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Abstract. We propose a quasi-greedy algorithm for approximating the classical uncapacitated 2-level facility
location problem (2-LFLP). Our algorithm, unlike the standard greedy algorithm, selects a sub-optimal candi-
date at each step. It also relates the minimization 2-LFLP problem, in an interesting way, to the maximization
version of the single level facility location problem. Another feature of our algorithm is that it combines the
technique of randomized rounding with that of dual fitting.

This new approach enables us to approximate the metric 2-LFLP in polynomial time with a ratio of 1.77,
a significant improvement on the previously known approximation ratios. Moreover, our approach results in
a local improvement procedure for the 2-LFLP, which is useful in improving the approximation guarantees
for several other multi-level facility location problems. An additional result of our approach is an O(ln(n))-
approximation algorithm for the non-metric 2-LFLP, where n is the number of clients. This is the first non-trivial
approximation for a non-metric multi-level facility location problem.

Key words. Two-level facility location – Approximation algorithm – Linear programming relaxation –
Quasi-greedy approach

1. Introduction

1.1. Problem statement

In the single level uncapacitated facility location problem, we are given a set of clients
and a set of facilities. We want to open a subset of the facilities such that all the clients
are served by the open facilities and the total cost of opening facilities and serving cli-
ents is minimized. In the k-level uncapacitated facility location problem (k-LFLP), the
demands must be routed among facilities in a hierarchical order, i.e., from the highest
level (the factories) down to the lowest (the retailers), before reaching the clients. The
k-LFLP arises naturally in designing logistic systems.

The k-LFLP can be formulated formally as follows. We are given a set of clients
D and k level sets of facilities F1, F2, · · · , Fk . Denote P = F1 × F2 × · · · × Fk and
F = ∪k

t=1Ft . Each client j ∈ D must be served by an open path p = (i1, i2, · · · , ik) ∈
P of k facilities with exactly one facility from each of the k levels, where a path p

is open if and only if every facility on the path is open. There is a facility cost fit

for opening facility it ∈ Ft (1 ≤ t ≤ k). Furthermore, If client j ∈ D is served

J. Zhang: IOMS-Operations Management, Stern School of Business, New York University. 44 W. 4th Street,
Suite 8-66, New York, NY 10012-1126, USA. e-mail: jzhang@stern.nyu.edu.

� An extended abstract of this paper appeared in the Proceedings of the 15th ACM-SIAM Symposium on
Discrete Algorithms (SODA), January 2004.

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL ----------------------------------------File Options:     Compatibility: PDF 1.2     Optimize For Fast Web View: Yes     Embed Thumbnails: Yes     Auto-Rotate Pages: No     Distill From Page: 1     Distill To Page: All Pages     Binding: Left     Resolution: [ 600 600 ] dpi     Paper Size: [ 595 842 ] PointCOMPRESSION ----------------------------------------Color Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 150 dpi     Downsampling For Images Above: 225 dpi     Compression: Yes     Automatic Selection of Compression Type: Yes     JPEG Quality: Medium     Bits Per Pixel: As Original BitGrayscale Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 150 dpi     Downsampling For Images Above: 225 dpi     Compression: Yes     Automatic Selection of Compression Type: Yes     JPEG Quality: Medium     Bits Per Pixel: As Original BitMonochrome Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 600 dpi     Downsampling For Images Above: 900 dpi     Compression: Yes     Compression Type: CCITT     CCITT Group: 4     Anti-Alias To Gray: No     Compress Text and Line Art: YesFONTS ----------------------------------------     Embed All Fonts: Yes     Subset Embedded Fonts: No     When Embedding Fails: Warn and ContinueEmbedding:     Always Embed: [ ]     Never Embed: [ ]COLOR ----------------------------------------Color Management Policies:     Color Conversion Strategy: Convert All Colors to sRGB     Intent: DefaultWorking Spaces:     Grayscale ICC Profile:      RGB ICC Profile: sRGB IEC61966-2.1     CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data:     Preserve Overprint Settings: Yes     Preserve Under Color Removal and Black Generation: Yes     Transfer Functions: Apply     Preserve Halftone Information: YesADVANCED ----------------------------------------Options:     Use Prologue.ps and Epilogue.ps: No     Allow PostScript File To Override Job Options: Yes     Preserve Level 2 copypage Semantics: Yes     Save Portable Job Ticket Inside PDF File: No     Illustrator Overprint Mode: Yes     Convert Gradients To Smooth Shades: No     ASCII Format: NoDocument Structuring Conventions (DSC):     Process DSC Comments: NoOTHERS ----------------------------------------     Distiller Core Version: 5000     Use ZIP Compression: Yes     Deactivate Optimization: No     Image Memory: 524288 Byte     Anti-Alias Color Images: No     Anti-Alias Grayscale Images: No     Convert Images (< 257 Colors) To Indexed Color Space: Yes     sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments false     /DoThumbnails true     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize true     /ParseDSCCommentsForDocInfo false     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue false     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.2     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends false     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo false     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /sRGB     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 150     /EndPage -1     /AutoPositionEPSFiles false     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 600     /AutoFilterGrayImages true     /AlwaysEmbed [ ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 150     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 576.0 792.0 ]     /HWResolution [ 600 600 ]>> setpagedevice



160 J. Zhang

by an open path p = (i1, i2, · · · , ik) ∈ P a connection cost cjp is incurred where
cjp = cji1 +∑k

t=2 cit−1it and cji is the connection cost between j and i for j, i ∈ D∪F .
Here, we wish to open a subset of facilities such that each client is assigned to an open
path and the total cost is minimized, i.e., to choose ∅ �= St ⊂ Ft , t = 1, 2, · · · , k, such
that

∑

j∈D

min
p∈S1×S2×···×Sk

cjp +
k∑

t=1

∑

it∈St

fit

is minimized. We also assume that the connection costs are nonnegative, symmetric,
and satisfy the triangle inequality, i.e., for each i, j, l ∈ D ∪ F, cij ≥ 0, cij = cji and
cij ≤ cil + clj .

In this paper we are concerned with the 2-LFLP, the most studied special case of
k-LFLP in the literature of Operations Research for k ≥ 2 [1, 8, 20, 21, 24, 33–35, 38].
The study on the 2-LFLP is motivated by the fact that in many applications, especially
in supply chains, there are hierarchical two-level structures. The problem also has appli-
cations in telecommunications and computer network designs [8]. On the other hand,
although it is the simplest model among all the k-LFLP for k ≥ 2, the 2-LFLP has some
fundamental structural differences from the 1-LFLP. For example, the 2-LFLP does not
possess the so-called supermodularity, a well-known property for the 1-LFLP [25]. This
property is often helpful in designing branch-and-cut algorithms and in analyzing some
approximation algorithms. Thus, the 2-LFLP needs new techniques.

1.2. Previous results

The 2-LFLP generalizes the popular single level uncapacitated facility location problem
(1-LFLP), which is already NP-hard [15]. Since the work of Shmoys, Tardos and Aardal
[37], designing approximation algorithms for the 1-LFLP and its related problems has
received considerable attention during the past few years [36]. We call an algorithm of
a minimization problem a ρ(≥ 1)-approximation algorithm if for any instance of the
problem the algorithm runs in polynomial time and outputs a solution that has a cost
at most ρ times the minimal cost, where ρ is called the performance guarantee or the
approximation ratio of the algorithm. Guha and Khuller [22] proved that the existence
of a polynomial time 1.463-approximation algorithm for the 1-LFLP would imply that
P = NP . And the best currently known approximation ratio for the 1-LFLP is 1.52 due
to Mahdian, Ye and Zhang [30]. Therefore, the approximability of the 1-LFLP is well
understood.

However, the 2-LFLP remains intriguing. One can easily see that the lower bound
1.463 of the 1-LFLP also applies to the 2-LFLP, and no better lower bound is known. In
[37], the algorithm for the 1-LFLP has been extended to the 2-LFLP with an approxima-
tion ratio 3.16. Later on, Aardal, Chudak and Shmoys [2] showed that the k-LFLP can
be approximated in polynomial time by a factor of 3 for any k ≥ 2 using a linear pro-
gramming relaxation. However, their algorithm does not possess a better performance
guarantee for k = 2, neither do a series of recently proposed faster combinatorial algo-
rithms due to Meyerson, Munagala, and Plotkin [32], Guha, Meyerson, and Munagala
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[27], Bumb and Kern [7], and Ageev [3]. In fact, the algorithms of [2, 7, 3] will produce
solutions whose open paths are disjoint, and Edwards [17] showed that such algorithms
can not have worst case ratios that are better than 3 even for k = 2. Very recently, Ageev,
Ye, and Zhang [5] proposed two different combinatorial algorithms and showed that
‘the better of the two’ has a performance guarantee 2.43, although each of them has a
performance guarantee at least 3.

1.3. Our results and techniques

The main result of this paper is that the 2-LFLP can be approximated in polynomial
time by a factor of 1.77, a significant improvement over the previous performance guar-
antees, since no one can do better than 1.463 unless P = NP . The improved ratio is
achieved by using what we call a quasi-greedy approach. Our algorithm is analyzed by
using the technique of a factor-revealing LP developed by Jain, Mahdian, and Saberi
[28]. One advantage of our algorithm is that it can be easily generalized to solve the
so-called two level concentrator location problem (see [10] and the references therein)
with the same ratio 1.77. The quasi-greedy approach also results in a local improvement
procedure for the 2-LFLP, which does not improve the ratio 1.77 for the 2-LFLP but
is useful in improving the performance guarantees for other multi-level facility loca-
tion problems. In particular, we show that 3- and the 4-LFLP can be approximated by
factors of 2.51 and 2.81, respectively, obtaining the current best approximation ratios
for these two problems. We also obtain an improved 3-approximation algorithm for the
2-LFLP with soft capacities. An additional result of our approach is an O(ln(|D|))-
approximation algorithm for the non-metric 2-LFLP where the connection cost may not
satisfy the triangle inequality. This is the first non-trivial approximation algorithm for
a non-metric multi-level facility location problem. And its approximation ratio matches
the best known approximation ratio for the non-metric 1-LFLP due to Hochbaum [23].
Furthermore, the approximation ratio is the best possible up to a constant, unless P=NP
[19]. We remark that the set covering formulation for the two-level facility location
problem does not yield a direct logarithmic bound, since determining the cheapest set
per newly covered client is a non-trivial problem.

Greedy algorithms have been successful in tackling the 1-LFLP [28, 30]. In a stan-
dard greedy approach, at each step, one computes a greedy function value for each
element of a candidate set and chooses the optimal candidate based on these values.
When applied to the 1-LFLP, the candidate set is the set of (unopen) facilities, and the
greedy function is the ratio of the cost incurred to the number of new clients served,
which can be computed easily.

However, the issue is more complicated when we apply the greedy approach to
the 2-LFLP. In particular, it is difficult to define a candidate set. Some straightforward
choices do not work such as F1 ∪ F2 and F1 × F2. One sophisticated definition works
where a candidate is defined as many facilities with exactly one in F2 and the rest in
F1. Unfortunately, the problem is that there are exponentially many candidates, and we
can not choose the best candidate by comparing their greedy function values with each
other in polynomial time.

Thus, we make a simple but important observation for the 2-LFLP: choosing the
best candidate among the exponentially many candidates according to an ‘easy’ greedy
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function is equivalent to choosing the best candidate among polynomially many candi-
dates according to an appropriately defined ‘hard’ greedy function. In the latter, given
a candidate, it is NP-hard to compute the exact value for the ‘hard’ greedy function.
But the good news is that we may compute the greedy function value approximately
in polynomial time. Therefore, we could choose the ‘best’ candidate according to the
approximated greedy function value. We call this approach quasi-greedy since it may
not choose the ‘greediest’ candidate.

It turns out that computing the ‘hard’ greedy function value for solving the 2-LFLP
is equivalent to the so-called maximization version of the 1-LFLP (Max-1-LFLP in
short). Recall that in the minimization 1-LFLP, assigning a client to an open facility will
incur a connection cost. In the Max-1-LFLP, a revenue will be generated by assigning
a client to an open facility, and the objective is to maximize the net profit (the total
revenue minus the total facility cost). The Max-1-LFLP and the minimization 1-LFLP
are equivalent from the perspective of optimization, but not from that of approximation.
Approximation algorithms for the Max-1-LFLP have a longer history than those for the
1-LFLP[14, 4]. However, the results of [14, 4] do not help in establishing our result for
the 2-LFLP. We shall give a new approximation algorithm for the Max-1-LFLP such
that the approximation result can be used in proving our bound for the 2-LFLP. To the
best of our knowledge, this is the first time that approximations for the maximization
and the minimization versions of a facility location problem have been related.

We remark that the quasi-greedy approach has been used in designing approximation
algorithms in other settings; see, for example, Chekuri et al. [13] and Charikar et al. [11].
However, our approach is new in that it reduces the size of the set of candidates from
exponentially many to polynomially many in such a way that the greedy function for the
latter can be well approximated.

Our algorithm and analysis combine the technique of randomized rounding with
that of dual fitting. Both techniques have been used for solving various facility location
problems, but never combined before. In our algorithm, each greedy step is solved by
randomly rounding the solution of its linear programming relaxation. Dual fitting (and
the factor-revealing LP) is used for proving the overall performance guarantee.

1.4. Organization of the paper

The rest of the paper is organized as follows. In Section 2, we present a linear program-
ming based approximation algorithm for the Max-1-LFLP. The quasi-greedy algorithm
for the 2-LFLP and its analysis is given in Section 3. In Section 4, a local improvement
procedure based on the quasi-greedy approach for the 2-LFLP is proposed. In section
5, we present improved approximation algorithms for the non-metric 2-LFLP, the two
level concentrator location problem, and other multi-level facility location problems.
Final remarks are given in Section 6.

2. An algorithm for the Max-1-LFLP

In this section, we consider the maximization version of the (single level) facility location
problem (Max-1-LFLP). In the Max-1-LFLP, we are given the set of client D, the set of
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facilities F . The facility cost for opening facility i is fi and the revenue generated by
assigning client j to facility i is dij ≥ 0. Here dij might not satisfy the triangle inequal-
ity. The objective is to open a subset of the facilities of F and then assign each of the
clients in D to an open facility such that the net profit is maximized. The Max-1-LFLP
can be formulated as the following integer program.

Max
∑

i∈F ,j∈D
dij xij −

∑

i∈F
fiyi (1)

s.t.
∑

i∈F
xij ≤ 1 for all j ∈ D

xij ≤ yi for all i ∈ F, j ∈ D
xij , yi ∈ {0, 1} for all i ∈ F, j ∈ D

where yi = 1 if we decide to open facility i, otherwise yi = 0; xij = 1 if client j is
assigned to facility i, otherwise xij = 0.

Consider any feasible solution, whose total profit is assumed to be C∗−F ∗, where C∗
and F ∗ correspond to the total revenue and the total facility cost, respectively. Our goal is
to find an algorithm that produces a solution with profit C −F ≥ (

1 − 1
e

)
C∗ −F ∗. The

algorithm is based on the linear programming (LP) relaxation of this problem. However,
the actual LP we will solve is different from the exact LP relaxation of (1).

Algorithm MAX

Step 1. Solve the following LP and obtain an optimal solution (x, y):

Max

(

1 − 1

e

)

·
∑

i∈F ,j∈D
dij xij −

∑

i∈F
fiyi (2)

s.t.
∑

i∈F
xij ≤ 1 for all j ∈ D

xij ≤ yi for all i ∈ F, j ∈ D
0 ≤ xij , yi ≤ 1 for all i ∈ F, j ∈ D

Step 2. For each i ∈ F , open facility i independently with probability yi , and assign each
client j ∈ D to an open facility with maximum revenue. Let the resulting solution be(
x̂, ŷ

)
and the corresponding facility cost and revenue be F and C respectively.

We are ready to present the main result of this section.

Theorem 1. There exists an algorithm that finds a solution with profit C − F such that

C − F ≥
(

1 − 1

e

)

C∗ − F ∗.



164 J. Zhang

Proof. By the definition of
(
x̂, ŷ

)
, ŷi is 1 with probability yi , and 0 with probability

1 − yi . Then E
[
ŷi

] = yi and thus the expected facility cost is

E[F ] = E

[
∑

i∈F
fi ŷi

]

=
∑

i∈F
fiE

[
ŷi

] =
∑

i∈F
fiyi .

It is left to analyze the quantity

E[C] = E




∑

i∈F ,j∈D
dij x̂ij



 .

Consider any j ∈ D, and assume that the facilities are indexed such that d1j ≤ d2j ≤
· · · ≤ d|F |j . For convenience, we define d0j = 0. Now, for i = 1, 2, · · · , |F |, let Xi be
an indicator variable that is 1 if some facility from the set i, i + 1, · · · , |F | is open and
is 0 otherwise. Therefore, the revenue generated by client j can be expressed as

∑

i∈F
dij x̂ij =

|F |∑

i=1

Xi

(
dij − d(i−1)j

)
.

Consequently,

E

[
∑

i∈F
dij x̂ij

]

=
|F |∑

i=1

E[Xi]
(
dij − d(i−1)j

)
. (3)

Now we observe that, by using the inequality 1 − x ≤ e−x ,

Pr[Xi = 0] =
|F |∏

k=i

(1 − yk) ≤
|F |∏

k=i

exp(−yk) ≤ exp



−
|F |∑

k=i

yk



 .

Moreover, since xkj ≤ yk for k = 1, 2, · · · , |F |, we have

exp



−
|F |∑

k=i

yk



 ≤ exp



−
|F |∑

k=i

xkj



 .

It follows that

E[Xi] = Pr[Xi = 1] ≥ 1 − exp



−
|F |∑

k=i

xkj



 ≥
(

1 − 1

e

) |F |∑

k=i

xkj
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where we use the fact that 1 − e−x ≥ (
1 − e−1

)
x holds for 0 ≤ x ≤ 1. Then we get,

|F |∑

i=1

E[Xi]
(
dij − d(i−1)j

) ≥
|F |∑

i=1

(

1 − 1

e

) |F |∑

k=i

xkj

(
dij − d(i−1)j

)

=
(

1 − 1

e

) |F |∑

i=1

dij




|F |∑

k=i

xkj −
|F |∑

k=i+1

xkj





=
(

1 − 1

e

) |F |∑

i=1

dij xij ,

which, together with (3), implies that

E

[
∑

i∈F
dij x̂ij

]

≥
(

1 − 1

e

) |F |∑

i=1

dij xij .

Therefore,

E




∑

i∈F ,j∈D
dij x̂ij



− E

[
∑

i∈F
fi ŷi

]

≥
(

1 − 1

e

) ∑

i∈F ,j∈D
dij xij −

∑

i∈F
fiyi .

Since (x, y) is the optimal solution for the linear program (2), the right hand side of the
above inequality is bounded below by

(
1 − 1

e

)
C∗ − F ∗. (Recall that in the objective

function of (2), the dij ’s are scaled by a factor of (1-1/e).) Therefore,

E[C − F ] ≥
(

1 − 1

e

)

C∗ − F ∗.

By the standard technique using conditional expectation (see [18]), we can derandomize
the algorithm such that

C − F ≥
(

1 − 1

e

)

C∗ − F ∗.

	


3. The quasi-greedy algorithm for the 2-LFLP

For our purpose, it would be useful to have the following definition.

Definition 1. An algorithm is called a (Rf , Rc)-approximation algorithm for the
k-LFLP, if for every instance I of the k-LFLP, and for every solution SOL for I with
facility cost FSOL and connection cost CSOL, the cost of the solution found by the
algorithm is at most Rf FSOL + RcC

SOL.

We cite a lemma from Mahdian et al. [30].
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Lemma 1. [30] For (a, b) = (1.104, 1.78) or (a, b) = (1.118, 1.77),
∑n

i=1 αi ≤
a ·∑n

i=1 mi + b · f , if the following system of inequalities holds

∀ 1 ≤ j < n : αj ≤ αj+1

∀ 1 ≤ l < j < n : rl,j ≥ rl,j+1

∀ 1 ≤ l < j ≤ n : αj ≤ rl,j + mj + ml (4)

∀ 1 ≤ j ≤ n :
j−1∑

l=1

max(rl,j − ml, 0) +
n∑

l=j

max(αj − ml, 0) ≤ f

∀ 1 ≤ l ≤ j ≤ n : αj , mj , f, rl,j ≥ 0.

Furthermore, the 1-LFLP can be approximated by a factor of (a + ln(δ), 1 + (b − 1)/δ)

for any δ ≥ 1.

Below are the details of our quasi-greedy algorithm for the 2-LFLP. The algorithm
is presented in a way similar to that of Jain et al. [28].

Algorithm QG

1. We introduce a notion of time. The algorithm starts at time 0. At this time, all clients
are unconnected and all facilities are unopen. Let U be the set of unconnected clients.
Thus at this time U = D. And αj = 0 for each j ∈ D.

At each moment, every client j will have some money Bj available to offer to each
unopen facility in F2, where Bj = αj if j is unconnected, and Bj = cjp if j is cur-
rently connected to an open path p. The amount of offers received by a facility i ∈ F2
is computed as follows. Consider any i ∈ F2. For each j ∈ D and k ∈ F1, define
dkj = max{Bj − cjki , 0} where cjki = cjk + cki , and f̂k = 0 if k ∈ F1 is already
open; f̂k = fk otherwise. Then we obtain an instance of the Max-1-LFLP. We solve this
instance by Algorithm MAX and obtain a feasible solution. This profit (which could be
negative) is the amount of offers received by the facility i. Note that each client j can
make an offer to a facility i ∈ F2 through exactly one facility σi(j) ∈ F1 where σi(j) is
the facility to which j is assigned by Algorithm MAX. The contribution made by client
j to facility i is equal to dσi(j)j .

2. While U �= ∅, increase the time and simultaneously increase αj at the same rate for
each j ∈ U , until one of the following events occurs:

(1). For an unopen facility i ∈ F2, the total amount of offers that it has received from
the clients is equal to fi . In this case, we open facility i. And for each client j ∈ D
who has made non-zero contribution to i, we open facility σi(j) ∈ F1 and assign
j to the path (σi(j), i). Furthermore, if j ∈ U , then remove j from U (and stop
increasing αj ).

(2). For a client j ∈ U and open facilities i ∈ F2 and k ∈ F1, we have that αj = cjki ;
then assign j to the path (k, i) and remove j from U (and stop increasing αj ).

Remark 1. For each client j ∈ D, the value αj will increase until j gets connected to
an open path, and αj will not change after that. At each moment, the value Bj is used
to denote the amount of money available to client j to offer. Before j is connected,
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Bj = αj . As soon as j is connected to a path, say p, for the first time, αj will be
fixed, and Bj will be set to cjp (which could be strictly less than αj ). In general, after
j is connected, Bj is the connection cost paid by client j . For example, client j may
get connected later to another open path p′ with cjp′ ≤ cjp to save the connection
cost. Then as long as j is connected to p′, Bj = cjp′ . Therefore, the value Bj will
not stop increasing until j gets connected to an open path (it may start decreasing from
then on).

Remark 2. In order to implement Algorithm QG in polynomial time, we notice that
the total number of possible events is bounded by |D| + |F2|. At any time, we need to
find the minimum value of how much the αj ’s should increase such that the next event
will occur. This can be done in polynomial time (but not strongly polynomial time)
by performing a bisection search. Another way to implement the algorithm is that we
discretize the time and only consider the values of αj ’s that are powers of (1 + ε), i.e.,{
0, 1, (1 + ε), (1 + ε)2, (1 + ε)3, · · · ,

}
for any given constant ε > 0. Therefore, the

algorithm can be implemented in polynomial time for any given constant ε > 0. Our
analysis below is based on this implementation of the algorithm.

Now, we are ready to analyze the algorithm. First, we have

Lemma 2. The total cost of the solution produced by Algorithm QG is
∑

j∈D αj .

We can assume that the open paths of an optimal solution of the 2-LFLP form a
forest [17]. In order to analyze the performance guarantee, we consider any tree of the
forest. The root of this tree must be a facility i ∈ F2. And the leaves of the tree are a
subset of the facilities, say Si ⊂ F1. We also consider the set of clients, denoted by Di ,
who are assigned to the tree rooted at i in the optimal solution. Therefore, the total cost
(of the optimal solution) associated with this tree is

fi +
∑

k∈Si

fk +
∑

j∈Di

min
k∈Si

cjki .

If we could prove that, for each i ∈ F2,

∑

j∈Di

αj ≤ Rf ·


fi +
∑

k∈Si

fk



+ Rc ·
∑

j∈Di

min
k∈Si

cjki ,

then Algorithm QG must be a (Rf , Rc)-approximation algorithm for the 2-LFLP. Thus,
in the rest of this section, we consider a particular i, and the associated Si and Di . We
assume that |Di | = n and let mj = mink∈Si

cjki . Furthermore, without losing generality,
we assume that α1 ≤ α2 ≤ · · · ≤ αn.

For each j : 1 ≤ j ≤ n, consider the situation of the algorithm at time t = αj . For
each l ≤ j − 1, if l is connected to a path p before time t (i.e., l was connected to a
path at time αj/(1 + ε)), then let rl,j = clp; otherwise, let rl,j = αl . In the latter case,
αl = αj .
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Lemma 3. Let f = e
e−1

(
fi +∑

k∈Si
fk

)
; then the system of inequalities (5) holds:

∀ 1 ≤ j < n : αj ≤ αj+1;
∀ 1 ≤ l < j < n : rl,j ≥ rl,j+1;
∀ 1 ≤ l < j ≤ n : αj/(1 + ε) ≤ rl,j + mj + ml; (5)

∀ 1 ≤ j ≤ n :
j−1∑

l=1

max
(
rl,j /(1 + ε) − ml, 0

)

+
n∑

l=j

max
(
αj/(1 + ε) − ml, 0

) ≤ f ;

∀ 1 ≤ l ≤ j ≤ n : αj , mj , f, rl,j ≥ 0.

Proof. First of all, the inequality αj ≤ αj+1 holds by assumption. And for each l : 1 ≤
l < j < n, we have rl,j ≥ rl,j+1 since once a client is connected to a path, it will never
be connected to a path with a higher connection cost.

Consider clients j > l at time t = αj . If l is unconnected at time t/(1 + ε), then by
definition, rl,j = αl and it must be the case αj = αl . Therefore, αj ≤ rl,j + mj + ml .
Now we assume that l is connected to a path p at time t/(1+ε). It follows that rl,j = clp

and p must be open at time t/(1 + ε). Thus t/(1 + ε) ≤ cjp, otherwise j could be con-
nected to p before time t . However, by triangle inequality, cjp ≤ clp + mj + ml . Thus,
we also have αj/(1 + ε) = t/(1 + ε) ≤ rl,j + mj + ml .

It is left to prove that for all j ,

j−1∑

l=1

max
(
rl,j /(1+ε)−ml, 0

)+
n∑

l=j

max
(
αj/(1+ε)−ml, 0

) ≤ e

e−1



fi +
∑

k∈Si

fk



 .

At time t = αj/(1+ε),Algorithm QG will construct an instance of the Max-1-LFLP,
i.e., for each client l ∈ D and facility k ∈ F1, define dkl = max{Bl − clki , 0}. Note that
Bl ≥ rl,j /(1+ε) for l < j and Bl = t for l ≥ j . Then we consider a feasible solution of
the Max-1-LFLP. We open facilities in Si with opening cost at most

∑
k∈Si

fk . For each
l ∈ Di , we assign l to the facility in Si , to which l is connected in the optimal solution
of the 2-LFLP. For other clients not in Di , we assign them to any open facility. The total
profit of this solution is at least

∑

l∈Di

max{Bl − ml, 0} −
∑

k∈Si

fk.

By Theorem 1, Algorithm QG can find a solution for the Max-1-LFLP with total profit
at least

(

1 − 1

e

)∑

l∈Di

max {Bl − ml, 0} −
∑

k∈Si

fk.
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However, at time t = αj/(1+ε), the total amount of offers received by i from the clients
is at least this quantity that can not be greater than fi . Therefore,

(

1 − 1

e

)∑

l∈Di

max {Bl − ml, 0} −
∑

k∈Si

fk ≤ fi.

Rearranging the terms in the above inequality, we get the desired conclusion. 	


Theorem 2. The 2-LFLP can be approximated by a factor of 1.77(1+ε)2 in polynomial
time for any given constant ε > 0.

Proof. By Lemma 1 and Lemma 3, by comparing systems (4) and (5), and by using the
pair (a, b) = (1.118, 1.77), we get

∑

j∈Di

αj

(1 + ε)2 ≤ 1.118 · e

e − 1



fi +
∑

k∈Si

fk



+ 1.77 ·
∑

j∈Di

mi,

which, together with Lemma 2, implies that Algorithm QG is a 1.77(1 + ε)2-
approximation algorithm for the 2-LFLP since 1.118 · e

e−1 ≤ 1.77. 	


4. A local improvement procedure for the 2-LFLP

The main result of this section is that given a (Rf , Rc)-approximation algorithm for the
2-LFLP, we can find an approximation algorithm with performance guarantee(
Rf + e

e−1 ln(δ), 1 + Rc−1
δ

)
for any δ ≥ 1 in polynomial time. We will see its appli-

cation in the analysis of algorithms for the 3-LFLP and the 4-LFLP, among others. A
similar result has been proved for UFLP by Guha and Khuller [22] and we have seen
many applications of it [12, 22, 30, 31, 5].

The key here is again the quasi-greedy approach. In order to prove the above result,
we design a local improvement procedure for the 2-LFLP. Roughly speaking, once we
have a feasible solution for the 2-LFLP, we may add some facilities to the current solution
such that the total cost is reduced.

The local improvement procedure proceeds as follows, which is similar to Algorithm
QG. We are given a solution for the 2-LFLP. Assume the connection cost of each client
j ∈ D is oj . We want to add some facilities (open one facility in F2 and simultaneously
many facilities in F1) to the current solution.At each step, we consider an unopen facility
i ∈ F2. We construct an instance of the Max-1-LFLP: we are given the set of clients D,
the set of facilities F1, the facility cost for opening k ∈ F1 is fk (we can let fk = 0 if
k has been open in the current solution), and the revenue generated by assigning j ∈ D

to k ∈ F1 is djk = max{0, oj − cjki}. Again, we solve the Max-1-LFLP by using Algo-
rithm MAX. Assume that client j is assigned to σi(j) by Algorithm MAX. If the total
profit of the solution for the Max-1-LFLP is greater than fi , then the total cost of the
current solution for the 2-LFLP can be reduced by opening facility i, and for each client
j , if djσi(j) > 0 then open σi(j) and re-connect j to the path (σi(j), i). Such a step is
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called an ‘add operation’. Repeat this procedure until the solution can not be improved
by any ‘add operation’

Consider any feasible solution, say OPT , for the 2-LFLP. Assume its total connec-
tion cost and facility cost are Copt and Fopt . Again, w.l.o.g., we can assume that the
solution OPT forms a forest. Consider one of the trees rooted at i ∈ F2. Let Si and Di

be defined as those in the last section. Now we are ready to prove the following Lemma,
whose counterpart for the 1-LFLP is well-known in this area.

Lemma 4. If no more ‘add operation’ can improve the current solution, then C ≤
Copt + e

e−1Fopt .

Proof. Let OPT (Fi ) be the subset of facilities in Fi that are open in the feasible solution
OPT , for i = 1, 2. In the local improvement procedure, assume that we are considering
a candidate facility i ∈ OPT (F2). Let the connection cost of client j be, oj in the
current solution, and θj in OPT .

As in the proof of Lemma 3, there exists a feasible solution for the Max-1-LFLP
with total profit at least

∑

j∈Di

max{oj − θj , 0} −
∑

k∈Si

fk.

Therefore, Algorithm MAX can find a solution with total profit at least
(

1 − 1

e

) ∑

j∈Di

max
{
oj − θj , 0

}−
∑

k∈Si

fk ≥
(

1 − 1

e

) ∑

j∈Di

(
oj − θj

)−
∑

k∈Si

fk.

However, since no ‘add operation’ can improve the current solution, we must have

fi ≥
(

1 − 1

e

) ∑

j∈Di

(
oj − θj

)−
∑

k∈Si

fk.

Note that for i �= l, Di ∩Dl = ∅, ∪i∈OPT (F2)Di = D and ∪i∈OPT (F2)F
i
1 = OPT (F1).

Then we add the above inequality over i ∈ OPT (F2), which completes the proof. 	

The above lemma leads to the following conclusion immediately:

Lemma 5. If there is an (a, b)-approximation algorithm for the 2-LFLP, then we can get

an approximation algorithm with performance guarantee
(
a + e

e−1 (� − 1), 1 + b−1
�

)

for any � ≥ 1.

Proof. Assume that there is an (a, b)-approximation algorithm for 2-LFLP, then by scal-
ing the facility cost of the original instance by a factor of � ≥ 1, we can find a solution
such that

�F + C ≤ a�FOPT + bCOPT .

Then we apply the local improvement procedure on this solution, until the cost (on the
scaled instance) can not be reduced anymore. Then we must have, by Lemma 4,

C ≤ COPT + e

e − 1
�FOPT .
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Combining these two inequalities, we must have

F + C ≤
(

a + e

e − 1
(� − 1)

)

FOPT +
(

1 + b − 1

�

)

COPT .

	


Theorem 3. For any given ε > 0, if there is an (a, b)-approximation algorithm for the
2-LFLP, then we can get an approximation algorithm with performance guarantee

(

a + e

e − 1
ln(�) + ε, 1 + b − 1

�

)

for any � ≥ 1.

Proof. Assume that we have an (a, b)-approximation algorithm for 2-LFLP. Let δ ≥ 1.

We prove that for any integer p ≥ 1, there exists an approximation algorithm for 2-LFLP

with performance guarantee
(
a + e

e−1p(δ − 1), 1 + b−1
δp

)
.

We prove the claim by induction on p. The case p = 1 is trivial by Lemma 5.

Assume that the claim is correct for p − 1. Then we have an
(
a + e(p−1)(δ−1)

e−1 ,

1 + b−1
δp−1

)
-approximation algorithm for 2-LFLP. We apply Lemma 5 again, then we get

an approximation algorithm with performance guarantee

(

a + e(p − 1)(δ − 1)

e − 1
+ e(δ − 1)

e − 1
, 1 + 1 + b−1

δp−1 − 1

δ

)

,

which is exactly what we need.

Thus we have proved the claim for any integer p. Now for any � ≥ 1, let δ = �
1
p

for some large integer p. We have thus proved that any (a, b)-approximation algorithm

implies an
(
a + e

e−1p
(
�

1
p − 1

)
, 1 + b−1

�

)
-approximation algorithm. Note that

p
(
�

1
p − 1

)
→ ln � when p → ∞.

Thus, for any ε > 0, there exists a constant p such that

p
(
�

1
p − 1

)
≤ ln � + ε.

This completes the proof of the Theorem. 	


5. Variants of the 2-LFLP

In this section, we present improved results on approximating several variants of the
2-LFLP.
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5.1. The non-metric 2-LFLP

We show that Algorithm QG has a performance guarantee of O(ln(|D|)) for the non-
metric 2-LFLP. The analysis is the same as that of the metric 2-LFLP, except that in
Lemma 3, one of the inequalities of (5) does not necessarily hold. In fact, we can prove
that

Lemma 6. Let f = e
e−1

(
fi +∑

k∈Si
fk

)
, then the system of inequalities (6) holds:

∀ 1 ≤ j < k : αj ≤ αj+1

∀ 1 ≤ j ≤ k :
k∑

l=j

max(αj /(1 + ε) − ml, 0) ≤ f (6)

∀ 1 ≤ j ≤ k : αj , mj , f ≥ 0.

This leads to the following theorem.

Theorem 4. The non-metric 2-LFLP can be approximated by a factor of O(ln(|D|)) in
polynomial time.

Proof. The inequality system 6 implies that, for each j : 1 ≤ j ≤ k:

αj ≤ 1

k − j + 1



 e

e − 1



fi +
∑

k∈Si

fk



+
k∑

l=1

ml



 .

It follows that

k∑

j=1

αj ≤ Hk



 e

e − 1



fi +
∑

k∈Si

fk



+
k∑

l=1

ml



 ,

where Hk = ∑k
i=1

1
i

≤ ln(k). This completes the proof of the theorem. 	

To the best of our knowledge, no approximation algorithm for the non-metric 2-LFLP

is known in the literature. Hochbaum [23] has shown that the non-metric 1-LFLP can be
approximated by a factor of ln(|D|), and by a result of Feige [19], it is the best possible
unless P=NP. Therefore, our ratio for the non-metric 2-LFLP is the best possible up to
a constant.

5.2. The two-level concentrator location problem

In the two-level concentrator location problem (2-LCLP), we have the same input as that
of the 2-LFLP. However, each client must be served by a first level open facility only,
and each of the first level open facilities must be served by a second level open facility.
To be precise, we are asked to choose subset ∅ �= Vt ⊆ Ft to open, for t = 1, 2 such
that

∑

j∈D

min
k∈V1

cjk +
∑

k∈S1

min
i∈V2

cki +
2∑

t=1

∑

it∈Vt

fit

is minimized. Here, we assume that the connection cost satisfy the triangle inequality.
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As that for the 2-LFLP, we can assume that the open paths of an optimal solution of
the 2-LCLP form a forest. We consider any tree of the forest with its root i ∈ F2. Again,
we denote the leaves of the tree by Si that is a subset of F1. And Di is the set of clients
that are assigned to the tree rooted at i in the optimal solution. Therefore, the total cost
(of the optimal solution) associated with this tree is

fi +
∑

k∈Si

(fk + cki) +
∑

j∈Di

min
k∈Si

cjk.

If we could prove that, for each i ∈ F2,

∑

j∈Di

αj ≤ Rf ·


fi +
∑

k∈Si

(fk + cki)



+ Rc ·
∑

j∈Di

min
k∈Si

cjk,

then Algorithm QG must be a (Rf , Rc)-approximation algorithm for the 2-LCLP.
We can applyAlgorithm QG to the 2-LCLP as well. The only change we should make

is the construction of the instances of the Max-1-LFLP. In particular, when considering
a facility i ∈ F2, the instance of the Max-1-LFLP is constructed as follows: the set of
clients is D, the set of facilities is F1, the facility cost for opening facility k ∈ F1 is
fk +cki , and the revenue generated by assigning client j to facility k is max{0, Bj −cjk},
where Bj = cjk′ if j is currently connected to a facility k′ ∈ F1, otherwise Bj = αj .
Then following the same analysis as that for 2-LFLP, we can show that the 2-LCLP can
be approximated by a factor of 1.77(1 + ε)2 in polynomial time for any constant ε > 0.
Levin [26] claimed a constant factor approximation algorithm for the k-LCLP when k

is a constant. The approximation ratio of his algorithm is exponential on k. Our result
significantly improves the ratio for k = 2.

5.3. The 3- and the 4-LFLP

In [5], improved algorithms for the k-LFLP have been proposed by reducing it to the
1-LFLP. In fact, in order to get improved ratios for the k-LFLP, one needs to combine
two reduction methods: the parameterized path reduction and the recursive reduction.
For details of the reductions, we invite the author to refer to [5].

Since we have a strong approximation for the 2-LFLP, we can further refine their
reduction. We omit the proofs of Lemma 7 and Lemma 8, since complete proofs would
essentially repeat all the arguments of [5]. For the 3-LFLP, we use exactly the same
reductions as those in [5]. However, when we apply the recursive reduction to the 3-
LFLP, we need to solve an instance of the 2-LFLP. In [5], the instance of the 2-LFLP is
further reduced to two instances of the 1-LFLP. Instead of doing this, we now can solve
the instance of the 2-LFLP directly by using Algorithm QG. This leads to the following
lemma.

Lemma 7. Assume that the 1- and the 2-LFLP can be approximated by factors of
(a, b) and (α, β), respectively, then the 3-LFLP can be approximated by factors of(

max
{
a, a+α

2

}
,

3b+β
2

)
.
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Therefore, we can obtain a better approximation ratio for the 3-LFLP. The previously
best known ratio is 2.85.

Theorem 5. The 3-LFLP can be approximated by a factor of 2.51.

Proof. By Theorem 2 and Theorem 3, and by letting � = 1.262196, we know that the
2-LFLP can be approximated by a factor of (α, β) such that

α = e/(e − 1) (1.118 + ln(1.262196)) , β(�) = 1 + 0.77/1.262196.

By Lemma 1, and by letting δ = 5.991324, we know that the 1-LFLP can be approxi-
mated by a factor of (a, b) = (1.104 + ln(5.991324), 1 + 0.7805/5.991324). It follows
from Lemma 7 that the 3-LFLP can be approximated by a factor of 2.51. 	


For the 4-LFLP, we modify the reductions of [5] in the following way. In the param-
eterized path reduction, for any instance of the 4-LFLP, we reduce it to an instance of
the 2-LFLP. In the recursive path reduction, we reduce any instance of the 4-LFLP to
two instances of the 2-LFLP (in [5], it will be reduced to one instance of the 1-LFLP,
and one instance of the 3-LFLP). We can prove the following lemma.

Lemma 8. Assume that the 2-LFLP can be approximated by a factor of (α, β), then the
4-LFLP can be approximated by factors of (α, 2β).

Theorem 6. The 4-LFLP can be approximated by a factor of 2.81.

Proof. By Theorem 2 and Theorem 3, we know that the 4-LFLP can be approximated
by a factor of (α, β) such that

α(�) = e/(e − 1)(1.118 + ln �), β(�) = 1 + 0.77/�

for some � ≥ 1. By letting � = 1.92, we have α ≤ 2.803 and β ≤ 1.402. Therefore,
by Lemma 8, we get a 2.81-approximation algorithm for the 4-LFLP. 	


We remark that no approximation ratio better than 3 was known for the k-LFLP for
any k ≥ 4.

5.4. The 2-LFLP with soft capacities

This problem is the same as the 2-LFLP except that the facility cost for opening facility
i is a function of the number of clients it serves. In particular, if i serves k clients, then

the facility cost of i is fi

⌈
k
ui

⌉
where fi and ui are given. For each facility i, there is an

upper bound ui on the number of clients it can serve. It has been shown in [5] (Theo-
rem 2, page 154) that the 2-LFLP can be approximated by a factor of (1.104, 3.56). By
Theorem 3 and by letting � = 1.281, we obtain a (1.5, 3)-approximation algorithm for
the 2-LFLP. We follow the approach of [31] and show that any (α, β)-approximation
algorithm for the 2-LFLP implies a (2α, 2β)-approximation algorithm for the 2-LFLP
with soft capacities. Therefore, we can get a 3-approximation algorithm for the 2-LFLP
with soft capacities.
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6. Concluding Remarks

We remark that one may formulate the 2-LFLP as an integer program with exponentially
many variables. Then our algorithm can be viewed as a dual-ascent algorithm that is sim-
ilar to [28]. However, for the 2-LFLP, the dual of the linear programming relaxation has
exponentially many constraints, and it is NP-hard to find an efficient separation ora-
cle. Our algorithm for the Max-1-LFLP gives an approximate separation oracle for the
dual problem. We notice that Jain et al. [29] and Carr et al. [9] have used approxi-
mate separation oracles, combined with ellipsoid method, to solve linear programs with
exponentially many constraints.

Several questions remain open. First of all, although our bound does not depend on
the LP relaxation for the 2-LFLP [37], it would be of interest to know the integrality
gap of the LP relaxation. A related question is on the lower bound for the optimal per-
formance guarantee for the 2-LFLP, i.e., whether we can improve it from 1.463, which
is the known lower bound for the 1-LFLP.

Although in many applications of the multi-level problem, the number of levels is
small, it is certainly of theoretical interest to study the approximability of the k-LFLP
for general k. Can our technique be extended to the k-LFLP for k ≥ 2? This requires a
good approximation for the maximization version of the (k − 1)-LFLP, which has been
studied in [6] and [39]. But their results are not in the form that can be applied within our
framework. Finally, our results, if combined with that of Aardal, Chudak, and Shmoys
[2] strongly suggest that it is possible to develop a polynomial time algorithm for the
k-LFLP whose performance guarantee depends on k, i.e., the performance guarantee is
strictly less than 3 for any k, and converges to 3 when k goes to infinity.
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15. Cornuéjols, G., Nemhauser, G.L., Wolsey, L.A.: The uncapacitated facility location problem. In:
P. Mirchandani and R. Francis, (eds.) Discrete Location Theory, Wiley, New York, 1990, pp. 119–171

16. Chudak, F.A., Shmoys, D.B.: Improved approximation algorithms for the uncapacitated facility location
problem. SIAM Journal on Computing 33, 1–25 (2003)

17. Edwards, N.:Approximation algorithms for the multi-level facility location problem. Ph.D. Thesis, School
of Operations Research and Industrial Engineering, Cornell University, 2001

18. Erdös, P., Selfridge, J.L.: On a combinatorial game. J. Combinatorial Theory, Ser. A 14, 298–301 (1973)
19. Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45, 634–652 (1998)
20. Gao, J.J., Robinson, E.P. Jr.: A dual-based optimization procedure for the two-echelon uncapacitated

facility location problem. Naval Research Logistics 839, 191–212 (1992)
21. Gao, J.J., Robinson, E.P. Jr.: Uncapacitated facility location: General solution procedure and computa-

tional experience. European Journal of Operational Research 76, 410–427 (1994)
22. Guha, S., Khuller, S.: Greedy strikes back: improved facility location algorithms. Journal of Algorithms

31, 228–248 (1999)
23. Hochbaum, D.S.: Heuristics for the fixed cost median problem. Mathematical Programming 22(2), 148–

162 (1982)
24. Kaufman, L., Eede, M.V., Hansen, P.: A plant and warehouse location problem. Operations Research

Quarterly 28, 547–554 (1977)
25. Labbe, M.: The multi-level uncapacitated facility location problem is not submodular. European Journal

of Operational Research 72, 607–609 (1996)
26. Levin, A.: Personal Communication, 2003
27. Guha, S., Meyerson, A., Munagala, K.: Hierarchical placement and network design problems. In: Pro-

ceedings of the 41st IEEE Symposium on Foundations of Computer Science (FOCS), 2000, pp. 603–612
28. Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location problems. In: Proceedings

of the 34th ACM Symposium on Theory of Computing (STOC), 2002, pp. 731–740
29. Jain, K., Mahdian, M., Salavatipour, M.R.: Packing Steiner trees. In: Proceedings of the 14th ACM-SIAM

Symposium on Discrete Algorithms (SODA), 2003, pp. 266–274
30. Mahdian, M.,Ye,Y., Zhang, J.: Improved approximation algorithms for metric facility location problems.

In: 5th International Workshop on Approximation Algorithms for Combinatorial Optimization (APPROX
2002), Lecture Notes in Computer Science, 2462, 2002, pp. 229–242

31. Mahdian, M., Ye, Y., Zhang, J.: A 2-approximation algorithm for the soft-capacitated facility location
problem. In: 6th International Workshop on Approximation Algorithms for Combinatorial Optimization
(APPROX 2003), Lecture Notes in Computer Science, 2764, 2003, pp. 129–140

32. Meyerson, A., Munagala, K., Plotkin, S.: Cost-distance: two-metric network design. In: Proceedings of
the 41st IEEE Symposium on Foundations of Computer Science (FOCS), 2000, pp. 624–630

33. Ro, H., Tcha, D.: A branch-and-bound algorithm for the two-level uncapacitated facility location problem
with some side constraints. European Journal of Operational Research 18, 349–358 (1984)

34. Robinson, E.P. Jr., Gao, L.: A new formulation and linear programming based optimization procedure for
the two-echelon uncapacitated facility location problem. Annals of the Society of Logistics Engineers 2,
39–59

35. Robinson, E.P. Jr., Gao, L., Muggenborg, S.D.: Designing an integrated distribution system at DowBrands
Inc. Interfaces 23, 107–117 (1993)

36. Shmoys, D.B.: Approximation algorithms for facility location problems. In: 3rd International Workshop
on Approximation Algorithms for Combinatorial Optimization (APPROX), LNCS 1913, 2000, pp. 27–33

37. Shmoys, D.B., Tardos, E., Aardal, K.I.: Approximation algorithms for facility location problems. In: Pro-
ceedings of the 29th Annual ACM Symposium on Theory of Computing 29th STOC, 1997, pp. 265–274

38. Tcha, D., Lee, B.: A branch-and-bound algorithm for the multi-level uncapacitated facility location prob-
lem. European Journal of Operational Research 18, 35–43 (1984)

39. Zhang, J., Ye, Y.: A Note on the Maximization Version of the Multi-level Facility Location Problem.
Operations Research Letters 30(5), 333–335 (2002)


