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Abstract. Measures of risk appear in two categories: Risk capital measures serve to determine the necessary
amount of risk capital in order to avoid ruin if the outcomes of an economic activity are uncertain and their
negative values may be interpreted as acceptability measures (safety measures). Pure risk measures (risk devi-
ation measures) are natural generalizations of the standard deviation. While pure risk measures are typically
convex, acceptability measures are typically concave. In both cases, the convexity (concavity) implies under
mild conditions the existence of subgradients (supergradients). The present paper investigates the relation
between the subgradient (supergradient) representation and the properties of the corresponding risk mea-
sures. In particular, we show how monotonicity properties are reflected by the subgradient representation.
Once the subgradient (supergradient) representation has been established, it is extremely easy to derive these
monotonicity properties. We give a list of Examples.
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1. Introduction

In recent years, starting from the seminal paper byArtzner et al. [1], axiomatic approaches
to the definition of appropriate measures of risk for random variables and stochastic pro-
cesses have been in the center of interest of many authors ([5, 8, 7, 9, 15, 17]). It is
common sense, that convexity (concavity) plays a key role among the required prop-
erties for risk measures. A convex lower semicontinuous function is characterized by
the fact that it is the dual of its own dual, hence completely characterized by its dual
function. A concave function is characterized by the fact that its negative is convex.

Concavity (convexity) of risk functionals has been recently investigated by
Ruszczyński and Shapiro [19]. They show the continuity and super(sub)-differentia-
bility of risk functionals under mild conditions, i.e. the existence of dual representa-
tions. Moreover they investigate the dual structure of optimization problems involving
super(sub)differentiable risk functionals. For positive homogeneous risk deviation mea-
sures (see below), Rockafellar et al. [18] have shown the existence dual representations
and characterize the subgradient set, calling it the risk envelope.

In this paper, we show how for super(sub)differentiable risk functionals, the dual
representation can be used to derive some properties (in particular monotonicity) of
the risk functional in a very simple manner. Moreover we give many examples of dual
representations of well known risk functionals.
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We begin with basic definitions. They are in the spirit of coherence properties intro-
duced in [1] and further developed in [17].

Acceptability Functionals. A mapping A defined on a set of real valued random
variables on a probability space (�, F, P) is called acceptability functional (safety func-
tional), if it exhibits the following properties:

(A1) Translation equivariance.

A(Y + c) = A(Y ) + c

for constant c.
(A2) Strictness.

A(Y ) ≤ E(Y ),

where the equality sign holds iff Y is a constant.
(A3) Concavity.

A(λY1 + (1 − λ)Y2) ≥ λA(Y1) + (1 − λ)A(Y2),

for 0 ≤ λ ≤ 1.

Besides the basic properties (A1) - (A3), the acceptability functional may also exhibit
the following properties

(A4) Positive homogeneity.

A(λY ) = λA(Y ),

for λ > 0.
(A5) monotonicity w.r.t. first order stochastic dominance.

Y1 is dominated w.r.t. first stochastic order by Y2 (in symbol: Y1 ≺FSD Y2), if
E(U(Y1)) ≤ E(U(Y2)) for all monotonic integrable utility functions U . The accept-
ability measure A is called monotonic w.r.t the first order stochastic dominance, if
Y1 ≺FSD Y2 implies that

A(Y1) ≤ A(Y2).

(A6) monotonicity w.r.t. second order stochastic dominance.
Y1 is dominated w.r.t. second stochastic order by Y2 (in symbol: Y1 ≺SSD Y2), if
E(U(Y1)) ≤ E(U(Y2)) for all monotonic and concave integrable utility functions
U . The acceptability measure A is called monotonic w.r.t the second order stochastic
dominance, if Y1 ≺SSD Y2 implies that

A(Y1) ≤ A(Y2).

Properties (A5) and (A6) link the more classical utility approaches to geometric prop-
erties of the functionals [2], [11]. Notice that (A6) implies (A5).

Remark. Properties (A5) and (A6) depend only on the distribution. The weaker point-
wise versions of (A5) and (A6) read
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(A5’) monotonicity w.r.t. pointwise ordering.
The acceptability measure A is called monotonic w.r.t pointwise ordering, if Y1 ≤ Y2
implies that

A(Y1) ≤ A(Y2).

(A6’) monotonicity w.r.t. reverse supermartingale ordering.
The acceptability measure A is called monotonic w.r.t. reverse supermartingale
ordering, if E(Y1|Y2) ≤ Y2 implies that

A(Y1) ≤ A(Y2).

The name comes from the fact that (Y1, Y2) is a reversed supermartingale (see [14]
p. 115).

Obviously (A5) implies (A5’) and (A6) implies (A6’). A kind of reverse statement is
given in Proposition 1 below.

Artzner et al. [1] introduced the notion of a coherent risk measure. A risk measure ρ

is coherent in their sense, if it is of the form ρ(Y ) = −A(Y ), where A is an acceptability
functional, satisfying in addition (A4) and (A5’).

An acceptability functional A, which is continuous w.r.t. convergence in probability
and satisfies (A4) and (A5’) has a representation

A(Y ) = inf{E(Y Z) : Z ∈ Z} (1)

where Z is a set of probability densities containing the constant density 1, as was shown
by Delbaen [5]. Obviously, the converse holds also true, i.e. every functional of the form
(1) satisfies (A1)–(A4), (A5’).

More generally, any acceptability functional A which is continuous w.r.t. conver-
gence in probability has a representation as the infimum of linear functions

A(Y ) = inf{E(Y Z) + α(Z) : Z ∈ Z}, (2)

where Z is a set of (signed) densities. Such representations were introduced by Föllmer
and Schied [8]. We call a representation of the form (2) a superdifferential representation.
The reason is that if A(Y ∗) = E(Y ∗ Z∗) + α(Z∗), then for all Y

A(Y ) ≤ A(Y ∗) + E[Z∗(Y − Y ∗)],

i.e. Z∗ is a superdifferential of A at Y ∗. It is easy to see that conversely every func-
tional of the form (2) satisfies (A1) and (A3). It satisfies (A2) if the constant 1l ∈ Z and
α(1l) = 0.

In this paper, we will exclusively consider functionals, which depend on the dis-
tribution only, meaning that we will use (A5) and (A6) and not (A5’) and (A6’). A
characterization of such functionals was given by Kusuoka [12].

Pure Risk Functionals. A mapping D from set of real valued random variables
on (�, F, P ) is called pure risk functional or deviation functional, if it exhibits the
following properties
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(D1) Translation invariance.

D(Y + c) = D(Y )

for constant c.
(D2) Strictness.

D(Y ) ≥ 0,

where the equality sign holds iff Y is a constant.
(D3) Convexity.

D(λY1 + (1 − λ)Y2) ≤ λD(Y1) + (1 − λ)D(Y2),

for 0 ≤ λ ≤ 1.

Besides the basic properties (D1) - (D3), a pure risk functional may also exhibit the
following properties

(D4) Positive homogeneity.

D(λY ) = λD(Y ),

for λ ≥ 0.
(D5) monotonicity w.r.t. convex dominance.

Y1 is dominated w.r.t. convex dominance (in symbol: Y1 ≺CXD Y2), if E(U(Y1)) ≤
E(U(Y2)) for all convex utility functions U . The pure risk measure D is called
monotonic w.r.t. convex dominance, if Y1 ≺CXD Y2 implies that

D(Y1) ≤ D(Y2).

Pure risk functionals serve as the generalization of the variance in risk-return settings
[4]. The notion of deviation functionals was introduced by Rockafellar and Uryasev [17].
It is obvious that D is a deviation functional, if and only if E(Y )−D(Y ) is an acceptabil-
ity functional. To each acceptability functional A we may associate the pertaining pure
risk functional D by D(Y ) := E(Y )−A(Y ) and conversely, to each pure risk functional
D we may associate the pertaining acceptability functional by A(Y ) = E(Y ) − D(Y ).
A fulfills (Ai) iff the pertaining D fulfills (Di), where i = 1, 2, 3, 4.

A representation of D of the form

D(Y ) = sup{E(Y Z) − β(Z) : Z ∈ Z} (3)

is called a subdifferential representation of D. Subdifferential representations of D and
superdifferential representations of the pertaining A are just the reverse sides of the
same coin: Suppose that D has the representation (3). Then A(Y ) = EY − D(Y ) has
the representation

A(Y ) = inf{E(Y Z) + β(1 − Z) : 1 − Z ∈ Z} (4)

as can be easily seen.
The paper is organized as follows: In the next section we formulate the main result

and its proof. In section 3, we have collected a list of Examples, for which the dual
representations are calculated explicitly. The Appendix contain auxiliary results.



Subdifferential representations of risk measures 343

2. The main result

Our main result relates the properties of the acceptability and pure risk functionals to
the properties of the subdifferential representation. Our approach is similar to the one
used in Ruszczynski and Shapiro [19] however, we do not require a priori that −α is the
conjugate dual of A. Also our dual objects Z lie in function spaces and not in spaces of
measures.

The Main theorem. Suppose that A has the representation (2). Suppose further that
the probability space is not atomic. Then

(i) A depends only on the distribution, if the set Z is determined by distribution only,
i.e. if Z and Z̃ have the same distribution and Z ∈ Z then also Z̃ ∈ Z and
α(Z) = α(Z̃).

(ii) A is positively homogeneous if α = 0.
(iii) A is monotonic w.r.t. first order stochastic dominance, if Z contains only nonneg-

ative random variables.
(iv) A is monotonic w.r.t. second order stochastic dominance, if Z contains only non-

negative densities, is stable w.r.t. conditional expectations (i.e. Z ∈ Z implies that
E(Z|F) ∈ Z) and α is monotonic w.r.t. conditional expectations (i.e. α(E(Z|F)) ≤
α(Z) ) for all Z and any σ -algebra F .

Suppose that D has the representation (3). Then

(v) D is positively homogeneous if β = 0.
(vi) D is monotonic w.r.t. convex dominance, if Z is stable w.r.t. conditional expectations

and β is monotonic w.r.t. conditional expectation.

To prove the main result, we evoke first the following characterization of first resp.
second order stochastic dominance in terms of coupling constructions.

Proposition 1. (i) The FSD-coupling: If Y1 ≺FSD Y2, then one may construct a pair
Ỹ1, Ỹ2 of random variables with the same marginal distributions as Y1, Y2, such
that

Ỹ1 ≤ Ỹ2 a.s.

(ii) The CXD-coupling: If Y1 ≺CXD Y2, then one may construct a pair Ỹ1, Ỹ2 of random
variables with the same marginal distributions as Y1, Y2, such that

Ỹ1 = E(Ỹ2|Ỹ1) a.s.

(iii) The SSD-coupling. If Y1 ≺SSD Y2, then one may construct a pair Ỹ1, Ỹ2 of random
variables with the same marginal distributions as Y1, Y2, such that

E(Ỹ1|Ỹ2) ≤ Ỹ2 a.s.

Proof. See Strassen [20]. ��
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Proof of the Main Theorem.

(i) Let Y have the same distribution as Ỹ . We have to show that under the given
assumptions A(Y ) = A(Ỹ ). Let Zn ∈ Z be a sequence satisfying

A(Y ) = lim
n

[E(Y Zn) − α(Zn)].

We show that we may construct for every Zn a Z̃n such that Zn and Z̃n have the
same law and

E(Y Zn) = E(Ỹ Z̃n). (5)

If Fn(z|y) is the conditional distribution of Zn given Y , then construct (possibly
by extending the probability space) a random variable Z̃n, such that Z̃n has the
distribution Fn(z̃|ỹ) given Ỹ = ỹ. Then Zn and Z̃n have the same distribution, (5)
holds and Z̃n ∈ Z . This implies that

A(Ỹ ) = inf{E(Ỹ Z) + α(Z) : Z ∈ Z} ≤ lim
n

[E(Ỹ Z̃n) − α(Z̃n)] = A(Y )

and by symmetricity A(Ỹ ) = A(Y ).
(ii) is obvious.

(iii) Suppose that A(Y ) = inf{E(Y Z) + α(Z) : Z ∈ Z} and A depends only on the
distribution of Y . If Y1 ≺FSD Y2 one may construct by Proposition 1(i) versions
(Ỹ1, Ỹ2) of the random variables (Y1, Y2) that satisfy Ỹ1 ≤ Ỹ2 a.s. Equivalently
we may assume from the beginning that Y1 ≤ Y2 a.s. If Z contains only nonneg-
ative elements, then Y1 ≤ Y2 a.s. implies that E(Y1Z) + α(Z) ≤ E(Y2Z) + α(Z)

for all Z ∈ Z and hence A(Y1) = inf{E[Y1 Z] + α(Z) : Z ∈ Z} ≤ A(Y2) =
inf{E[Y2 Z] + α(Z) : Z ∈ Z}.

(iv) Suppose that A(Y ) = inf{E(Y Z) : Z ∈ Z}. If Y1 ≺SSD Y2 one may assume by
Proposition 7 (ii) that E(Y1|Y2) ≤ Y2. If Z contains only nonnegative elements and
is stable w.r.t. conditional expectations, then E[Y1E(Z|Y2)] = E[E(Y1|Y2)Z] ≤
E[Y2Z]. Thus

A(Y1) = inf{E[Y1Z] + α(Z) : Z ∈ Z}
≤ inf{E[Y1E(Z|Y2)] + α(E(Z|Y2)) : Z ∈ Z}
≤ inf{E[E(Y1|Y2)Z] + α(Z) : Z ∈ Z}
≤ inf{E[Y2Z] + α(Z) : Z ∈ Z} = A(Y2).

(v) Suppose that D(Y ) = sup{E(Y Z) − β(Z) : Z ∈ Z}. If Y1 ≺CXD Y2 one may as-
sume by Proposition 7 (ii) that Y1 = E(Y2|Y1). Since E(Y1Z) = E(E(Y2|Y1)Z) =
E(Y2E(Z|Y1)) and since Z is stable and β is monotonic w.r.t. conditional expec-
tations, we have

D(Y1) = sup{E[Y1Z] − β(Z) : Z ∈ Z} = sup{E[Y2E(Z|Y1)] − β(Z) : Z ∈ Z}
≤ sup{E[Y2E(Z|Y1)] − β(E(Z|Y1)) : Z ∈ Z}
≤ sup{E(Y2Z) − β(Z) : Z ∈ Z} = D(Y2). ��
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The main theorem gives sufficient conditions for monotonicity conditions to hold.
Are they also necessary? To answer this question one has to realize that a functional A
of the form (2) does not determine the set Z and the function α in a unique manner.
Notice first that one may get rid of explicitely handling the set Z by setting α(Z) = ∞
for Z /∈ Z . With this extension, one may w.l.o.g. assume that α is defined on a full topo-
logical linear space of functions. Simply spoken, two functions α1 and α2 generate the
same A, if both functions have the same l.s.c. (lower semicontinouos) convex minorant.

This result is stated as Theorem 1 in [19]. For convenience, we give a short proof
here: Let ᾱ(Z) be the l.s.c. convex minorant of α. The epigraph of ᾱ is the closed convex
hull of the epigraph of α. We claim that

A(Y ) = inf{E(Y Z) + α(Z) : Z ∈ Y∗} = inf{E(Y Z) + ᾱ(Z) : Z ∈ Y∗}. (6)

In order to prove (6), let Ā(Y ) = inf{E(Y Z)+ᾱ(Z) : Z ∈ Y∗}. Trivially Ā(Y ) ≤ A(Y ).
For the opposite inequality consider the space Y∗ × R with dual Y × R and inner prod-
uct 〈(Z, a), (Y, b)〉 = E(Y Z) + a · b. Let S = {(Z, a) : a ≥ α(Z)} and let S̄ its
closed convex hull, i.e. S̄ = {(Z, a) : a ≥ ᾱ(Z)}. Notice that 〈(Z, 1), (Y, a)〉 ≥ A(Y )

for all (Z, a) ∈ S. Then the same inequality is true for the convex hull of S, i.e.
E(Y Z) + ᾱ(Z) ≥ A(Y ) for all Z ∈ Y∗. This implies that Ā(Y ) ≥ A(Y ).

The next proposition gives a necessary conditions under the assumption that α is
convex l.s.c.

Proposition 2. Assume that A(Y ) = inf{E(Y Z) + α(Z)}, where α is a proper convex
function on Y∗ and A < ∞ is upper semicontinuous . Then

(i) If A(Y ) is pointwise monotone, then for Z ∈ Y∗ with P {Z < 0} > 0, α(Z) = ∞.
(ii) If A is antitonic w.r.t. conditional expectation, i.e. A(E(Y |F)) ≥ A(Y ), then α is

monotonic w.r.t. conditional expectation, i.e. α(E(Z|F)) ≤ α(Z) for all Z ∈ Y∗.

Proof. By the Fenchel-Moreau theorem (see [3], p. 78), modified for concave functions
in obvious manner, we have that for

A∗(Z) = inf{E(Z V ) − A(V ) : V ∈ Y} (7)

A∗(Z) = −α(Z) and that the solution set of (7) is nonempty for all Z.

(i) Suppose that A(Y ) is pointwise monotone. If there is a Z with P {Z < 0} > 0 and
α(Z) < ∞, then by assumption there is a V ∈ Y such that A∗(Z) = E(V Z) −
A(V ). Thus for all Y ∈ Y, E(V Z) − A(V ) ≤ E(Y Z) − A(Y ). Let now Y =
V +1l{Z<0}. Then Y ≥ V , but A(Y )−A(V ) ≤ EE((Y −V )Z) = −P {Z < 0} < 0,
a contradiction.

(ii) Assume that A is antitonic w.r.t. conditional expectation, i.e.
A(E(Y |F)) ≥ A(Y ). Then, by our main theorem, A∗ given by (7) is also anti-
tonic w.r.t. conditional expectation, thus it is necessary that α(Z) = −A∗(Z) is
monotonic w.r.t. conditional expectation. ��
Example: Distortion risk mesures. Consider the following functional

A(Y ) = E[Yk(1 − FY (Y ))],
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where k is nonnegative, strictly monotone and continuous function on [0, 1] and FY (u) =
P {Y ≤ u} is the distribution function of Y . Such functionals were introduced by Denne-
berg [6] under the name of “distorted probabilities” and studied in detail by De Giorgi [4]
under the name of “Choquet integrals”. He proves that under the given assumptions on
k, A is concave and monotonic w.r.t.≺SSD . It is easy to see that A has the representation

A(Y ) = inf{E(Y Z) : Z = k(U), where U is uniformly [0,1] distributed}, (8)

i.e. A = inf{E(Y Z) : Z ∈ Z}, where Z = {Z : k−1(Z) is uniformly distributed in
[0, 1]}. (8) follows from a known result by Hoeffding (see Lehmann [13]): If (Y, Z) have
joint distribution H(y, z) with marginals F(y) and G(z), then

Cov(Y, Z) =
∫ ∫

H(y, z) − F(y) · G(z) dy dz.

Since H(y, z) ≥ max(F (y)+G(z)−1, 0), we have that for fixed marginals, Cov(Y, Z)

and hence E(Y Z) is minimized, if H achieves the lower Fréchet bound H(y, z) =
max(F (y) + G(z) − 1, 0), i.e. if Y and Z are antimonotone, i.e. Y = F−1(U), Z =
G−1(1 − U), for a uniform [0,1] U . In our case, G−1 = k and therefore Z = k(1 −
FY (Y )).

Since Z consists only of nonnegative variables, A is monotonic w.r.t. ≺FSD and pos-
itively homogeneous. Z is however not convex. Assume that k(Z∗) has uniform [0,1]
distribution and let Z̄ = {Z : Z ≺CXD Z∗}. Then Z̄ is the closed convex hull of Z .
Since Z̄ is stable w.r.t. conditional expectations, A is monotonic w.r.t. ≺SSD , which is
in accordance with the findings of De Giorgi [4].

3. Examples

In this section, we list some representations of pure risk (deviation) and acceptability
measures and associate monotonicity properties with the representation.

3.1. The variance and similar pure risk measures

For a random variable V on (�, F, P ) let ‖V ‖p = E
1/p[|V |p], if it exists. We consider

pure risk measures of the form D(Y ) = ‖Y −EY‖p
p. Setting p = 2 one gets the variance

Var(Y ) = ‖Y −EY‖2
2 and therefore these functionals are generalizations of the variance.

Proposition 2.

(i)

D(Y ) := ‖Y − EY‖p
p = sup

{
E(Y Z) − p1−q

q
Dq(Z) : EZ = 0

}
(9)

where Dq(Z) = inf{‖Z − a‖q
q : a ∈ R} and 1/p + 1/q = 1. D is convex and

monotonic w.r.t. convex dominance (D5).
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(ii)

A(Y ) := EY −‖Y −EY‖p
p = inf

{
E(Y Z)+ p1−q

q
Dq(Z) : EZ = 1

}
. (10)

A is concave, but has none of the properties (A4)–(A6) in general.

Proof. According to Proposition 7(ii) of the Appendix we have that

‖Y − EY‖p
p = sup

{
E[(Y − EY ) Z] − p1−q

q
‖Z‖q

q

}

where 1/p + 1/q = 1. Since E[(Y − EY ) Z] = E[Y (Z − EZ)] and setting Z̃ =
Z − EZ one gets that EZ̃ = 0 and Z = Z̃ − a, where a = −EZ. Maximizing

E(Y Z̃) − p1−q

q
‖Z̃ − a‖q

q w.r.t. a leads to minimizing ‖Z̃ − a‖q
q in a and this gives the

desired expression (9).
To show (D5) we have, in view of the Main Theorem (vi), to show that for all

σ -algebras F
Dq(E(Z|F)) ≤ Dq(Z) for all Z ∈ Z. (11)

This property holds by the contraction property of the conditional expectation (see [14],
proposition I-1-12, page 11) entailing that‖E(Z|F)−a‖q = ‖E(Z−a|F)‖q ≤ ‖Z−a‖q

for all a. Hence (11) follows.
To prove (10) one has to apply (4). Notice that Dq(Z) = Dq(1 − Z). This leads

immediately to (10). ��
In particular, we get the following expression for the variance

Var(Y ) = sup

{
E(Y Z) − 1

4
Var(Z) : EZ = 0

}
. (12)

3.2. The standard deviation and similar pure risk measures

We consider deviation measures of the form D(Y ) = ‖Y − EY‖p. Setting p = 2 one
gets the standard deviation Std(Y ) = ‖Y − EY‖2 and therefore these functionals are
generalizations of the standard deviation.

Proposition 3.

(i)

D(Y ) := ‖Y − EY‖p = sup
{
E(Y Z) : E(Z) = 0, Dq(Z) ≤ 1

}
(13)

where 1/p+1/q = 1. D is convex, homogeneous (D4) and monotonic w.r.t. convex
dominance (D5).

(ii)

A(Y ) :=E(Y )−‖Y −EY‖p = inf
{
E(Y Z) : E(Z)=1, Dq(Z − 1)≤1

}
(14)

A is concave, positively homogeneous (A4), but is not monotonic in general.
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(iii) The functional EY − 1
2‖Y − EY‖1 is monotonic w.r.t. SSD.

Proof. According to proposition 7(i) of the Appendix we have that

‖Y − EY‖p = sup
{
E[(Y − EY ) Z] : ‖Z‖q ≤ 1

}

where 1/p + 1/q = 1. Setting Z̃ = Z − EZ one gets that EZ̃ = 0 and Z = Z̃ − a,
where a = −EZ. The condition for Z is that there is an a such that ‖Z̃ − a‖q ≤ 1,
which is equivalent to Dq(Z̃) ≤ 1. To go from (13) to (14) one has to use (4).

Obviously A and D are homogeneous. To show that D is monotonic w.r.t. convex
dominance, we have to show that Z = {Z : E(Z) = 1, Dq(Z) ≤ 1} is stable w.r.t.
conditional expectations. This follows however from E(E(Z|F)) = E(Z) and from
(11).

To prove (iii) notice that

‖Y − EY‖1 = sup {E(Y Z) : EZ = 0; ∃a : |a| ≤ 1, |Z − a| ≤ 1 a.s. } .

and therefore

1

2
‖Y − EY‖1 = sup

{
E(Y Z) : EZ = 0; ∃a : |a| ≤ 1

2
, |Z − a| ≤ 1

2
a.s.

}
.

By (4)

EY − 1

2
‖Y − EY‖1 = inf

{
E(Y Z) : EZ = 1; ∃a : |a| ≤ 1

2
, |1 − Z − a| ≤ 1

2
a.s.

}
.

The inequalities |a| ≤ 1
2 and |1−Z−a| ≤ 1

2 imply that 0 ≤ 1/2−a ≤ Z ≤ 3/2−a for
some |a| ≤ 1/2. Thus Z ≥ 0 and since the conditional expectation respects a.s. bounds,
we have shown (iii). ��

3.3. The lower semi-variance and similar pure risk measures

The lower semi-variance is Var−(Y ) = ‖[Y − EY ]−‖2
2, where [V ]− = − min(V , 0).

This case appears as the special case p = 2 of the more general case considered below.

Proposition 4.

(i)

D(Y ) := ‖[Y − EY ]−‖p
p

= sup

{
E(Y Z) − p1−q

q
E[( essup Z − Z)q ] : E(Z) = 0

}
. (15)

(ii)

A(Y ) := EY − ‖[Y − EY ]−‖p
p

= inf

{
E(Y Z) + p1−q

q
E[(Z − essinf Z)q ] : E(Z) = 1

}
. (16)

A is concave, but neither positively homogeneous nor monotonic in general.
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Proof. By Proposition 7(iv) of the Appendix, we have that ‖[Y − EY ]−‖p
p =

sup
{
E[Y (Z − EZ)] − p1−q

q
‖Z‖q : Z ≤ 0

}
. Let Z̃ = Z − EZ. Then Z̃ ≤ EZ and

essup Z̃ ≤ EZ. Thus Z ≤ essup Z̃ − Z̃ and this implies (i).
To get from (i) to (ii) one has to use (4). ��

3.4. The lower semi-standard deviation and similar pure risk measures

The lower semi-standard deviation is Std−(Y ) = ‖[Y − EY ]−‖2. This case appears as
the special case p = 2 of the more general case considered below.

Proposition 5.

(i)

D(Y ) := ‖[Y − EY ]−‖p

= sup
{
E(Y Z) : E(Z) = 0, Z ≤ 1; ‖ essup Z − Z‖q ≤ 1

}
. (17)

(ii)

A(Y ) := EY − ‖[Y − EY ]−‖p

= inf
{
E(Y Z) : Z ≥ 0, E(Z) = 1, ‖Z − essinf Z‖q ≤ 1

}
. (18)

Therefore A is positively homogeneous and monotonic w.r.t. SSD.

Proof. By Proposition 7(iii) of the Appendix, we have that

‖[Y − EY ]−‖p = sup
{
E[Y (Z − EZ)] : Z ≤ 0, E(Z) ≥ −1, ‖Z‖q ≤ 1

}
.

Setting Z̃ = Z − EZ and a = −EZ ≥ 0 one gets

‖[Y − EY ]−‖p = sup
{
E(Y Z̃) : ∃a, 0 ≤ a ≤ 1, ‖a − Z̃‖q ≤ 1; E(Z̃) = 0; Z̃ ≤ a

}
.

(19)

Obviously one may set a = essup Z̃ to get the assertion (17). To prove (ii) notice that
A(Y ) equals

inf
{
E(Y Z) : E(1 − Z) = 0, ‖ essup (1 − Z) − (1 − Z)‖q ≤ 1, 1 − Z ≤ 1

}
= inf

{
E(Y Z) : E(Z) = 1, Z ≥ 0, ‖Z − essinfZ‖q ≤ 1

}
.

The set Z = {Z : E(Z) = 1, Z ≥ 0, ‖Z − essinfZ‖q ≤ 1} consists of nonneg-
ative densities and is stable w.r.t. conditional expectations, since Z ≥ 0 implies that
E(Z|F) ≥ 0 and

‖E(Z|F) − essinf E(Z|F)‖q ≤ ‖E(Z|F) − essinf Z‖q ≤ ‖Z − essinf Z‖q

Here we have again used the contraction property of the conditional expectation as in
the proof of Proposition 2. ��
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Remark. For p = q = 2, there is another representation

D(Y ) = ‖[Y − EY ]−‖2

= sup

{
E[YZ] : E(Z) = 0, Z ≤

√
1 − ‖Z‖2

2, ‖Z‖2 ≤ 1

}
(20)

This representation follows from (19) by using

‖a − Z̃‖2 =
√

‖Z̃‖2
2 − 2E(Z̃) + a2 =

√
‖Z̃‖2

2 + a2 ≤ 1.

Combining this with the condition Z̃ ≤ a one gets the conditions

Z̃ ≤
√

1 − ‖Z̃‖2
2, E(Z̃) = 0, ‖Z̃‖2

2 ≤ 1.

This leads to (20).

3.5. Minimal prediction error risk measures

Suppose that the random variable Y has to be predicted by a point estimate a. The cost
of deviation between the estimate and the true value is given by a convex function h,
satisfying h(0) = 0 and h(u) > 0 for u = 0. Then the minimal prediction error is
D(Y ) = inf{Eh(Y − a) : a ∈ R}, where a is the prediction estimate. D(Y ) may be
viewed as a pure risk estimate, since it exhibits properties (D1) - (D3) as it is shown
below.

Proposition 6. Let

D(Y ) := inf{E[h(Y − a)] : a ∈ R}.

(i) Then D fulfills (D1)–(D3) and has the representation

D(Y ) := sup{E(YZ) − Eh∗(Z); EZ = 0} (21)

where h∗ is the Fenchel dual of h,

h∗(v) = sup{uv − h(u) : u ∈ R}.

(ii)

A(Y ) := EY − D(Y ) = inf
{
E(Y Z) + E[h∗(1 − Z)] : E(Z) = 1

}
.

Proof. Properties (D1) and (D2) are obvious due to the assumption on h. (D3) will
follow, if we show (21). To this end, suppose first that h is piecewise linear, i.e.

h(y) = sup{yxi − h∗(xi) : i = 1, . . . , I }
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where xi are the subgradients and h∗ is the dual function. Let (Ai)1≤i≤I be a partition of
the measure space �. Then using the saddlepoint property of convex-concave functions,
we get

inf
a

E[h(Y − a)] = inf
a

sup
Ai

E

[∑
i

1lAi
(Y − a)xi −

∑
i

1lAi
h∗(xi)

]

= sup
Ai

inf
a

[
E

∑
i

1lAi
Yxi

]
− aE

[∑
i

1lAi
xi

]
− E

[∑
i

1lAi
h∗(xi)

]

(22)

Denote the random variable
∑

i 1lAi
xi by Z. The supremum (22) will be −∞, unless

E
[∑

i 1lAi
xi

] = 0. The conditions on Z are therefore that E(Z) = 0 and that E[h∗(Z)] <

∞. If E(Z) = 0 the value of the supremum (22) is sup{E(YZ) − E(h∗(Z)) : EZ = 0}.
In general, h may be approximated from below by a piecewise linear convex function
and a limiting argument proves the assertion. ��
Example 1. If we take h(u) = u++ 1−α

α
u−, then we get the D(Y ) = E(Y )−AV@R(Y ),

resp. A(Y ) = AV@Rα(Y ), where AV@Rα is the average value-at-risk, given by

AV@Rα(Y ) = max

{
a − 1

α
E([Y − a]−) : a ∈ R

}
.

AV@Rα was introduced under the name of CVaR (conditional value-at-risk) by Rock-
afellar and Uryasev (see [16]).

Since the dual of h is

h∗(v) =
{

0 α−1
α

≤ v ≤ 1
∞ otherwise

the dual representation of AV@R is

AV@Rα(Y ) = min {E(Y Z) : E(Z) = 1, 0 ≤ Z ≤ 1/α} .

One arrives at the well known fact that AV@Rα is positively homogeneous and mono-
tonic w.r.t. SSD.

Example 2. If we take h(u) = u2, then we get D(Y ) = Var(Y ). Since the dual of
h(u) = u2 is

h∗(v) = 1

4
v2,

we arrive at the formula (12).

Example 3. Let us take h(u) = u21lu≤0 + cu1lu>0. This asymmetric pure risk measure
penalizes large negative deviation much higher than large positive deviations. We have
that

h∗(v) =



∞ if v > c

0 if 0 ≤ v ≤ c
v2

4 if v > 0
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Thus the pertaining pure risk measure is

D(Y ) = sup

{
E(YZ) − 1

4
E[(Z−)2] : EZ = 0; Z ≤ c

}
.

4. Conclusions

We have presented sufficient criteria for the dual representation to entail some properties
of the risk functionals. It is conjectured that most criteria are also necessary. While for
all of the concrete risk functionals it is easy to construct examples to show that they lack
of the corresponding property, whenever the sufficient condition is not satisfied, a more
general statement seems difficult since one has to assume that super(sub)gradient set Z
is in a way minimal. Adding some irrelevant functions to the super(sub)gradient set may
not change the risk functional but destroy the structure. Further research is needed to
clarify.

Acknowledgements. The author is indebted to three anonymous referees for various suggestions and improve-
ments. In particular, the representation (20) was found by one of them. Also a stronger assertion of the Main
Theorem was suggested.

Appendix: Some basic facts

Let ‖V ‖p = [E|V |p]1/p and 1/p + 1/q = 1.

Proposition 7.

(i) ‖V ‖p = sup{E(V Z) : ‖Z‖q ≤ 1}
(ii) ‖V ‖p

p = sup
{
E(V Z) − p1−q

q
‖Z‖q

q

}
(iii) ‖[V ]−‖p = sup

{
E(V Z) : Z ≤ 0, −1 ≤ E(Z) ≤ 0, ‖Z‖q

q ≤ 1
}

(iv) ‖[V ]−‖p
p = sup

{
E(V Z) − p1−q

q
‖Z‖q

q : Z ≤ 0
}

Here [V ]− = − min(V , 0).

Proof. Although (i) is well known (see [10]), let us give the argument here. By Hölder’s
inequality E(V Z) ≤ ‖V ‖p · ‖Z‖q and therefore

‖V ‖p ≥ sup{E(V Z) : ‖Z‖q ≤ 1}.
Setting Z = sgn (V )|V |p−1/‖V ‖p−1

p one sees that the inequality is in fact an equality.
To prove (ii) start from the inequality

vw ≤ |v|p
p

+ |w|q
q

and set z = pw to get

vz ≤ |v|p + p

q
p−q |z|q = |v|p + p1−q

q
|z|q .
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Inserting the random variables V and Z and taking the expectations we get E(V Z) ≤
‖V ‖p

p + p1−q

q
‖Z‖q

q . Therefore

‖V ‖p
p ≥ sup

{
E(V Z) − p1−q

q
‖Z‖q

q

}
.

Setting Z = sgn (V )p|V |p/q one sees that the inequality is in fact an equality. To prove
(iii) notice that

‖[V ]−‖p = sup
{
E(V Z) : ‖Z‖q ≤ 1, {Z = 0} ⊂ {V < 0}}

≥ sup
{
E(V Z) : ‖Z‖q ≤ 1, Z ≤ 0; {Z = 0

} ⊂ {V < 0}}
= sup

{
E(V Z) : ‖Z‖q ≤ 1, Z ≤ 0

}

Setting Z = −1l{V <0}|V |p/q‖[V ]−‖−p/q
p one sees that equality holds. Moreover, notice

that

E(−Z) = E(|[V ]−|p−1)‖[V ]−‖−p/q
p ≤ (‖[V ]−‖p

p)p−1‖[V ]−‖−p/q
p = 1

and this shows that the additional condition E(Z) ≥ −1 does not harm. A very similar
argument, using (ii) leads to (iv). ��
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