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Abstract Two corrector–predictor interior point algorithms are proposed for
solving monotone linear complementarity problems. The algorithms produce
a sequence of iterates in the N−∞ neighborhood of the central path. The first
algorithm uses line search schemes requiring the solution of higher order poly-
nomial equations in one variable, while the line search procedures of the second
algorithm can be implemented in O(m n1+α) arithmetic operations, where n is
the dimension of the problems, α ∈ (0, 1] is a constant, and m is the maximum
order of the predictor and the corrector. If m = Ω(log n) then both algorithms
have O(

√
nL) iteration complexity. They are superlinearly convergent even for

degenerate problems.
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1 Introduction

Predictor–corrector methods play a special role among interior point methods
for linear programming (LP). They operate between two neighborhoods N ⊂
N of the primal–dual central path [21,22]. The role of the predictor step is to
increase optimality, while the role of the corrector is to increase proximity to
the central path. At a typical iteration one is given a point z ∈ N with (nor-
malized) duality gap µ = µ(z). In the predictor step one computes a point
z ∈ N with reduced duality gap, µ = µ(z ) < µ. The corrector step produces
a point z+ ∈ N , with µ(z+) = µ(z ), in the original neighborhood, so that
the predictor–corrector scheme can be iterated. Predictor–corrector algorithms
have “polynomial complexity”, in the sense that for any ε > 0 and any starting
point z0 ∈ N they find a feasible point z ∈ N with duality gap µ(z) < ε in
at most O

(
nι log

(
µ(z0)/ε

))
iterations, for some ι ≥ 0.5. In the case of a lin-

ear programming problem with integer data of bit-length L, this implies that
a feasible point z with duality gap µ(z) = O(2−L) can be obtained in at most
O(nιL) iterations. A rounding procedure involving O(n3) arithmetic operations
can then be applied to obtain an exact solution of the LP. Therefore, in this case
we say that the algorithm has “O(nιL) iteration complexity”.

Extensive numerical experiments show convincingly that predictor–correc-
tor methods perform better when using large neighborhoods of the central
path. Paradoxically, the best theoretical computational complexity results were
obtained for small neighborhoods of the central path. For example, the Mizuno-
Todd-Ye predictor–corrector method (MTY) [10] uses small neighborhoods of
the central path (defined by the δ2 proximity measure) and has O(

√
nL) itera-

tion complexity—the best iteration complexity obtained so far for any interior
point method. Predictor–corrector methods of MTY type are more difficult to
develop and analyze in large neighborhoods of the central path (e.g., defined
by the δ∞ or the δ−∞ proximity measures; see the definitions in the next section).
This is due to the fact that correctors are rather inefficient in such neighbor-
hoods. It is known that one needs O(n) corrector steps in order to reduce the
δ∞ proximity measure by a factor of 0.5 (see [2]). Therefore, a straightforward
generalization of the MTY algorithm would have O(n1.5L) iteration complex-
ity. Using a very elegant analysis, Gonzaga showed that a predictor–corrector
method based on a δ∞ neighborhood of the central path has O(nL)-iteration
complexity [5]. However, his predictor–corrector method does no longer have
the simple structure of MTY, where a predictor is followed by just one cor-
rector. In Gonzaga’s algorithm a predictor is followed by an apriori unknown
number of correctors. In fact, the above mentioned complexity result is proved
by showing that the total number of correctors is at most O(nL).

Predictor–corrector methods are superlinearly convergent, a very important
feature which is one of the reasons for their excellent practical performance.
For example, Ye et al. [24] proved that the duality gap of the sequence pro-
duced by the MTY algorithm converges quadratically to zero. This result was
extended to monotone linear complementarity problems (LCP) that are non-
degenerate, in the sense that they have a strictly complementarity solution
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[7,23]. The nondegeneracy assumption is not restrictive, since according to [11]
a large class of interior point methods, which contains MTY, can have only lin-
ear convergence if this assumption is violated. However, it is possible to obtain
superlinear convergence for degenerate problems either by modifying the algo-
rithm so that it detects “the variables that are not strictly complementary” and
treats them differently [9,15–17], or by using higher order predictors [18,20].
All the superlinear convergence results mentioned above were proved for small
neighborhoods of the central path.

The use of higher order methods also leads to interior point methods in the
large neighborhood of the central path with improved iteration complexity,
like those considered in [6,12,25]. The iteration complexity of the algorithms
from [6,12] can be made arbitrarily close to O(

√
nL), while the algorithm from

[25], which is of order nω, ω > 0, has O(
√

nL) iteration complexity. These
algorithms are not of a predictor–corrector type, and they are not superlinearly
convergent. A superlinear interior point algorithm for sufficient linear comple-
mentarity problems in the δ−∞ neighborhood was proposed by Stoer [19], but
no complexity results have been proved for this algorithm. An interior point
method for LP, acting in a large neighborhood of the central path defined by
a self-regular proximity measure, with O(

√
nL log n) iteration complexity and

superlinear convergence, was proposed in [13]. The relation between the neigh-
borhood considered in that paper and the δ−∞ neighborhood will be examined
in Sect. 2. The method of [13] was developed only for LP, in which case a strictly
complementary solution always exists. It appears that a straightforward gener-
alization of this method for LCP is not likely to be superlinearly convergent on
degenerate problems.

In a recent paper [14] we proposed a predictor–corrector method for mono-
tone LCP using δ−∞ neighborhoods of the central path, which has O(

√
nL)-itera-

tion complexity and is superlinearly convergent even for degenerate problems.
The method employed a predictor of order nω, ω > 0, and a first order correc-
tor. An anonymous referee pointed out that the algorithm could be presented as
a corrector–predictor method. Coincidentally, the same suggestion was made
by Clovis Gonzaga in a private conversation. In this variant one would start
with a point in N , and one would use a corrector to produce a point closer to
the central path, followed by a predictor step to obtain a point on the bound-
ary of N . The advantage of this approach is that only one neighborhood of
the central path needs to be considered, avoiding thus the explicit relation
between the “radii” of the neighborhoods N ⊂ N assumed in [14]. Since the
decrease of the duality gap along the predictor direction is faster if the point is
closer to the central path, it makes sense to start the iteration with a corrector
step. However, transforming the predictor–corrector algorithm of [14] into a
corrector–predictor algorithm turned out to be a nontrivial task.

The classical centering direction is very efficient in the small neighborhood of
the central path, so that no line search along that direction was employed in the
original MTY algorithm [10]. Therefore, that algorithm can be trivially trans-
formed into a corrector–predictor algorithm, by performing exactly the same
operations, but starting with a corrector step. By contrast, the classical centering
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direction is very inefficient in the large neighborhood of the central path and
a line search is always necessary. In the predictor–corrector setting from [14],
a line search was used along the classical centering direction starting from a
point z ∈ N in order to obtain a point z+ ∈ N . The line search is successful
provided the radii of the neighborhoods N and N differ only by a small factor.
In a corrector–predictor setting, where only one neighborhood of the central
path is used, the line search on the corrector direction has to be done in such a
way that it optimizes the decrease of the δ−∞ proximity measure to the central
path. Designing such a line search is nontrivial since it involves minimizing a
nonsmooth function. In the present paper we propose a very efficient imple-
mentation of the corrector line search. Also, since the pure centering direction
is anyhow inefficient in the large neighborhood, we propose a corrector direc-
tion along which both the proximity to the central path and the duality gap can
be reduced. In order to get additional efficiency we use higher order methods
both in the corrector step and the predictor step. The resulting algorithm has
very desirable properties.

More precisely, the corrector–predictor method presented in this paper uses
a corrector based on a polynomial of order mc followed by a predictor based on
a polynomial of order mp. The computation of the search directions involves
two matrix factorizations and mc + mp + 2 backsolves. The line search pro-
cedures can be implemented in O

(
(mc +mp)n1+α) arithmetic operations, for

some 0 < α ≤ 1, or even in O
(
(mc +mp)n log n

)
arithmetic operations. If

mc + mp = Ω(log n), then the algorithm has O(
√

nL) iteration complexity.
In case of full matrices, the cost of a factorization is O(n3) arithmetic oper-
ations, and the cost of a backsolve is O(n2) arithmetic operations, so that if
mc + mp = O(nω), for some 0 < ω < 1, then one iteration of our algorithm
can be implemented in at most O(n3) arithmetic operations, the cost being
dominated by the cost of the two matrix factorizations.

The above mentioned complexity result is obtained by carefully analyzing
the performance of the corrector at the current iteration in connection with the
behavior of the predictor at the previous iteration. We show that we may fail
to obtain a sufficient reduction of the duality gap in the corrector step, only
if a significant reduction of the duality gap had already been obtained at the
previous predictor step. Thus the complexity result is obtained from the joint
contribution of the corrector and predictor steps. The superlinear convergence
is due to the predictor steps. We show that the duality gap converges to zero with
Q-order mp + 1 in the nondegenerate case, and with Q-order (mp + 1)/2 in the
degenerate case. Hence if the order of the predictor is strictly greater than one,
then our algorithm is superlinearly convergent even for degenerate problems.

We denote by N the set of all nonnegative integers. R, R+, R++ denote the
set of real, nonnegative real, and positive real numbers, respectively. For any
real number κ , � κ � denotes the smallest integer greater or equal to κ . Given a
vector x, the corresponding upper case symbol denotes, as usual, the diagonal
matrix X defined by the vector. The symbol e represents the vector of all ones,
with dimension given by the context.
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We denote component-wise operations on vectors by the usual notations for
real numbers. Thus, given two vectors u, v of the same dimension, uv, u/v, etc.
will denote the vectors with components uivi, ui/vi, etc. This notation is consis-
tent as long as component-wise operations always have precedence in relation
to matrix operations. Note that uv ≡ Uv and if A is a matrix, then Auv ≡ AUv,
but in general Auv 
= (Au)v. Also if f is a scalar function and v is a vector, then
f (v) denotes the vector with components f (vi). For example if v ∈ R

n+, then√
v denotes the vector with components

√
vi, and 1− v denotes the vector with

components 1 − vi. Traditionally the vector 1 − v is written as e − v, where e
is the vector of all ones. Inequalities are to be understood in a similar fashion.
For example if v ∈ R

n, then v ≥ 3 means that vi ≥ 3, i = 1, . . . , n. Traditionally
this is written as v ≥ 3e. If ‖·‖ is a vector norm on R

n and A is a matrix, then
the operator norm induced by ‖·‖ is defined by ‖A‖ = max{‖Ax‖ ; ‖x‖ = 1}. As
a particular case we note that if U is the diagonal matrix defined by the vector
u, then ‖U ‖2 = ‖ u ‖∞.

We frequently use the O(·) and Ω(·) notation to express asymptotic rela-
tionships between functions. The most common usage will be associated with a
sequence {xk} of vectors and a sequence {τk} of positive real numbers. In this
case xk = O(τk)means that there is a constant K (dependent on problem data)
such that for every k ∈ N,

∥∥xk
∥∥ ≤ Kτk. Similarly, if xk > 0, xk = Ω(τk) means

that (xk)−1 = O(1/τk). If we have both xk = O(τk) and xk = Ω(τk), we write
xk=	(τk)

If x, s ∈ R
n, then the vector z ∈ R

2n obtained by concatenating x and s is
denoted by z = � x, s � = [ xT, sT ]T, and the mean value of xs is denoted by
µ(z) = xTs

n .

2 The horizontal linear complementarity problem

Given two matrices Q, R ∈ R
n×n, and a vector b ∈ R

n, the horizontal linear com-
plementarity problem (HLCP) consists in finding a pair of vectors z = � x, s �
such that

xs = 0

Qx+ Rs = b (1)

x, s ≥ 0.

The standard (monotone) linear complementarity problem (LCP) is obtained
by taking R = −I, and Q positive semidefinite. There are other formulations of
the linear complementarity problems as well but, as shown in [1], all popular
formulations are equivalent, and the behavior of a large class of interior point
methods is identical on those formulations, so that it is sufficient to prove results
only for one of the formulations. We have chosen HLCP because of its sym-
metry. The linear programming problem (LP), and the quadratic programming
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problem (QP), can be formulated as an HLCP. Therefore, HLCP provides a
convenient general framework for studying interior point methods.

Throughout this paper we assume that the HLCP (1) is monotone, in the
sense that

Qu+ Rv = 0 implies uTv ≥ 0 for any u, v ∈ R
n.

This condition is satisfied if the HLCP is a reformulation of a QP [4]. If the
HLCP is a reformulation of an LP then the following stronger condition holds:

Qu+ Rv = 0 implies uTv = 0 for any u, v ∈ R
n.

In this case we say that the HLCP is skew-symmetric. In the skew-symmetric
case we can often obtain sharper estimates, due to the following simple result.

Proposition 1 If HLCP is skew-symmetric then uTv + uTv = 0, for all u, v, u, v
satisfying Qu+ Rv = Qu+ Rv = 0.

Proof If Qu + Rv = Qu + Rv = 0, then Q(u + u) + R(v + v) = 0, so that
uTv = uTv = (u + u)T(v + v) = 0. Hence, 0 = (u + u)T(v + v) = uTv + uTv +
uTv+ uTv = uTv+ uTv. �

We remark that the corresponding statement fails in the monotone case,
in the sense that there are examples where Qu + Rv = Qu + Rv = 0 and
uTv+ uTv < 0. However, it is easily shown that if HLCP is monotone then the
n× 2n-matrix (Q, R) has full rank [3].

Let us denote the set of all feasible points of HLCP by

F = {
z = � x, s � ∈ R

2n+ : Qx+ Rs = b
}
,

and the solution set (or the optimal face) of HLCP by

F∗ = {
z∗ = � x∗, s∗ � ∈ F : x∗s∗ = 0

}
.

The relative interior of F ,

F0 = F ∩ R
2n++,

will be called the set of strictly feasible points, or the set of interior points. It
is known (see [8]) that if F0 is nonempty, then, for any parameter τ > 0 the
nonlinear system,

xs = τe

Qx+ Rs = b
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has a unique positive solution. The set of all such solutions defines the central
path C of the HLCP. By considering the quadratic mapping Fτ : R

2n → R
2n

z =
[

x
s

]
→ Fτ (z) =

[
xs− τe

Qx+ Rs− b

]

we can write

C = {
z ∈ R

2n++ : Fτ (z) = 0, τ > 0
}
.

If Fτ (z) = 0, then necessarily τ = µ(z), where µ(z) = xTs/n. The distance
of a point z ∈ F to the central path can be quantified by different proximity
measures. The following proximity measures have been extensively used in the
interior point literature:

δ2(z) :=
∥
∥∥
∥

xs
µ(z)

− e

∥
∥∥
∥

2
, δ∞(z) :=

∥
∥∥
∥

xs
µ(z)

− e

∥
∥∥
∥∞

, δ−∞(z) :=
∥
∥∥
∥
∥

[
xs
µ(z)

− e
]− ∥

∥∥
∥
∥∞

,

where [v]− denotes the negative part of the vector v, i.e., [v]− = −max{−v, 0}.
By using the above proximity measures we can define the following neigh-

borhoods of central path

N2(α) =
{
z ∈ F0 : δ2(z) ≤ α

}
,

N∞(α) =
{
z ∈ F0 : δ∞(z) ≤ α

}
,

N−∞(α) =
{
z ∈ F0 : δ−∞(z) ≤ α

}
,

where 0 < α < 1 is a given parameter. We have

C ⊂ N2(α) ⊂ N∞(α) ⊂ N−∞(α), lim
α↓0

N−∞(α) = C, lim
α↑1

N−∞(α) = F . (2)

A neighborhood that covers in the limit the set of all feasible points is called
a wide neighborhood of the central path. In a recent paper, Peng et al. [13]
considered a predictor–corrector method acting in a neighborhood of the form

N (α) =
{

z ∈ F0 :
n∑

i=1

(
xisi

µ(z)

)− 1
2 log n

≤ n
1

1−α
}

. (3)

The algorithm has O(
√

nL log n) iteration complexity, where the constant hid-
den in the “O(·)” notation is proportional to exp(1/(1−α)). We end this section
by showing that this is also a wide neighborhood of the central path and by
estimating its relation to N−∞(α).
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Proposition 2 The neighborhood N (α) defined in (3) satisfies the following
properties:

lim
α↓0

N (α) = C , lim
α↑1

N (α) = F , (4)

N (α) ⊂ N−∞
(

1− exp
−2

1− α
)

, N−∞(α) ⊂ N
(

log(1− α)
log(1− α)− 2

)
. (5)

Proof Since (4) is a consequence of (2) and (5) we only have to prove (5). Let
us denote

p = xs
µ(z)

, β = min
1≤i≤n

pi.

We have

z ∈ N (α) ⇒
n∑

i=1

p
− 1

2 log n
i ≤ n

1
1−α ⇒ β−

1
2 log n ≤ n

1
1−α

⇒ −1
2

logβ ≤ 1
1− α ⇒ β ≥ exp

( −2
1− α

)

⇒ ‖p− e‖−∞ ≤ 1− exp

( −2
1− α

)
⇒ z ∈ N−∞

(
1− exp

−2
1− α

)
,

and

z ∈ N−∞(α) ⇒ β ≥ 1− α ⇒
n∑

i=1

p
− 1

2 log n
i ≤ n(1− α)− 1

2 log n

⇒ z ∈ N
(

log(1− α)
log(1− α)− 2

)
.

The proof is complete. �

3 A higher order corrector–predictor algorithm

In the remainder of this paper we will work with N−∞(α). We note that this
neighborhood can be written under the form:

N−∞(α) = D(1− α), where D(β) = {
z ∈ F0 : xs ≥ βµ(z) }.

At each step of our algorithm we are given a point z = � x, s � ∈ D(β) and we
consider an mth order vector valued polynomial of the form

z(θ) = z+
m∑

i=1

wiθ i, (6)
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where the vectors wi = �ui, vi � are obtained as solutions of the following linear
systems

{
su1 + xv1 = γµe− (1+ ε)xs
Qu1 + Rv1 = 0

,

{
su2 + xv2 = εxs− u1v1

Qu2 + Rv2 = 0
, (7)

{
sui + xvi = −∑i−1

j=1 ujvi−j

Qui + Rvi = 0
, i = 3, . . . , m.

In a corrector step we choose ε = 0 and γ ∈ [γ , γ ], where 0 < γ < γ < 1 are
given parameters, while in a predictor step we take

γ = 0, and ε =
{

0 if HLCP is nondegenerate
1 if HLCP is degenerate

. (8)

We note that for ε = γ = 0, w1 is just the affine scaling direction, while for
ε = 0 and γ = 1, w1 becomes the classical centering direction. For ε = 0 and
0 < γ < 1, w1 is a convex combination of the affine scaling and the centering
directions. The directions wi are related to the higher derivatives of the cen-
tral path [18]. The m linear systems above have the same matrix, so that their
numerical solution requires only one matrix factorization and m backsolves.
This involves O(n3) + O(m n2) arithmetic operations. We take m = mc in the
corrector step, and m = mp in the predictor step.

It is easily seen that

x(θ)s(θ) = (1− θ)1+εxs+ γ θµe+
2m∑

i=m+1

θ ihi ,

µ(θ) = (1− θ)1+εµ+ γ θµ+
2m∑

i=m+1

θ i(eThi/n), where hi =
m∑

j=i−m

ujvi−j.

(9)

Since we want to preserve positivity of our iterates we will restrict the line
search on the interval [0, θ0], where

θ0 = sup
{
θ̂ 0 : x(θ) > 0, s(θ) > 0, ∀θ ∈ [0, θ̂ 0]

}
. (10)

Determining θ0 involves the computation of the smallest positive roots of the
mth order polynomials xi(θ), si(θ), i = 1, . . . , n. The following notation will be
used in describing both the corrector and predictor steps:

p(θ) = x(θ)s(θ)
µ(θ)

, f (θ) = min
i=1,...,n

pi(θ). (11)
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In the following lemma we give a lower bound for f (θ).

Lemma 1 If z ∈ D(β) then

f (θ) ≥ β + (1− β)γ θµ−
∑2m

i=m+1 θ
i ‖ hi ‖2

µ(θ)
∀θ ∈ [0, 1]. (12)

Proof We have

p(θ) = x(θ)s(θ)
µ(θ)

= (1− θ)1+εxs+ γ θµe+∑2m
i=m+1 θ

ihi

(1− θ)1+εµ+ γ θµ+∑2m
i=m+1 θ

ieThi/n

≥ (1− θ)1+εβµe+ γ θµe+∑2m
i=m+1 θ

ihi

µ(θ)

=
βµ(θ)e+ (1− β)γ θµe+ β∑2m

i=m+1 θ
i
(

hi− eThi

n e
)
+ (1−β)∑2m

i=m+1 θ
ihi

µ(θ)

≥ βe+ (1−β)γ θµ−
∑2m

i=m+1 θ
i ‖hi ‖2

µ(θ)
e,

where we have used the fact that
∥∥ hi − (eTh/n)e

∥∥
2 ≤ ‖ h ‖2 for any vector h.

�
The corrector The main purpose of the corrector step is to increase proximity
to the central path. Our line search procedure ensures that the optimality mea-
sure µ(θ) is also improved by the corrector step. If HLCP is monotone, but not
skew-symmetric, then we choose σ ∈ [σ , σ ], where 0 < σ < σ < 1 are given
parameters, and define

θ1 = sup
{
θ̂ 1 : 0 ≤ θ̂ 1 ≤ θ0, µ(θ) ≤ (1− σ(1− γ )θ)µ, ∀θ ∈ [0, θ̂ 1]

}
. (13)

If HLCP is skew-symmetric, then according to Proposition 1 we have

µ(θ) = (1− (1− γ )θ)µ,

so that in this case we take σ = 1 and θ1 = θ0.
The step-length of the corrector is obtained as

θc = argmax {f (θ) : θ ∈ [ 0, θ1] } . (14)

As a result of the corrector step we obtain the point

z = � x , s � := z(θc). (15)

We have clearly z ∈D(βc) with βc>β. While the parameter β is fixed during the
algorithm, the positive quantity βc varies from iteration to iteration. However,
we will prove that there is a constant β∗c > β, such that βc > β∗c at all iterations.
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The predictor The predictor is obtained by taking z = z , where z is the result
of the corrector step, and γ = 0 in (6)–(7). The aim of the predictor step is to
decrease the complementarity gap as much as possible while keeping the iterate
in D(β). This is accomplished by defining the predictor step-length as

θp = argmin {µ(θ) : θ ∈ [ 0, θ2 ] } , (16)

where

θ2 = max
{
θ̂ 2 : z(θ) ∈ D(β), ∀θ ∈ [0, θ̂ 2]

}
. (17)

A standard continuity argument can be used to show that z(θ) > 0, ∀ θ ∈ [0, θ2].
The computation of θ2 and θp involves the solution of polynomial inequalities
of order 2m in θ . A practical implementation of this line search algorithm will
be sketched in Sect. 6. With the above line search the predictor step computes
a point

z+ = � x+, s+ � := z(θp). (18)

By construction we have z+ ∈ D(β), so that a new corrector step can be applied.
Summing up we can formulate the following iterative procedure:

Algorithm 1
Given real parameters 0 < β < 1, 0 < γ < γ < 1, 0 < σ < σ < 1,
integers mc, mp ≥ 1, and a vector z0 ∈ D(β) :

Set k← 0;
repeat

(corrector step)
Set z ← zk;
Choose γ ∈ [ γ , γ ] and set ε = 0, m = mc;
Compute directions wi = �ui, vi �, i = 1, . . . , m, by solving (7);
Compute θ0 from (10)
If HLCP is skew-symmetric, set σ = 1 and θ1 = θ0;

Else, choose σ ∈ [ σ , σ ], and compute θ1 from (13);
Compute corrector step-length θc from (14);
Compute z from (15);
Set z k ← z , µ k ← µ = µ(z ).
(predictor step)
Set z ← z k, m = mp and choose γ , ε as in (8);
Compute directions wi = �ui, vi �, i = 1, . . . , m, by solving (7);
Compute θp from (16);
Compute z+ from (18);
Set zk+1 ← z+, µk+1 ← µ+ = µ(z+), k← k+ 1.

continue
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4 Polynomial complexity

In this section we study the computational complexity of Algorithm 1. In the
proof of our main theorem we will use the following technical result, which
represents a slight improvement over the corresponding results of [6,25].

Proposition 3 If HLCP (1) is monotone and z = � x, s � ∈ D(β) then the quan-
tities hi computed in (9) satisfy

ζi := ‖hi‖2 ≤ 2βµ
i
(τ
√

n )i, i = m+ 1, . . . , 2m, (19)

where

τ = 2
√
β(1+ ε − γ )2 + (1− β)γ 2

β
. (20)

Proof First, we prove that the quantities

ηi =
∥
∥∥ Dui +D−1vi

∥
∥∥

2
, D = X−1/2S1/2

satisfy the relations

√
‖Dui ‖22 +

∥∥ D−1vi
∥∥2

2 ≤ ηi ≤ 2αi
√
βµ

(
τ
√

n
4

)i

, (21)

where

α1 = 1, αi = 1
i

(
2i− 2
i− 1

)
, i = 2, 3, . . .

The first inequality in (21) follows immediately, since by using (7) and the
monotony of the HLCP we deduce that ui Tvi ≥ 0. Hence

∥∥∥ Dui +D−1vi
∥∥∥

2

2
= ∥∥ Dui ∥∥2

2 + 2ui Tvi +
∥∥∥ D−1vi

∥∥∥
2

2
≥ ∥∥ Dui ∥∥2

2 +
∥∥∥ D−1vi

∥∥∥
2

2
.

By multiplying the first equations of (7) with (xs)−1/2 we obtain

Du1 +D−1v1 = −
(
(1+ ε)(xs)1/2 − γµ(xs)−1/2

)

Du2 +D−1v2 = −
(
ε(xs)1/2 − (xs)−1/2u1v1

)

Dui +D−1vi = −(xs)−1/2
i−1∑

j=1

DujD−1vi−j , 3 ≤ i ≤ m.
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Because z ∈ D(β) we have (xs)−1/2 ≤ (1/√βµ)e, and we deduce that

η1 =
∥∥
∥ (1+ ε)(xs)1/2 − γµ(xs)−1/2

∥∥
∥

2
, η2 =

∥∥
∥ ε(xs)1/2 − (xs)−1/2u1v1

∥∥
∥

2
,

ηi ≤ 1√
βµ

i−1∑

j=1

∥∥∥ Duj
∥∥∥

2

∥∥∥ D−1vi−j
∥∥∥

2
, 3 ≤ i ≤ m.

We have

η2
1 =

∥∥∥ (1+ ε)(xs)1/2 − γµ(xs)−1/2
∥∥∥

2

2

=
n∑

j=1

(
(1+ ε)2xjsj − 2(1+ ε)γµ+ γ

2µ2

xjsj

)

= ((1+ ε)2 − 2(1+ ε)γ )µn+ γ 2µ2
n∑

j=1

1
xjsj

≤ µn
(
(1+ ε)2 − 2(1+ ε)γ + γ

2

β

)
= βµnτ 2

4
,

which shows that the second inequality in (21) is satisfied for i = 1. Using the

fact that u1 Tv1 ≥ 0 implies
∥
∥ u1v1

∥
∥2

2 ≤ η4
1/8 we deduce that

η2
2 =

∥∥
∥ ε(xs)1/2 − (xs)−1/2u1v1

∥∥
∥

2

2
=

n∑

j=1

(

ε2xjsj − 2εu1
i v1

i +
(
u1

i v1
i
)2

xjsj

)

≤ ε2nµ+ η4
1

8βµ
≤ ε2nµ+ βµn2τ 4

128
.

We want to prove that the second inequality in (21) is satisfied for i = 2, i.e.,

η2 ≤
√
βµnτ 2

8
. (22)

This inequality holds provided ε2 ≤ βnτ 4/128. This is trivially satisfied for ε = 0
and for ε = 1 it reduces to

1 ≤ n(β(2− γ )2 + (1− β)γ 2)2

8β3 .

Since the minimum over 0 ≤ β, γ ≤ 1 of the right hand side above is attained
for β = γ = 1 it follows that (22) is satisfied in case ε = 1 whenever n ≥ 8.
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For i ≥ 3 and 1 ≤ j < i, j 
= i− j we have

∥∥∥ Duj
∥∥∥

2

∥∥∥ D−1vi−j
∥∥∥

2
+

∥∥∥ Dui−j
∥∥∥

2

∥∥∥ D−1vj
∥∥∥

2

≤
(∥

∥∥ Duj
∥
∥∥

2

2
+

∥
∥∥ D−1vj

∥
∥∥

2

2

)1/2 (∥
∥∥ Dui−j

∥
∥∥

2

2
+

∥
∥∥ D−1vi−j

∥
∥∥

2

2

)1/2

≤ ηj ηi−j,

In case j = i− j there holds

∥∥
∥ Duj

∥∥
∥

2

∥∥
∥ D−1vj

∥∥
∥

2
≤ 1

2

(∥∥
∥ Duj

∥∥
∥

2

2
+

∥∥
∥ D−1vj

∥∥
∥

2

2

)
≤ 1

2
η2

j .

Therefore, we obtain

ηi ≤ 1
2
√
βµ

i−1∑

j=1

ηj ηi−j, i = 3, . . . , m.

Since αi = ∑i−1
j=1 αj αi−j , we deduce by induction that the second inequality in

(21) holds for any 1 ≤ i ≤ m. Finally, for any m+ 1 ≤ i ≤ 2m, we have

∥∥ hi ∥∥
2 ≤

m∑

j=i−m

∥∥∥ Duj
∥∥∥

2

∥∥∥ D−1vi−j
∥∥∥

2
≤

i−1∑

j=1

∥∥∥ Duj
∥∥∥

2

∥∥∥ D−1vi−j
∥∥∥

2

= 1
2

i−1∑

j=1

(∥∥∥ Duj
∥∥∥

2

∥∥∥ D−1vi−j
∥∥∥

2
+

∥∥∥ Dui−j
∥∥∥

2

∥∥∥ D−1vj
∥∥∥

2

)

≤ 1
2

i−1∑

j=1

√∥∥ Duj
∥∥2

2 +
∥∥ D−1vj

∥∥2
2

√∥∥ Dui−j
∥∥2

2 +
∥∥ D−1vi−j

∥∥2
2

≤ 1
2

i−1∑

j=1

ηj ηi−j ≤ 2βµ
(
τ
√

n
4

)i i−1∑

j=1

αj αi−j

= 2βµ
(
τ
√

n
4

)i

αi ≤ 2βµ
i

(
τ
√

n
)i

,

where we have used the fact that αi ≤ 1
i 4i. The proof is complete. �

From the above proposition it follows that
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Corollary 1 If HLCP (1) is monotone and z = � x, s � ∈ D(β) then the following
relations hold for any α > 0:

α

µ

2m∑

i=m+1

θ i ∥∥ hi ∥∥
2 < 1 ∀0 ≤ θ ≤ 1

τ
√

n
min

{
1 , (1.4αβ)

−1
m+1

}
, (23)

α

µ
√

n

2m∑

i=m+1

θ i ∥∥ hi ∥∥
2 < θ ∀ 0 ≤ θ ≤ 1

τ
√

n
min

{
1 , (1.4αβτ )

−1
m

}
. (24)

Proof For any t ∈ (0, 1] we have

2m∑

i=m+1

ti

i
≤ tm+1

2m∑

i=m+1

1
i
< tm+1

2m∫

m

du
u
= tm+1 log 2 < 0.7 tm+1.

Let us assume that θ ∈ (
0, 1/(τ

√
n)

]
. Using Proposition 3 we obtain

α

µ

2m∑

i=m+1

θ i ∥∥ hi ∥∥
2 ≤ 2αβ

2m∑

i=m+1

1
i

(
τ
√

nθ
)i
< 1.4αβ

(
τ
√

nθ
)m+1

,

which, in turn, implies that

α

µ
√

n

2m∑

i=m+1

θ i ∥∥ hi ∥∥
2 <

1.4αβ√
n

(
τ
√

nθ
)m+1 = 1.4αβτθ

(
τ
√

nθ
)m

.

The statement of our corollary follows now immediately from the above results.
�

From the definition of τ (20) it follows that

2(1+ ε)√1− β√
β

≤ τ ≤ 2 max

{
1+ ε√
β

,

√
1− β + βε2

β

}

<
2(1+ ε)

β
. (25)

We note that the above bounds are sharp in the sense that the lower bound is
attained for γ = (1 + ε)β, while the upper bound is attained either for γ = 0
or for γ = 1. In order to simplify proofs and to obtain estimates that are
independent of γ in the analysis of the corrector step we will use the bound
τ < 2/β.

Theorem 1 If HLCP (1) is monotone, then Algorithm 1 is well defined and the
following relations hold for any integer k ≥ 0 :

z k, zk ∈ D(β), µk+1 ≤
(

1− χ

n
1
2+ mc+1

2mc(mp+1)

)

µ k , µ k+1 ≤
(

1− χ

n
1
2+υ

)
µ k,
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where χ , χ are constants depending only on β, γ , γ , σ , σ , and

υ := min

{
1

2mc
,

mc + 1
2mc(mp + 1)

}
. (26)

Proof Analysis of the corrector. On the corrector we have ε = 0, m = mc,
0 < γ < γ < γ < 1, 0 < σ < σ < σ < 1, and τ < 2/β. First, we prove that if
z ∈ D(β), then the quantities θ0 and θ1, defined in (10) and (13), satisfy

θ0 ≥ θ3 := β

2
√

n

(
1

2.8

) 1
mc+1

, (27)

θ1 ≥ θ4 := β

2
√

n

(
(1− σ )(1− γ )

2.8

) 1
mc

. (28)

Using (23) with α = 2/β, and the fact that θ3 < 1/2, it follows that for any
θ ∈ [0, θ3] we have

x(θ)s(θ)
µ

> (1− θ)xs
µ
+ 1
µ

2m∑

i=m+1

θ ihi ≥ β
2

e− 1
µ

2m∑

i=m+1

θ i ∥∥ hi ∥∥
2 e > 0.

Hence x(θ)s(θ) > 0 ∀ θ ∈ [0, θ3] . Since x(0) > 0, s(0) > 0, we can use a standard
continuity argument to show that x(θ) > 0 , s(θ) > 0, ∀ θ ∈ [0, θ3] , which proves
that θ0 ≥ θ3. Similarly, by using (24) with α = 1/ ((1− σ )(1− γ )), we deduce
that the following inequalities hold for any θ ∈ [0, θ4]:

µ(θ)− (1− σ(1− γ )θ)µ
µ

= 1
µn

2m∑

i=m+1

θ ieThi − (1− σ)(1− γ )θ

≤ 1
µ
√

n

2m∑

i=m+1

θ i ∥∥ hi ∥∥
2 − (1− σ )(1− γ ) θ ≤ 0,

which shows that θ1 ≥ θ4.

Next, we show that if z ∈ D(β), then

f (θ) ≥ β + 1
2
(1− β)γ θ ≥ β + 1

2
(1− β)γ θ ∀θ ∈ [0, θ5] , (29)
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where

θ5 := min

⎧
⎨

⎩
θ4,

β

2 n
1
2+ 1

2mc

(
(1− β)γ

5.6

) 1
mc

⎫
⎬

⎭
≥ χ5

n
1
2+ 1

2mc

, (30)

χ5 := β

2

(
min

{
(1− σ )(1− γ )

2.8
,
(1− β)γ

5.6

}) 1
mc

. (31)

According to (24), with τ = 2/β and α = 2
√

n/((1− β)γ ), we have

1
µ

2m∑

i=m+1

θ i ∥∥ hi ∥∥
2 <

1
2
(1− β)γ θ ∀ θ ≤ β

2
√

n

(
(1− β)γ

5.6
√

n

) 1
m

,

and (29) follows from the above inequality, (12), and the fact that

µ(θ) ≤ (1− σ(1− γ )θ)µ ≤ µ ∀θ ∈ [0, θ4].

Relation (29) shows that if z ∈ D(β), then the point z obtained in the corrector
step of Algorithm 1 belongs to D(β + δ), where

δ = 1
2
(1− β)γ θ5. (32)

As we mentioned before, the main purpose of the corrector is to increase
proximity to the central path. However, it turns out that if the corrector step-
length θc is large enough then we also obtain a significant reduction of the
duality gap during the corrector step. In what follows we find a lower bound for
θc in case the point z ∈ D(β) is not very well centered. More precisely we show
that

∃j such that pj := xjsj

µ
≤ β + 0.44 δ ⇒ θc > 0.2 θ5 . (33)

Let us denote

λ = 0.44 δ = 0.22(1− β)γ θ5, qi = hi

µ
, i = m+ 1, . . . , 2m.
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For any θ ∈ [0, 1] we have

pj(θ) = xj(θ)sj(θ)

µ(θ)
= (1− θ)pj + γ θ +∑2m

i=m+1 θ
iqi

j

(1− θ)+ γ θ +∑2m
i=m+1 θ

ieTqi/n

<
(1− θ)(β + λ)+ γ θ +∑2m

i=m+1 θ
iqi

j

(1− θ)+ γ θ +∑2m
i=m+1 θ

ieTqi/n

= β + λ+ γ (1− β − λ)θ − (β + λ)
∑2m

i=m+1 θ
ieTqi/n+∑2m

i=m+1 θ
iqi

j

1− (1− γ )θ +∑2m
i=m+1 θ

ieTqi/n

≤ β + λ+
γ (1− β − λ)θ + (1+ β+λ√

n
)
∑2m

i=m+1 θ
i ‖ qi ‖2

1− (1− γ )θ − 1√
n

∑2m
i=m+1 θ

i ‖qi ‖2

≤ β + λ+ γ (1− β)θ + 2
∑2m

i=m+1 θ
i ‖ qi ‖2

1− (1− γ )θ −∑2m
i=m+1 θ

i ‖qi ‖2
.

Assume now that θ ∈ [0, 0.2 θ5] and set θ = 0.2φ. Since φ ∈ [0, θ5], by virtue of
(24), we can write

2m∑

i=m+1

θ i ∥∥ qi ∥∥
2 =

2m∑

i=m+1

0.2iφi ∥∥ qi ∥∥
2 ≤ 0.2m+1

2m∑

i=m+1

φi ∥∥ qi ∥∥
2

<
0.2m+1

2
γ (1− β)φ = 0.2m

2
γ (1− β)θ ≤ 0.1γ (1− β)θ .

Using the fact that θ5 < 0.5, ∀n ≥ 1, we obtain

pj(θ) < β + λ+ 1.2γ (1− β)θ
1− (1− γ + 0.1 γ (1− β)) θ ≤ β + λ+

1.2γ (1− β)θ
1− θ

< β + λ+ 1.4γ (1− β)θ ≤ β + λ+ 0.28γ (1− β)θ5

= β + δ, ∀θ ∈ [0, 0.2 θ5].

It follows that f (θc) ≥ β + δ > max0≤θ≤0.2 θ5 f (θ), wherefrom we deduce that
θc > 0.2 θ5.

Analysis of the predictor In the predictor step we have γ = 0 and m = mp,
while ε can be either 0 or 1. Since the predictor step follows a corrector step,
we have z ∈ D(β+ δ) ⊂ D(β). In the predictor step we take γ = 0, so that from
(20) we have τ = 2(1+ ε)/√β ≤ 4/

√
β.
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First, we study the behavior of the normalized duality gap in the predictor
step. We start by proving that

(1− 2.5 θ)µ ≤ µ(θ) ≤ (1− 0.5 θ)µ, (34)

∀ 0 ≤ θ ≤ θ6 :=
√
β

4
√

n
min

{

1 ,
(

11.2
√
β

) −1
mp

}

.

We have

(1− 2θ)µ+
2m∑

i=m+1

θ i(eThi/n) ≤ µ(θ) ≤ (1− θ)µ+
2m∑

i=m+1

θ i(eThi/n),

and the desired inequalities are obtained by noticing that (24), with α = 2 and
τ = 4/

√
β, implies

∣∣
∣∣∣∣

2m∑

i=m+1

θ i(eThi/n)

∣∣
∣∣∣∣
≤ 1√

n

2m∑

i=m+1

θ i ∥∥ hi ∥∥
2 < 0.5 θµ,

for all θ ∈ [0, θ6]. Using Proposition 3 and the sum of a geometric series with
ratio 0.1, we deduce that for any θ ∈ [

0,
√
β

40
√

n

]
there holds

µ′(θ) = −(1+ ε − 2εθ)µ+
2m∑

i=m+1

iθ i−1(eThi/n) ≤ −µ+ 1√
n

2m∑

i=m+1

iθ i−1 ∥∥ hi ∥∥
2

≤ −µ+ 8µ
√
β

2m−1∑

i=m

(
4θ
√

n√
β

)i

<−µ+8µ
√
β

0.1m

1− 0.1
<−µ+ 8µ

0.1m

0.9
< 0.

Since θ6 ≥
√
β

44.8
√

n
>
√
β

50
√

n
, we conclude that

(1− 2.5 θ)µ ≤ µ(θ) ≤ (1− 0.5 θ)µ and µ′(θ) < 0, ∀θ ∈
[

0,
√
β

50
√

n

]
. (35)

Next, we claim that the quantity θ2 from (17) used in the computation of the
predictor step-length satisfies

θ2 ≥ θ7 :=
√
β

4
√

n
min

{

1 ,
(

11.2
√
β

) −1
mp ,

(
δ

2β

) 1
mp+1

}

(36)

≥ χ7

n
1
2+ mc+1

2mc(mp+1)

, χ7 := 1
16

(
(1− β)γχ5

β

) 1
2

. (37)
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Since 0 < β < 1 and n ≥ 8, (34) implies

µ(θ) ≥ (1− 2.5θ6)µ ≥
(

1− 2.5

8
√

2

)
µ ≥ 0.7µ, ∀θ ∈ [0, θ6].

By taking γ = 0, and β+δ instead of β, in (12), and using (23) with α = 1/(0.7δ),
we deduce that

f (θ) ≥ β + δ −
∑2m

i=m+1 θ
i ‖hi ‖2

µ(θ)

≥ β + δ − 1
0.7µ

2m∑

i=m+1

θ i ∥∥ hi ∥∥
2 ≥ β, ∀θ ∈ [0, θ7],

which proves that θ2 ≥ θ7. The second part of our claim follows by noticing that
θ5 ≤ θ4 ≤ β/(2√n) ≤ β/(4√2) and 11.21/mp < 2(16

√
2)1/(mp+1) implies

θ7 ≥
√
β

4
√

n
min

{(
1

11.2

) 1
mp

,
(
δ

2β

) 1
mp+1

}

≥
√
β

4
√

n
min

⎧
⎨

⎩

(
1

11.2

) 1
mp

,
(
(1− β)γ θ5

4β

) 1
mp+1

⎫
⎬

⎭

≥
√
β

8
√

n

(
(1− β)γχ5

4βn
mc+1
2mc

) 1
mp+1

≥ χ7

n
1
2+ mc+1

2mc(mp+1)

.

Bounding the decrease of the duality gap The duality gap clearly decreases
during the corrector step, and the amount of decrease depends on the length
of the corrector step-length, which in turn, as seen in (33), depends on the
behavior of the preceding predictor step. Therefore, a complete study of the
decrease of the duality gap can be done by analyzing a succession of correc-
tor–predictor–corrector steps. Assume that we are at iteration k and we have
a point zk ∈ D(β), with normalized duality gap µk. We follow the notations of
Algorithm 1. The corrector step produces a point z k ∈ D(β+δ), with δ given by
(32). The corresponding normalized duality gap clearly satisfies µk ≤ µk, but
a bound on the decrease of the duality gap cannot be given at this stage. The
corrector is followed by a predictor that produces a point zk+1 = z(θp) ∈ D(β)
with duality gap µk+1 = µ(θp) = min0≤θ≤θ2 µ(θ). We have θ7 ≤ θ2 and θ7 ≤ θ6,
so that according to (34)

µk+1 ≤ µ(θ7) ≤ (1− 0.5 θ7) µ k ≤
(

1− χ7

2 n
1
2+ mc+1

2mc(mp+1)

)

µ k, µ k ≤ µk. (38)
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The above relation is sufficient for proving polynomial complexity, but it does
not take into account the contribution of the corrector step. A finer analysis is
needed in order to account for that. We distinguish two cases:

(a) θ2 ≥
√
β

50
√

n
. According to (35), in this case we have

µk+1 = min
0≤θ≤θ2

µ(θ) ≤ µ
( √

β

50
√

n

)
≤

(
1−

√
β

100
√

n

)
µ k ;

(b) θ2 <
√
β

50
√

n
. In this case µ(θ) is decreasing on the interval [0, θ2] , by virtue

of (35), and by using (36) we deduce that θp = θ2, f (θp) = β. The latter
equality must be true, since if f (θp) > β, then, by a continuity argument,
it follows that θ2 > θp which is a contradiction (see the definition of θ2
(17)). But if f (θp) = β, then, according to (33), in the next corrector step
we have θc > 0.2 θ5, so that

µ k+1 <
(
1− 0.2 σ(1− γ )θ5

)
µk+1 ≤

(

1− σ(1− γ )χ5

5 n
1
2+ 1

2mc

)

µk+1.

In conclusion, for any k ≥ 0 we have

µ k+1 ≤ µk+1 ≤
(

1−
√
β

100
√

n

)
µ k,

or

µ k+1 <

(

1− σ(1− γ )χ5

5 n
1
2+ 1

2mc

) (

1− χ7

2 n
1
2+ mc+1

2mc(mp+1)

)

µ k.

By taking

χ := min

{√
β

100
,
σ(1− γ )χ5

5
,
χ7

2

}
,

we deduce that

µ k+1 ≤
(

1− χ

n
1
2+υ

)
µ k, k = 0, 1, . . . ,

where υ is given by (26). The proof is complete �
As an immediate consequence of the above theorem we obtain the following

complexity result:

Corollary 2 Algorithm 1 produces a point z = � x, s � ∈ D(β) with xTs ≤ ε, in at
most O

(
n1/2+υ log

(
x0 Ts0/ε

))
iterations, where υ is given by (26).
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It follows that if the order of either the corrector or the predictor is larger than
a multiple of log n, then Algorithm 1 has O

(√
nL

)
-iteration complexity.

Corollary 3 If max
{
mc, mp

} = Ω(log n), then Algorithm 1 produces a point
z = � x, s � ∈ D(β) with xTs ≤ ε, in at most O

(√
n log

(
x0 Ts0/ε

))
.

Proof Under the hypothesis of the corollary there is a constant ϑ , such that

υ ≤ ϑ/ log n. Hence n1/2+υ ≤ n
ϑ

log n
√

n = eϑ
√

n. �
In applications we can take max

{
mc , mp

} = �nω �, for some ω ∈ (0, 1).

Since limn→∞ n
1

nω = 1, this choice does not change the asymptotic constant
related to the O(·) notation in corollaries 2 and 3. For ω = 0.1, the values of
�nω � corresponding to n = 106, n = 107, n = 108, and n = 109 are 4, 6, 7, and
8, respectively.

5 Superlinear convergence

In this section we show that the duality gap of the sequence produced by
Algorithm 1 is superlinearly convergent. More precisely we will prove that
µk+1 = O(µmp+1) if the HLCP (1) is nondegenerate, and µk+1 = O(µ(mp+1)/2)

otherwise. The main ingredient of our proof is provided by the following lemma,
which is an immediate consequence of the results of [18] about the analyticity
of the central path:

Lemma 2 If γ = 0, then the solution of (7) satisfies

ui = O(µi), vi = O(µi), i = 1, . . . , m, if HLCP (1) is nondegenerate,

and

ui = O(µi/2), vi = O(µi/2), i = 1, . . . , m, if HLCP (1) is degenerate.

Theorem 2 The sequence µk produced by Algorithm 1 satisfies

µk+1 = O
(
µ

mp+1
k

)
if HLCP (1) is nondegenerate,

and

µk+1 = O
(
µ
(mp+1)/2
k

)
if HLCP (1) is degenerate.

Proof For simplicity we denote m = mp and

ν = m+ 1
1+ ε =

{
m+ 1 if HLCP (1) is nondegenerate,
(m+ 1)/2 if HLCP (1) is degenerate.
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The superlinear convergence is due to the predictor step. In what follows we use
the notation and the results from the proof Theorem 1 to analyze the asymptotic
behavior of the predictor step. Since the predictor step follows a corrector step,
we have z ∈ D(β + δ). From Lemma 2 and Eq. (9) it follows that there is a
constant � such that

2m∑

i=m+1

θ i ∥∥ hi ∥∥
2 ≤ θm+1�µν ≤ �µν , ∀ θ ∈ [

0 , 1
]

.

It follows that

(1− θ)1+εµ− �√
n
µν ≤ µ(θ) ≤ (1− θ)1+εµ+ �√

n
µν .

Using (12) with γ = 0 and β + δ instead of β we deduce that if µν−1 <

1/
(
�/δ +�/√n

)
, then for any θ ∈ [ 0 , θ8 ], where

θ8 := 1−
((

�

δ
+ �√

n

)
µν−1

) 1
1+ε

, (39)

we have

f (θ) ≥ β + δ − �µν

(1− θ)1+εµ− �√
n
µν
≥ β

It follows that θ2 ≥ θ8, and therefore

µ+ = min
0≤θ≤θ2

µ(θ) ≤ µ(θ8) ≤ (1− θ8)
1+εµ+ �√

n
µν ≤

(
�

δ
+ 2�√

n

)
µν . (40)

The proof is complete. �

6 Line search procedures

The line search in both the corrector and the predictor step of the interior point
method presented in Sect. 3 involves computing roots of higher order polyno-
mials in one variable, for which no finite algorithms are known. In this section
we revisit those line searches, and we propose a variant of the interior point
method that uses line searches with polynomial computational complexity.

The corrector step we want to maximize f (θ) over the set

� = {
θ ∈ R+ : x(θ) ≥ 0, s(θ) ≥ 0, f (θ) ≥ β, µ(θ) ≤ (1− σ(1− γ )θ)µ}

.
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Since x(θ) and s(θ) are polynomials of order mc in θ , it follows that there are
points

0 = φ
0
< φ0 < φ

1
≤ φ1 < · · · < φ

K
≤ φK, such that � =

K⋃

l=0

[
φ

l
, φl

]
.

It turns out that the corrector step-size considered in Sect. 3 satisfies

θc = argmax
{
f (θ) : θ ∈ [

0 , φ0
] }

.

For large values of mc it is likely that K > 0, so that we may improve the per-
formance of the corrector by eventually extending the line search beyond the
interval [0,φ0]. We do our line search over a discrete partition of the interval
[0,φ ], where φ is a parameter chosen by the user. Since in the skew-symmetric
case we have µ(θ) < 0 for θ > 1/(1− γ ), we should have φ ≤ 1/(1− γ ). A rea-
sonable choice is φ = 1, although other values of φ could also be considered.
We construct a partition of the interval [0,φ ] of the form

θ5 = φ̃1 < φ̃2 < · · · < φ̃Jφ = φ , φ̃j = θ5φ(j), j = 2, . . . , Jφ − 1, (41)

where θ5 is defined in (30), and φ : [1, Jφ]⋂ N → R is an increasing function
satisfying the following properties

φ(1) = 1, φ(Jφ − 1) <
φ

θ5
≤ φ(Jφ), Jφ = O(nα) for some α > 0. (42)

The last property ensures the polynomial complexity of the corrector line search
which computes the step-length

θ̃c = argmax θ∈�̃f (θ), (43)

where

�̃ =
{
φ̃j : 1 ≤ j ≤ Jφ , x(φ̃j) > 0, s(φ̃j) > 0, f (φ̃j)

≥ β, µ(φ̃j) ≤
(
(1− σ(1− γ ))φ̃j

)
µ

}
.

(44)

From the proof of Theorem 1 it follows that θ5 = φ̃1 ∈ �̃, which guarantees the
polynomial complexity of the resulting interior point method.

Since evaluating f at one point requires O(nmc) arithmetic operations it
follows that the corrector line search can be done in O(n1+αmc) arithmetic
operations. Here are some examples of functions satisfying (42).
– The uniform partition

φ(j) = j, Jφ =
⌈
φ /θ5

⌉ = O
(

n
1
2+ 1

2mc

)
; (45)
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– The power graded partition

φ(j) = jκ for some κ > 0, Jφ =
⌈
(
φ /θ5

) 1
κ

⌉
= O

(
n

1
2κ+ 1

2κmc

)
; (46)

– The exponentially graded partition

φ(j) = �j−1 for some � > 1, Jφ =
⌈

log(φ /θ5)

log �
+ 1

⌉

= O(log n). (47)

It follows that by taking mc = 	(log n) the cost of the line search is O(n
3
2 log n)

arithmetic operations for the uniform partition, O(n1+ 1
2κ log n) arithmetic oper-

ations for the power graded partition, and O(n log2 n) arithmetic operations
for the exponentially graded partition. Similarly, by taking mc = 	(nω), with
ω ∈ ( 0 , 1 ), the cost of the line search is O(n

3
2+ω) arithmetic operations for the

uniform partition, O(n1+ 1
2κ+ω log n) arithmetic operations for the power graded

partition, and O(n1+ω log n) arithmetic operations for the exponentially graded
partition. Of course, other functions φ, satisfying (42) can be considered to gen-
erate a partition of the interval

[
0 , φ

]
. For any such a partition the line search

can be efficiently implemented by the following procedure.

Procedure 1
INPUT: z ∈ D(β), µ. (* µ = µ(z) *)

set β = β, θ = 0 ; (* (β , θ ) keeps track of (max f (θ), argmax f (θ)) *)
For j = Jφ , . . . , 1

set ξ = ∞ ; (* ξ keeps track of min x(φ̃j)s(φ̃j) *)
For l = 1, . . . , n:

If x̃l := xl(φ̃j) ≤ 0, Return;
If s̃l := sl(φ̃j) ≤ 0, Return;
If x̃ls̃l < ξ , set ξ = x̃ls̃l;

End For;
set µ̃ = µ(z̃) ;
If µ̃ > (1− σ(1− γ )φ̃j)µ, Return;
If ξ ≤ β µ̃, Return;
set z = z̃, µ = µ̃, β = ξ/µ̃, θ = φ̃j;

End For;
OUTPUT z ∈ D(β ), µ , θ . (* β > β, µ = µ(z ), θ = θ̃c from (43) *)

In the skew-symmetric case we have σ = 1 and µ(θ) = (1 − (1 − γ )θ)µ, so
that we can introduce the instruction “If ξ ≤ β (1− (1−γ )φ̃j)µ, Return” before
finishing the computation of z(φ̃j), since if ξ ≤ β (1 − (1 − γ )φ̃j)µ, then f (φ̃j),
will be less than the current maximum of f . Therefore, in the skew-symmetric
case we will use the following procedure:
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Procedure 2
INPUT: z ∈ D(β), µ. (* µ = µ(z) *)

set β = β, θ = 0 ; (* (β , θ ) keeps track of (max f (θ), argmax f (θ)) *)
For j = Jφ , . . . , 1

set ξ = ∞, µ̃ = (1− (1− γ )φ̃j)µ ; (* ξ ← min x(φ̃j)s(φ̃j) *)
For l = 1, . . . , n:

If x̃l := xl(φ̃j) ≤ 0, Return;
If s̃l := sl(φ̃j) ≤ 0, Return;
If x̃ls̃l < ξ , set ξ = x̃ls̃l;
If ξ < β µ̃, Return;

End For;
set z = z̃, µ = µ̃, β = ξ/µ̃, θ = φ̃j;

End For;
OUTPUT z ∈ D(β ), µ , θ . (* β > β, µ = µ(z ), θ = θ̃c from (43) *)

The line search on the predictor has to be done in such a way as to preserve the
superlinear convergence of our interior point method. We construct a partition
of the interval [0, 1] of the form

θ7 = ψ̃1 < ψ̃2 < · · · < ψ̃Jψ−1 < ψ̃Jψ , ψ̃j = θ7ψ(j), j = 2, . . . , Jψ − 1,

ψ̃Jψ =
{
(1+ ψ̃Jψ−1)/2 if µ(ν−1−ς)/(1+ε) ≥ 1− ψ̃Jψ−1

1− µ(ν−1−ς)/(1+ε) if µ(ν−1−ς)/(1+ε) < 1− ψ̃Jψ−1
, (48)

where θ7 is given by (36), ς ∈ (0, 0.5) is a given parameter and ψ :
[

1 , Jψ
] ⋂

N→ R is an increasing function satisfying the following properties:

ψ(1) = 1, ψ(Jψ − 1) <
1
θ7
≤ ψ(Jψ), Jψ = O(nα) for some α > 0. (49)

The above choice of ψ̃Jψ is motivated by the fact that, according to the proof of
Theorem 2, if µν−1 < 1/

(
�/δ +�/√n

)
, then

θ2 ≥ θ8, and µ(θ) ≤ (1− θ)1+εµ+ �√
n
µν , ∀ θ ∈ [ 0 , θ8 ] .

The constant� is very difficult to estimate, but ifµς < 1/
(
�/δ +�/√n

)
, then

ψ̃Jψ ≤ θ8, µ
(
ψ̃Jψ

) ≤ (
1− ψ̃Jψ

)1+ε
µ+ �√

n
µν ≤ µν−ς + �√

n
µν ≤ 2µν−ς . (50)

This ensures superlinear convergence of order ν − ς for the resulting interior-
point method that computes the step-length of the predictor as

θ̃p = argmin θ∈�̃µ(θ), (51)
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where

Ψ̃ =
{
ψ̃j : 1 ≤ j ≤ Jψ , x(ψ̃j) > 0, s(ψ̃j) > 0, f (ψ̃j) ≥ β

}
. (52)

The line search can be efficiently implemented by the following procedure.

Procedure 3
INPUT: z ∈ D(β ), µ, ς . (* β > β, µ = µ(z), 0 < ς < 0.5 *)

set µ+ = µ, θ+ = 0 ; (* (µ+, θ+)← (minµ(θ), argmin µ(θ)) *)
For j = Jψ , . . . , 1

set ξ = ∞ ; (* ξ ← min x(ψ̃j)s(ψ̃j) *)
For l = 1, . . . , n:

If x̃l := xl(ψ̃j) ≤ 0, Return;
If s̃l := sl(ψ̃j) ≤ 0, Return;
If x̃ls̃l < ξ , set ξ = x̃ls̃l;

End For;
set µ̃ = µ(z̃);
If ξ < βµ̃, Return;
If µ̃ ≥ µ+, Return;
set µ+ = µ̃, θ+ = ψ̃j, z+ = z(ψ̃j);

End For;
OUTPUT z+ ∈ D(β), µ+, θ+. (* µ+ = µ(z+), θ = θ̃p from (51) *)

In the skew-symmetric case we have µ(θ) = (1 − θ)µ, so that we can slightly
increase the efficiency of the above procedure, by eliminating early the points
ψ̃j for which (1− ψ̃j)µ is greater or equal to the current minimum of µ(θ).

Procedure 4
INPUT: z ∈ D(β ), µ, ς . (* β > β, µ = µ(z), 0 < ς < 0.5 *)

set µ+ = µ, θ+ = 0 ; (* (µ+, θ+)← (minµ(θ), argmin µ(θ)) *)
For j = Jψ , . . . , 1

set ξ = ∞ ; (* ξ ← min x(ψ̃j)s(ψ̃j) *)
If (1− ψ̃j)µ ≥ µ+, Return;
For l = 1, . . . , n:

If x̃l := xl(ψ̃j) ≤ 0, Return;
If s̃l := sl(ψ̃j) ≤ 0, Return;
If x̃ls̃l < ξ , set ξ = x̃ls̃l;

End For;
set µ̃ = µ(z̃) ;
If ξ < βµ̃, Return;
set µ+ = µ̃, θ+ = ψ̃j, z+ = z(ψ̃j);

End For;
OUTPUT z+ ∈ D(β), µ+, θ+. (* µ+ = µ(z+), θ = θ̃p from (51) *)
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By using the line search procedures described above in Algorithm 1, we
obtain the following interior point algorithm for solving monotone linear com-
plementarity problems.

Algorithm 2
Given real parameters 0 < β < 1, 0 < γ < γ < 1, 0 < σ < σ < 1, 0 < ς < 0.5,
integers mc, mp ≥ 1, and a vector z0 ∈ D(β) :

Set k← 0;
repeat

(corrector step)
Set z ← zk;
Choose γ ∈ [ γ , γ ] and set m = mc;
Compute directions wi = �ui, vi �, i = 1, . . . , m, by solving (7);
If HLCP is skew-symmetric, compute z , µ by Procedure 2;

Else, choose σ ∈ [ σ , σ ], compute z , µ by Procedure 1;
Set z k ← z , µ k ← µ .
(predictor step)
Set z ← z k, γ = 0, and m = mc;
Compute directions wi = �ui, vi �, i = 1, . . . , m, by solving (7);
If HLCP is skew-symmetric, compute z+, µ+ by Procedure 4;

Else, compute z+, µ+ by Procedure 3;
Set zk+1 ← z+, µk+1 ← µ+, k← k+ 1.

continue

Algorithm 2 has the same worst case iteration bounds as Algorithm 1.

Theorem 3 If HCLP (1) is monotone then Algorithm 2 is well defined and the
following relations hold for any integer k ≥ 0:

z k, zk ∈ D(β), µk+1 ≤
(

1− χ

n
1
2+ mc+1

2mc(mp+1)

)

µ k , µ k ≤
(

1− χ

n
1
2+ 1

2mc

)

µk,

where χ , χ are constants depending only on β, γ , γ , σ , σ .

Proof From the proof of Theorem 1 it follows that

f (θ5) ≥ β + δ, x(θ5) > 0, s(θ5) > 0, µ(θ5) ≤ (1− σ(1− γ )θ5)µ,

which shows that θ5 ∈ �̃. Therefore, the corrector step of Algorithm 2 produces
a point z ∈ D(β + δ) such that

µ ≤ (1− σ(1− γ )θ5) µ ≤
(

1− σ(1− γ )χ5

n
1
2+ 1

2mc

)

µ.

Similarly, from the proof of Theorem 1 we have θ7 ∈ �̃, and therefore (38)
holds. The proof is complete. �



Corrector–predictor methods for monotone LCP 271

Corollary 4 Algorithm 2 produces a point z = � x, s � ∈ D(β) with xTs ≤ ε, in at
most O

(
n1/2+υ log

(
x0 Ts0/ε

))
iterations, where υ is given by (26).

It follows that if the order of either the corrector or the predictor is larger
than a multiple of log n, then Algorithm 1 has O

(√
nL

)
-iteration complexity.

Corollary 5 If max
{
mc, mp

} = �(log n), then Algorithm 2 produces a point
z = � x, s � ∈ D(β) with xTs ≤ ε, in at most O

(√
n log

(
x0 Ts0/ε

))
.

The superlinear convergence of Algorithm 2 follows from (50). More precisely
we have the following result.

Theorem 4 The sequence µk produced by Algorithm 2 satisfies

µk+1 = O
(
µ

mp+1−ς
k

)
, if HLCP (1) is nondegenerate,

and

µk+1 = O
(
µ

.5(mp+1)−ς
k

)
, if HLCP (1) is degenerate.

7 Conclusions

We have presented a corrector–predictor interior point algorithm for monotone
homogenous linear complementarity problems acting in a wide neighborhood
of the central path.

The corrector, based on a polynomial of order mc, increases both centrality
and optimality. Its numerical implementation requires one matrix factoriza-
tion, mc + 1 backsolves, and one line search. The line search procedure can
be implemented in O(mcn1+α) arithmetic operation, for some 0 < α ≤ 1, or
even in O(mcn log n) arithmetic operations. In case of full matrices the cost of
the factorization is O(n3) arithmetic operations, and the cost of a backsolve is
O(n2) arithmetic operations. It follows that if mc = O(nω), for some 0 < ω < 1,
then the cost of the corrector step is dominated by the cost of the matrix factor-
ization, so the corrector step can be implemented in at most O(n3) arithmetic
operations.

The predictor step further increases optimality and eventually ensures super-
linear convergence. It is based on a polynomial of order mp. If mp = O(nω), for
some 0 < ω < 1, its numerical implementation requires at most O(n3) arithme-
tic operations, the cost being dominated by the cost of a matrix factorization.

If max{mc, mp} = Ω(log n), then the iteration complexity of the algorithms
is O(
√

nL). The algorithms are superlinearly convergent even for degenerate
problems.
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