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Abstract We consider a difficult class of optimization problems that we call a
mathematical program with vanishing constraints. Problems of this kind arise
in various applications including optimal topology design problems of mechan-
ical structures. We show that some standard constraint qualifications like LICQ
and MFCQ usually do not hold at a local minimum of our program, whereas
the Abadie constraint qualification is sometimes satisfied. We also introduce a
suitable modification of the standard Abadie constraint qualification as well as
a corresponding optimality condition, and show that this modified constraint
qualification holds under fairly mild assumptions. We also discuss the relation
between our class of optimization problems with vanishing constraints and a
mathematical program with equilibrium constraints.
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1 Introduction

The paper deals with optimization problems of the form

min f (x)

s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,
hi(x) = 0 ∀i = 1, . . . , p,
Hi(x) ≥ 0 ∀i = 1, . . . , l,
Gi(x)Hi(x) ≤ 0 ∀i = 1, . . . , l,

(1)

where all functions f , gi, hi, Gi, Hi : R
n → R are assumed to be continuously

differentiable. We call (1) a mathematical program with vanishing constraints,
MPVC for short. This terminology comes from the fact that, for certain appli-
cations (see Sect. 2), some of the constraints vanish, i.e., may not be considered
at certain points of the feasible region. For example, consider the following
prototype of an optimization problem with vanishing constraints:

min f (x)

s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,
hi(x) = 0 ∀i = 1, . . . , p,
Gi(x) ≤ 0 if x ∈ Hi ∀i = 1, . . . , l.

(2)

Here we assume that the sets Hi ⊂ R
n are non-empty and, say, open for all

i = 1, . . . , l. In this formulation, the constraint “Gi(x) ≤ 0” vanishes from the
problem at points x /∈ Hi. In other words, we do not care about the sign of Gi(x)

at points x /∈ Hi. Vanishing constraints of this kind are typical, e.g., in design
problems or structural optimization, see Sect. 2 for more details.

Note that (2) is an optimization problem with some nonstandard constraints.
In order to reformulate (2) in a suitable way, we assume that there exist contin-
uously differentiable functions Hi : R

n → R characterizing the sets Hi through
the identities

Hi = { x ∈ R
n | Hi(x) > 0 } for all i = 1, . . . , l. (3)

Note that the strict inequality in “Hi(x) > 0” corresponds to the fact that Hi is
an open set. The latter, indeed, causes some troubles in view of the existence
of solutions to problem (2). But this is the situation in interesting applications
(cf., e.g., Example 1).

Moreover, without loss of generality, we may assume that Hi(x) ≥ 0 for all
x which are feasible for (2). Otherwise, we may formally replace Hi by H2

i ,
although this is not recommended in practice. Fortunately, in most applications,
such a transformation is not necessary since the constraints “Hi(x) ≥ 0” are
typically part of the problem (2) (within the group of constraints “gi(x) ≤ 0”).
In any case, problem (1) is therefore a natural reformulation of (2). To this
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end, note that the sign of Gi(x) in (1) is not relevant at those points x where
Hi(x) = 0. This implicitly models the effect of vanishing constraints as in
formulation (2). This explains the reason for our choice of a general problem
in the form (1).

The advantage of formulation (1) (in contrast to (2)) is that (1) is an optimiza-
tion problem with standard equality and inequality constraints only. Hence we
may try to apply standard constraint qualifications in order to get suitable opti-
mality conditions for our MPVC (1). However, it turns out that these standard
constraint qualifications are usually not satisfied for our problem (1), and we
therefore have to find more specialized constraint qualifications and/or suitable
optimality conditions for problem (1).

The MPVC is closely related to the class of mathematical programs with
equilibrium (or complementarity) constraints, MPECs for short, see [11,13] for
more details. In fact, it is possible to reformulate any MPVC as an MPEC. This
reformulation is presented in Sect. 2. However, the MPEC-reformulation has
some undesirable features. Moreover, our results in Sect. 3 also show that an
MPVC, despite the fact that it is a difficult constrained optimization problem,
is somewhat simpler than an MPEC. Hence it is worth studying the properties
of MPVCs directly.

Another possibility would be to study MPVCs by viewing it as a special
instance of a mathematical program whose constraints have a combinato-
rial structure. This general (and usually nonconvex) class was investigated by
Scholtes [16], who presents optimality conditions and an SQP-type method
for solving this class of problems. However, he uses a relatively strong linear
independence-type assumption throughout his work, whereas here, we exploit
the special structure of an MPVC and give a number of weaker conditions
which still guarantee that certain KKT-type optimality conditions for problem
(1) are satisfied. Nevertheless, we give a brief discussion of the approach from
[16] at the end of Sect. 5.

The paper is organized in the following way: Section 2 first describes an
application from structural optimization which, in a very natural way, leads to
an MPVC, and then we clarify the relation between an MPVC on the one hand,
and an MPEC on the other hand. In Sect. 3, we then show that several standard
constraint qualifications are usually violated for problem (1). Section 4 gives a
more detailed discussion of the standard Abadie constraint qualification since
this condition has a chance of being satisfied. A modification of the Abadie con-
straint qualification, which takes into account the special structure of MPVCs,
as well as a corresponding optimality condition are the subject of Sect. 5. We
close this manuscript with some final remarks in Sect. 6.

2 Example and MPEC-Reformulation

The aim of this section is twofold: On the one hand, we want to motivate
why MPVCs are an important class of optimization problems. To this end,
we give some details of an example from topology optimization which has
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vanishing (or switch-off) constraints. Later, this example is also used in order
to understand which assumptions (to be considered in subsequent sections) are
reasonable and which are not. On the other hand, we want to show how an
MPVC is related to the well-established class of MPECs. It turns out that every
MPVC can be formulated as an MPEC, but that this formulation has some
drawbacks.

We begin with our example from structural optimization. One of the classical
problems in this field are design problems. Modern approaches do not predefine
any shape of the structure yet to be designed. For example, the number, the
location, and the shape and size of holes in the structure are solely determined
by the optimization process. In contrast to traditional “shape optimization”,
this new and free design optimization is referred to as “topology optimization”.
Due to the immense freedom of the problem in the design space, formulations
of topology optimization problems are usually abstract or large-scaled. Calcu-
lations in this field started with the development of optimization algorithms
and codes running on computers. An early paper on topology optimization of
truss structures is [8] from 1964 using linear programming. Numerical topology
optimization of continuum structures started in the late 1980s with the idea of
regarding design problems as a problem of material distribution [5,10]. During
the last decade, many extensions have been made to various problem formula-
tions and solution methods. An overview of the state of the art is given in the
monograph [6].

Meanwhile topology optimization started to become an accepted tool in
industrial applications like airplane and car manufacturing. The results from
topology optimization, however, still suffer from the fact that many realistic
side constraints cannot be incorporated into the mathematical problem for-
mulations because of complexity, nonlinearities, and singularities. As a con-
sequence, the obtained results are partly doubtful, and must be substantially
post-processed. Many publications in current research activities deal with the
incorporation of stress constraints into topology optimization problems since
this is an urgent necessity from the engineering point of view. As will be clear
below, however, stress constraints in a topology context immediately lead to
singularities because stresses are not defined at points of the design domain
where material is not present, i.e., where “the structure has a hole”. This diffi-
culty is closely related to the phenomenon of so-called “singular optimizers”
[1,6]. The following example illustrates the modeling difficulty using a typical
problem from structural design. A second example from continuum structure
may be found in the report version [2] of this paper.

Example 1 We want to find the optimal design of a truss structure. We use the
so-called “ground structure approach” introduced in [8]. To this end, consider
a given set of M so-called “potential bars” which are defined by the coordinates
of their end nodes (in R

2 or in R
3). Moreover, for each potential bar, material

parameters are given (Young’s modulus Ei, relative moment of inertia si, stress
bounds σ t

i > 0 and σ c
i < 0 for tension and compression, respectively). These

parameters are needed for the formulation of constraints preventing structural
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failure in the case when the potential bar is realized as a real bar. The latter is
the case if the calculated cross-sectional area ai is positive. Finally, boundary
conditions (i.e., fixed nodal coordinates) and external loads (i.e., loads applying
at some of the nodes) are given. Such a scenario is called a “ground struc-
ture”. The problem (“optimal truss topology design problem”) is to find cross-
sectional areas a∗

i for each potential bar such that failure of the whole structure
is prevented, the external load is carried by the structure, and a suitable objec-
tive function is minimal. The latter is usually the total weight of the structure
or its deformation energy (“compliance”).

In order to obtain a good resulting structure after optimization, the ground
structure should be “rich” enough, i.e., should consist of many potential bars.
Figure 1a illustrates a ground structure in 2D in a standard design scenario.
The structure (yet to be designed) is fixed to the left (indicated by a wall).
On the right hand side, the given external load applies (vertical arrow) which
must be carried by the structure. We have discretized a 2D rectangular design
area by 15 × 9 nodal points. All nodal points are pair-wise connected by po-
tential bars. After the deletion of long potential bars which are overlapped
by shorter ones, we end up with 5614 potential bars. Very few of these po-
tential bars are depicted in Fig. 1a by black lines (Plotting all bars would re-
sult in a completely black picture, and hence only very few potential bars are
shown).

Of course, in view of a practical realization of the calculated structure
after optimization, one hopes that the optimal design a∗ will make use of
only a few of the potential bars, i.e., a∗

i > 0 for a small number of indi-
ces i only, whereas most of the (many) optimal cross-sectional areas a∗

i are
zero. Figure 1b shows the optimized structure based on the ground structure
indicated in Fig. 1a. Indeed, most of the potential bars are not realized as
real bars. Such a behaviour is typical in applied truss topology optimization
problems.

The main difficulty in formulating (and solving) the problem lies in the fact
that, generally speaking, constraints on structural failure can be formulated in
a well-defined way only if there is some material giving mechanical response.

(a) (b)

Fig. 1 a Ground structure; b optimal truss structure
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As explained before, however, most potential bars will possess a zero cross-sec-
tion at the optimizer. Hence, one option is the formulation of the problem as
a problem with vanishing constraints. A simple formulation of the truss design
problem with constraints on stresses and on local buckling takes the following
form (compare to problem (2)):

min
a∈RM ,u∈Rd

f (a, u)

s.t. g(a, u) ≤ 0,
ai ≥ 0 ∀i = 1, . . . , M,
K(a)u = f ext,
σ c

i ≤ σi(a, u) ≤ σ t
i if ai > 0 ∀i = 1, . . . , M,

f int
i (a, u) ≥ f buck

i (a) if ai > 0 ∀i = 1, . . . , M.

(4)

Here the vector a ∈ R
M, a ≥ 0, contains the vector of cross-sectional areas

of the potential bars, and u ∈ R
d denotes the vector of nodal displacements

of the structure under load, where d is the so-called degree of freedom of the
structure, i.e., the number of free nodal displacement coordinates. The state var-
iable u serves as an auxiliary variable. The objective function f often expresses
structural weight or compliance but can also be any other measure evaluat-
ing a given design a and a corresponding state u. The nonlinear system of
equations K(a)u = f ext symbolizes force equilibrium of (given) external loads
f ext ∈ R

d and internal forces (i.e., along the bars) expressed via Hooke’s law
in terms of displacements and cross-sections. The matrix K(a) ∈ R

d×d is the
global stiffness matrix corresponding to the structure a. This matrix is always
symmetric and positive semidefinite. The constraint g(a, u) ≤ 0 is a resource
constraint, like on the total volume of the structure (e.g., if f denotes com-
pliance) or on the compliance of the structure (e.g., if f denotes volume or
weight). If ai > 0, then σi(a, u) ∈ R is the stress along the i-th bar. Similarly, if
ai > 0, f int

i (a, u) ∈ R denotes the internal force along the i-th bar, and f buck
i (a)

corresponds to the permitted Euler buckling force. (We assume here that the
geometry of the bar cross-section is given, e.g., as a circle or a square. Hence,
the moment of inertia is a scaling of the cross-section, and the buckling force
solely depends on ai). Then the constraints on stresses and on local buckling
make sense only if ai > 0. Therefore, they must vanish from the problem if
ai = 0. Fortunately, the functions σi, f int

i , and f buck
i possess continuous exten-

sions for ai ↘ 0, and thus may be defined also for ai = 0 (without any direct
physical meaning, though). This allows a reformulation of the problem in the
form (1). In this situation, the definitions Hi(a, u) := ai for all i = 1, . . . , M will
do the job.

We next discuss the relation between our MPVC and an MPEC. An MPEC
is a difficult constrained optimization problem whose feasible set has a very
special structure: Besides some standard equality and inequality constraints,
all feasible points also have to satisfy some complementarity conditions. More
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precisely, an MPEC has the following form:

min f̃ (z)

s.t. g̃i(z) ≤ 0 ∀i = 1, . . . , m,
h̃i(z) = 0 ∀i = 1, . . . , p,
G̃i(z) ≥ 0 ∀i = 1, . . . , l,
H̃i(z) ≥ 0 ∀i = 1, . . . , l,
G̃i(z)H̃i(z) = 0 ∀i = 1, . . . , l.

(5)

MPECs are difficult programs since most of the standard constraint qualifica-
tions are violated. In fact, standard LICQ and standard MFCQ never hold (see
[7]), whereas the standard Abadie constraint qualification is satisfied only in
some rare situations. In fact, if z∗ denotes a local minimum of (5) and

β := β(z∗) := {
i
∣
∣ G̃i(z∗) = 0, H̃i(z∗) = 0

}

denotes the degenerate or bi-active index set, then the standard tangent cone
at z∗ is usually the union of finitely many polyhedral cones, each of these poly-
hedral cones is generated by a partitioning of the degenerate set β, see [9,14]
for more details. Being the union of finitely many cones, the tangent cone is
therefore nonconvex in general, hence the usual Abadie constraint qualification
is not satisfied. The situation is different if β = ∅ since then the above union
of finitely many polyhedral cones reduces to the union over a single polyhedral
cone.

Now let us come back to our MPVC from (1). We first show that this pro-
gram may be rewritten as an MPEC. In fact, introducing “slack variables”
si, i = 1, . . . , l, problem (1) is equivalent to the following MPEC in the variables
z := (x, s):

min
x,s

f (x)

s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,
hi(x) = 0 ∀i = 1, . . . , p,
Gi(x) − si ≤ 0 ∀i = 1, . . . , l,
Hi(x) ≥ 0 ∀i = 1, . . . , l,
si ≥ 0 ∀i = 1, . . . , l,
Hi(x)si = 0 ∀i = 1, . . . , l.

(6)

More precisely, the relation between the two problems (1) and (6) is as follows.

Lemma 1 (a) If x∗ is a local minimum of (1), then z∗ := (x∗, s∗) is a local
minimum of (6), where s∗ denotes any vector with components

s∗
i

{= 0 if Hi(x∗) > 0,
≥ max{Gi(x∗), 0}, if Hi(x∗) = 0.

(b) If z∗ = (x∗, s∗) is a local minimum of (6), then x∗ is a local minimum of (1).
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The proof of Lemma 1 follows from the fact that the corresponding vectors
are feasible for the respective optimization problems, and by noting that the
objective function is the same for both programs. Note that, in statement (a),
we have some freedom in the choice of the components s∗

i with indices i such
that Hi(x∗) = 0.

In principle, it is therefore possible to reformulate an MPVC as an MPEC.
We believe, however, that this reformulation is not useful from a practical point
of view, and that one should try to deal with problem (1) directly. In fact, the
dimension of the MPEC formulation (6) is larger than the one of the original
program (1), and the slack variables in the program (6) are not defined uniquely,
which might cause some troubles when solving (6) by suitable algorithms. More-
over, we will see in the following section that certain constraint qualifications
are more likely to hold for the MPVC than for an MPEC.

3 Violation of standard constraint qualifications

The aim of this section is to show that standard constraint qualifications usually
do not hold for MPVCs. In order to recall these constraint qualifications, we
first consider the optimization problem

min f̃ (x)

s.t. g̃i(x) ≤ 0 ∀i = 1, . . . , r,
h̃i(x) = 0 ∀i = 1, . . . , s

(7)

with continuously differentiable functions f̃ , g̃i, h̃i : R
n → R. Let

X̃ := {
x ∈ R

n ∣
∣ g̃i(x) ≤ 0 (i = 1, . . . , r), h̃i(x) = 0 (i = 1, . . . , s)

}

denote the feasible set of the optimization problem (7).
Now let x∗ be a local minimum of (7) and suppose that a suitable constraint

qualification holds (see the discussion below). Then it is possible to show that
there exist Lagrange multipliers λ̃i ∈ R and µ̃i ∈ R such that the following first
order optimality conditions or Karush–Kuhn–Tucker conditions (KKT condi-
tions, for short) hold:

∇ f̃ (x∗) +
r∑

i=1

λ̃i∇g̃i(x∗) +
s∑

i=1

µ̃i∇h̃i(x∗) = 0,

h̃i(x∗) = 0 ∀i = 1, . . . , s,
λ̃i ≥ 0, g̃i(x∗) ≤ 0, λ̃ig̃i(x∗) = 0 ∀i = 1, . . . , r,

(8)

see, e.g., [3,12]. These KKT conditions play a major role for the design and anal-
ysis of several optimization algorithms, and it is therefore of central importance
that these conditions hold under appropriate assumptions.
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Suitable conditions which guarantee that the KKT conditions are satisfied at
a local minimum x∗ of (7) are some constraint qualifications. Here we give a
brief list with the most prominent constraint qualifications that may be found
in the literature (see, e.g., the survey [15]):

– The linear independence constraint qualification (LICQ for short) is said to
hold at a local minimizer x∗ of (7) if the gradients

∇g̃i(x∗) (i : g̃i(x∗) = 0), ∇h̃i(x∗) (i = 1, . . . , s)

are linearly independent.
– The Mangasarian-Fromovitz constraint qualification (MFCQ for short) is

said to hold at a local minimizer x∗ of (7) if the gradients ∇h̃i(x∗) (i = 1, . . . , s)
are linearly independent and there is a vector d ∈ R

n such that

∇g̃i(x∗)Td < 0 (i : g̃i(x∗) = 0), ∇h̃i(x∗)Td = 0 (i = 1, . . . , s).

– The Abadie constraint qualification (ACQ for short) is said to hold at a local
minimizer x∗ of (7) if T (x∗) = L(x∗), where

T (x∗) :=
{

d ∈ R
n

∣
∣
∣
∣
∣
∃{xk} ⊆ X̃, ∃{tk} ↓ 0 : xk → x∗ and

xk − x∗

tk
→ d

}

is the standard tangent cone of (7) at x∗, and

L(x∗) := {
d ∈ R

n ∣
∣ ∇g̃i(x∗)Td ≤ 0 (i : g̃i(x∗) = 0),
∇h̃i(x∗)Td = 0 (i = 1, . . . , s)

}

denotes the corresponding linearized cone of (7) at x∗.

The following implications are well known:

LICQ �⇒ MFCQ �⇒ ACQ.

Moreover, if ACQ holds at a local minimum x∗ of (7), then there exist
Lagrange multipliers λ̃i and µ̃j such that the KKT conditions (8) hold. In partic-
ular, the KKT conditions are necessary optimality conditions under both LICQ
and MFCQ. Note also that ACQ is one of the weakest constraint qualifications,
see, again, the paper [15] for a complete overview.



78 W. Achtziger, Ch. Kanzow

We now want to apply these standard constraint qualifications to our
constrained optimization problem from (1). To this end, let x∗ be a local
minimum of (1), and let us introduce the following index sets that will be
used frequently in the subsequent analysis:

Ig := {
i
∣
∣ gi(x∗) = 0

}
,

Ih := {
1, . . . , p

}
,

I+ := {
i
∣
∣ Hi(x∗) > 0

}
,

I0 := {
i
∣
∣ Hi(x∗) = 0

}
.

(9)

Furthermore, we divide the index set I+ into the following subsets:

I+0 := {
i
∣
∣ Hi(x∗) > 0, Gi(x∗) = 0

}
,

I+− := {
i
∣
∣ Hi(x∗) > 0, Gi(x∗) < 0

}
.

(10)

Similarly, we partition the set I0 in the following way:

I0+ := {
i
∣
∣ Hi(x∗) = 0, Gi(x∗) > 0

}
,

I00 := {
i
∣
∣ Hi(x∗) = 0, Gi(x∗) = 0

}
,

I0− := {
i
∣
∣ Hi(x∗) = 0, Gi(x∗) < 0

}
.

(11)

Note that the first subscript (+ or 0) in these index sets indicates whether Hi(x∗)
is positive or zero, whereas the second subscript (+, 0 or −) indicates whether
the sign of Gi(x∗) is positive, zero, or negative. Further note that these index sets
depend on the particular solution x∗ of (1). However, this solution will always
be clear from the context, so there is no need to make this dependence explicit
in our notation.

Let us introduce the function

θi(x) := Gi(x)Hi(x) ∀i = 1, . . . , l, (12)

and note that its gradient is given by

∇θi(x) = Gi(x)∇Hi(x) + Hi(x)∇Gi(x) ∀i = 1, . . . , l.

Hence the definition of the index sets from (10), (11) imply

∇θi(x∗) =
⎧
⎨

⎩

0 if i ∈ I00,
Gi(x∗)∇Hi(x∗) if i ∈ I0+ ∪ I0−,
Hi(x∗)∇Gi(x∗) if i ∈ I+0.

(13)
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In the following result, we show that LICQ does not hold for our optimization
problem (1) under fairly mild assumptions.

Lemma 2 Let x∗ be a local minimum of (1) such that I0 �= ∅. Then LICQ is
violated at the point x∗.

Proof Assume that LICQ holds at x∗. Then the gradients

∇gi(x∗) (i ∈ Ig), ∇hi(x∗) (i ∈ Ih), ∇Hi(x∗) (i ∈ I0), ∇θi(x∗) (i ∈ I0 ∪ I+0)

(14)

must be linearly independent. Since I0 �= ∅, we have I00 �= ∅ or I0+ ∪ I0− �= ∅.
However, for i ∈ I00, we get ∇θi(x∗) = 0 from (13), and this vector cannot
be a member of a set of linearly independent vectors. On the other hand, if
i ∈ I0+ ∪ I0−, it follows from (13) that ∇θi(x∗) is a nonzero multiple of ∇Hi(x∗).
Hence this vector together with the corresponding gradient ∇Hi(x∗) forms a
linearly dependent subset of the vectors from (14). These contradictions show
that LICQ is violated at x∗.

We next show that, under a slightly stronger assumption, MFCQ is also not
satisfied at a local minimum of our special optimization problem from (1).

Lemma 3 Let x∗ be a local minimum of (1) such that I00 ∪ I0+ �= ∅. Then MFCQ
is violated at the point x∗.

Proof Suppose that MFCQ holds at x∗. Then the gradients ∇hi(x∗) (i ∈ Ih) are
linearly independent, and there is a vector d ∈ R

n such that

∇gi(x∗)Td < 0 (i ∈ Ig), ∇hi(x∗)Td = 0 (i ∈ Ih)

and
∇Hi(x∗)Td > 0 (i ∈ I0), ∇θi(x∗)Td < 0 (i ∈ I0 ∪ I+0). (15)

The first set of conditions is not really important in our proof, since the second
set alone gives a contradiction. In fact, if we take an index i ∈ I00, we get the
contradiction 0 = ∇θi(x∗)Td < 0 from (13) and (15). Otherwise, if we have an
index i ∈ I0+, we also get a contradiction, since, on the one hand, the vector d
satisfies ∇Hi(x∗)Td > 0 in view of (15) and, on the other hand, we have

∇Hi(x∗)Td = 1
Gi(x∗)

∇θi(x∗)Td < 0

because of (13) and (15). Hence, in any case, we get a contradiction.
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Note the difference in the assumptions of Lemmas 2 and 3: The first result
states that LICQ has a chance to hold only if all Hi constraints are inactive,
whereas the second result says that MFCQ may hold only if all active Hi con-
straints belong to I0−.

We next discuss the relevance of the assumptions in Lemmas 2 and 3 from
the point of view of our truss topology optimization problem from Example 1.

Example 2 Consider the prototype application from truss topology optimiza-
tion in Example 1. The assumption I0 �= ∅ of Lemma 2 is usually satisfied at
a (locally) optimal structure a∗ (with corresponding displacements u∗). To this
end, recall that Hi(a∗, u∗) = a∗

i denotes the cross-sectional area of the i-th bar.
Hence I0 will usually be a large set (cf. Fig. 1b). Consequently, LICQ has no
chance to hold in this situation. Moreover, the assumption I00 ∪ I0+ �= ∅ from
Lemma 3 is typically also satisfied at an optimizer (a∗, u∗). To see this, we inter-
pret the optimal structure a∗ as a so-called “limiting structure” a∗ = limj→+∞ aj

with structures aj > 0 (and corresponding displacements uj). Then consider an
index i with a∗

i = 0. For such a “vanishing bar” (i.e., aj
i → a∗

i = 0) the value
of the stress σi(aj, uj) typically increases up to a finite value, say limj σi(aj, uj) =
σi(a∗, u∗) (independent of the convergence of uj). Note that the value σi(a∗, u∗)
is a fictitious stress value (a “limiting stress”) because the i-th bar is not realized
as a real bar (a∗

i = 0 !). Typically, we have σi(a∗, u∗) > σ t
i or σi(a∗, u∗) < σ c

i
because these values prevent a∗

i from being positive (i.e., optimization decides
to choose a∗

i = 0 because otherwise the involved stresses would exceed the
stress bounds). In this situation, we therefore have i ∈ I0+. Numerical exam-
ples show that almost all indices i with a∗

i = 0 belong to I0+. Hence MFCQ is
unlikely to hold at local minimizers in Example 1.

Example 3 Let us study a truss design example of academic size. We consider
the problem of minimizing the weight of a predefined part of the structure
subject to constraints on total weight and total compliance of the structure, and
on member stresses (in comparison to problem (4) in Example 1, we neglect
the constraints on local buckling, for simplicity), i.e., with some given index set
I ⊆ {1, . . . , M},

min
a∈RM ,u∈Rd

∑

i∈I

κi�iai

s.t.
M∑

i=1

κi�iai − W ≤ 0,

f ext Tu − C ≤ 0,

K(a)u = f ext,

ai ≥ 0 for all i = 1, . . . , M,

ai(σ
c
i − σi(a, u)) ≤ 0 for all i = 1, . . . , M,

ai(σi(a, u) − σ t
i ) ≤ 0 for all i = 1, . . . , M.
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Here, �i denotes the length of the ith potential bar, and κi denotes its specific
structural weight per volume. The constants W and C denote the permitted
maximal weight and maximal compliance, respectively, of the total structure.
Moreover, in this problem setting formulated in areas and displacements, we
have used that σi(a, u) can be written as a linear function of u, and thus is
well-defined (as a mathematical function) even if ai = 0 (while losing its physi-
cal meaning as a member stress).

Minimization of the weight of only a part of the structure makes sense if
the decision must be made on how to design a few “critical” and “expensive”
elements of the structure while all other elements are cheap in manufactur-
ing. Imagine, e.g., the scenario requires some “backbone parts” made from
very expensive material like specially hardened steel while all other bars in the
structure can be manufactured from cheap material, and thus are neglected in
the objective function. Together with the other side constraints, the constraint
on total weight will control whether “expensive” bars i ∈ I are used at all in the
final design.

To be more concrete, consider the ground structure in Fig. 2 consisting of
M = 2 potential bars with a vertical force applied at the single free nodal point,
indicated by a dashed arrow. It is obvious that bar no. 1 is of paramount impor-
tance, and hence we put I := {1}. Let the length of both bars be 1, assume
that the Youngs’s moduli of the materials in both bars are Ei := 1, and let the
specific weight factors κi be also 1, again for simplicity. Then, in global reduced
coordinates (i.e., after deletion of fixed nodal displacement coordinates), for
any a ∈ R

2, a ≥ 0, the global stiffness matrix is given by

K(a) = a1

(
0 0
0 1

)
+ a2

(
1 0
0 0

)
,

where a1, a2 ≥ 0 denote the cross-sectional areas of bar 1 and bar 2, respectively.
Moreover, let f ext := (0, −1)T denote the given external force in reduced nodal
coordinates, i.e., f ext Tu = −u2 expresses total compliance of the structure,
where u = (u1, u2)

T is the displacement vector of the free bottom right nodal
point with u1, u2 being the displacement in horizontal and vertical direction,
respectively. With the stress bounds σ c

i , σ t
i as ∓1, and with the bounds W := 2

Fig. 2 Ground structure of
academic example
(Example 3)

2

1

f ext
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and C := 2, we arrive at the following problem of type (1):

min
a,u∈R2

a1 f (a, u) := a1

s.t. a1 + a2 − 2 ≤ 0, g1(a, u) := a1 + a2 − 2,
−u2 − 2 ≤ 0, g2(a, u) := −u2 − 2,

a2u1 = 0, h1(a, u) := a2u1,
a1u2 + 1 = 0, h2(a, u) := a1u2 + 1,

a1 ≥ 0, H1(a, u) := H2(a, u) := a1,
a2 ≥ 0, H3(a, u) := H4(a, u) := a2,

a1(−1 + u2) ≤ 0, G1(a, u) := −1 + u2,
a1(−1 − u2) ≤ 0, G2(a, u) := −1 − u2,
a2(−1 + u1) ≤ 0, G3(a, u) := −1 + u1,
a2(−1 − u1) ≤ 0. G4(a, u) := −1 − u1.

(16)

Let us calculate all solutions of this problem. The second equilibrium constraint
requires that neither a1 nor u2 can be zero. (This is also clear from the geometry:
The structure must carry the external load, and this will lead to a displacement
in vertical direction.) Moreover, a1 = − 1

u2
. Hence, u2 is always negative, and

minimization of a1 means maximization of |u2|. The stress constraints on bar
no. 1 reduce to −1 ≤ u2 ≤ 1 because a1 > 0. Moreover, the compliance con-
straint says that −u2 ≤ 2, and thus is always satisfied. Hence, we obtain that
u∗

2 := −1 and a∗
1 := 1 are optimal together with all other choices for (a2, u1)

which are feasible (notice that the constraint on total weight a∗
1 + a2 ≤ 2 is

satisfied for all a2 ∈ [0, 1]).
By this, we obtain the following set of optimal solutions of our problem:

{
(a1, a2, u1, u2)

T
∣
∣
∣ a1 = 1, a2 = 0, u1 ∈ R, u2 = −1

}

∪
{
(a1, a2, u1, u2)

T
∣
∣
∣ a1 = 1, a2 ∈ ]0, 1], u1 = 0, u2 = −1

}
.

From an engineering point of view, in this example, bar no. 1 must carry the
total external load because bar no. 2 is perpendicular to f ext (by the way, such a
situation often occurs in truss design problems formulated on ground structures;
cf. Fig. 1a). Hence, in the above problem, we seek a design where a1 is as slim as
possible, nevertheless, carrying the load. Since the load is constant, making the
bar slim, however, increases the absolute stress |σ1(a, u)| = |E1

�1
(−u2)| = |u2|.

Hence, the optimal design is completely determined by the stress constraint
for bar no. 1 because the side constraints on total weight or compliance do not
become active.

Consider the particular solution

x∗ := (a∗
1, a∗

2, u∗
1, u∗

2)
T = (1, 0, 1, −1)T . (17)



Mathematical programs with vanishing constraints 83

Then
Ig = ∅, Ih = {1, 2}, I+ = {1, 2}, I0 = {3, 4},

I+0 = {2}, I+− = {1}, I0+ = ∅, I00 = {3}, I0− = {4}. (18)

By Lemmas 2 and 3, the LICQ as well as the MFCQ is violated since I0 ⊃ I00 �=∅.
Of course, these facts also can be directly checked by the explicit problem for-
mulation in (16).

Alternatively, one may consider the solution

x̃∗ := (a∗
1, a∗

2, ũ∗
1, u∗

2)
T = (1, 0, 0, −1)T (19)

(differing from x∗ in the 3rd component) with the corresponding index sets
(here and in the sequel indicated by an additional “ ˜ ”)

Ĩg = ∅, Ĩh = {1, 2}, Ĩ+ = {1, 2}, Ĩ0 = {3, 4},
Ĩ+0 = {2}, Ĩ+− = {1}, Ĩ0+ = ∅, Ĩ00 = ∅, Ĩ0− = {3, 4}. (20)

At the point x̃∗ we have ∇h1(x̃∗) = 0 ∈ R
4, and thus neither LICQ nor MFCQ

have a chance to hold.

We next discuss the Abadie constraint qualification. As a first step in this
direction, we give a representation of the linearized cone of (1) in our next
result.

Lemma 4 Let x∗ be a local minimum of (1). Then the linearized cone of (1) at
x∗ is given by

L(x∗) = {
d ∈ R

n ∣
∣∇gi(x∗)Td ≤ 0 (i ∈ Ig),
∇hi(x∗)Td = 0 (i ∈ Ih),
∇Hi(x∗)Td = 0 (i ∈ I0+),
∇Hi(x∗)Td ≥ 0 (i ∈ I00 ∪ I0−),
∇Gi(x∗)Td ≤ 0 (i ∈ I+0)

}
.

Proof Let θi denote the function from (12). Then, using the definition of the
index sets from (9)–(11), it follows that the linearized cone of the program (1)
at x∗ is given by

L(x∗) = {
d ∈ R

n ∣
∣∇gi(x∗)Td ≤ 0 (i ∈ Ig),
∇hi(x∗)Td = 0 (i ∈ Ih),
∇Hi(x∗)Td ≥ 0 (i ∈ I0),
∇θi(x∗)Td ≤ 0 (i ∈ I0 ∪ I+0).

}
.



84 W. Achtziger, Ch. Kanzow

Now, using the expression of the gradient ∇θi(x∗) for i ∈ I0 ∪ I+0 as given in
(13), it follows that

∇θi(x∗)Td ≤ 0 ⇐⇒ ∇Hi(x∗)Td ≤ 0 ∀i ∈ I0+,

∇θi(x∗)Td ≤ 0 ⇐⇒ 0 ≤ 0 ∀i ∈ I00,

∇θi(x∗)Td ≤ 0 ⇐⇒ ∇Hi(x∗)Td ≥ 0 ∀i ∈ I0−,

∇θi(x∗)Td ≤ 0 ⇐⇒ ∇Gi(x∗)Td ≤ 0 ∀i ∈ I+0.

The first equivalence, together with ∇Hi(x∗)Td ≥ 0 for all i ∈ I0, gives ∇Hi(x∗)T

d = 0 for all i ∈ I0+, whereas the second and third equivalences do not pro-
vide any new information. Putting together all these pieces of information, we
immediately get the desired representation of the linearized cone.

The following example shows that ACQ may not hold if I00 �= ∅.

Example 4 Consider the optimization problem

min x2
1 + x2

2
s.t. H1(x) := x1 + x2 ≥ 0,

G1(x)H1(x) := x1(x1 + x2) ≤ 0,

which is of the form (1) with n = 2, m = p = 0, and l = 1. Its unique solution is
given by x∗ = (0, 0)T . A simple calculation shows that the tangent cone of this
program is given by

T (x∗) = {
d ∈ R

2 ∣
∣ d1 + d2 ≥ 0, d1 ≤ 0

} ∪ {
d ∈ R

2 ∣
∣ d1 + d2 = 0

}

= {
d ∈ R

2 ∣
∣ d1 + d2 ≥ 0, d1(d1 + d2) ≤ 0

}
,

whereas Lemma 4 shows that the corresponding linearized cone has the repre-
sentation

L(x∗) = {
d ∈ R

2 ∣
∣ d1 + d2 ≥ 0

}
.

Hence the linearized cone is strictly larger than the tangent cone, i.e., ACQ is
violated in this example.

In the next section, we show that ACQ holds under reasonable conditions
provided that I00 = ∅. In fact, looking at Lemmas 2, 3 and Example 4, the
reader may ask whether ACQ is always violated if I00 �= ∅. The following
example shows, however, that this is not true in general.

Example 5 Consider the problem

min x2
1 + x2

2
s.t. H1(x) := x1 + x2 ≥ 0,

G1(x)H1(x) := (−x1 − x2)(x1 + x2) ≤ 0,



Mathematical programs with vanishing constraints 85

whose unique solution is the origin x∗ := (0, 0)T . Hence we have I00 = {1},
in particular, this set is nonempty. Nevertheless, Lemma 4 and an elementary
calculation shows that T (x∗) = {d ∈ R

2 | d1 + d2 ≥ 0} = L(x∗), hence ACQ
holds in this example.

Similarly, we may consider the academic truss design example from above.

Example 6 (Example 3, cont’d) Consider the optimizer x∗ from (17) in Exam-
ple 3. Then Lemma 4 yields

L(x∗) = {d ∈ R
4 | d1 = d4 ≥ 0, d2 = 0, d3 ∈ R arbitrary}.

We claim that ACQ holds at x∗, i.e., that T (x∗) = L(x∗). To see this, first recall
that we always have T (x∗) ⊆ L(x∗). To prove the other inclusion, take an arbi-
trary d ∈ L(x∗). Then d = (d1, 0, d3, d1)

T for some d1 ≥ 0 and d3 arbitrary. Now
let {tk} ↓ 0 be any given sequence and choose {xk} as follows:

xk :=

⎛

⎜
⎜
⎜
⎜
⎝

1 + tkd1
0

1 + tkd3

−1 + tkd1

1 + tkd1

⎞

⎟
⎟
⎟
⎟
⎠

∀k ∈ N.

Let X denote the feasible set of our problem. Then it is easy to see that {xk} ⊆ X,
xk → x∗, and xk−x∗

tk
→ d. This shows that d ∈ T (x∗) and, therefore, ACQ holds

at x∗ (note that I00 �= ∅ in this case).
On the other hand, consider the optimizer x̃∗ from (19). Lemma 4 yields

L(x̃∗) = {d ∈ R
4 | d1 = d4 ≥ 0, d2 ≥ 0, d3 ∈ R arbitrary}. (21)

We claim that the inclusion T (x̃∗) ⊆ L(x̃∗) is strict, so that ACQ is violated at x̃∗.
To this end, consider the particular vector d := (0, 1, 1, 0)T . We obviously have
d ∈ L(x̃∗), and want to show that d �∈ T (x̃∗). Suppose, by contradiction, that
there are sequences {tk} ↓ 0 and {xk} ⊆ X such that xk → x̃∗ and xk−x̃∗

tk
→ d. Let

us write xk = (ak
1, ak

2, uk
1, uk

2)T for all k ∈ N. Since xk ∈ X, we have ak
2uk

1 = 0 for
all k ∈ N. If there are infinitely many k ∈ N with ak

2 = 0, we get the contradiction

0 = 0 − 0
tk

= xk
2 − x̃∗

2

tk
→ 1 = d2.

On the other hand, if there are only finitely many k ∈ N with ak
2 = 0, we have

uk
1 = 0 for all sufficiently large k ∈ N. This, however, gives the contradiction

0 = 0 − 0
tk

= xk
3 − x̃∗

3

tk
→ 1 = d3.
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Together this shows that d �∈ T (x̃∗). Consequently, ACQ does not hold at x̃∗
(note that I00 = ∅ in this case). In fact, by a similar argument, one can show
that T (x̃∗) is equal to the non-convex cone

T (x̃∗) = {d | d1 = d4 ≥ 0, d2 = 0, d3 ∈ R arbitrary}
∪{d | d1 = d4 ≥ 0, d2 ≥ 0, d3 = 0}

which is obviously a proper subset of L(x̃∗).

In principle, due to the relation between MPVCs and MPECs stated in
Lemma 1, it is not suprising that certain constraint qualifications are violated.
However, we stress that the situation is somewhat different for MPVCs than for
MPECs. For example, it was first noted in [7] that MFCQ (hence also LICQ) is
violated at any feasible point (in particular, at any local minimum) of the MPEC.
Moreover, it follows from [14,9] that the Abadie CQ holds for MPECs only
under very restrictive assumptions. The conditions given here for MPVCs are
different, both LICQ and MFCQ are not necessarily violated (though unlikely
to hold), and the Abadie CQ is satisfied in many practical situations.

4 Standard Abadie constraint qualification

The aim of this section is to show that the Abadie constraint qualification holds
at a local minimum x∗ of (1) under certain assumptions. To this end, we begin
with the following simple but important result.

Theorem 1 Let x∗ be a local minimum of (1) such that ACQ holds at x∗. Then
there exist Lagrange multipliers λi ∈ R (i = 1, . . . , m), µi ∈ R (i ∈ Ih), ηH

i , ηG
i ∈

R (i = 1, . . . , l) such that

∇f (x∗) +
m∑

i=1

λi∇gi(x∗) +
p∑

i=1

µi∇hi(x∗) −
l∑

i=1

ηH
i ∇Hi(x∗) +

l∑

i=1

ηG
i ∇Gi(x∗) = 0

(22)

and

hi(x∗) = 0 ∀i ∈ Ih,

λi ≥ 0, gi(x∗) ≤ 0, λigi(x∗) = 0 ∀i = 1, . . . , m,

ηH
i = 0 (i ∈ I+), ηH

i ≥ 0 (i ∈ I00 ∪ I0−), ηH
i free (i ∈ I0+),

ηG
i = 0 (i ∈ I0 ∪ I+−), ηG

i ≥ 0 (i ∈ I+0).

(23)

Proof Since ACQ holds at x∗, the standard KKT conditions of (1) are satisfied,
i.e., there exist Lagrange multipliers λi ∈ R (i = 1, . . . , m), µi ∈ R (i ∈ Ih) and
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ρi, νi ∈ R (i = 1, . . . , l) such that the following conditions hold:

∇f (x∗) +
m∑

i=1

λi∇gi(x∗) +
p∑

i=1

µi∇hi(x∗) −
l∑

i=1

ρi∇Hi(x∗) +
l∑

i=1

νi∇θi(x∗) = 0

(24)

and
gi(x∗) ≤ 0, λi ≥ 0, λigi(x∗) = 0 ∀i = 1, . . . , m,

hi(x∗) = 0 ∀i ∈ Ih,

Hi(x∗) ≥ 0, ρi ≥ 0, ρiHi(x∗) = 0 ∀i = 1, . . . , l,

θi(x∗) ≤ 0, νi ≥ 0, νiθi(x∗) = 0 ∀i = 1, . . . , l,

(25)

where, again, θi denotes the function from (12). Now, taking into account the
representation (13) of the gradient of θi, and setting

ηH
i := ρi − νiGi(x∗) and ηG

i := νiHi(x∗) ∀i = 1, . . . , l,

we immediately obtain the desired conditions (22), (23).

Remark 1 The proof of Theorem 1 shows that the classical KKT conditions (24),
(25) imply the existence of Lagrange multipliers such that (22), (23) hold. The
converse is also true. To this end, suppose we have multipliers λi, µi, ηH

i , ηG
i ∈ R

such that (22), (23) are satisfied. Then choose νi, i = 1, . . . , l, with the properties

νi = ηG
i

Hi(x∗)
if i ∈ I+0,

νi = 0 if i ∈ I+−,

νi ≥ max

{

0, − ηH
i

Gi(x∗)

}

if i ∈ I0+,

νi ∈
[

0, − ηH
i

Gi(x∗)

]

if i ∈ I0−,

νi ≥ 0 if i ∈ I00.

(Notice that for i ∈ I0− we have ηH
i ≥ 0 and Gi(x∗) < 0, i.e., the interval[

0, − ηH
i

Gi(x∗)

]
is non-empty.) Moreover, put

ρi := ηH
i + νiGi(x∗) for all i = 1, . . . , l.

Then it follows that ρi − νiGi(x∗) = ηH
i and νiHi(x∗) = ηG

i for all i = 1, . . . , l,
hence (24) follows immediately from (22). Moreover, it is an easy exercise to
see that the set of multipliers λi, µi, ρi, νi satisfies (25).
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For obvious reasons, we therefore call (22), (23) the KKT conditions of the
optimization problem (1). Note that there is no sign restriction on the multipliers
ηH

i whose components i belong to the index set I0+.
We next state a technical lemma that will play a major role in developing

new (specialized) constraint qualifications for our optimization problem (1).

Lemma 5 Let x∗ ∈ R
n be a local minimum of (1). Assume that the gradients

∇hi(x∗) (i ∈ Ih), ∇Hi(x∗) (i ∈ I00 ∪ I0+) (26)

are linearly independent, and that there is a vector d̂ satisfying

∇hi(x∗)Td̂ = 0 (i ∈ Ih), ∇Hi(x∗)Td̂ = 0 (i ∈ I00 ∪ I0+) (27)

and

∇gi(x∗)Td̂ < 0 (i ∈ Ig), ∇Gi(x∗)Td̂ < 0 (i ∈ I+0), ∇Hi(x∗)Td̂ > 0 (i ∈ I0−).

(28)

Then there is an ε > 0 and a continuously differentiable curve x : (−ε, +ε) → R
n

such that x(0) = x∗, x′(0) = d̂ and x(t) ∈ X for all t ∈ [0, ε), where X denotes the
feasible set of (1).

Proof Let us introduce the mapping z : R
n → R

q, q := |Ih| + |I00| + |I0+|,
defined by

z(x) :=
⎛

⎝
hi(x) (i ∈ Ih)

Hi(x) (i ∈ I00)

Hi(x) (i ∈ I0+)

⎞

⎠ ,

and let zj denote the jth component function of z. Furthermore, let H : R
q+1 →

R
q be the mapping defined by

Hj(y, t) := zj
(
x∗ + td̂ + z′(x∗)Ty

) ∀j = 1, . . . , q.

Then the (nonlinear) system of equations H(y, t) = 0 has a solution (y∗, t∗) :=
(0, 0), and the partial Jacobian

∇yH(0, 0) = z′(x∗)z′(x∗)T ∈ R
q×q

is nonsingular since the Jacobian z′(x∗) has full rank by assumption. Conse-
quently, using the implicit function theorem, there is an ε > 0 and a continuously
differentiable function y : (−ε, +ε) → R

q such that y(0) = 0 and H(y(t), t) = 0
for all t ∈ (−ε, +ε). Moreover, its derivative is given by

y′(t) = −(∇yH(y(t), t)
)−1∇tH(y(t), t) ∀t ∈ (−ε, +ε).
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In particular, this implies

y′(0) = −(∇yH(0, 0)
)−1∇tH(0, 0) = −(∇yH(0, 0)

)−1z′(x∗)d̂ = 0

in view of (27).
Now define

x(t) := x∗ + td̂ + z′(x∗)Ty(t).

Then x(·) is continuously differentiable on (−ε, +ε), and we claim that x(t) has
all the desired properties (possibly on a slightly smaller interval). Since y(0) = 0
and y′(0) = 0, we immediately obtain x(0) = x∗ and x′(0) = d̂ + z′(x∗)Ty′(0) =
d̂ . Hence it remains to show that x(t) ∈ X for all sufficiently small t ∈ [0, ε).

To this end, we first note that H(y(t), t) = 0 implies zj(x(t)) = 0 and, therefore,

hi(x(t)) = 0 ∀i ∈ Ih,

Hi(x(t)) = 0 ∀i ∈ I00, (29)

Hi(x(t)) = 0 ∀i ∈ I0+ (30)

for all t ∈ (−ε, +ε). Furthermore, by continuity, we also have Hi(x(t)) ≥ 0 for all
i ∈ I+ and all t sufficiently small. Next take an arbitrary index i ∈ I0−, and define
φ(t) := Hi(x(t)). Then we have φ′(t) = ∇Hi(x(t))Tx′(t) and, therefore, φ′(0) =
∇Hi(x∗)Td̂ > 0 in view of (28). Since φ(0) = 0, this implies Hi(x(t)) = φ(t) > 0
for all t > 0 sufficiently small. Consequently, we have shown that Hi(x(t)) ≥ 0
for all i = 1, . . . , l and all t > 0 sufficiently small. In a similar way, one can prove
that gi(x(t)) ≤ 0 for all i = 1, . . . , m and all t > 0 small. Hence it remains to
show that the curve x(t) stays feasible (locally) with respect to the constraints
θi(x) ≤ 0.

In view of (29)–(30), this is certainly true for all i ∈ I00 ∪ I0+. Moreover, by
continuity, this also holds for all i ∈ I+−. Hence we only have to consider indices
i ∈ I0− ∪ I+0. To this end, define ϕ(t) := Gi(x(t))Hi(x(t)). Then an elementary
calculation shows that

ϕ′(t) = Hi(x(t))∇Gi(x(t))Tx′(t) + Gi(x(t))∇Hi(x(t))Tx′(t).

This implies

ϕ′(0) = Hi(x∗)∇Gi(x∗)Td̂ + Gi(x∗)∇Hi(x∗)Td̂ ,

and, in view of (28), it is immediate to see that ϕ′(0) < 0 holds for all indices
i belonging to one of the remaining index sets I+0 and I0−. Consequently, we
have Gi(x(t))Hi(x(t)) = ϕ(t) < 0 for all i ∈ I+0 ∪ I0− and all t > 0 sufficiently
small. This completes the proof.
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Motivated by the assumptions used in Lemma 5, we now introduce a variant
of the standard MFCQ condition that we call VC-MFCQ since it is a special
constraint qualification tailored to optimization problems with vanishing con-
straints, i.e., optimization problems of type (1) (here and in the following, the
abbreviation VC stands for “vanishing constraints”).

Definition 1 We say that VC-MFCQ is satisfied at a local minimum x∗ of (1)
if the gradients from (26) are linearly independent, and if there is a vector d̂
satisfying (27) and (28).

Note that VC-MFCQ is a reasonable assumption and that it is different from
standard MFCQ (cf. the proof of Lemma 3). We now show that VC-MFCQ
implies standard ACQ provided that the critical index set I00 is empty.

Theorem 2 Let x∗ be a local minimum of (1) with I00 = ∅ and such that
VC-MFCQ holds. Then the standard Abadie constraint qualification holds at x∗.

Proof We have to show that T (x∗) = L(x∗). It is well-known, however, that
the inclusion T (x∗) ⊆ L(x∗) always holds. Hence it remains to show that the
linearized cone is a subset of the tangent cone. To this end, take any vector
d ∈ L(x∗). Then Lemma 4 together with I00 = ∅ shows that we have

∇gi(x∗)Td ≤ 0 ∀i ∈ Ig,

∇hi(x∗)Td = 0 ∀i ∈ Ih,

∇Hi(x∗)Td = 0 ∀i ∈ I0+,

∇Hi(x∗)Td ≥ 0 ∀i ∈ I0−,

∇Gi(x∗)Td ≤ 0 ∀i ∈ I+0.

Now let d̂ ∈ R
n be a vector coming from our VC-MFCQ condition, and define

d(δ) := d + δd̂ .

Then it is easy to see that d(δ) satisfies

∇gi(x∗)Td(δ) < 0 ∀i ∈ Ig,

∇hi(x∗)Td(δ) = 0 ∀i ∈ Ih,

∇Hi(x∗)Td(δ) = 0 ∀i ∈ I0+,

∇Hi(x∗)Td(δ) > 0 ∀i ∈ I0−,

∇Gi(x∗)Td(δ) < 0 ∀i ∈ I+0

for all δ > 0.
Let δ > 0 be fixed for the moment. We then show that d(δ) belongs to

the tangent cone T (x∗). Using the previous properties of d(δ), the assumption
I00 = ∅, and the VC-MFCQ condition, it follows from Lemma 5 that there is an
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ε > 0 and a smooth curve x : (−ε, +ε) → R
n (both depending on δ) such that

x(0) = x∗, x′(0) = d(δ) and x(t) ∈ X for all t > 0 sufficiently small. Now take an
arbitrary sequence {tk} ↓ 0 and define xk := x(tk). Then {xk} ⊆ X, xk → x∗, and

d(δ) = x′(0) = lim
k→∞

x(tk) − x(0)

tk
= lim

k→∞
xk − x∗

tk
.

This shows that d(δ) = d + δd̂ ∈ T (x∗) for every δ > 0.
Finally, taking δk ↓ 0 and noting that the tangent cone T (x∗) is closed, it

follows that d = limk→∞ d(δk) ∈ T (x∗).

As a consequence of Theorems 1 and 2, it follows that the KKT conditions
(22), (23) are necessary optimality conditions at a local minimum x∗ of (1) under
the assumption that I00 = ∅ and that VC-MFCQ holds. Moreover, Theorem 2
implies that the tangent cone is polyhedral under these assumptions.

It is interesting to note that Theorem 2 does not hold without the assumption
I00 = ∅, i.e., VC-MFCQ may not imply standard ACQ if this set is nonemp-
ty. This can be seen by an inspection of Example 4 which obviously satisfies
VC-MFCQ, whereas ACQ was violated. However, this is an example where
I00 �= ∅. The previous proof exploits the fact that I00 = ∅, since otherwise we
would have ∇Hi(x∗)Td(δ) ≥ 0 for all i ∈ I00, and then it is no longer possible
to apply Lemma 5 in order to show that d(δ) belongs to the tangent cone T (x∗)
(because this would require ∇Hi(x∗)Td(δ) = 0 for all i ∈ I00).

We next introduce a condition that we call VC-LICQ and which may be
viewed as a modification of the standard LICQ condition, taking into account
the special structure of the optimization problem (1).

Definition 2 We say that VC-LICQ is satisfied at a local minimum x∗ of (1) if
the gradients

∇hi(x∗) (i ∈ Ih),

∇gi(x∗) (i ∈ Ig),

∇Gi(x∗) (i ∈ I+0),

∇Hi(x∗) (i ∈ I0)

are linearly independent.

Note that VC-LICQ is different from standard LICQ. Moreover, it is easy
to see that VC-LICQ implies VC-MFCQ. VC-LICQ, however, might be easier
to verify than VC-MFCQ. Moreover, it guarantees uniqueness of the Lagrange
multipliers. More precisely, we have the following result.

Theorem 3 Let x∗ be a local minimum of (1) with I00 = ∅ and such that
VC-LICQ is satisfied. Then the standard Abadie constraint qualification holds
at x∗. Moreover, there exist unique Lagrange multipliers satisfying (22), (23).
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Proof The first statement follows immediately from Theorem 2 and the fact that
VC-LICQ implies VC-MFCQ. The second statement follows directly from the
KKT conditions (22), (23) and the linear independence of all gradient vectors
belonging to those terms which might have a nonzero multiplier.

Note that VC-LICQ is obviously satisfied in Example 4, whereas the Aba-
die constraint qualification does not hold. Hence an additional assumption like
I00 = ∅ used in Theorem 3 (and, therefore, also in Theorem 2) is certainly
needed.

Let us have a look at the above academic truss example.

Example 7 (Examples 3 and 6, cont’d) Consider the optimal point x̃∗ of the
problem in Example 3 (cf. (19)). As noted in Example 6, ACQ does not hold,
although Ĩ00 = ∅ (cf. (20)). Moreover, ∇h1(x̃∗) = 0 ∈ R

4, and thus neither
Lemma 5 applies, nor VC-MFCQ is satisfied (nor VC-LICQ). Moreover, in this
example, the functions H3 and H4 coincide, and thus (note that Ĩ0 = Ĩ0− = {3, 4};
cf. (20)), trivially, the gradients ∇H3(x̃∗), ∇H4(x̃∗) are linearly dependent since
they are identical.

We close with a remark due to a referee which shows that slightly modified
versions of Theorems 2 and 3 can alternatively be derived in a simpler way.

Remark 2 Let x∗ be a local minimum of (1) with I00 = ∅. Then MPVC is, locally,
equivalent to the following program:

min f (x)

s.t. gi(x) ≤ 0 ∀i ∈ Ig,
hi(x) = 0 ∀i ∈ Ih,
Hi(x) = 0 ∀i ∈ I0+,
Hi(x) ≥ 0 ∀i ∈ I0−,
Gi(x) ≤ 0 ∀i ∈ I+0.

Then, for I00 = ∅, VC-MFCQ and VC-LICQ are identical to standard MFCQ
and standard LICQ, respectively, of this locally equivalent program. Hence,
under VC-MFCQ (VC-LICQ), there exist (unique) Lagrange multipliers sat-
isfying the corresponding KKT conditions. But these are precisely the KKT
conditions from Theorem 1 for I00 = ∅.

Note, however, that with the alternative approach of the previous remark, we
do not obtain the statement that VC-MFCQ or VC-LICQ implies the standard
Abadie CQ for MPVC.

5 A modified Abadie constraint qualification

The aim of this section is to introduce a modified Abadie constraint qualifica-
tion tailored to the special structure of the optimization problem (1). This con-
straint qualification will then be used in order to prove a necessary optimality
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condition that is different from the KKT conditions stated in Theorem 1. We also
provide sufficient conditions for the modified Abadie constraint qualification
to be satisfied.

In order to define our modified Abadie constraint qualification, let us intro-
duce the VC-linearized cone

LVC(x∗) := {
d ∈ R

n ∣
∣∇gi(x∗)Td ≤ 0 (i ∈ Ig),

∇hi(x∗)Td = 0 (i ∈ Ih),

∇Hi(x∗)Td = 0 (i ∈ I0+),

∇Hi(x∗)Td ≥ 0 (i ∈ I00 ∪ I0−),

∇Gi(x∗)Td ≤ 0 (i ∈ I00 ∪ I+0)
}
.

Note that we always have LVC(x∗) ⊆ L(x∗) in view of Lemma 4. Using
this modified linearized cone, we now define our modified Abadie constraint
qualification.

Definition 3 The VC-Abadie constraint qualification (VC-ACQ for short) is
said to hold at a local minimizer of (1) if LVC(x∗) ⊆ T (x∗).

Note that Definition 3 only requires that the modified linearized cone is a subset
of the tangent cone. Another idea would be to use equality of these two cones,
however, this would be a much stronger condition since the modified linearized
cone is polyhedral and, therefore, convex, whereas the tangent cone might be
non-convex.

The following note says that the VC-ACQ condition is strictly weaker than
standard ACQ.

Remark 3 Let x∗ ∈ R
n be a local minimizer of (1) such that standard ACQ is

satisfied at x∗. Then VC-ACQ also holds at x∗ since LVC(x∗) ⊆ L(x∗) = T (x∗).
Moreover, VC-ACQ is strictly weaker than the standard Abadie CQ. To see
this, let us consider Example 4 once again. There we have

LVC(x∗) = {
d ∈ R

n ∣
∣ d1 + d2 ≥ 0, d1 ≤ 0

} ⊆ T (x∗),

hence VC-ACQ holds whereas standard Abadie was violated.

Example 8 (Examples 3, 6, 7, cont’d) Again consider the minimizers x∗ and x̃∗
of Example 3 (cf. (17) and (19)). The definition of the modified linearized cone
gives

LVC(x∗) = {d ∈ R
4 | d1 = d4 ≥ 0, d2 = 0, d3 ≤ 0}

which is a proper subset of the linearized cone L(x∗) (cf. (21) in Example 6
where d3 is arbitrary). However, as already seen in Example 6, T (x∗) = L(x∗),
and thus VC-ACQ is trivially satisfied at x∗.
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Now consider x̃∗. Since Ĩ00 = ∅ (cf. (20)), we have

LVC(x̃∗) = L(x̃∗).

Hence, the VC-ACQ is not satisfied at x̃∗ because T (x̃∗) � L(x̃∗) as already
seen in Example 6.

Since VC-ACQ is weaker than standard ACQ, we cannot expect the KKT
conditions from Theorem 1 to hold at a local minimum x∗ where VC-ACQ
is satisfied. However, we get another optimality condition under VC-ACQ as
stated in our following result.

Theorem 4 Let x∗ be a local minimum of (1) such that the VC-ACQ condition
holds at x∗. Then there exist Lagrange multipliers λi ∈ R (i = 1, . . . , m), µi ∈
R (i ∈ Ih), ηH

i , ηG
i ∈ R (i = 1, . . . , l) such that

∇f (x∗) +
m∑

i=1

λi∇gi(x∗) +
p∑

i=1

µi∇hi(x∗) −
l∑

i=1

ηH
i ∇Hi(x∗) +

l∑

i=1

ηG
i ∇Gi(x∗) = 0

(31)

and

λi ≥ 0, gi(x∗) ≤ 0, λigi(x∗) = 0 ∀i = 1, . . . , m,

hi(x∗) = 0 ∀i ∈ Ih,

ηH
i = 0 (i ∈ I+), ηH

i ≥ 0 (i ∈ I00 ∪ I0−), ηH
i free (i ∈ I0+),

ηG
i = 0 (i ∈ I0+ ∪ I0− ∪ I+−), ηG

i ≥ 0 (i ∈ I00 ∪ I+0).

(32)

Proof The technique of proof is standard in optimization, and we present it
here only for the sake of completeness. Since x∗ is a local minimum of (1), it
follows that

∇f (x∗)Td ≥ 0 ∀d ∈ T (x∗).

Using the VC-ACQ condition, this implies

∇f (x∗)Td ≥ 0 ∀d ∈ LVC(x∗). (33)

Using the fact that LVC(x∗) is a polyhedral cone, and splitting all equality con-
straints into two inequalities, we may rewrite (33) as

∇f (x∗)Td ≥ 0 for all d with Ad ≤ 0, (34)
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where A denotes the matrix whose rows are given by the vectors

∇gi(x∗)T (i ∈ Ig),

∇hi(x∗)T (i ∈ Ih),

−∇hi(x∗)T (i ∈ Ih),

∇Hi(x∗)T (i ∈ I0+),

−∇Hi(x∗)T (i ∈ I0+),

−∇Hi(x∗)T (i ∈ I00 ∪ I0−),

∇Gi(x∗)T (i ∈ I00 ∪ I+0).

Farkas’ Lemma applied to (34) shows that there is a vector y satisfying the linear
system

ATy = −∇f (x∗), y ≥ 0. (35)

We now partition the vector y in the same way as the rows of the matrix A and
denote the elements of y by

λi (i ∈ Ig),

µ+
i (i ∈ Ih),

µ−
i (i ∈ Ih),

ηH,+
i (i ∈ I0+),

ηH,−
i (i ∈ I0+),

ηH
i (i ∈ I00 ∪ I0−),

ηG
i (i ∈ I00 ∪ I+0).

Finally, setting

µi := µ+
i − µ−

i (i ∈ Ih) and ηH
i := ηH,−

i − ηH,+
i (i ∈ I0+)

and

λi := 0 (i �∈ Ig), ηH
i := 0 (i ∈ I+), ηG

i := 0 (i ∈ I0+ ∪ I0− ∪ I+−),

we immediately obtain the desired statement from (35).

The conditions (31), (32) will sometimes be called the VC-KKT conditions
of the optimization problem (1). Note that the only difference between the
standard KKT conditions from (22), (23) and these VC-KKT conditions is in
the multipliers ηG

i for i ∈ I00: In the KKT conditions, these multipliers are zero,
whereas in the VC-KKT conditions, they are only nonnegative. Hence the VC-
KKT conditions are weaker than the standard KKT conditions, however, they
also hold under the weaker VC-Abadie constraint qualification.

We next present a number of sufficient conditions for VC-ACQ to hold. To
this end, we begin with the following result.
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Theorem 5 Let x∗ be a local minimum of (1), and consider the following
tightened nonlinear program (depending on x∗):

min f (x)

s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,
hi(x) = 0 ∀i = 1, . . . , p,
Hi(x) = 0, Gi(x) ≥ 0 ∀i ∈ I0+,
Hi(x) ≥ 0, Gi(x) ≤ 0 ∀i ∈ I0− ∪ I00 ∪ I+0 ∪ I+−.

(36)

If standard ACQ holds for this tightened program, then VC-ACQ is satisfied. In
particular, VC-ACQ holds if all constraints gi, hi, Gi, Hi are affine mappings.

Proof First note that LVC(x∗) is precisely the linearized cone of the tightened
program (36). Since (36) satisfies standard ACQ, it follows that LVC(x∗) is the
same as the usual tangent cone of the program (36). However, since the feasible
set of (36) is obviously contained in the feasible set of our original MPVC from
(1), it follows that the tangent cone of (36) is included in the tangent cone T (x∗)
of (1). Together, we therefore get LVC(x∗) ⊆ T (x∗).

Since standard ACQ is satisfied for affine mappings, the second part follows
immediately from the first statement.

Note that the assumptions of Theorem 5 are satisfied, in particular, for
Example 4.

As a direct consequence of Theorem 5, we obtain the following two
corollaries.

Corollary 1 Let x∗ be a local minimum of (1), and suppose that the gradients

∇hi(x∗) (i ∈ Ih), ∇Hj(x∗) (i ∈ I0+)

are linearly independent, and that there is a vector d̂ ∈ R
n satisfying

∇hi(x∗)Td̂ = 0 (i ∈ Ih), ∇Hj(x∗)Td̂ = 0 (i ∈ I0+)

and

∇gi(x∗)Td̂ < 0 (i ∈ Ig),
∇Gi(x∗)Td̂ < 0 (i ∈ I00 ∪ I+0),
∇Hi(x∗)Td̂ > 0 (i ∈ I00 ∪ I0−).

Then the VC-ACQ condition is satisfied at x∗.

Proof Our assumptions are precisely the standard MFCQ for the tightened
nonlinear program (36). Hence standard ACQ holds for (36). Theorem 5 then
implies that VC-ACQ is satisfied for MPVC.

Finally, we present a sufficient condition which uses an LICQ-type assump-
tion.
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Corollary 2 Let x∗ be a local minimum of (1), and suppose that the gradients

∇gi(x∗) (i ∈ Ig),

∇hi(x∗) (i ∈ Ih),

∇Hi(x∗) (i ∈ I0),

∇Gi(x∗) (i ∈ I00 ∪ I+0)

are linearly independent. Then VC-ACQ holds, and there exist unique Lagrange
multipliers satisfying (31), (32).

Proof The proof is similar to the one of Corollary 1 by noting that the stated
assumptions are precisely the standard LICQ for the tightened nonlinear pro-
gram from (36).

We believe that the linear independence assumption used in Corollary 2 is
rather natural. In fact, if we view the two factors Gi(x) and Hi(x) of the mapping
θi from (12) separately, then the assumptions of Corollary 2 just say that the
gradients of all active constraints are linearly independent. Hence this condition
is a natural modification of the standard LICQ assumption.

Moreover, it is interesting to note that we obtain precisely the LICQ-type
assumption from Corollary 2 if we view the MPVC as a mathematical pro-
gram with combinatorial constraints in the sense of [16]. We briefly outline this
observation in the following remark.

Remark 4 Using the framework of [16], the MPVC can be formulated as

min f (x) s.t.
(
g, h, (G1, H1), . . . , (Gl, Hl)

) ∈ Z

with the set

Z := R
m− × {0}p × Pl,

where P is the union of the second orthant in R
2 with the x1-axis. Let us write

c(x) := (
g(x), h(x), (G1(x), H1(x)), . . . , (Gl(x), Hl(x))

)
.

Then a component ci of the constraint function c is called active at a feasible
point x if the corresponding component zi of the vector z := c(x) is active in
Z in the sense that there exist sequences {zk} ⊆ Z and {αk} → 0 with zk → z
and zk + αkei �∈ Z, where ei denotes the ith unit vector of appropriate dimen-
sion. Using this definition and some elementary calculations, it follows that the
constraint functions gi (i ∈ Ig), hi (i ∈ Ih), Hi (i ∈ I0), and Gi (i ∈ I00 ∪ I+0) are
active at a given local minimum x∗ of (1). Since the regularity assumption from
[16] requires the gradients of the active constraints (in the above sense) to be
linearly independent, we obtain precisely the assumption from Corollary 2.
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6 Final remarks

We introduced a new class of constrained optimization problems that we call a
mathematical program with vanishing constraints, MPVC for short. Programs
of this class occur, in particular, in the context of topology optimization. While
several standard constraint qualifications are unlikely to be satisfied, the Abadie
constraint qualification (and a suitable modification introduced in this paper)
has a good chance to hold for many practical problems. This is very much
in contrast to similar results for the related class of mathematical programs
with equilibrium constraints, so an MPVC seems to be easier than this class of
problems.

We therefore believe that it is worth studying MPVCs directly and inde-
pendently as an interesting class of optimization problems. In particular, we
hope that it is also possible to find suitable algorithms for solving MPVCs. One
possibility would be to adapt the SQP-type method from [16], although, in the
moment, this is just a local method, and finding globally convergent methods
might be more important. We leave this as a part of our future research, and
we are sure that some of the constraint qualifications introduced in this paper
will play an important role in the convergence analysis of such an algorithm.
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