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Abstract We establish necessary and sufficient conditions for a stable Farkas’
lemma. We then derive necessary and sufficient conditions for a stable duality of a
cone-convex optimization problem, where strong duality holds for each linear pertur-
bation of a given convex objective function. As an application, we obtain stable duality
results for convex semi-definite programs and convex second-order cone programs.
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1 Introduction

When it comes to the elegant and powerful duality theory in optimization, Farkas’
lemma is the key. This Lemma states that given any vectors a1, a2,…,am in R

n, the lin-
ear inequality cT x >= 0 is a consequence of the linear system aT

i x >= 0, i = 1, 2, . . . , m
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336 V. Jeyakumar, G. M. Lee

if and only if c = ∑m
i=1 λi ai , for some multipliers λi >= 0. Farkas’ lemma underpins

the linear programming duality and has also played a central role in the development
of optimization theory (see e.g. [7,11,18,20]). Applications by way of extensions of
the celebrated Farkas lemma range from classical nonlinear programming to modern
areas of optimization such as nonsmooth optimization and semidefinite programming.
For a recent look at its extensions and applications see [4,9,16].

The generalized Farkas lemma for a given cone-convex system −g(x) ∈ S and
a given real-valued convex function f states that f (x) >= 0 is a consequence of the
system −g(x) ∈ S if and only if there exists λ ∈ S+ such that, for each x ∈ R

n ,
f (x) + (λ ◦ g)(x) >= 0. Symbolically,

[−g(x) ∈ S ⇒ f (x) >= 0] ⇔ (∃λ ∈ S+)(∀x ∈ R
n) f (x) + (λ ◦ g)(x) >= 0, (1)

where the set S ⊂ R
m is a closed convex cone with the dual cone S+ and g :

R
n → R

m is a continuous convex function with respect to S. This equivalence in (1)
holds under a regularity condition, sometimes called “closed cone condition” (see e.g.
[5,8,11,14,16,19]). Motivated by the concept of a stable minimax theorem where the
minimax equality holds for each linear perturbation of the function involved [12,13],
we refer the generalized Farkas lemma as the Stable Farkas Lemma whenever, for
each choice of linear functional x∗ on R

n and each choice of scalar α ∈ R,

[−g(x) ∈ S ⇒ f (x) >= x∗(x) + α] ⇔ (∃λ ∈ S+)(∀x ∈ R
n) f (x) + (λ ◦ g)(x)

>= x∗(x) + α.

The purpose of this paper is to establish complete characterizations of the stable
Farkas lemma and to obtain stable strong duality characterizations for classes of con-
vex optimization problems, including cone programming problems [1,2,21], which
have received a great deal of attention in recent years. We show that a simple closure
condition is necessary and sufficient for the stable Farkas lemma. We also derive nec-
essary and sufficient conditions for stable “min–max” duality for convex optimization
problems. For sufficient conditions for stable minimax theorems see [13].

The outline of the paper is as follows. Section 2 provides background material on
convex analysis that will be used later in the paper. Section 3 presents characteriza-
tions of the stable Farkas lemma. Section 4 gives stable strong duality results for cone-
convex programs. As an application, Sect. 5 establishes complete characterizations of
the stable duality for cone programming problems, including semi-definite programs
and second-order cone programs.

2 Preliminaries

We recall in this section some notations and basic results which will be used in this
paper. Let X be a normed space with X∗ its dual endowed with weak∗-topology. For
a subset D ⊂ X∗, the w∗-closure of D will be denoted by clD and the convex cone
generated by D by coconeD.
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Complete characterizations of stable Farkas’ lemma and cone-convex programming duality 337

Let h : X → R ∪ {−∞,+∞} be a convex function. The conjugate function of h,
h∗ : X∗ → R ∪ {+∞}, is defined by

h∗(v) := sup{v(x) − h(x) | x ∈ dom h},

where dom h := {x ∈ X | h(x) < +∞} is the effective domain of h. The function h
is said to be proper if h does not take on the value −∞ and dom h �= ∅. The epigraph
of h is defined by

epi h := {(x, r) ∈ X × R | x ∈ dom h, h(x) <= r}.

The set (possibly empty)

∂h(a) := {v ∈ X∗ | h(x) − h(a) >= v(x − a),∀x ∈ dom h}

is the subdifferential of the convex function h at a ∈ dom h. For a closed convex
subset D of X , the indicator function δD is defined as δD(x) = 0 if x ∈ D and
δD(x) = +∞ if x /∈ D. The support function δ∗

D is defined by δ∗
D(u) = supx∈D u(x).

Then ∂δD(x) = ND(x), which is known as the normal cone of D of x . If h is
proper lower semicontinuous and sublinear (i.e., convex and positively homogeneous
of degree one), then epi h∗ = ∂h(0) × R+.

For proper lower semicontinuous convex functions g, h : X → R ∪ {+∞}, the
infimal convolution of g with h, denoted g�h, is defined by

(g�h)(x) = inf
x1+x2=x

{g(x1) + h(x2)} .

The lower semicontinuous envelope and lower semicontinuous convex hull of a func-
tion g : X → R ∪ {−∞,+∞} are denoted respectively by clg and clcog. That is,
epi(clg) = cl(epi g) and epi(cl cog) = cl co(epi g). For details, see [23].

Let g, h and gi , i ∈ I (where I is an arbitrary index set) be proper lower semi-
continuous convex functions. It is well known from the dual operation (see [23]) that
if dom g ∩ dom h �= ∅, then

(g�h)∗ = g∗ + h∗, (g + h)∗ = cl(g∗�h∗)

and if supi∈I gi is proper, then

(supi∈I gi )
∗ = cl co

(
infi∈I g∗

i

)
.

Thus we can check that

epi(g + h)∗ = cl(epig∗ + epih∗) and epi(supi∈I gi )
∗ = cl co

(
⋃

i∈I

epig∗
i

)

.

The closure in the first equation is superfluous if one of g and h is continuous at some
x0 ∈ dom g ∩ dom h (see [6,23] for details).
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Let Y be another normed linear space with topological dual Y ∗ and let S be a closed
convex cone in Y . Denote by S+ the dual cone of S, defined as

S+ = {
y∗ ∈ Y ∗|y∗(y) >= 0 for any y ∈ S

}
.

We say that the map g : X → Y is S-convex if for any x1, x2 ∈ X and any
λ ∈ [0, 1],

g(λx1 + (1 − λ)x2) ∈ λg(x1) + (1 − λ)g(x2) − S

and that g is S-sublinear if g is S-convex and positively homogeneous of degree 1.
Note that g−1(−S) := {x ∈ X | − g(x) ∈ S}.

We also need the following lemma, which is well-known, see for instance [3,22]. Let
U, V be two topological spaces and let � : U × V → R∪{−∞,+∞}. Then the mar-
ginal function h : V → R∪{−∞,+∞} is defined by h(v) := infu∈U �(u, v) and the
projection operator, PrV ×R : U×V ×R → V ×R, is given by PrV ×R(u, v, r) = (v, r).

Lemma 2.1 (Lemma 2.3 [3] and Theorem 2.1 [22]) Let � : U×V → R∪{−∞,+∞}
be a proper function. Then, PrV ×R(epi �) is closed if and only if the marginal function
h : V → R∪{−∞,+∞}, defined by h(v) = infu∈U �(u, v) is lower semicontinuous
and infu∈U �(u, v̄) is attained whenever h(v̄) > −∞, for v̄ ∈ V .

3 Characterizations of stable Farkas lemma

In this section we present characterizations of stable Farkas lemma for cone-convex
systems. Our approach makes use of the powerful convex conjugate analysis. Let
f : X → R ∪ {+∞} be a proper lower semicontinuous convex function and let
g : X → Y be a continuous S-convex function with dom f ∩ g−1(−S) �= ∅.

Define a function � : X × Y → R ∪ {+∞} by

�(x, y) :=
{

f (x) if y − g(x) ∈ S
+∞ otherwise

and a function η : X∗ → R ∪ {−∞,+∞} by

η(x∗) := inf
y∗∈Y ∗ �∗(x∗, y∗).

Then, for each (x∗, y∗) ∈ X∗ × Y ∗,

�∗(x∗, y∗) =
{

sup
x∈X

{
x∗(x) − f (x) − (y∗ ◦ g)(x)

}
if y∗ ∈ −S+

+∞ otherwise

and η∗(x) := (�∗)∗(x, 0) = �(x, 0), ∀x ∈ X and, for each x∗ ∈ X∗,

η(x∗) >= η∗∗(x∗) = sup
x∈X

{
x∗(x) − �(x, 0)

} = − inf
x∈g−1(−S)

{
f (x) − x∗(x)

}
> −∞.
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Theorem 3.1 (Stable Farkas Lemma) Let f : X → R ∪ {+∞} be a proper lower
semicontinuous convex function, and let g : X → Y be a continuous and S-convex
function with dom f ∩ g−1(−S) �= ∅. Then the following statements are equivalent:

(i) For each x∗ ∈ X∗ and each α ∈ R,

[−g(x)∈ S ⇒ f (x)>= x∗(x) + α]⇔(∃λ ∈ S+)(∀x ∈ X) f (x)+(λ ◦ g)(x)>= x∗(x)+α.

(ii) epi f ∗ + ⋃

y∗∈S+
epi (y∗ ◦ g)∗ is w∗-closed.

Proof [(ii) ⇒ (i)] Suppose that (ii) holds. Let x∗ ∈ X∗ and α ∈ R. Assume that
f (x) >= x∗(x) + α, for each x ∈ g−1(−S). Define

�(x, y) =
{

f (x) if y − g(x) ∈ S
+∞ otherwise.

Then one can check that PrX∗×R(epi�∗) = epi f ∗ + ⋃
y∗∈S+ epi (y∗ ◦ g)∗. By (ii),

PrX∗×R(epi�∗) is closed, and hence from Lemma 2.1, η is lower semicontinuous and
all values η(x∗) are attained. So,

η(x∗) = η∗∗(x∗)
= − inf

x∈g−1(−S)

{
f (x) − x∗(x)

}
,

and hence there exists λ ∈ S+ such that inf
x∈X

{−x∗(x) + f (x) + (λ ◦ g)(x)} =
inf

x∈g−1(−S)
{ f (x) − x∗(x)}. By assumption, infx∈g−1(−S){ f (x) − x∗(x)} >= α, and so,

inf
x∈X

{−x∗(x) + f (x) + (λ ◦ g)(x)} >= α and hence (i) holds.

[(i) ⇒ (ii)] Suppose that (i) holds. Let (u, r) ∈ cl [epi f ∗ + ⋃

y∗∈S+
epi (y∗ ◦ g)∗].

Then there exist nets {λα} ⊂ S+, {(vα, pα)} ⊂ epi f ∗ and {(wα, qα)} ⊂ epi(λα ◦ g)∗
such that

(vα + wα, pα + qα) → (u, r).

Now, wα(x) <= qα , for each x ∈ g−1(−S) and vα(x) − f (x) <= pα , for each x ∈ X
and so, we have

(vα + wα)(x) − f (x) <= pα + qα, ∀x ∈ g−1(−S).

Letting α → ∞, u(x) − f (x) <= r , for each x ∈ g−1(−S). Thus it follows from (i)
that there exists λ ∈ S+ such that

f (x) + (λ ◦ g)(x) >= u(x) − r, ∀x ∈ X.

This gives us that ( f + λ ◦ g)∗(u) <= r and then (u, r) ∈ epi ( f + λ ◦ g)∗ =
epi f ∗ + epi (λ ◦ g)∗. Hence, (ii) holds. ��
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Example 3.1 Let f (x) = δ(−∞,0](x), g(x) = [max{0, x}]2 and S = R+. Then f is a
proper lower semicontinuous convex function, g is a continuous convex function and
dom f ∩ g−1(−S) = (−∞, 0]. Moreover, epi f ∗ = [0,∞) × R+ and

⋃

y∗∈S+
epi (y∗ ◦ g)∗ = ({0} × R+) ∪

{
(x, r) ∈ R

2 | x > 0, r > 0
}

and epi f ∗+⋃
y∗∈S+ epi (y∗◦g)∗ is closed. In fact, epi f ∗+⋃

y∗∈S+ epi (y∗◦g)∗ = R
2+.

For each x∗ ∈ R and each α ∈ R,

[−g(x) ∈ S ⇒ f (x) >= x∗x + α
]

⇒ x∗ ∈ [0,∞) and α <= 0

⇒ for any λ ∈ S+ and any x ∈ R, f (x) + λg(x) >= x∗x + α.

So, Theorem 3.1 holds as the converse implication always holds. ��
In the case where f = 0, Theorem 3.1 yields a characterization of a closed cone

condition in terms of a version of the stable Farkas lemma.

Corollary 3.1 Let g : X → Y be a continuous and S-convex function with
g−1(−S) �= ∅. Then the following statements are equivalent:

(i) For each x∗ ∈ X∗ and each α ∈ R,

[−g(x) ∈ S ⇒ x∗(x) >= α] ⇔ (∃λ ∈ S+)(∀x ∈ X)x∗(x) + (λ ◦ g)(x) >= α.

(ii)
⋃

y∗∈S+
epi (y∗ ◦ g)∗ is w∗-closed.

Proof The conclusion follows from Theorem 3.1 by taking f = 0 and replacing x∗
by −x∗ as epi f ∗ = {0} × R+ and

epi f ∗ +
⋃

y∗∈S+
epi (y∗ ◦ g)∗ =

⋃

y∗∈S+
epi (y∗ ◦ g)∗.

��
A characterization of condition (ii) of Corollary 3.1 in terms of strong duality can

be found in [4].
The generalized Farkas lemma for cone-sublinear systems has been well known

under the closed cone condition that
⋃

λ∈S+ ∂(λ ◦ g)(0) is w∗-closed whenever the
function f is continuous and sublinear. For details, see [10,16] and other references
therein. We now show that a special case of our closure condition completely charac-
terizes the stable Farkas lemma for the cone-sublinear systems.

Corollary 3.2 Suppose that f : X → R ∪ {+∞} is a proper lower semicontinuous
sublinear function and that g : X → Y is a continuous S-sublinear function with
dom f ∩ g−1(−S) �= ∅. Then the following statements are equivalent:
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Complete characterizations of stable Farkas’ lemma and cone-convex programming duality 341

(i) For each x∗ ∈ X∗,

[−g(x) ∈ S ⇒ f (x) >= x∗(x)] ⇔ (∃λ ∈ S+) x∗ ∈ ∂ f (0)+∂(λ ◦ g)(0).

(ii) ∂ f (0) + ⋃

y∗∈S+
∂(y∗ ◦ g)(0) is w∗-closed.

Proof The conclusion follows if we show that the statements (i) and (ii) are equivalent
to the statements (i) and (ii) of Theorem 3.1 Indeed, (ii) is equivalent to the condition
that epi f ∗ + ⋃

y∗∈S+ epi(y∗ ◦ g)∗ is w∗-closed because

epi f ∗ +
⋃

y∗∈S+
epi(y∗ ◦ g)∗ = [∂ f (0) +

⋃

y∗∈S+
∂(y∗ ◦ g)(0)] × R+.

On the other hand, (i) of Theorem 3.1 clearly implies (i). To show (i) implies (i) of
Theorem 3.1, let x∗ ∈ X∗ and α ∈ R. If −g(x) ∈ S ⇒ f (x) >= x∗(x) + α, then by
sublinearity of the functions, we see that

−g(x) ∈ S ⇒ f (x) ≥ x∗(x) and α ≤ 0.

So, by (i), x∗ ∈ ∂ f (0) + ∂(λ ◦ g)(0), for some λ ∈ S+. Thus, for each x ∈ X ,
f (x) + (λ ◦ g)(x) ≥ x∗(x). Hence, for each x ∈ X , f (x) + (λ ◦ g)(x) ≥ x∗(x) + α.

��
Corollary 3.3 Let A : X → Y be continuous and linear. Then the following state-
ments are equivalent:

(i) ∀c ∈ X∗,
[−Ax ∈ S ⇒ c(x) >= 0

] ⇔ (∃λ ∈ S+) c + AT λ = 0.
(ii) AT (S+) is w∗-closed.

Proof Let g(x) = Ax . Then
⋃

λ∈S+ ∂(λ ◦ g)(0) = AT (S+). Then, the conclusion
follows from Corollary 3.1. ��
Remark 3.1 If Y = R

m and S is a polyhedral convex cone in Y , then AT (S+) is
a finitely generated cone and hence AT (S+) is closed. So, from Corollary 3.3, the
original Farkas lemma follows (see [7]).

4 Stable Lagrangian duality

Using stable Farkas lemma, we derive necessary and sufficient conditions for a stable
duality result for a cone convex optimization problem which holds for each linear
perturbation of the given convex objective function.

Theorem 4.1 (Stable Duality) Let f : X → R ∪ {+∞} be a proper lower semicon-
tinuous convex function, and let g : X → Y be a continuous and S-convex function
with dom f ∩ g−1(−S) �= ∅. Then the following statements are equivalent:

(i) inf
x∈g−1(−S)

{ f (x)−x∗(x)} = max
y∗∈S+ inf

x∈X
{ f (x)+(y∗◦g)(x)−x∗(x)}, ∀x∗ ∈ X∗.
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(ii) epi f ∗ + ⋃

y∗∈S+
epi(y∗ ◦ g)∗ is w∗-closed.

Proof We only need to show that (i) is equivalent to (i) of Theorem 3.1. Suppose that
(i) holds. Let x∗ ∈ X∗ and α ∈ R, and assume that f (x) >= x∗(x)+α, ∀x ∈ g−1(−S).
Then inf

x∈g−1(−S)
{ f (x) − x∗(x)} >= α. From (i), there exists λ ∈ S+ such that

inf
x∈X

{
f (x) + (λ ◦ g)(x) − x∗(x)

}
>= α,

and so, (i) of Theorem 3.1 holds.
Conversely, assume that (i) of Theorem 3.1 holds. To show (i), let x∗ ∈ X∗. If
inf

x∈g−1(−S)
{ f (x) − x∗(x)} = −∞, then (i) trivially holds as

inf
x∈X

{
f (x) + (λ ◦ g)(x) − x∗(x)

}
<= inf

x∈g−1(−S)

{
f (x) + (λ ◦ g)(x) − x∗(x)

}

<= inf
x∈g−1(−S)

{
f (x) − x∗(x)

} = −∞.

So, we may assume that r := inf
x∈g−1(−S)

{ f (x) − x∗(x)} is finite because dom f ∩
g−1(−S) �= ∅. Then, f (x)− x∗(x) >= r , for each x ∈ g−1(−S). Now, it follows from
(i) of Theorem 3.1 that there exists λ ∈ S+ such that for each x ∈ X , f (x) + (λ ◦
g)(x) >= x∗(x) + r . Thus we have,

inf
x∈X

{
f (x) + (λ ◦ g)(x) − x∗(x)

}
>= inf

x∈g−1(−S)

{
f (x) − x∗(x)

}
.

Since f (x) >= f (x) + (λ ◦ g)(x), for each x ∈ g−1(−S),

inf
x∈g−1(−S)

{
f (x) − x∗(x)

}
>= inf

x∈X

{
f (x) + (λ ◦ g)(x) − x∗(x)

}
.

Thus (i) holds. ��
We now present a new necessary and sufficient condition for the stable min–max

duality of a given convex optimization problem. It states that

min
x∈g−1(−S)

{
f (x) − x∗(x)

} = max
y∗∈S+ inf

x∈X

{
f (x) + (y∗ ◦ g)(x) − x∗(x)

}
, ∀ x∗ ∈ X∗.

To derive such a condition, define, for each x ∈ X ,

Ng(x)0 := {
u ∈ X∗ | (u, u(x)) ∈

⋃

y∗∈S+
epi (y∗ ◦ g)∗

}
.

It is easy to verify that, for each x ∈ g−1(−S), Ng(x)0 is a convex cone in X∗ and

Ng(x)0 = {
u ∈ X∗ | y∗ ∈ S+, u ∈ ∂(y∗ ◦ g)(x), (y∗ ◦ g)(x) = 0

}
.
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Note that, for each x ∈ g−1(−S), Ng(x0) ⊂ Ng−1(−S)(x) and

Ng−1(−S)(x) =
⎧
⎨

⎩
u ∈ X∗ | (u, u(x)) ∈ cl

⎛

⎝
⋃

y∗∈S+
epi (y∗ ◦ g)∗}

⎞

⎠

⎫
⎬

⎭
,

where Ng−1(−S)(x) is the normal cone to g−1(−S) at x .

Theorem 4.2 Let f : X → R ∪ {+∞} be a proper lower semicontinuous convex
function and let g : X → Y be a continuous S-convex function. Suppose that f is
continuous at a point in dom f ∩ g−1(−S) and that, for each x∗ ∈ X∗, f (.) − x∗(.)
attains its minimizer over g−1(−S). Then the following statements are equivalent.

(i) min
x∈g−1(−S)

{ f (x)−x∗(x)} = max
y∗∈S+ inf

x∈X
{ f (x)+(y∗◦g)(x)−x∗(x)}, ∀x∗ ∈ X∗.

(ii) ∂ f (x) + Ng−1(−S)(x) = ∂ f (x) + Ng(x)0, ∀x ∈ dom f ∩ g−1(−S).

Proof [(ii) ⇒ (i)] Suppose that (ii) holds. Let x∗ ∈ X∗. Assume that x ∈ dom f ∩
g−1(−S) and f (x)−x∗(x) = min

y∈g−1(−S)
{ f (y)−x∗(y)}. Then, by optimality condition

(see Theorem 4.1 [6]), we have

x∗ ∈ ∂ f (x) + Ng−1(−S)(x).

Using (ii), we have,

x∗ ∈ ∂ f (x) + Ng(x)0

= ∂ f (x) + {
u ∈ X∗ | y∗ ∈ S+, u ∈ ∂(y∗ ◦ g)(x), (y∗ ◦ g)(x) = 0

}
.

Thus, there exists λ ∈ S+ such that

x∗ ∈ ∂ f (x) + ∂(λ ◦ g)(x) and (λ ◦ g)(x) = 0.

This gives us that

inf
y∈X

{
f (y) + (λ ◦ g)(y) − x∗(y)

}
>= f (x) − x∗(x).

On the other hand, for each y∗ ∈ S+,

inf
y∈X

{
f (y) + (y∗ ◦ g)(y) − x∗(y)} <= inf

y∈g−1(−S)
{ f (y) − x∗(y)

}
.

Hence (i) holds.
[(i) ⇒ (ii)] Suppose that (i) holds. Since, for each x ∈ g−1(−S), Ng(x)0 ⊂

Ng−1(−S)(x), ∂ f (x) + Ng(x)0 ⊂ ∂ f (x) + Ng−1(−S)(x), ∀x ∈ dom f ∩ g−1(−S).
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Let x ∈ dom f ∩ g−1(−S) and u ∈ ∂ f (x)+ Ng−1(−S)(x). Then there exist v ∈ ∂ f (x)

and w ∈ Ng−1(−S)(x) such that u = v + w, and hence for each y ∈ g−1(−S),

f (y) − (v + w)(y) >= f (x) − (v + w)(x).

Now, it follows from (i) that there exists λ ∈ S+ such that

f (x) − u(x) = inf
y∈X

{
f (y) + (λ ◦ g)(y) − u(y)

}
.

So, we have,

(λ ◦ g)(x) = 0 and u ∈ ∂ f (x) + ∂(λ ◦ g)(x).

This means that

u ∈ ∂ f (x) + Ng(x)0.

Hence (ii) holds. ��
The link between the condition that characterizes the stable duality (Theorem 4.1)

and the condition that characterizes the stable min–max duality (Theorem 4.2) is illus-
trated by the following Proposition for which a direct proof is given.

Proposition 4.1 Let f : X → R ∪ {+∞} be a proper lower semicontinuous convex
function and let g : X → Y be a continuous S-convex function. Assume that f is
continuous at a point in dom f ∩g−1(−S). If epi f ∗+ ⋃

y∗∈S+
epi (y∗◦g)∗ is w∗-closed,

then the equality

∂ f (x) + Ng−1(−S)(x) = ∂ f (x) + Ng(x)0, ∀x ∈ dom f ∩ g−1(−S)

holds.

Proof Clearly, ∂ f (x) + Ng(x)0 ⊂ ∂ f (x) + Ng−1(−S)(x), ∀x ∈ dom f ∩ g−1(−S).
To establish the converse inclusion, let x ∈ dom f ∩ g−1(−S) and u ∈ ∂ f (x) +
Ng−1(−S)(x). Then, there exist v ∈ ∂ f (x) and w ∈ Ng−1(−S)(x) such that u = v + w,

and hence we have

f ∗(v) + f (x) = v(x)

and there exist nets {λα} ⊂ S+, {wα} ⊂ X∗ and {rα} ⊂ R such that (wα, rα) ∈
epi(λα ◦g)∗ and (wα, rα) → (w,w(x)). Thus (v, v(x)− f (x))+ (wα, rα) ∈ epi f ∗ +
∪y∗∈S+epi(y∗ ◦g)∗. Now, by the closedness assumption, there exists λ ∈ S+ such that

(v, v(x) − f (x)) + (w,w(x)) ∈ epi f ∗ + epi(λ ◦ g)∗

= epi( f + λ ◦ g)∗.
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So, for each y ∈ X ,

u(y) − ( f + λ ◦ g)(y) <= u(x) − f (x).

In particular, by taking y = x , we get−(λ◦g)(x) <= 0. As (λ◦g)(x) <= 0, (λ◦g)(x) = 0
Thus, for each y ∈ X ,

( f + λ ◦ g)(y) >= ( f + λ ◦ g)(x) + u(y − x).

This gives us that u ∈ ∂ f (x) + ∂(λ ◦ g)(x) and (λ ◦ g)(x) = 0, and hence u ∈
∂ f (x) + Ng(x)0. ��
Remark 4.1 (1) In general, (i) in Theorem 4.2 does not imply that Ng−1(−S)(x) =
Ng(x)0 ∀x ∈ dom f ∩g−1(−S). Indeed, let f, g and S be as in Example 3.1. Then (i)
in Theorem 4.2 holds. But even though 0 ∈ dom f ∩g−1(−S), Ng−1(−S)(0) = [0,∞)

and Ng(0)0 = {0}.
(2) In general, ∂ f (x0)+ Ng−1(−S)(x0) = ∂ f (x0)+ Ng(x0)0 for some x0 ∈ dom f ∩

g−1(−S) does not imply that (i) in Theorem 4.2 holds. Indeed, let f (x) = −x, g(x) =
[max{0, x}]2 and S = R+. Let x0 = −1. Then x0 ∈ dom f ∩ g−1(−S),

∂ f (x0) + Ng−1(−S)(x0) = ∂ f (x0) + Ng(x0)0 = {−1}.

Even though min
x∈g−1(−S)

f (x) = 0, max
λ>=0

inf
x∈R

{ f (x) + λg(x)} can not be attained, and

hence (i) in Theorem 4.2 does not hold.

Theorem 4.3 Let g : X → Y be a continuous S-convex function with g−1(−S) �= ∅.
Suppose that, for each x∗ ∈ X∗, x∗(.) attains its minimizer over g−1(−S). Then the
following statements are equivalent:

(i) min
x∈g−1(−S)

x∗(x) = max
y∗∈S+ inf

x∈X
{x∗(x) + (y∗ ◦ g)(x)}, ∀x∗ ∈ X∗.

(ii) Ng−1(−S)(x) = Ng(x)0, ∀x ∈ g−1(−S).

Proof The conclusion follows from Theorem 4.2 by taking f = 0. ��

5 Stable duality in cone programming

In this section, we apply the results of the previous sections to derive stable duality
results for convex semi-definite programs and convex second-order cone programs.

Consider now the following convex semi-definite program.

(CSP) Minimize f (x)

subject to F0 + �m
i=1xi Fi � 0,

where f : X → R ∪ {+∞} is a convex function.
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Let Sn be a vector space of n × n symmetric matrices with the trace inner prod-
uct (M, N ) := Tr[M N ] which is partially ordered by Löwner partial order � of Sn ;
that is, for M, N ∈ Sn, M � N if and only if (M − N ) is positive semidefinite.
Let K = {M ∈ Sn | M � 0}. Then K is self-dual, that is, K + = K . Let F(x) =
F0 + �m

i=1xi Fi , where Fi ∈ Sn, i = 0, 1, . . . , m and F̂(x) = �m
i=1xi Fi . Clearly, F̂

is a continuous linear operator from R
m to Sn . The adjoint operator F̂∗ : Sn → R

m is
given as (F̂∗(Z))i = Tr[Z Fi ], i = 1, . . . , m. We denote the feasible set of (CSP) by
F−1(K ).

Theorem 5.1 Let f : R
m → R ∪ {+∞} be a proper lower semicontinuous convex

function. Suppose that dom f ∩ F−1(K ) �= ∅. Then the following statements are
equivalent:

(i) For each a ∈ R
m and each α ∈ R

[
F(x) ∈ K ⇒ f (x) >= aT x + α

]
⇐⇒ (∃Z ∈ K )(∀x ∈ R

m) f (x) −
Tr[Z F(x)] >= aT x + α.

(ii) inf
x∈F−1(K )

{
f (x)−aT x

} = max
Z∈K

inf
x∈Rm

{
f (x)−Tr(Z F(x))−aT x

}
, ∀a ∈ R

m.

(iii) epi f ∗ + ⋃

Z∈K ,r>=0

{
(−F̂∗(Z), Tr(Z F0) + r)

}
is closed.

Proof Let g : R
m → Sn be defined by g(x) = − F(x) and S = K . Then we have,

⋃

y∗∈S+
epi (y∗ ◦ g)∗ =

⋃

Z∈K , r>=0

{
(−F̂∗(Z), Tr(Z F0) + r)

}
.

Then, the conclusions follow from Theorems 3.1 and 4.1. ��
Consider the following convex second-order cone program:

(SOCP) Minimize f (x)

subject tox ∈ M := {x ∈ R
n | ‖(h1(x), . . . , hm−1(x))T ‖ <= hm(x) },

where f : R
n → R∪{+∞} is a convex function, hi : R

n → R, i = 1, . . . , m are con-
vex functions and ‖z‖ = √

zT z, z ∈ R
m−1. Let C = {(y, t) ∈ R

m−1 × R | ‖y‖ ≤ t},
that is, C is a second-order cone in R

m . Then C is self-dual, that is, C = C+.

Theorem 5.2 Let f : R
n → R ∪ {+∞} be a proper lower semicontinuous convex

function and hi : R
n → R, i = 1, . . . , m, be convex functions with dom f ∩ M �= ∅.

Then the following statements are equivalent:

(i) For each a ∈ R
n and each α ∈ R

[x ∈ M] ⇒ [
f (x) >= aT x + α

] ⇐⇒ (∃λ ∈ C) (∀x ∈ R
n) f (x)

−
m∑

i=1

λi hi (x) >= aT x + α.

123



Complete characterizations of stable Farkas’ lemma and cone-convex programming duality 347

(ii) inf
x∈M

{
f (x) − aT x

} = max
λ∈C

inf
x∈Rn

{
f (x) − ∑m

i=1 λi hi (x) − aT x
}
, ∀a ∈ R

n.

(iii) epi f ∗ + ⋃

λ∈C

∑m
i=1 epi (λi hi )

∗ is closed.

Proof Let g(x) = −(h1(x)), . . . , hm(x))T and S = C . Then the conclusions follow
from Theorems 3.1 and 4.1. ��
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