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Abstract. Determining whether a solution is of high quality (optimal or near optimal) is fundamental in
optimization theory and algorithms. In this paper, we develop Monte Carlo sampling-based procedures for
assessing solution quality in stochastic programs. Quality is defined via the optimality gap and our procedures’
output is a confidence interval on this gap. We review a multiple-replications procedure that requires solution
of, say, 30 optimization problems and then, we present a result that justifies a computationally simplified single-
replication procedure that only requires solving one optimization problem. Even though the single replication
procedure is computationally significantly less demanding, the resulting confidence interval might have low
coverage probability for small sample sizes for some problems. We provide variants of this procedure that
require two replications instead of one and that perform better empirically. We present computational results
for a newsvendor problem and for two-stage stochastic linear programs from the literature. We also discuss
when the procedures perform well and when they fail, and we propose using ε-optimal solutions to strengthen
the performance of our procedures.

1. Introduction

We consider a stochastic optimization problem of the form

z∗ = min
x∈X

Ef
(
x, ξ̃

)
, (SP)

where f is a real-valued function that determines the cost of operating with decision
x under a realization of the random vector ξ̃ , whose distribution is assumed known.
X ⊆ R

d denotes the set of constraints that the decision vector x must obey and E is
the expectation operator. As simple as it is to state, (SP) represents a large class of
problems in the statistics and operations research literature including our motivation,
stochastic programs with recourse. The well-known two-stage stochastic linear program
with recourse was introduced independently by [4, 9], in which

f (x, ξ̃ ) = cx + min
y≥0

q̃y

s.t W̃y = r̃ − T̃ x,
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X = {x : Ax = b, x ≥ 0} and ξ̃ = (
q̃, W̃ , r̃, T̃

)
is a random vector on (�, B, P ).

This formulation can be extended to multiple stages, integer restrictions can be im-
posed in any of the stages and nonlinear constraints and objective function terms can be
added. Stochastic programs with recourse have been successfully applied to problems
from finance, energy, telecommunications, transportation, logistics and supply-chain
management (e.g., [32]).

In this paper, we make the following assumptions with respect to (SP):

(A1) f
(·, ξ̃) is continuous on X, w.p.1,

(A2) E supx∈X f 2
(
x, ξ̃

)
< ∞,

(A3) X �= ∅ and is compact.

The first assumption is satisfied, for instance, by a two-stage stochastic linear pro-
gram provided it has relatively complete recourse. However, it eliminates consideration
of two-stage stochastic integer programs when there are integrality constraints in the sec-
ond stage. The second assumption guarantees existence of second moments and provides
a needed uniform integrability condition. In most practical problems, a decision-maker
would not be averse to specifying possibly large, but finite, simple bounds, l ≤ x ≤ u,
making X bounded and hence compact, if also closed.

As the dimension of ξ̃ grows, (SP) gets harder and often impossible to solve exactly,
unless f has simple structure, or the number of realizations is small. In cases where it
is not possible to solve (SP) exactly, an intuitive approach is to resort to sampling and
approximate the problem with

z∗
n = min

x∈X

1

n

n∑

i=1

f
(
x, ξ̃ i

)
. (SPn)

ξ̃1, ξ̃2, . . . , ξ̃ n may be independent and identically distributed (i.i.d.) as ξ̃ or may be
generated according to another sampling scheme. Let x∗ denote an optimal solution to
(SP) with optimal cost z∗. Similarly, let x∗

n and z∗
n denote an optimal solution and the

optimal cost of (SPn). Consistency and other asymptotic properties of estimators x∗
n and

z∗
n have been studied extensively in the literature, see e.g., [2, 11, 19, 28].

This paper describes Monte Carlo sampling-based procedures for assessing solu-
tion quality in stochastic programs. Determining whether a solution is of high quality
(optimal or near optimal) is fundamental in optimization. Given a candidate solution
x̂, we define its quality by its optimality gap, µx̂ = Ef

(
x̂, ξ̃

) − z∗. There are two
difficulties associated with computing this quantity. First, z∗ is not known and a lower
bound (since we have a minimization problem) on z∗ needs to be computed. In integer
programming and nonlinear programming, for example, lower bounds are also useful for
proving solution quality and are typically obtained through relaxations. An upper bound
on z∗ is readily available as the cost of the candidate solution. For stochastic programs, a
second difficulty is that for a given x̂ ∈ X, it is not always possible to compute Ef

(
x̂, ξ̃

)

exactly.
Monte Carlo simulation-based methods allow us to estimate an upper bound on the

optimality gap for stochastic programs. In the next section, we briefly review how to
construct confidence intervals (CIs) on the optimality gap using a multiple replications
procedure [22]. Then, we show how to obtain a valid CI using only a single replication.
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An earlier version of this result appeared in [3]. In Section 4, we provide variants of
this procedure that use two replications. In Section 5, we compare the empirical cov-
erage results of our procedures for a newsvendor problem and for two-stage stochastic
linear programs with recourse. In Section 6, we give more insight on the procedures’
performance.And, we propose using ε-optimal solutions to strengthen that performance.
Finally, Section 7 contains concluding remarks and a summary.

2. Multiple replications procedure

Let ξ̃1, ξ̃2, . . . , ξ̃ n be i.i.d. from the distribution of ξ̃ . Then, by interchanging minimi-
zation and expectation we obtain a statistical lower bound on z∗,

Ez∗
n = Emin

x∈X

1

n

n∑

i=1

f
(
x, ξ̃ i

) ≤ min
x∈X

E
1

n

n∑

i=1

f
(
x, ξ̃ i

) = min
x∈X

Ef
(
x, ξ̃

) = z∗. (1)

This result establishes that z∗
n has a negative bias, Ez∗

n − z∗ ≤ 0. It can also be shown
that Ez∗

n ≤ Ez∗
n+1 for all n. This monotonicity result tells us that on average we obtain

better estimates of the optimal value as the sample size increases.
Given a feasible decision x̂ ∈ X and a sample size n for (SPn), we bound the opti-

mal value of (SP) using the above lower bound result, Ez∗
n ≤ z∗ ≤ Ef

(
x̂, ξ̃

)
. The right

inequality comes from suboptimality of x̂. An upper bound on the optimality gap for x̂

is then Ef
(
x̂, ξ̃

)− Ez∗
n. We estimate this quantity by

Gn

(
x̂
) = 1

n

n∑

i=1

f
(
x̂, ξ̃ i

)− min
x∈X

1

n

n∑

i=1

f
(
x, ξ̃ i

)
. (2)

The first term on the right-hand side of (2) is an upper bound estimate and converges
to Ef

(
x̂, ξ̃

)
, w.p.1, by the strong law of large numbers. The second quantity, z∗

n, is a
lower bound estimate on z∗. In expectation, it provides a lower bound and under (A1)–
(A3) converges to z∗, w.p.1 (see subsequent Proposition 1). When a common stream of
random numbers, ξ̃1, ξ̃2, . . . , ξ̃ n, is used in calculating both terms in (2), Gn

(
x̂
) ≥ 0,

w.p.1. This approach also facilitates variance reduction.
Because of the minimization in (2), Gn(x̂) (or, its scaled version

√
n(Gn(x̂) − µx̂))

is, in general, not normally distributed even as n grows large. Therefore, in [22] confi-
dence intervals are constructed by employing replications, an approach frequently used
in simulation for estimating the mean of a random variable with an unknown or non-
normal distribution. We summarize below the multiple replications procedure (MRP) to
construct a CI on the optimality gap. Let tn,α be the 1 − α quantile of the Student’s t

distribution with n degrees of freedom, and, for later use, let zα be that of the standard
normal.



498 G. Bayraksan, D. P. Morton

MRP:

Input: Value α ∈ (0, 1) (e.g., α = 0.10), sample size n, replication size ng and a
candidate solution x̂ ∈ X.

Output: (1 − α)-level confidence interval on µx̂.

1. For i = 1, 2, . . . , ng ,
1.1. Sample i.i.d. observations ξ̃ i1, ξ̃ i2, . . . , ξ̃ in from the distribution of ξ̃ ,

1.2. Solve (SPi
n) using ξ̃ i1, ξ̃ i2, . . . , ξ̃ in to obtain xi∗

n ,

1.3. Calculate Gi
n(x̂) = 1

n

∑n
j=1

(
f
(
x̂, ξ̃ ij

)− f
(
xi∗
n , ξ̃ ij

))
.

2. Calculate gap estimate and sample variance by

Ḡ(ng) = 1

ng

ng∑

i=1

Gi
n(x̂) and s2

G(ng) = 1

ng − 1

ng∑

i=1

(
Gi

n(x̂) − Ḡ(ng)
)2

.

3. Output one-sided CI on µx̂ ,

[
0, Ḡ(ng) + tng−1,αsG(ng)√

ng

]
. (3)

Even though Gn(x̂) may not be normal, since Ḡ(ng) is a sample mean of i.i.d. random
variables, it is possible to use the standard central limit theorem (CLT) to construct an
approximate (1 −α)-level CI for the optimality gap, as given in (3). Due to the negative
bias of z∗

n, EḠ(ng) ≥ Ef
(
x̂, ξ̃

)− z∗. Thus, for sufficiently large ng , we can infer that

P

(
Ef (x̂, ξ̃ ) − z∗ ≤ Ḡ(ng) + tng−1,αsG(ng)√

ng

)
≈ 1 − α (4)

and hence that the CI formed by MRP will cover the optimality gap of x̂ with the desired
probability.

The lower bound given in (1) was independently introduced by Norkin et al. [23] and
used for global optimization of stochastic programs within a branch-and-bound method.
Other algorithmic work that uses Monte Carlo simulation-based bounds and multiple
replications includes [1, 20]. MRP has been applied to different kinds of problems in
the literature including a bond portfolio model [5], a stochastic vehicle routing problem
[18] and supply chain network design [27].

There is other related work on assessing solution quality in stochastic programs via
Monte Carlo methods, some being in the context of specific algorithms. Higle and Sen
[13] derive a bound on the optimality gap for two-stage stochastic linear programs that
is motivated by the Karush-Kuhn-Tucker optimality conditions; see also, Shapiro and
Homem-de-Mello [29]. Higle and Sen [14] have also proposed a statistical lower bound
that is rooted in duality. Dantzig and Infanger [10] and Higle and Sen [12, 16] use Monte
Carlo versions of lower bounds obtained in sampling-based adaptations of deterministic
cutting-plane algorithms.
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3. Single replication procedure

When applying the multiple replications procedure reviewed above, the replication size
is typically taken to be ng ≥ 30 in an attempt to have a valid statistical inference. This
constitutes a drawback as one needs to solve at least 30 optimization problems (in step
1.2) in order to determine whether a candidate solution is of high quality. In this sec-
tion, we show how a single replication, ng = 1, can be used to make a valid statistical
inference on the quality of a candidate solution.

As before, we assume that the candidate solution x̂ ∈ X is given, and we use the fol-
lowing additional notation. For a feasible solution, x ∈ X, let f̄n(x) = 1

n

∑n
i=1 f

(
x, ξ̃ i

)
,

σ 2
x̂
(x) = var

[
f
(
x̂, ξ̃

) − f
(
x, ξ̃

)]
and s2

n(x) = 1
n−1

∑n
i=1

[(
f (x̂, ξ̃ i ) − f

(
x, ξ̃ i

))

−(f̄n(x̂)− f̄n(x))
]2. Note that Gn(x̂) given in equation (2) can be written as f̄n(x̂)−z∗

n,
with the understanding that the same n observations ξ̃1, ξ̃2, . . . , ξ̃ n are used in f̄n(x̂)

and z∗
n. Below we state the single replication procedure (SRP).

SRP:

Input: Value α ∈ (0, 1), sample size n and a candidate solution x̂ ∈ X.

Output: (1 − α)-level confidence interval on µx̂.

1. Sample i.i.d. observations ξ̃1, ξ̃2, . . . , ξ̃ n from the distribution of ξ̃ .
2. Solve (SPn) to obtain x∗

n .
3. Calculate Gn(x̂) as given in (2) and

s2
n

(
x∗
n

) = 1

n − 1

n∑

i=1

[(
f
(
x̂, ξ̃ i

)− f
(
x∗
n, ξ̃ i

))− (
f̄n(x̂) − f̄n

(
x∗
n

))]2
.

4. Output one-sided CI on µx̂ ,
[

0, Gn(x̂) + tn−1,αsn
(
x∗
n

)

√
n

]

. (5)

The SRP differs from the MRP in that it uses a single replication and hence the
sample variance is calculated differently. In the MRP, ng i.i.d. observations of Gn(x̂)

are calculated and the sample variance of these gap estimates is used to form the CI.
In contrast, only one value of Gn(x̂) is calculated in SRP and the individual observa-
tions, f

(
x̂, ξ̃ i

)− f
(
x∗
n, ξ̃ i

)
for i = 1, . . . , n, are used to calculate the sample variance.

In fact, Gn(x̂) is the sample mean of these individual observations and s2
n

(
x∗
n

)
is the

corresponding sample variance. Below, we show how carrying out a single replication
yields enough information to make a valid statistical inference concerning the quality
of a candidate solution even though Gn(x̂) may not be asymptotically normal. Before
stating the theorem, we give the following proposition, which establishes consistency
of the estimators. The proposition’s hypothesis defines x∗

min and x∗
max. In words, these

are the optimal solutions to (SP) with minimum and maximum variance, respectively,
of f

(
x̂, ξ̃

)− f
(
x, ξ̃

)
.
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Proposition 1. Let X∗ = arg minx∈X Ef
(
x, ξ̃

)
, x∗

min ∈ arg minx∈X∗ var
[
f
(
x̂, ξ̃

)−
f (x, ξ̃ )

]
, and x∗

max ∈ arg maxx∈X∗ var
[
f
(
x̂, ξ̃

)− f
(
x, ξ̃

)]
. Assume (A1)–(A3), x̂ ∈ X,

and that ξ̃1, ξ̃2, . . . , ξ̃ n are i.i.d. as ξ̃ . Then,

(i) z∗
n → z∗, w.p.1,

(ii) all limit points of {x∗
n} lie in X∗, w.p.1,

(iii) σ 2
x̂

(
x∗

min

) ≤ lim infn→∞ s2
n

(
x∗
n

) ≤ lim supn→∞ s2
n

(
x∗
n

) ≤ σ 2
x̂

(
x∗

max

)
, w.p.1.

Proof. (A2) implies that E supx∈X f
(
x, ξ̃

)
< ∞. Therefore, (i) follows immediately

fromTheoremA1 of [24, p.69]. (A1)–(A3) imply f̄n(x) converges uniformly toEf
(
x, ξ̃

)
,

w.p.1 on X. This coupled with (i) implies (ii). To prove (iii), we first show the se-
quence of continuous functions s2

n(x) converges to σ 2
x̂
(x) uniformly, w.p.1 on X. Let

g
(
x, ξ̃

) = f
(
x̂, ξ̃

)− f
(
x, ξ̃

)
. Then, with ḡn(x) = 1

n

∑n
i=1 g

(
x, ξ̃ i

)
we have

s2
n(x) = n

n − 1

{
1

n

n∑

i=1

(
g
(
x, ξ̃ i

)− Eg
(
x, ξ̃

))2 − (
ḡn(x) − Eg

(
x, ξ̃

))2
}

.

The first term in the curly brackets is a sample mean of i.i.d. random variables and by
Lemma A1 of [24, p.67] converges uniformly, w.p.1, to σ 2

x̂
(x) = var g

(
x, ξ̃

)
. Also, by

the same lemma, ḡn(x) converges uniformly to Eg
(
x, ξ̃

)
, w.p.1, i.e., supx∈X

∣∣ḡn(x)−
Eg
(
x, ξ̃

)| → 0, w.p.1. This implies

sup
x∈X

(
ḡn(x) − Eg

(
x, ξ̃

))2 =
(

sup
x∈X

∣∣∣ḡn(x) − Eg
(
x, ξ̃ )

∣∣∣
)2

→ 0, w.p.1.

So, an(x) = 1
n

∑n
i=1

(
g
(
x, ξ̃ i

)−Eg
(
x, ξ̃

))2−(ḡn(x)−Eg
(
x, ξ̃

))2 converges uniformly
to σ 2

x̂
(x), w.p.1. To show uniform convergence of n

n−1an(x), consider the following
inequality

sup
x∈X

∣∣∣∣an(x) + an(x)

n − 1
− σ 2

x̂
(x)

∣∣∣∣ ≤ sup
x∈X

∣∣∣an(x) − σ 2
x̂
(x)

∣∣∣

+sup
x∈X

∣∣∣∣∣
an(x) − σ 2

x̂
(x)

n − 1

∣∣∣∣∣
+ sup

x∈X

∣∣∣∣∣
σ 2

x̂
(x)

n − 1

∣∣∣∣∣
.

By the above argument the first two terms on the right-hand side converge to 0, w.p.1. By
(A2), supx∈X σ 2

x̂
(x) < ∞. Thus, the last term also converges to 0, establishing uniform

convergence.
Since X is compact, there exists a subsequence N along which {x∗

n}n∈N converges
to a point in X, and by (ii) this point is in X∗, w.p.1. So, using the uniform convergence
shown above,

inf
x∈X∗ σ 2

x̂
(x) ≤ lim

n → ∞
n∈N

s2
n

(
x∗
n

) ≤ sup
x∈X∗

σ 2
x̂
(x), w.p.1.

The subsequence N is arbitrary and hence we obtain (iii). �
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When (SP) has multiple optimum solutions, we cannot expect {x∗
n} to have a unique

limit point. However, by part (ii) of Proposition 1, all its limit points belong to the set
of optimum solutions, X∗. Similarly,

{
s2
n

(
x∗
n

)}
may not have a unique limit. That is

why “lim inf” and “lim sup” appear in part (iii) of Proposition 1 instead of a “lim.”
Note that by (A2), σ 2

x̂

(
x∗

max

)
< ∞. When X∗ is a singleton, x∗

n → x∗, w.p.1 and
lim infn→∞ s2

n

(
x∗
n

) = lim supn→∞ s2
n

(
x∗
n

) = σ 2
x̂
(x∗), w.p.1. We next present the main

result regarding the validity of the SRP.

Theorem 1. Assume (A1)–(A3), x̂ ∈ X, and that ξ̃1, ξ̃2, . . . , ξ̃ n are i.i.d. as ξ̃ . Given
0 < α < 1, for the SRP,

lim inf
n→∞ P

(

µx̂ ≤ Gn

(
x̂
)+ zαsn

(
x∗
n

)

√
n

)

≥ 1 − α. (6)

Proof. When x̂ ∈ X∗, inequality (6) is trivial. Suppose x̂ /∈ X∗, and recall that z∗
n =

minx∈X f̄n(x). Thus,

Gn

(
x̂
) = f̄n

(
x̂
)− z∗

n ≥ f̄n

(
x̂
)− f̄n(x), ∀x ∈ X.

Replacing x by x∗
min ∈ arg minx∈X∗ σ 2

x̂
(x) we obtain,

P

(

Gn

(
x̂
)+ zαsn

(
x∗
n

)

√
n

≥ µx̂

)

≥ P

(

f̄n

(
x̂
)− f̄n

(
x∗

min

)+ zαsn
(
x∗
n

)

√
n

≥ µx̂

)

(7)

= P

((
f̄n

(
x̂
)− f̄n

(
x∗

min

))− µx̂

σx̂

(
x∗

min

)
/
√

n
≥ −zα

sn
(
x∗
n

)

σx̂

(
x∗

min

)

)

, (8)

where in (8) we assume σ 2
x̂

(
x∗

min

)
> 0. Note that if σ 2

x̂

(
x∗

min

) = 0 then var
[
f̄n

(
x̂
)

−f̄n

(
x∗

min

)] = 1
n
σ 2

x̂

(
x∗

min

) = 0 and it follows from (7) that (6) is again trivial. Let

Dn = (f̄n(x̂)−f̄n(x∗
min))−µx̂

σx̂(x
∗
min)/

√
n

, an = sn(x∗
n)

σx̂(x
∗
min)

and 0 < ε < 1, and for the moment assume

α ≤ 1/2 so that zα ≥ 0. Then (8) can be rewritten as

P (Dn ≥ −zαan) ≥ P (Dn ≥ −(1 − ε)zα, an ≥ 1 − ε)

= P (Dn ≥ −(1 − ε)zα) + P (an ≥ 1 − ε)

−P

(
{Dn ≥ −(1 − ε)zα} ∪ {an ≥ 1 − ε}

)
. (9)

Taking limits we obtain,

lim inf
n→∞ P

(

µx̂ ≤ Gn(x̂) + zαsn
(
x∗
n

)

√
n

)

≥ �((1 − ε)zα),

where � denotes the distribution function of the standard normal. By Proposition 1,
the last two terms in (9) both converge to 1 and cancel out. Since f̄n(x̂) − f̄n

(
x∗

min

)
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is a sample mean of i.i.d. random variables, by the CLT the first term in (9) converges
to �((1 − ε)zα). Letting ε shrink to zero gives the desired result, provided α ≤ 1/2.
When α > 1/2 we replace x∗

min with x∗
max ∈ arg maxx∈X∗ σ 2

x̂
(x) in (8) and then use a

straightforward variation of the above argument. �

Theorem 1 justifies construction of the approximate (1 − α)-level one-sided con-
fidence interval for µx̂ = Ef

(
x̂, ξ̃

) − z∗, given in (5) without requiring Gn

(
x̂
) =

f̄n

(
x̂
)− z∗

n to be asymptotically normal. The intuitive reason for this is that minimiza-
tion of the sample mean in z∗

n, while making asymptotic analysis of this random variable
more difficult, projects the normal distribution so that the resulting confidence interval is
conservative. This notion of projection is formalized in [24, Theorem 6.4.2] which states
that the scaled errors of z∗

n converge in distribution to the minimum of a collection of nor-
mal random variables. More specifically,

√
n
(
z∗
n − z∗) ⇒ infx∈X∗ Z(x), where each

Z(x) is a mean-zero normal random variable defined via
√

n
(
f̄n(x) − z∗) ⇒ Z(x),

x ∈ X∗. (Here, “⇒” denotes convergence in distribution.) If X∗ is a singleton then
infx∈X∗ Z(x) is normally distributed. Otherwise, the precise nature of this random ele-
ment is dictated by the dependency among Z(x) for x ∈ X∗. We also note that because
we estimate the sample variance in the SRP, the statement of the procedure uses the
more conservative Student’s t quantile, tn−1,α .

Before proceeding, we recall some terminology associated with confidence interval
estimation (see, e.g., [8, §9.1]). An interval estimator, Ĩ , of a real-valued parameter of
interest (e.g., µx̂) is a random set. The MRP and SRP form respective interval estimators
(3) and (5). The coverage probability, or simply the coverage, of an interval estimator
is the probability that the random interval Ĩ contains the parameter of interest, e.g.,
P
(
µx̂ ∈ Ĩ

)
. Theorem 1 characterizes the coverage probability of the SRP’s interval

estimator Ĩ = Ĩn, as the sample size n grows large. Similarly, as indicated in Section 2,
the standard CLT gives a result for the coverage probability of the MRP’s interval esti-
mator Ĩ = Ĩng , as the number of replications ng grows large. Such theoretical results are
typically used to justify employing the associated procedure, provided the sample size
n or replication size ng is sufficiently large. Practical interpretation of what is meant by
“sufficiently large” is usually guided by extensive empirical testing of the procedures.
With this aim, preliminary empirical coverage results are described in Sections 5 and 6.
First, however, we examine undesirable effects that can arise with small sample sizes,
and we provide procedures to mitigate these effects.

MRP is a procedure in which we use ng ≥ 30 replications and SRP is a procedure
with just one replication, ng = 1. Even though the single replication procedure is com-
putationally significantly less demanding, solving a single minimization problem might
also create some difficulties. For instance, in step 2 of the procedure, if the minimization
problem used to calculate the gap estimate yields a solution x∗

n that is equal to x̂, then
both the gap estimate Gn

(
x̂
)

and the variance estimate s2
n

(
x∗
n

)
are zero and consequently

the CI on the optimality gap given in (5) has width zero. For small sample sizes, this can
happen even though the candidate solution x̂ is far from optimal. (Proposition 1 elimi-
nates this possibility as the sample size grows large.) The following example illustrates
this effect.
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Example 1. Consider the following problem,
{

min E[ξ̃ x] : −1 ≤ x ≤ 1
}
, where

ξ̃ ∼ N(µ, 1) and µ > 0. Note that (A1)–(A3) are satisfied. The optimal solution to this
problem is x∗ = −1 and the candidate solution x̂ = 1 has the largest optimality gap
of µx̂ = 2µ. Suppose we use the SRP with α = 0.10 and n = 50 for the candidate
solution x̂ = 1. When the random sample has ξ̄ = 1

n

∑n
i=1 ξ̃ i < 0, then x∗

n = 1 and
Gn

(
x̂
) = sn

(
x∗
n

) = 0. Hence, for the problem instance with µ = 0.1, the coverage
probability P

(
µx̂ ≤ Gn

(
x̂
)+ tn−1,αsn

(
x∗
n

)
/
√

n
) ≤ 1 − P

(
ξ̄ < 0

) � 0.760 is below
the desired level of 0.90 when a sample size of n = 50 is used. �

This effect can be lessened by using a larger sample size or by performing more than
one replication. The ideas used to show the validity of the single replication procedure
can also be used to justify use of procedures with a small number of replications. In the
next section, we focus on procedures with two replications.

4. Two-replication procedures

In this section we develop two procedures to assess solution quality in stochastic pro-
grams that use two replications. The first one, which we call the independent
2-replication procedure (I2RP), aims to eliminate the correlation between Gn

(
x̂
)

and
sn
(
x∗
n

)
, by performing two independent replications, one to estimate the gap and the

other to estimate sn
(
x∗
n

)
.

I2RP:

Recall the definition of the SRP and replace step 3 by:

3′. Calculate G1
n

(
x̂
)

in the same way as given in (2), and carryout the following sub-steps
to calculate the sample variance:

3′.1. Sample i.i.d. observations ξ̃ n+1, ξ̃ n+2, . . . , ξ̃2n from the distribution of ξ̃ ,

3′.2. Solve (SPn) defined with respect to ξ̃ n+1, ξ̃ n+2, . . . , ξ̃2n to obtain x2∗
n ,

3′.3. Form s2
n

(
x2∗
n

) = 1
n−1

∑n
i=1

[(
f
(
x̂, ξ̃ n+i

) − f
(
x2∗
n , ξ̃ n+i

)) − (
f̄n(x̂)−

f̄n

(
x2∗
n

))]2, where the sample means in this sample variance computation are
also with respect to the second sample.

The confidence interval on the optimality gap is formed exactly as in (5), where
the gap point estimate, G1

n

(
x̂
)
, comes from the first replication and the sample stan-

dard deviation, sn
(
x2∗
n

)
, comes from the second replication. Even though I2RP requires

twice the computational effort compared to a single replication procedure, the correla-
tion between these two estimates becomes zero. Following the ideas in the proof of
Theorem 1, it can easily be shown that this procedure provides an asymptotically valid
confidence interval. We formally state this in the next theorem.

Theorem 2. Assume (A1)-(A3), x̂ ∈ X, and that ξ̃1, ξ̃2, . . . , ξ̃2n are i.i.d. as ξ̃ . Given
0 < α < 1, for the I2RP,

lim inf
n→∞ P

(

µx̂ ≤ G1
n

(
x̂
)+ zαsn

(
x2∗
n

)

√
n

)

≥ 1 − α.
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Proof. The proof of Theorem 1 remains the same when s2
n

(
x∗
n

)
is redefined as in

step 3′. �

A natural extension of the I2RP is to use all the information available from the two
replications. In other words, we have a single sample of size 2n and partition it (ran-
domly) into two sets of size n. In each set we perform the SRP and average the two
estimates. We call this the averaged two-replication procedure (A2RP).

A2RP:

Recall the definition of the MRP and fix ng = 2. Replace steps 1.3, 2 and 3 by:

1.3′. Calculate Gi
n

(
x̂
)

and s2
n

(
xi∗
n

)
.

2′. Calculate the estimates by taking the average,

G′
n

(
x̂
) = 1

2

(
G1

n

(
x̂
)+ G2

n

(
x̂
))

and s2 ′
n = 1

2

(
s2
n

(
x1∗
n

)+ s2
n

(
x2∗
n

))
. (10)

3′. Output one-sided CI on µx̂ ,

[
0, G′

n

(
x̂
)+ t2n−1,αs′

n√
2n

]
.

Unlike the MRP, the sample variance, s2
n

(
xi∗
n

)
, for each sample i = 1, 2, is calcu-

lated as in the single replication procedure (in step 1.3′) and these are averaged to obtain
the variance estimator of the A2RP (in step 2′). This variance estimator given in (10) is a
pooled estimator, similar in spirit to that used in a two-sample t-test for testing the differ-
ence of means from populations with equal variance, e.g., [8, p.396]. It is a consistent esti-
mator, in the sense that σ 2

x̂

(
x∗

min

) ≤ lim infn→∞ s2 ′
n ≤ lim supn→∞ s2 ′

n ≤ σ 2
x̂

(
x∗

max

)
,

w.p.1, by Proposition 1. A2RP provides an asymptotically valid CI on the optimality
gap, as stated in the theorem below.

Theorem 3. Assume (A1)–(A3), x̂ ∈ X, and that ξ̃ i1, ξ̃ i2, . . . , ξ̃ in, i = 1, 2, are i.i.d.
as ξ̃ . Given 0 < α < 1, for the A2RP,

lim inf
n→∞ P

(
µx̂ ≤ G′

n

(
x̂
)+ zαs′

n√
2n

)
≥ 1 − α.

Proof. With an obvious extension of notation to index each sample, we have

f̄ 1
n (x̂) − z1∗

n ≥ f̄ 1
n (x̂) − f̄ 1

n (x∗
min) and f̄ 2

n (x̂) − z2∗
n ≥ f̄ 2

n (x̂) − f̄ 2
n (x∗

min). (11)

Multiplying each of the inequalities in (11) by 1/2 and summing, we obtain

G
′
n

(
x̂
) ≥ 1

2

([
f̄ 1

n

(
x̂
)− f̄ 1

n

(
x∗

min

)]+
[
f̄ 2

n

(
x̂
)− f̄ 2

n

(
x∗

min

)])

= f̄2n

(
x̂
)− f̄2n

(
x∗

min

)
.
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Since f̄2n

(
x̂
) − f̄2n

(
x∗

min

)
is a sample mean of i.i.d. random variables, by the CLT,√

2n
( (

f̄2n

(
x̂
)− f̄2n

(
x∗

min

)) − µx̂

)
converges in distribution to a normal random var-

iable with mean zero and variance σ 2
x̂

(
x∗

min

)
. Also, lim infn→∞

s′
n

σx̂(x
∗
min)

≥ 1, w.p.1,

by Proposition 1. The rest of the proof for the α ≤ 1/2 case is analogous to that of
Theorem 1, and the proof for α > 1/2 is again straightforward. �

Note that the independent two-replication procedure uses
√

n as the scaling factor
whereas the averaged two-replication procedure uses

√
2n. Even though the two proce-

dures use the same number of observations, the A2RP uses all of the information to form
both estimators whereas I2RP uses half of the information for each estimator. However,
I2RP eliminates the correlation between the gap and variance estimators. Now let us
turn back to Example 1 to illustrate the two-replication procedures.

Example 2. Consider the problem instance of Example 1. Let ξ̄1 = 1
n

∑n
i=1 ξ̃ i be the

sample mean of the first sample and likewise, ξ̄2 be the sample mean of the second
sample. With µ = 0.1 and n = 50, the probability of obtaining a CI of width 0 from
I2RP or A2RP is P

(
ξ̄1 < 0

)
P
(
ξ̄2 < 0

) = 0.057, from normal quantiles. Therefore, for
the two-replication procedures that use a sample size of n = 50 for each replication,
the coverage probabilities are bounded above by 0.943, compared to 0.760 for SRP in
Example 1. For SRP that uses a sample size of 2n = 100, the upper bound for the
coverage probability is 0.841. �

5. Comparison of empirical coverage results

Theorems 1, 2 and 3 show that the confidence intervals formed using the three proce-
dures, SRP, I2RP and A2RP are asymptotically valid. In other words, these theorems
establish that the CIs have the desired coverage probability as the sample size grows large
(n → ∞). Example 1 suggests that these results might not hold for SRP for small values
of n. To investigate how the procedures behave for small sample sizes, we apply them to
a newsvendor problem under uniform demand and to three small two-stage stochastic
linear programs from the literature, and we report empirical coverage probabilities.

When using a specific procedure on one of these problems, we perform the following
experiment: We set α = 0.10 and repeat the procedure k times for varying values of
sample sizes,n. For a given value ofn, we form p̂, the fraction of the k repetitions in which
the CI contains the true gap. Quantity p̂ is an estimator of the true coverage probability
p. Ideally, we would like to have p ≥ 1 − α = 0.90. Note that p̂ is a (scaled) binomial
random variable, and for sufficiently large values of k, we can use the CLT to form a 90%
confidence interval on the true coverage probability via p̂ ± 1.645

(
p̂
(
1 − p̂

)
/k
)1/2.

So, the output of one of our procedures is a confidence interval on the optimality gap.
In this section, our experiments yield yet another confidence interval, namely, a CI on
the coverage probability associated with the procedure’s output for various values of n.
We note that this is a standard way to assess coverage results in the simulation literature,
e.g., [21, pp. 508–509].

In order to lessen the effect of variation in the samples, for each sample size n, we
use the same observations from the SRP to form CIs for I2RP and A2RP. In other words,
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we compare SRP with sample size n with two-replication procedures that use the same n

observations and a random partition of these observations into two samples of size n/2.
For MRP, we set the number of replications to ng = 30 and typically take k smaller than
the single or two-replication procedures as the computational requirement is higher. To
understand how the estimator sn

(
x∗
n

)
affects coverage, we form another CI by taking

Gn

(
x̂
)

from SRP and replacing sn
(
x∗
n

)
by σx̂ (x∗) in (5). We denote this procedure as

TRUE. We now turn to the computational results for the test problems.

5.1. Newsvendor problem

The newsvendor problem is a classical example of a stochastic program with simple
recourse and its properties are well known, e.g., [6, p.15]. We briefly review its formu-
lation. Let r be the selling price of a newspaper, 0 < c < r be its cost to the vendor,
and ξ̃ denote the nonnegative random demand. The vendor’s problem is to find the
number of papers to buy, x, so that the expected profit is maximized. The problem is
formulated as max{−cx + rE min{x, ξ̃} : x ≥ 0}, and its solution is given by x∗ that
solves infx≥0 P(ξ̃ ≤ x) ≥ (r −c)/r , which is simply

∫ x∗
0 dF(ξ) = (r −c)/r, when the

demand distribution is continuous with distribution function F . Note that the newsvendor
problem is of the form (SP) with f (x, ξ̃ ) = cx − r min{x, ξ̃} and X = {x : x ≥ 0}.

We assume ξ̃ ∼ U(0, b), b > 0 and hence modify X to {x : 0 ≤ x ≤ b}. Note that
(A1)–(A3) hold. For the problem parameters, we use c = 5, r = 15 and b = 10. This
problem has optimal solution x∗ = 6 2

3 with expected profit z∗ = 33 1
3 . For the candidate

solution x̂, we pick a solution that has expected profit 10% from the optimum. We use
x̂ = 8.775 with Ef (x̂, ξ̃ ) = 30 and with an optimality gap of µx̂ = 3 1

3 . This candi-
date solution has σ 2

x̂
(x∗) = 140.79. For the SRP, I2RP, A2RP and TRUE we construct

k =100,000 confidence intervals and for the MRP, we construct k =10,000 intervals
for each value of the sample size. We take sample sizes, n, from 50 to 1000. Table 1
summarizes the results. For example, when n =1000, for the MRP, the table indicates
p̂ = 0.9267 so that we are confident at level 0.90 that the true coverage probability, i.e.,
the left-hand side of (4), is in [0.9224, 0.9310].

Table 1. Empirical coverage results, p̂ ± 1.645
(
p̂
(
1 − p̂

)
/k
)1/2

, for various values of n, where k = 10, 000
for MRP and 100,000 for SRP, I2RP, A2RP and TRUE. Confidence intervals for TRUE are calculated by using
Gn

(
x̂
)

from SRP and replacing sn
(
x∗

n

)
by σx̂(x∗) in (5)

n MRP SRP I2RP A2RP TRUE

50 0.9873 ± 0.0018 0.8756 ± 0.0017 0.9421 ± 0.0012 0.9273 ± 0.0012 0.9530 ± 0.0011
100 0.9741 ± 0.0026 0.8895 ± 0.0016 0.9299 ± 0.0013 0.9106 ± 0.0013 0.9360 ± 0.0013
200 0.9594 ± 0.0032 0.8898 ± 0.0016 0.9290 ± 0.0013 0.9124 ± 0.0013 0.9249 ± 0.0014
300 0.9483 ± 0.0036 0.8946 ± 0.0016 0.9257 ± 0.0014 0.9106 ± 0.0014 0.9188 ± 0.0014
400 0.9390 ± 0.0039 0.8944 ± 0.0016 0.9180 ± 0.0014 0.9061 ± 0.0014 0.9165 ± 0.0014
500 0.9359 ± 0.0040 0.8937 ± 0.0016 0.9192 ± 0.0014 0.9066 ± 0.0014 0.9140 ± 0.0015
600 0.9350 ± 0.0041 0.8962 ± 0.0016 0.9187 ± 0.0014 0.9079 ± 0.0014 0.9143 ± 0.0015
700 0.9299 ± 0.0042 0.8960 ± 0.0016 0.9153 ± 0.0014 0.9048 ± 0.0014 0.9124 ± 0.0015
800 0.9287 ± 0.0042 0.8959 ± 0.0016 0.9139 ± 0.0015 0.9058 ± 0.0015 0.9123 ± 0.0015
900 0.9317 ± 0.0041 0.8970 ± 0.0016 0.9146 ± 0.0015 0.9061 ± 0.0014 0.9118 ± 0.0015
1000 0.9267 ± 0.0043 0.8970 ± 0.0016 0.9143 ± 0.0015 0.9048 ± 0.0014 0.9105 ± 0.0015
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Fig. 1. Empirical coverage probability
(
p̂
)

versus sample size (n) for the newsvendor problem

Figure 1 shows a plot of p̂ versus n for each of the procedures. The coverage for
the MRP exceeds the desired coverage of 90% but shrinks toward 90% as the sample
size increases. The bias, Ez∗

n − z∗, constitutes a major part of the CI formed by MRP,
and thus this CI tends to overestimate the optimality gap. As indicated in Section 2, the
bias shrinks as n increases and the coverage of MRP falls as n grows. The SRP, on the
other hand, has slightly less than the desired coverage of 90%. Even though the bias is
larger when the sample size is small, the number of times a single replication CI contains
the optimality gap approaches 90% from below. With a more careful examination, we
see a similar effect as illustrated in Example 1. For small sample sizes, Gn

(
x̂
)

is more
variable and we have observed from the individual replications that when it is small,
sn
(
x∗
n

)
also tends to be small, resulting in a narrow CI width. In particular, this happens

when x∗
n is close to x̂, even though x̂ is not close to x∗. The two-replication procedures

lessen this effect by using two samples and two estimates x∗
n/2. For this instance of the

newsvendor problem, their coverage probabilities approach 90% from above.

5.2. Two-stage stochastic linear programs

In this section, we apply our procedures to three two-stage stochastic linear programs
with recourse from the literature. The first one, denoted CEP1, is a capacity expansion
planning problem with random demand. The dimension of the random vector ξ̃ for CEP1
is 3 and it has 216 total realizations. The second test problem, PGP2, is an electric power
generation model, again with 3 stochastic parameters but with 576 realizations. Both
CEP1 and PGP2 are described in [15, pp. 3–10]. The third test problem we use, denoted
APL1P, can be found in [17]. It is a power expansion planning problem where ξ̃ has
5 independent elements and 1280 realizations. Since these test problems have small
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numbers of realizations, it is possible to calculate true optimality gaps and variances.
In particular, Table 2 lists the candidate solutions we use for each problem in the “x̂”
column. For example, the dimension of the candidate solution x̂ for PGP2 is 4, and this
candidate solution is approximately 0.25% (= 100 × µx̂/z

∗) from the optimal. The final
column gives the values of σx̂(x

∗) = var1/2[f (x̂, ξ̃ )−f (x∗, ξ̃ )].
(
The optimum solution

to each of the three problems is unique. We also note that for CEP1 our x corresponds,
in terms of the notation of [15, p.5], to the vector (x1, . . . , x4, z1, . . . , z4).

)

To solve the sampling problems, we used the regularized decomposition (RD) algo-
rithm of [25]. An accelerated implementation of this algorithm is in C++ [26], and we
have modified this code to perform the tests. For each test problem under SRP, I2RP,
A2RP and TRUE, we construct k = 500 confidence intervals for various values of the
sample size n. For MRP, we use ng = 30 and construct k = 100 confidence intervals
for the same values of n. Tables 3, 4 and 5 list results for CEP1, PGP2 and APL1P,
respectively. As PGP2 and APL1P have high variance relative to the optimality gap, the
sampling error term in the CI for TRUE, i.e., zασx̂(x

∗)/
√

n, dominates and often results
in 100% coverage. Similarly, the MRP, while computationally more expensive than the
single and two-replication procedures is largely conservative with respect to its coverage
results.

For CEP1 the optimal solution, x∗, is quite easy to find by a sampling problem. That
is, the probability that x∗

n equals x∗ is quite high even for small sample sizes. Therefore,
CEP1 seems to have fairly good coverage for each of the procedures. In contrast, both
PGP2 and APL1P yield different solutions, x∗

n , to sampling problems for the values of

Table 2. Candidate solutions used in tests

Problem x̂ Ef (x̂, ξ̃ ) µx̂ σx̂ (x∗)
(0, 125, 875, 2500,

CEP1 0, 625, 1375, 3000) 393,288.01 38,129.09 55,690.34
PGP2 (1.5, 5.5, 5, 4.5) 448.46 1.14 82.69
APL1P (1111.11, 2300) 24,807.16 164.84 1,893.03

Table 3. Empirical coverage results for CEP1

n MRP SRP I2RP A2RP TRUE

50 0.860 ± 0.057 0.912 ± 0.021 0.912 ± 0.021 0.920 ± 0.020 0.928 ± 0.019
100 0.940 ± 0.039 0.888 ± 0.023 0.898 ± 0.022 0.890 ± 0.023 0.912 ± 0.021
150 0.910 ± 0.047 0.912 ± 0.021 0.926 ± 0.019 0.906 ± 0.021 0.918 ± 0.020
200 0.920 ± 0.045 0.894 ± 0.023 0.906 ± 0.021 0.894 ± 0.023 0.906 ± 0.021

Table 4. Empirical coverage results for PGP2

n MRP SRP I2RP A2RP TRUE

50 1 ± 0 0.536 ± 0.037 0.708 ± 0.033 0.876 ± 0.024 1 ± 0
100 1 ± 0 0.572 ± 0.036 0.676 ± 0.034 0.766 ± 0.031 1 ± 0
200 1 ± 0 0.472 ± 0.037 0.792 ± 0.030 0.806 ± 0.029 1 ± 0
300 1 ± 0 0.662 ± 0.035 0.810 ± 0.029 0.906 ± 0.021 1 ± 0
400 1 ± 0 0.578 ± 0.036 0.712 ± 0.033 0.730 ± 0.033 1 ± 0
500 1 ± 0 0.504 ± 0.037 0.854 ± 0.026 0.864 ± 0.025 1 ± 0
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Table 5. Empirical coverage results for APL1P

n MRP SRP I2RP A2RP TRUE

50 1 ± 0 0.782 ± 0.030 0.940 ± 0.017 0.932 ± 0.019 1 ± 0
100 1 ± 0 0.786 ± 0.030 0.910 ± 0.021 0.918 ± 0.020 1 ± 0
200 1 ± 0 0.828 ± 0.028 0.908 ± 0.021 0.902 ± 0.022 1 ± 0
300 1 ± 0 0.832 ± 0.028 0.918 ± 0.020 0.880 ± 0.024 1 ± 0
400 1 ± 0 0.850 ± 0.026 0.928 ± 0.019 0.886 ± 0.023 0.992 ± 0.007
500 1 ± 0 0.902 ± 0.022 0.940 ± 0.017 0.908 ± 0.021 0.966 ± 0.013
600 1 ± 0 0.894 ± 0.023 0.944 ± 0.017 0.910 ± 0.021 0.968 ± 0.013
700 1 ± 0 0.910 ± 0.021 0.964 ± 0.014 0.934 ± 0.018 0.966 ± 0.013
800 1 ± 0 0.910 ± 0.021 0.962 ± 0.014 0.934 ± 0.018 0.962 ± 0.014
900 1 ± 0 0.906 ± 0.021 0.965 ± 0.014 0.934 ± 0.018 0.948 ± 0.016
1000 1 ± 0 0.906 ± 0.021 0.956 ± 0.015 0.926 ± 0.019 0.956 ± 0.015

n we consider. In fact, for PGP2 we have observed that the optimal solution x∗ and the
candidate solution given in Table 2 each appear as x∗

n almost 45% of the time when
n = 500. Thus, due to the same effect illustrated in Example 1, the coverage results for
this candidate solution are very low. Two-replication procedures have higher coverage
compared to SRP but are still below the desired level of 90%. For APL1P, we have
observed that the probability of obtaining x∗ as x∗

n is even lower than PGP2. However,
x∗
n takes a variety of different values for APL1P’s sampling problems, compared to pre-

dominantly two distinct values for PGP2. Thus, the resulting coverage results are good
for larger sample sizes for SRP, and the two-replication procedures perform well even
for small sample sizes.

6. Further analysis and preliminary guidelines

As illustrated in Example 1 and the computational results of the previous section, in some
problems the nature of the candidate solution x̂ and the solution(s) x∗

n can lead to inferior
performance of our procedures. The procedures can work poorly when x̂ /∈ X∗ is chosen
to be a candidate solution from an auxiliary sampling problem, and this solution has a
high probability of occurrence as an x∗

n solution to an (SPn) used in our procedures. In
such cases, especially the SRP can report a CI width which is too narrow, over-stating
the quality of the candidate solution. (The cause is actually a bit more subtle, as we
describe below in the context of PGP2.) Two-replication procedures reduce this effect,
but they may not be enough. Let us return to the problem discussed in Examples 1 and 2
and show that for a fixed value of n, however large, the two-replication procedures can
have low coverage.

Example 3. For the problem discussed in Examples 1 and 2, as µ → 0, the upper bound
on the coverage probability, i.e., 1 − P(obtaining a CI of width 0), for SRP approaches
0.50 and the same upper bound for I2RP and A2RP approaches 0.75 for all sample
sizes. Note that for a fixed µ, we obtain (1 − α)-level coverage as n → ∞. However,
for a fixed n we obtain 0.50-level coverage for the SRP and 0.75-level coverage for the
two-replication procedures as µ → 0. �

We say two points x′, x′′ ∈ X coincide if σ 2
x′(x′′) ≡ var[f (x′, ξ̃ ) − f (x′′, ξ̃ )] = 0

and that they nearly coincide if this variance is small. When a candidate solution x̂ nearly
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Table 6. Solutions to 10,000 (SP500) for PGP2. We report coverage of SRP out of 500 repetitions for sample
size of n = 500

xi Frequency Ef (xi , ξ̃ ) µxi
Coverage σxi

(x0) σxi
(x1)

x0 = (1.5, 5.5, 5, 5.5) 44.49% 447.324 0 1 ± 0 0.00 82.69
x1 = (1.5, 5.5, 5, 4.5) 43.90% 448.464 1.140 0.504 ± 0.037 82.69 0.00
x2 = (1.5, 5, 5, 5) 4.44% 448.511 1.186 0.504 ± 0.037 82.83 6.65
x3 = (1.5, 5.5, 5, 5) 3.54% 447.752 0.428 0.946 ± 0.017 41.10 43.95
x4 = (1.5, 5, 5, 6) 1.56% 447.376 0.051 0.970 ± 0.013 6.64 83.64

coincides with a high probability x∗
n /∈ X∗, the gap random variable is nearly degenerate,

and we can have undercoverage. Of course, this occurs if x̂ = x∗
n , but it can also occur

when these two points are distinct as we illustrate next for PGP2.
Table 6 enumerates as x0, x1, . . . , x4, the most frequent x∗

n solutions to 10,000
sampling problems of size n = 500 for PGP2. We also report empirical coverage prob-
abilities when taking each of these as the candidate solution using k = 500 repetitions
of the SRP, again for a sample size of n = 500. The optimal solution, x∗ = x0, and the
candidate solution used in the previous section, x1, each appear roughly 45% of the time.
For each solution, xi , i = 0, . . . , 4, the table also lists σxi

(x) for x = x0 and x = x1.
So, x1 is suboptimal to (SP) but is a frequent solution to (SPn) and hence, has poor
coverage. Point x2 is a relatively infrequent solution to (SPn), but still has poor coverage
because it nearly coincides with x1 (i.e., σx2(x1) is relatively small). Finally, we note
that even though x4 nearly coincides with x0, x4 has good coverage since coinciding
with an optimal solution does not degrade the coverage probability.

One way to try to avoid the difficulties illustrated above is to employ the more conser-
vative multiple replications procedure, MRP. Another option is to average more than two
replications, again at the expense of solving more optimization problems. For instance
A3RP, the three-replication variant of A2RP, will increase the upper bound on the cov-
erage probability from 0.75 to 0.875 as µ → 0 in Example 3. In the next subsection,
we propose another approach in which we solve (SPn) suboptimally when carrying out,
e.g., the SRP or the A2RP.

6.1. ε-Optimal solutions

In this section, we consider an approach based on ε-optimal solutions to help avoid x̂ and
x∗
n coinciding. While x̂ can be generated by any method, typically, x̂ may be obtained by

solving a sample-mean problem with sample size nx̂ ,
(
SPnx̂

)
. Then, we assess its quality

via SRP by solving a separate (SPn). Here, nx̂ and n could be the same or differ (typically
nx̂ ≥ n) and the same holds for the two “epsilons” used when approximately solving(
SPnx̂

)
and (SPn). There are clearly a number of possibilities, but since our focus is on

assessing solution quality, we use ε-optimal solutions when solving (SPn) for the SRP.
We believe solving (SPn) approximately makes sense, particularly in light of the fact
that our procedure’s output is a confidence interval. We similarly use ε-optimal solutions
for the two sampling problems solved in I2RP and A2RP.

For our computational results, as before, we used the RD algorithm of [25, 26].
This is similar to the multicut version of the L-Shaped method [7], except that the mas-
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ter problem has a regularizing proximal term. The quadratic proximal term can result
in considerable computational savings. Because of the regularizing term, the objective
function value of the master problem in RD does not provide a lower bound on the prob-
lem’s optimal value. So, we first run RD with the proximal term and then remove the
proximal term in order to obtain a lower bound on z∗

n. When this procedure terminates,
we have z∗

n
≤ z∗

n ≤ z∗
n. If we solve the problem precisely, z∗

n
= z∗

n = z∗
n. However, in this

section we solve the sampling problem (SPn) with varying degrees of suboptimality, and
use the lower bound, z∗

n
, for constructing the gap and the sampling variance estimates.

We applied this methodology to the two candidate solutions, x1 and x2 of PGP2,
which have poor coverage results, using SRP, I2RP and A2RP. Figures 2 and 3 show
the results of our computations. On the y-axis, we plot the procedures’ empirical cov-
erage probability out of k = 500 repetitions for a sample size of n = 500. On the
x-axis, we plot the level of suboptimality with which we solved the sampling prob-
lems (SPn) to obtain the confidence interval estimators. Suboptimality is measured as(
z∗
n − z∗

n

)
/ min

{∣∣z∗
n

∣
∣ ,
∣
∣z∗

n

∣
∣}. The vertical dashed line is the ratio of the optimality gap of

the candidate solution to the optimal value of PGP2, µx̂/z
∗. This value is 2.5×10−3 for

x̂ = x1. Even though this is measured with respect to z∗ and suboptimality is measured
with respect to z∗

n, we expect to have almost 100% coverage after this point. However,
all of the procedures reach the desired level of coverage earlier than this, with a subop-
timality level of around 1.5 × 10−3. The two-replication procedures reach the desired
coverage of 0.90 at a suboptimality level of 1 × 10−3.

Fig. 2. We plot the empirical coverage probability out of k = 500 repetitions with sample size n = 500 for the
candidate solution x̂ = x1 of PGP2. We solved the sampling problems (SPn) in the estimation of SRP, I2RP
and A2RP with varying levels of suboptimality. The vertical dashed line represents the ratio of the optimality
gap of x1 to the optimal value of PGP2
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2

Fig. 3. This figure is similar to Figure 2 except that x̂ = x2

6.2. Preliminary guidelines

The goal of this paper is to present computationally attractive alternatives to the MRP
for assessing solution quality in stochastic programs. That said, there are at least three
situations in which we recommend the use of MRP instead of SRP or one of the
two-replication procedures. First, if computation is quite cheap, then we recommend
the more conservative MRP. Second, if the desire for conservative coverage results is
paramount we again recommend MRP. Third, if sampling error dominates the point
estimate of the optimality gap then we recommend MRP, because it is computation-
ally cheaper to reduce sampling error by increasing the number of replications in the
MRP rather than increasing the sample size in the SRP or one of the two-replication
procedures. Otherwise, based on our computational experience to date, we recommend
using A2RP with ε-optimal solutions. Relative to the SRP, the two-replication proce-
dures help to avoid x̂ and x∗

n coinciding and hence improve coverage results. The use of
ε-optimal solutions further assist in improving coverage results for two reasons. First,
like the two-replication procedures, the likelihood of coinciding solutions is reduced.
Second, our use of lower bounds z∗

n
in place of z∗

n when solving (SPn) suboptimally has
the effect of inflating the confidence interval width. In our preliminary computations,
small suboptimality levels (e.g., 0.10–0.20%) were enough to reach the desired level of
coverage. Finally, we note that relative to I2RP, the A2RP uses all of the observations
in both the point estimate of the gap and the sampling-error estimate. Empirically, this
advantage appears to come without detrimental effects on coverage.
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7. Conclusions

In this paper, we develop Monte Carlo sampling-based procedures for assessing solution
quality in stochastic programs. Compared to an earlier multiple replications procedure
that requires solution of at least 30 optimization problems, the methods we introduce
require solution of one or two optimization problems. We illustrate through an example
that even though the single replication procedure is computationally significantly less
demanding, and even though its use is theoretically justified for sufficiently large sam-
ples, it can have low coverage probability for small sample sizes for some problems.
Specifically, an illustrative example and computational results substantiate that when
a solution x̂ /∈ X∗ to an auxiliary sampling problem (SPn) is chosen as the candidate
solution, and this solution has a high probability of occurring as the x∗

n used in the SRP,
the coverage probability can be quite low. So, we develop variants of this procedure that
use two replications to lessen this effect. And, with the same motivation we propose use
of ε-optimal solutions when solving the sampling problem (SPn) used in our confidence
interval estimation procedures. Our preliminary computational results seem to indicate
that at quite modest values of suboptimization, this approach works well.
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