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Abstract We present a geometrical interpretation of the weighting method for
constrained (finite dimensional) vector optimization. This approach is based on
rigid movements which separate the image set from the negative of the order-
ing cone. We study conditions on the existence of such translations in terms
of the boundedness of the scalar problems produced by the weighting method.
Finally, using recession cones, we obtain the main result of our work: a sufficient
condition under which weighting vectors yield solvable scalar problems.
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Fig. 1 In (a) we have the cone K. In (b) the vectors in the above cone are � u, while those in the
other cone are � u . In (c) we have vectors which are � u and ≺ u in the above and the below cone,
respectively
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1 Introduction

In this work we consider the problem of finding weakly efficient points (or
weak Pareto minimal elements) of a constrained vector optimization problem.
Our setting will be a finite dimensional linear space, say R

m, with the canon-
ical inner product 〈·, ·〉, and a preference order induced by K ⊂ R

m, a closed
convex and pointed (i.e., −K ∩ K = {0}) cone with nonempty interior int(K)
(see Figure 1(a)). Our objective function, defined on a subset of another finite
dimensional space, will take its values in R

m. To be more precise, the space R
m

is endowed with the following partial order

u � v (v � u) for u, v ∈ R
m iff v − u ∈ K (see Fig. 1b),

and the following stronger relation

u ≺ v (v � u) for u, v ∈ R
m iff v − u ∈ int(K) (see Fig. 1c).

Among the advantages of the notation “0 � w” over “w ∈ K”, we mention
that K-inequalities can be handled as regular ones, e.g., two of such inequalities
can be added up, or multiplied by nonnegative numbers, etc.

Regarding the importance of considering general ordering cones, we point
out that even though the vast majority of real life problems formulated as vec-
tor-valued ones deals with the component-wise partial order, i.e., the one which
arises from the Paretian cone, there are many others which require preference
orders induced by closed convex cones other than the nonnegative orthant. Such
cones have been analyzed in [1] (based on the theoretical results of [2]), where
problems of portfolio selection in security markets require finding weak Pareto
minimal points with respect to feasible portfolio cones, which are nonlattice,
that is to say cones with more extreme rays than the ambiance space.



On the choice of parameters for the weighting method 203

Now we define our problem. Given a subset � of R
n and a mapping F : � →

R
m, the vector optimization problem, understood in the weak Pareto sense

([10,11]),

(P) min
x∈�

F(x),

consists of finding a feasible point x∗ (x∗ ∈ �) such that F(x∗) is weakly efficient
(or a weak Pareto minimal element) for F(�), i.e., such that

F(x) ≺ F(x∗)

does not hold for any feasible x. We recall that x∗ ∈ � is efficient (or Pareto
minimal element) for F(�) if there does not exist x ∈ � such that F(x) � F(x∗),
with F(x) �= F(x∗) ([10,11]). Trivially, efficient points are also weakly efficient.

Scalarization techniques [8,9,11,12] for solving problem (P) substitute the
original vector problem by a suitable scalar one, in such a way that the opti-
mal solutions of the new problem are also optimal for the original one. The
main advantage of this approach, from a practical point of view, is that we can
use a large number of fast and reliable methods developed for single-valued
optimization in order to solve vector problems.

One of the most widely used scalarization techniques in multicriteria (i.e., in
the Paretian cone case or, in other words, the point-wise partial order) is the
weighting method, which consists of minimizing a weighted sum of the different
objectives. The weights, which are critical for the method, in general are not
known in advance, so computational implementations of this technique are not
always straightforward. In fact, unproper choices of weighting vetors may lead
to scalar problems without optimal solutions.

In this paper we study an extension of the weighting method for vector opti-
mization. In Sect. 2, we show that the method can be derived from the following
procedure: if possible, first, by adding an adequate vector, separate the image
of the objective from the negative of the ordering cone and then find the closest
point at the image set from the separating hyperplane. We devote this section to
study existence conditions of translations that separate the image and the nega-
tive of the cone. An interpretation of such conditions in terms of the weighting
method is presented. Roughly speaking, it turns out that the existence of suit-
able (separating) rigid movements is deeply connected with the boundedness
of the scalar problems produced by the weighting method.

In the last section we take a step further and study the existence of optima
of the scalarized problems. This analysis yelds the main result of this article:
a new condition, under which a vector of weights determines a solvable scalar
problem (whose optima are weakly efficient). We end our work by pointing
out that cone-boundedness, a usually required assumption in classical results
on existence of efficient points, is not assumed on our analysis. By means of
an example, we show that our condition can be satisfied even in the absence
of cone-boundedness of the image set. Furthermore, we prove that this new
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condition is implied by cone-boundedness and, therefore, is a more general
assumption.

2 The weighting method scalarization and the existence of suitable rigid
movements

In this work, we will say that a scalar minimization problem is a scalarization of
(P) if its optimal solutions are weakly efficient for (P) (see, e.g., [10] and [11]).

The scalarization procedure which consists of minimizing a weighted sum of
the different objectives is known as the weighting method, and can be traced up
to the mid fifties and early sixties [6,15].

Roughly speaking, for a given vector optimization problem, as (P), the
weighting method consists of minimizing the scalar-valued problem:

min
x∈�

〈w, F(x)〉 , (1)

where w is the weighting vector and w ∈ K∗ := {y ∈ R
m | 〈v, y〉 ≥ 0 ∀ v ∈ K},

the positive dual (or polar) of K..
Despite the simplicity and notoriety of the weighting method -practically no

multiobjective or vector optimization book fails to discuss it (e.g., [11,14])-,
its implementation aspects are not fully satisfactory. Indeed, (1) may be an
unbounded problem and, even if it is bounded, it may lack minimizers. Bound-
edness of (1) will be discussed in this section, and existence of minimizers for
such a bounded problem will be analyzed in Sect. 3. Of course, there are some
simple cases for which this is not an issue; for instance, if F(�) is compact,
all scalarizations as (1) will be useful, since this kind of problems always has
optimal solutions.

Even though proving that an optimal solution of (1) is weakly efficient for
(P) is an easy task (by a simple “ad absurdum” reasoning), we sketch not just a
proof of this fact, but a whole different presentation of the method.

For this geometrical approach, we will focus our attention on problems for
which the convex hull of F(�), after a suitable rigid movement, does not touch
−K, i.e.,

[conv(F(�)) + u0] ∩ (−K) = ∅ , for some u0 ∈ R
m . (2)

It is easy to see that we do not loose generality on assuming u0 = 0. Indeed,
if Fu(x) := F(x) + u, for u ∈ R

m, and (Pu) is the vector problem minx∈� Fu(x),
then, (Pu) satisfies conv(Fu(�)) ∩ (−K) = ∅, for all u � u0, where u0 is given
by (2). Moreover, these problems ( (P) and (Pu)) have the same optima.

Assuming condition (2), with u0 = 0, let us now consider the problem of how
to find weakly efficient solutions for problem (P). Observe that the optimality
condition F(x) ⊀ F(x∗) ∀ x ∈ � can be written as

[F(x∗) − int(K)] ∩ F(�) = ∅ . (3)
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Fig. 2 The vertex of the shifted cone K in (a) is weak Pareto minimal for F(�), as well as all points
in the line supported by the cone. In (b) the shifted cone touches F(�) just at its vertex, which is
(strong) Pareto optimal

Note that F(x∗) − int(K) is the interior of the cone obtained by translating −K
till the moment F(x∗) becomes its vertex (see Fig. 2). Note too that other points
on the intersection of the boundaries of F(�) and shifted cones of the form
F(x∗) − int(K) are also weakly efficient (Fig. 2a. Whenever the vertex is the
only point in that intersection, it is Pareto optimal for F(�) (Fig. 2b).

We will devote our efforts to locate those weakly efficient points x∗, which
are ”F’s pre-images of shifted cones’ vertices satisfying (3). But how can we
effectively locate such vertices?

Let us now give an answer to the above question. Since we are assuming
that conv(F(�)) ∩ (−K) = ∅, by virtue of the Convex Separation Theorem
(see [3], Theorem 4.7 or [4], Proposition B13), there exists a hyperplane Hw
that separates −K and conv(F(�)). Since K is a closed cone, we do not loose
generality if we assume that Hw is a subspace and ||w|| = 1. We therefore have
that 〈w, y〉 ≤ 0 ≤ 〈w, z〉 ∀ y ∈ −K and ∀ z ∈ conv(F(�)). In particular,

〈w, y〉 ≤ 0 for all y ∈ −K (4)

and
〈w, F(x)〉 ≥ 0 for all x ∈ � . (5)

Note that (4) is telling us that w is an element of K∗.
According to Fig. 3, good candidates for vertices F(x∗) of shifted cones of the

above mentioned form, which touch F(�) without overlapping image’s points
other than the boundary ones, are the closest points from Hw at F(�).

At this point, it’s not difficult to prove that such points are indeed weakly
efficient for F(�); in other words, that x∗ is a weak Pareto minimal element
of problem (P) if F(x∗) realizes the minimal distance between F(�) and Hw.
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Fig. 3 The closest points in F(�) to Hw are weakly efficient

Calling Pw the orthogonal projector onto the separating hyperplane Hw, i.e.,

Pw(y) := y − 〈w, y〉w , (6)

the distance between a point y ∈ R
m and Hw is clearly given by ||y − Pw(y)||.

Therefore, we have the following result:
If the unitary m-vector w satisfies (4)–(5), then every optimal solution of the

scalar problem

(S) min
x∈�

||F(x) − Pw(F(x))||

is weakly efficient for the vector problem (P).
In order to prove the above statement, suppose that x∗, an optimal solution

of (S), is not weakly efficient for (P); this means that the optimality condition (3)
does not hold, so there exist ȳ ∈ int(K) and x̄ ∈ � such that F(x∗) = ȳ + F(x̄).
Now, it is easy to see that ||F(x∗) − Pw(F(x∗))||2 > ||F(x̄) − Pw(F(x̄))||2, in
contradiction with the optimality of x∗.

Finally, observe that from the definition of the orthogonal projector Pw given
in (6), from (5) and the fact that ||w|| = 1, it follows that ||F(x) − Pw(F(x))|| =
〈w, F(x)〉 for all x ∈ �. Hence, we obtain, the following well-known result (see,
for example, [11, Theorem 3.1.1 ]):
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If w ∈ K∗\{0}, then all optimal solutions, if any, of

min
x∈�

〈w, F(x)〉, (7)

are weakly efficient for (P).
Indeed, if x∗ ∈ � is a minimizer of (7), the optimal set of (7) (i.e., of (S))

coincides with the optimal set of minx∈� 〈w, Fu∗(x)〉, where u∗ = −F(x∗).
Moreover, Fu∗ satisfies (5), and (4) trivially holds. The result follows, since,
under conditions (4)–(5), as we have just seen, all optima of (S) are weakly
efficient for (P).

Up to now, we know that by performing a rigid movement, if necessary, we
can try to compute (at least theoretically) a weakly efficient solution of problem
(P), by minimizing the distance between F(�) (or F(�) + u, for some u ∈ R

m)
and a hyperplane that separates this set from −K. So at this point we go back
to the very beginning of our discussion and study when we can perform a rigid
movement which prevents the convex hull of F’s image from touching −K. That
is to say, we will see in which cases there exists u0 such that (2) holds.

The following fact will be needed.

K ∩ (
K∗ \ {0}) �= ∅ . (8)

In order to verify it, note that if (8) does not hold, then, by the nonstrict Convex
Separation Theorem, there exists 0 �= w ∈ R

m such that

〈w, v〉 ≥ 0 ∀ v ∈ K, (9)

〈w, v〉 ≤ 0 ∀ v ∈ K∗\{0}. (10)

By (9), w ∈ K∗. Since w �= 0, by virtue of (10), ||w||2 = 〈w, w〉 ≤ 0, in contra-
diction with w �= 0.

Recall now that the recession cone of a convex set C ⊂ R
m (see, e.g., [13]) is

the set

0+C := {v ∈ R
m | C + tv ⊂ C ∀ t ≥ 0}.

We begin the analysis with a sufficient condition for the existence of a separat-
ing translation. We will first study the general case of a convex set C ⊂ R

m. As
usual, cl(C) stands for the closure of C.

Lemma 1 Let C ⊂ R
m be convex. If 0+cl(C) ∩ (−K) = {0}, then there exists

u ∈ R
m such that

[C + u] ∩ (−K) = ∅.
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Proof Suppose that

[C + u] ∩ (−K) �= ∅, ∀ u ∈ R
m. (11)

It is enough to show that, under this assumption, 0+cl(C) ∩ (−K) �= {0}.
By (8), we can take e ∈ K ∩ (K∗ \ {0}) and for each k ∈ N, we use (11) to

obtain

xk ∈ [C + ke] ∩ (−K).

Therefore,

xk = ck + ke, ck ∈ C, xk ∈ −K.

Since e ∈ K∗ and xk ∈ −K, we have 〈e, xk〉 ≤ 0, i.e., 〈e, ck + ke〉 ≤ 0, and so,
using the Cauchy-Schwartz inequality,

k‖e‖2 ≤ 〈−e, ck〉 ≤ ‖e‖ ‖ck‖ ,

which implies ‖ck‖ ≥ k‖e‖. So

lim
k→∞

‖ck‖ = ∞ .

We claim that the accumulation points of the normalized sequence {ck/‖ck‖}
belong to 0+cl(C). Indeed, let c = limj→∞ ckj/‖ckj‖, x ∈ cl(C) and t ≥ 0. Since
{ck} diverges, we have that

x + tc = lim
j→∞(1 − t/‖ckj‖)x + (t/‖ckj‖)ckj .

Therefore, since x and ck belong to the convex set cl(C), the above sequence of
their convex combinations is in cl(C), and so x + tc ∈ cl(C). Hence, c ∈ 0+cl(C),
as we claimed. Observe that the sequence {ck/‖ck‖} has at least one accumula-
tion point because it is bounded.

Note that

ck = xk − ke.

Since −K is a closed convex cone, ck ∈ −K and the accumulation points of
{ck/‖ck‖} also belong to −K. Therefore, 0+cl(C) ∩ (−K) �= {0}. ��

Now we discuss a necessary condition for the existence of a separating
translation.



On the choice of parameters for the weighting method 209

Lemma 2 Let C ⊂ R
m be convex. If there exists u ∈ R

m such that [C + u] ∩
(−K) = ∅, then

0+C ∩ int(−K) = ∅.

Proof We will show that, if

0+C ∩ int(−K) �= ∅ , (12)

then for any u ∈ R
m,

[C + u] ∩ (−K) �= ∅ . (13)

Assume that (12) holds and take v ∈ 0+C ∩ int(−K). For any u ∈ R
m and

c ∈ C, there exists some (large enough) t > 0 such that

(1/t)(c + u) + v ∈ −K .

Therefore c + u + tv ∈ −K. On the other hand, since 0+C = 0+[C + u],
v ∈ 0+[C + u] and so we have c + u + tv ∈ C + u. Altogether, we deduce that
c + u + tv ∈ [C + u] ∩ (−K) and (13) holds for any u. ��

We end this section by giving a straightforward interpretation of
Lemmas 1 and 2 from the weighting method’s point of view.

Proposition 1 If 0+cl(conv(F(�))) ∩ (−K) = {0}, then there exists a vector
w ∈ K∗\{0} such that the problem

minx∈�〈w, F(x)〉

is bounded (from below). Conversely, if the above problem is bounded for some
w ∈ K∗\{0}, then 0+conv(F(�)) ∩ int(−K) = ∅.

Proof First assume that 0+cl(conv(F(�))) ∩ (−K) = {0}. By Lemma 1, with
C = conv(F(�)), there exists u0 ∈ R

m such that conv(F(�) + u0) ∩ (−K) = ∅ .
Then, using again the nonstrict Convex Separation Theorem and the fact that
−K is a closed cone, we have that

〈w, y〉 ≤ 0 ≤ 〈w, Fu0(x)〉 ∀ x ∈ �, y ∈ −K ,

for some w ∈ K∗\{0}. Hence,

〈w, −u0〉 ≤ 〈w, F(x)〉 ∀ x ∈ � .

Let us now see the converse. Assume that, for some α ∈ R and w ∈ K∗\{0},

〈w, F(x)〉 ≥ α ∀ x ∈ � . (14)
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Suppose that 0+conv(F(�)) ∩ int(−K) �= ∅, and let v be a nonzero m-vector in
that intersection. Then, for any z ∈ conv(F(�)) and t ≥ 0, z + tv ∈ conv(F(�)).
So, by Caratheodory’s Theorem ([5], Proposition 1.3.1),

z + tv =
m+1∑

i=1

λiF(xi) , (15)

where xi ∈ �, λi ≥ 0 for all i = 1, 2, . . . m + 1 and
∑m+1

i=1 λi = 1. From (15) and
(14), we get

〈w, z + tv〉 ≥ α > −∞ ∀ t ≥ 0 . (16)

But, since v ∈ int(−K) and w ∈ K∗\{0}, we have

lim
t→+∞〈w, z + tv〉 = −∞ ,

in contradiction with (16). So such v cannot exist and the conclusion follows. ��
The condition 0+cl(conv(F(�))) ∩ (−K) = {0}, which appears in the fisrt

part of the previous corollary, has already been used for ensuring existence of
optima in vector optimization problems (see [7]). On the other hand, Theorem
3.2.12 [14], when applied to our problem, shows that cl(conv(F(�)) has efficient
points.

3 On the choice of the weighting vector

In the previous section we obtained, via a geometrical approach, necessary and
sufficient conditions for the boundedness of the (scalar) minimization prob-
lems of the weighting method. In this section, our goal is to give a criterion for
the proper choice of the weighting vectors. First we study existence of optimal
solutions of the associated scalar problems.

Theorem 1 Take w �= 0 and let Hw = {y ∈ R
m | 〈w, y〉 = 0}.

Suppose that

1. F(�) is closed,
2. the scalar problem

min
x∈�

〈w, F(x)〉 (17)

is bounded from below,
3. 0+cl(conv(F(�))) ∩ Hw = {0}.
Then, problem (17) has an optimal solution.

Proof Let

ν := infx∈�〈w, F(x)〉 .
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There exists a minimizing sequence {xk} ⊂ �, i.e.,

lim
k→∞

〈w, F(xk)〉 = ν .

If {F(xk)} has a bounded subsequence, as F(�) is closed, there exists x̄ ∈ � such
that F(x̄) is an accumulation point of {F(xk)}. So, x̄ is an optimal solution of
(17).

If {F(xk)} has no bounded subsequences, then

lim
k→∞

‖F(xk)‖ = ∞ .

We will show that this condition contradicts our assumptions. Refining the
sequence if necessary, we can assume that {F(xk)/‖F(xk)‖} converges to some
non-null m-vector y ∈ R

m. Since {〈w, F(xk)〉} converges to ν,

〈w, y〉 = lim
k→∞

1
‖F(xk)‖

〈
w, F(xk)

〉
= 0,

and y ∈ Hw. By means of the same reasoning used in Lemma 1, we see that
y ∈ 0+cl(conv(F(�))). Altogether,

y ∈ 0+cl(convF(�))) ∩ Hw, ‖y‖ = 1 ,

in contradiction with our hypotheses. ��
We now give conditions which are equivalent to assumptions 2 and 3 of our

last theorem. For w �= 0 in R
m, let us call Sw the half-space determined by w,

that is to say,

Sw := {y ∈ R
m | 〈w, y〉 ≤ 0}.

Lemma 3 Conditions 2 and 3 of Theorem 1 are equivalent to the following one:

0+cl(conv(F(�))) ∩ Sw = {0} , (18)

which, in turn, is equivalent to

w ∈ int
( [

0+cl(conv(F(�)))
]∗

)
. (19)

Proof First we will show that conditions 2 and 3 of Theorem 1 are equivalent to
(18). Suppose that conditions 2 and 3 hold. We will prove (18) by contradiction.
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Assume that z0 ∈ 0+cl(conv(F(�))) ∩ Sw and z0 �= 0. Since z0 ∈ Sw, we have
〈w, z0〉 ≤ 0. So, from condition 3 it follows that

〈w, z0〉 < 0 . (20)

Now take x0 ∈ �. Due to the fact that z0 ∈ 0+cl(conv(F(�))), we have that
F(x0)+kz0 ∈ cl(conv(F(�))) for all k = 1, 2, . . . Hence, there exists a sequence
{yk} ⊂ conv(F(�)) such that

||yk − (F(x0) + kz0)|| < 1 for all k = 1, 2, . . .

Combining the above inequality with Cauchy-Schwartz inequality, it follows
that

〈w, yk〉 = 〈w, yk − (F(x0) + kz0)〉 + 〈w, F(x0) + kz0〉
≤ ‖w‖ + 〈w, F(x0)〉 + k〈w, z0〉 for all k = 1, 2, . . . ,

Now combining this result with (20), we obtain limk→∞〈w, yk〉 = −∞. Whence,
infy∈conv(F(�))〈w, y〉 = −∞, which implies infx∈�〈w, F(x)〉 = −∞, in contradic-
tion with assumption 2. So (18) must hold.

Let us now prove the converse, i.e., that (18) implies conditions 2 and 3.
Clearly, (18) implies condition 3. Suppose condition 2 does not hold; then
infx∈�〈w, F(x)〉 = −∞. So, there exists a sequence {xk} in �, such that

lim
k→∞

〈w, F(xk)〉 = −∞ .

Trivially, ‖F(xk)‖ → +∞. As F(xk) �= 0 for large enough k, for those k’s we
consider the normalized sequence

yk = F(xk)

‖F(xk)‖ .

Refining the sequence if necessary, we may assume that yk → ȳ. Clearly,
‖ȳ‖ = 1. Since 〈w, F(xk)〉 → −∞, we have

〈w, ȳ〉 ≤ 0 . (21)

We claim that ȳ ∈ 0+cl(conv(F(�))). Take λ > 0 and z ∈ cl(conv(F(�))).
Note that λ/‖F(xk)‖ < 1 for large enough k. Since

lim
k→∞

(
1 − λ

‖F(xk)‖
)

z + λ

‖F(xk)‖F(xk) = z + λȳ,

it follows that z+λȳ ∈ cl(conv(F(�))). So, as we claimed, ȳ ∈ 0+cl(conv(F(�))).
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Therefore, by (21), ȳ ∈ 0+cl(conv(F(�))) ∩ Sw, with ȳ �= 0, in contradiction
with (18). So condition 2 must hold. Hence, conditions 2 and 3 are equivalent
to (18).

Finally we prove the equivalence between (18) and (19). Assume that (18)
does not hold, that is to say, there exists u such that

0 �= u ∈ 0+cl(conv(F(�))) ∩ Sw .

We claim that this implies that (19) does not hold neither. Indeed, for all ε > 0
we have

〈w − εu, u〉 = 〈w, u〉 − ε‖u‖2 ≤ −ε‖u‖2 < 0 ,

where the first inequality follows from the fact that u ∈ Sw and the last one
from u �= 0. Hence, w − εu /∈ [0+cl(conv(F(�)))]∗. Therefore, as ε > 0 can be
arbitrarily small, (19) does not hold.

Assume now that (19) does not hold, that is to say, there exists a sequence
{wk} such that

lim
k→∞

wk = w and wk /∈ [0+cl(conv(F(�)))]∗ .

We claim that this implies that (18) does not hold neither. Indeed, for each k,
there exists uk such that

uk ∈ 0+cl(conv(F(�))) and 〈wk, uk〉 < 0 .

As 0+cl(conv(F(�))) is a cone, we may assume that ‖uk‖ = 1. Refining the
sequence, if necessary, we may assume that {uk} converges to some ū. Since
{wk} converges to w, we have

〈w, ū〉 ≤ 0 ,

or equivalently, ū ∈ Sw. Moreover, ‖ū‖ = 1 and, since 0+cl(conv(F(�))) is
closed, we also have that ū ∈ 0+cl(conv(F(�))). Therefore, (18) does not hold
and the proof is complete. ��

Altogether, the previous results of this section give us the following theorem
regarding the proper choice of vectors for the weighting method.

Theorem 2 Take w �= 0 and suppose that F(�) is closed. If

0+cl(conv(F(�))) ∩ Sw = {0},

or, equivalently, if

w ∈ int
( [

0+cl(conv(F(�)))
]∗

)
,
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then problem

min
x∈�

〈w, F(x)〉

has an optimum.

Proof Suppose that w satisfies the assumptions. Then, by Lemma 3, conditions
2 and 3 of Theorem 1 hold. As F(�) is closed, from that theorem we conclude
that the scalar problem minx∈�〈w, F(x)〉 has optimal solutions. ��

We are now in position to exhibit a sufficient condition for existence of
weakly efficient solutions for the vector-valued problem (P), together with an
original criterion for choosing adequate weighting vectors.

Corollary 1 Suppose that F(�) is closed. If

K∗ ∩ int
([

0+cl(conv(F(�)))
]∗) �= ∅, (22)

then the vector-valued problem (P) has weakly efficient solutions. Moreover, for
any w �= 0 in the above intersection, the scalar-valued problem

min
x∈�

〈w, F(x)〉

has optimal solutions, which are weakly efficient for (P).

Proof If 0 ∈ K∗ ∩ int(
[
0+cl(conv(F(�)))

]∗
), then the set

[
0+cl(conv(F(�)))

]∗
coincides with the whole space R

m and the above intersection is equal to K∗. So,
assuming (22), there always exists some w�=0, w∈K∗∩ int(

[
0+cl(conv(F(�)))

]∗
).

By Theorem 2, the scalar problem minx∈�〈w, F(x)〉 has optimal solutions. As
w ∈ K∗ \ {0}, weak optimality of these scalar optima follows from classical
results on the weighting method mentioned on Sect. 2 (see the statement made
on (7)). ��

Some comments are in order. First, condition (22) ensures that

int(K∗) ∩ int
([

0+cl(conv(F(�)))
]∗) �= ∅.

So, for w in the above intersection, the �-minimizers of 〈w, F(x)〉 will not just be
weakly efficient points for (P), but, actually, efficient ones. Indeed, it is a well-
known fact that whenever the weighting vector w is in the topological interior
of K∗, all optima of minx∈�〈w, F(x)〉 are Pareto optimal points for (P).

Finally, we point out that condition (22) does not require K-boundedness of
the image set. The K-boundedness is frequently used for ensuring existence of
efficient points. Actually, there are two notions of K-boundedness. According
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Fig. 4 F(�), the epigraph of
the function t �→ − log(t + 1),
is not K-bounded

F (Ω)

to [10, Definition 3.1], in our setting, C ⊂ R
m is K-bounded if there exist y such

that

C ⊆ K + {y},

or, equivalently, y � z for all z ∈ C. On the other hand, according to [14,
Definition 3.2.4], a nonempty set C ⊂ R

m is K-bounded if

C+ ∩ (−K) = {0},

where C+ = {
x : ∃ {xk} ⊂ C, {αk} ⊂ R++ such that αkxk → x

}
(see the

definition which follows Theorem 3.1.3 in [14]).
Let us now see an example where condition (22) holds and F(�) is not

K-bounded (in both senses). Take K = R
2+, � = (−1, +∞) × [0, +∞) and

F : � → R
2, given by

F(x1, x2) := (x1, x2 − log(x1 + 1)).

Clearly, F(�) is the epigraph of the real-valued function (−1, +∞) � t �→
− log(t + 1) (see Fig. 4). It is easy to check that F(�) is not K-bounded, neither
in the sense of [10] nor in the sense of [14]. On the other hand,

0+cl(conv(F(�))) = R
2+ .
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Therefore, condition (22) holds. Moreover, any weighting vector w ∈ R
2++

defines a scalar problem with optimal solutions which are weakly efficient.
Condition (22) is implied by K-boundedness (in the sense of [10, Definition

3.1]), because, if F(�) is K-bounded, then

0+cl(conv(F(�))) ⊂ K ,

and therefore K∗ ⊂ [
0+cl(conv(F(�)))

]∗. Hence, under the K-boundedness
assumption, condition (22) holds.
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5. Bertsekas, D., Nedić, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scien-

tific, Belmont (2003)
6. Gass, S., Saaty, T.: The computational algorithm for the parametric objective function. Naval

Res. Logist. Q. 2, 618–630 (1955)
7. Hamel, A.H., Heyde, F., Lohne, A., Tammer, C., Winkler, K.: Closing the duality gap in linear

vector optimization. J. Convex Analysis 11, 163–178 (2004)
8. Jahn, J.: Scalarization in vector optimization. Math. Program. 29, 203–218 (1984)
9. Luc, D.T.: Scalarization of vector optimization problems. J. Optim. Theory and Appl. 55(1),

85–102 (1987)
10. Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economy and Mathematical Sys-

tems, vol. 319. Springer, Berlin Heidelberg New York (1989)
11. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer, Norwell (1999)
12. Pascoletti, A., Serafini, P.: Scalarizing vector optimization problems. J. Optim. Theory

Appl. 42(4), 499–524 (1984)
13. Rockafellar, R.T.: Convex Analysis. Princeton University Press, New Jersey (1970)
14. Sawaragi, Y., Nakayana, H., Tanino, T.: Theory of Multiobjective Optimization. Academic, Or-

lando (1985)
15. Zadeh, L.: Optimality and non-scalar valued performance criteria. IEEE Trans. Autom. Con-

trol 8, 59–60 (1963)


	On the choice of parameters for the weighting method in vector optimization
	Abstract
	Introduction
	The weighting method scalarization and the existence of suitable rigid movements
	On the choice of the weighting vector
	Acknowledgments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


