν2 + λν − α = 0. Since HΦ(x̂) is nonsingular, no
proper value of ∇F(ẑ)) as zero real part, and then:

Lemma 9 Each critical points of F is hyperbolic.

From [6], we know that, in the coercice C2 Morse function case, each trajectory
x(·) of (4) converges towards some singular points x∞ of CΦ , with ẋ(t) → 0. So, the
following partition holds:

R
N × R

N = ∪k∈I W s(ẑk) (13)

Let us define

I − = {k ∈ I such that each proper value of ∇F(ẑk) has a negative real part}.

Denoting by J the complementary subset of I − in I , the stable manifold theorem
ensures that for all k ∈ I , the subset W s(ẑk) is an immersed manifold in R

N × R
N ,

whose dimension is 2N when k ∈ I − and at most 2N −1 when k ∈ J . Hence, W s(ẑk)

is an open subset of R
N × R

N for k ∈ I − and has Lebesgue measure zero for k ∈ J .
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It follows that ∪k∈I − W s(ẑk) is an open subset of R
N ×R

N , and that ∪k∈J W s(ẑk) has
Lebesgue measure zero, and hence en empty interior.

Moreover, let us consider some critical point ẑk of F for k ∈ I −. We have ẑk =
(x̂k, 0), with x̂k is a critical point ofΦ. We claim that HΦ(x̂k) has only negative proper
value: By contradiction, let α be some nonnegative proper value of HΦ(x̂k). As Φ is
a Morse function, we then have α > 0. Moreover, each solution µ of µ+ λµ− α is

a proper value of ∇F(ẑk). But one of these solution is −λ+√
λ2+4α

2 , which is positive,
contradicting the assumption k ∈ I −. Then, for all k ∈ I −, the critical point x̂k is a
local minimum of Φ.

In conclusion, the set of initial conditions z0 = (x0, ẋ0) such that ψ(z0, t) con-
verges to a local minimum ofΦ is the subset ∪k∈I − W s(ẑk), which is open, ant the set
of initial conditions such that ψ(z0, t) converges towards a nonlocal minimum point
ofΦ is ∪k∈J W s(ẑk), which has Lebesgue measure zero, and so, has an empty interior.
Together with (13), this result achieves the proof of Theorem 4.
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