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Abstract In this paper we study semidefinite programming (SDP) models for a
class of discrete and continuous quadratic optimization problems in the complex
Hermitian form. These problems capture a class of well-known combinatorial
optimization problems, as well as problems in control theory. For instance, they
include the MAX-3-CUT problem where the Laplacian matrix is positive semi-
definite (in particular, some of the edge weights can be negative). We present a
generic algorithm and a unified analysis of the SDP relaxations which allow us to
obtain good approximation guarantees for our models. Specifically, we give an
(k sin(π

k ))2/(4π)-approximation algorithm for the discrete problem where the
decision variables are k-ary and the objective matrix is positive semidefinite. To
the best of our knowledge, this is the first known approximation result for this
family of problems. For the continuous problem where the objective matrix is
positive semidefinite, we obtain the well-known π/4 result due to Ben-Tal et al.
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[Math Oper Res 28(3):497–523, 2003], and independently, Zhang and Huang
[SIAM J Optim 16(3):871–890, 2006]. However, our techniques simplify their
analyses and provide a unified framework for treating those problems. In addi-
tion, we show for the first time that the gap between the optimal value of the
original problem and that of the SDP relaxation can be arbitrarily close to π/4.
We also show that the unified analysis can be used to obtain an �(1/ log n)-
approximation algorithm for the continuous problem in which the objective
matrix is not positive semidefinite.

Keywords Hermitian quadratic functions · Complex semidefinite program-
ming · Grothendieck’s inequality

Mathematics Subject Classification (2000) 90C20 · 90C22 · 90C27 · 90C90

1 Introduction

Following the seminal work of Goemans and Williamson [7], there has been an
outgrowth in the use of semidefinite programming (SDP) for designing approx-
imation algorithms. Recall that an α-approximation algorithm for a problem P
is a polynomial-time algorithm such that for every instance I of P , it delivers
a solution that is within a factor of α of the optimum value [9]. It is well-known
that SDPs can be solved in polynomial time (up to any prescribed accuracy) via
interior-point algorithms (see, e.g., [14]), and they have been used very success-
fully in the design of approximation algorithms for a host of NP-hard problems,
e.g. graph partitioning, graph coloring, and quadratic optimization [5–8,11,15],
just to name a few.

In this paper, we consider a class of discrete and continuous quadratic opti-
mization problems in the complex Hermitian form. Specifically, we consider the
following problems:

maximize zHQz

subject to zj ∈ {
1, ω, . . . , ωk−1} j = 1, 2, . . . , n

(1)

and
maximize zHQz

subject to |zj| = 1 j = 1, 2, . . . , n

z ∈ Cn

(2)

where Q ∈ Cn×n is a Hermitian matrix, ω is the principal kth root of unity,
and zH denotes the conjugate transpose of the complex vector z ∈ Cn. The
difference between (1) and (2) lies in the values that the decision variables are
allowed to take. In Problem (1), we have discrete decision variables, and such
variables can be conveniently modelled as roots of unity. On the other hand,
in Problem (2), the decision variables are constrained to lie on the unit circle,
which is a continuous domain. Such problems arise from many applications.
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For instance, the MAX-3-CUT problem where the Laplacian matrix is positive
semidefinite can be formulated as an instance of (1). On the other hand, (2)
arises from the study of robust optimization as well as control theory [3,13].

It is known that both of these problems are NP-hard, and thus we will settle
for approximation algorithms. Previously, various researchers have considered
SDP relaxations for (1) and (2). However, approximation guarantee is known
only for the continuous problem [3,16], and to the best of our knowledge, no
such guarantees are known for the discrete problem prior to our work.

Our main contribution is to present a generic algorithm and a unified treat-
ment of the two seemingly very different problems (1) and (2) using their
natural SDP relaxations, and to give the first known approximation result for
the discrete problem. Specifically, we are able to achieve an (k sin(π

k ))2/(4π)-
approximation ratio for the discrete problem.1 As a corollary, we obtain an
0.537-approximation algorithm for the MAX-3-CUT problem where the Lapla-
cian matrix is positive semidefinite. This should be contrasted with the 0.836-
approximation algorithm of Goemans and Williamson [8] for MAX-3-CUT
with non-negative edge weights. For this particular case, our result might be
seen as a generalization of Nesterov’s result [11] which gives an 2/π -approx-
imation for the MAX-CUT problem where the Laplacian matrix is positive
semidefinite.

For the continuous problem, our analysis also achieves the π/4 guarantee of
[3,16]. However, our analysis is simpler than that of [3,16], and it follows the
same framework as that of the discrete problem. Moreover, we give a family of
examples showing that the gap between the optimal value of Problem (2) and
that of the SDP relaxation can be arbitrarily close to π/4. In addition, we show
that the unified analysis can be used to obtain an �(1/ log n)-approximation
algorithm for the continuous problem in the case where the objective matrix
is not positive semidefinite. We remark that the �(1/ log n) bound (as well as
the �(1/ log n) bound obtained by Charikar and Wirth [4] for the real analog
of the continuous problem) follows directly from a result of Nemirovski, Roos
and Terlaky [10]. However, both our algorithm and its analysis are different
from those in [10]. In particular, the performance guarantee of our algorithm
is a function of the entries of the objective matrix Q, and that function is lower
bounded by �(1/ log n). In contrast, it is not clear if the algorithm of [10] has
such a feature.

To motivate our approach, we first remark that our rounding schemes are
essentially the same as that of Goemans and Williamson [7,8]. However, since
we do not make any assumptions on the entries of the objective matrix Q,
we cannot use their analysis to establish the desired approximation results.
Indeed, one apparent difficulty in analyzing SDP relaxation-based algorithms
for Problems (1) and (2) is that the usual Goemans–Williamson analysis [7,8]
(and its variants thereof) only provides a term-by-term estimate of the objective

1 By extending their analysis in [16], Zhang and Huang are also able to obtain the same approx-
imation ratio for the discrete problem. We refer the readers to the journal version of [16] for
details.
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function and does not provide a global estimate. Although global techniques
for analyzing (real) SDP relaxations exist [11], it is not clear how they can be
applied to our problems. Our analysis is mainly inspired by a recent result of
Alon and Naor [2], who proposed several methods for analyzing (real) SDP
relaxations in a global manner using results from functional analysis. One of
those methods, which is based on the work of Rietz [12], uses averaging with
Gaussian measure and the simple fact that

∑
i,j qij(vi · vj) ≥ 0 if the matrix

Q = (qij) is positive semidefinite (here, vi · vj is the inner product of two vectors
vi and vj in some Hilbert space). Our results for (1) and (2) in the case where Q
is positive semidefinite are motivated by this method. Although the assumption
that Q is positive semidefinite is essential to make the analyses go through, we
manage to analyze our algorithm in a unified way for the case where Q is not
positive semidefinite as well.

The rest of the paper is organized as follows. In Sect. 2 we give the setting of
our problems and a generic algorithm for solving those problems. In Sect. 3 we
consider the discrete problem where the objective matrix is positive semidefi-
nite, and give an analysis on the approximation guarantee of our algorithm. In
Sect. 4 we consider the continuous problem when the objective matrix is not
semidefinite. Finally, in Sect. 5, we summarize our findings and provide some
possible future directions.

2 Complex quadratic optimization

Let Q ∈ Cn×n be a Hermitian matrix, where n ≥ 1 is an integer. Consider the
following discrete quadratic optimization problem:

maximize zHQz

subject to zj ∈ {1, ω, . . . , ωk−1} j = 1, 2, . . . , n
(3)

where ω is the principal kth root of unity. We note that as k goes to infinity, the
discrete problem (3) becomes a continuous optimization problem:

maximize zHQz

subject to |zj| = 1 j = 1, 2, . . . , n

z ∈ Cn

(4)

Although Problems (3) and (4) are quite different in nature, the following
complex semidefinite program provides a relaxation for both of them:

maximize Q • Z

subject to Zjj = 1 j = 1, 2, . . . , n

Z � 0

(5)

We use wSDP to denote the optimal value of the SDP relaxation (5).
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Our goal is to get a near optimal solution to Problems (3) and (4). Below
we present a generic algorithm that can be used to solve both (3) and (4). Our
algorithm is quite simple, and it is similar in spirit to the algorithm of Goemans
and Williamson [7,8].

Algorithm

Step 1. Solve the SDP relaxation (5) and obtain an optimal solution Z∗. Since
Z∗ is positive semidefinite, we can obtain a Cholesky decomposition
Z∗ = VVH , where V = (v1, v2, . . . , vn).

Step 2. Generate two independent normally distributed random vectors x ∈ Rn

and y ∈ Rn with mean 0 and covariance matrix 1
2 In, where In is the n×n

identity matrix. Let r = x + yi.

Step 3. For j = 1, 2, . . . , n, let ẑj = f (vj . . . r), where the function f (·) de-
pends on the structure of the problem and will be fixed later. Let
ẑ = (ẑ1, ẑ2, . . . , ẑn) be the resulting solution.

In order to prove the performance guarantee of our algorithm, we are inter-
ested in analyzing the quantity:

ẑHQẑ = Q • ẑẑH =
∑

l,m

Qlmẑlẑm =
∑

l,m

Qlmf (vl · r)f (vm · r)

Since our algorithm is randomized, we compute the expected objective value
of the solution ẑ. By linearity of expectation, we have:

E
[
ẑHQẑ

]
=

∑

l,m

QlmE[f (vl · r)f (vm · r)]

Thus, it would be sufficient to compute the quantity E[f (vl · r)f (vm · r)] for any
l, m, and this will be the main concern of our analysis. The analysis, of course,
depends on the choice of the function f (·). However, the following lemma will
be useful and it is independent of the function f (·). Recall that for two vectors
b, c ∈ Cn, we have b · c = ∑n

j=1 bjcj.

Lemma 1 For any pair of vectors b, c ∈ Cn, E[(b·r)(c · r)] = b·c, where r = x+yi
and x ∈ Rn and y ∈ Rn are two independent normally distributed random vector
with mean 0 and covariance matrix 1

2 In.

Proof This follows from a straightforward computation:

E[(b · r)(c · r)] = E

⎡

⎣

⎛

⎝
n∑

j=1

bjrj

⎞

⎠

(
n∑

k=1

ckrk

)⎤

⎦ =
n∑

j,k=1

bjckE[rjrk] =
n∑

j=1

bjcj

where the last equality follows from the fact that the entries of x and y are
independent normally distributed with mean 0 and variance 1/2. ��
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In the sequel, we shall use r ∼ NC(0, In) to indicate that r is an n-dimensional
standard complex normal random vector, i.e. r = x + yi, where x, y ∈ Rn are
two independent normally distributed random vectors, each with mean 0 and
covariance matrix 1

2 In.

3 Discrete problems where Q is positive semidefinite

In this section, we assume that Q is Hermitian and positive semidefinite. Con-
sider the discrete complex quadratic optimization problem (3). In this case, we
define the function f (·) in the generic algorithm presented in Sect. 2 as follows:

f (z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if arg(z) ∈ [−π/k, π/k)

ω if arg(z) ∈ [π/k, 3π/k)
...

...
ωk−1 if arg(z) ∈ [(2k − 3)π/k, (2k − 1)π/k)

(6)

By construction, we have ẑj ∈ {1, ω, . . . , ωk−1} for j = 1, 2, . . . , n, i.e. ẑ is a
feasible solution to Problem (3). Now, we can establish the following lemma:

Lemma 2 For any pair of vectors b, c ∈ Cn and r ∼ NC(0, In), we have:

E[(b · r)f (c · r)] = k sin(π/k)

2
√

π
(b · c)

Proof By rotation invariance, we may assume without loss of generality that
b = (b1, b2, 0, . . . , 0) and c = (1, 0, . . . , 0). Then, we have

E[(b1r1 + b2r2)f (r1)] = b1E[r1f (r1)]
= b1

π

∫

R

∫

R

(x − iy)f (x − iy) exp{−(
x2 + y2)} dxdy

= b1

π

∞∫

0

2π∫

0

ρ2e−iθ f (ρe−iθ )e−ρ2
dθdρ

Now, for any j = 1, . . . , k, if (2j − 3)π/k < θ ≤ (2j − 1)π/k, then −(2j − 1)π/k ≤
−θ < −(2j − 3)π/k, or

2k − 2j + 1
k

π ≤ 2π − θ <
2k − 2j + 3

k
π

It then follows from the definition of f (·) that:

f
(
ρe−iθ ) = f

(
ρei(2π−θ)

)
= ωk−j+1
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and hence f (ρe−iθ ) = ωj−1. Therefore, we have

(2j−1)π/k∫

(2j−3)π/k

f (ρe−iθ )e−iθ dθ = ωj−1

(2j−1)π/k∫

(2j−3)π/k

e−iθ dθ = 2 sin(π/k)

In particular, the above quantity is independent of j. Thus, we conclude that:

2π∫

0

f (ρe−iθ )e−iθ dθ = 2k sin(π/k)

Moreover, since we have:

∞∫

0

ρ2e−ρ2
dρ =

√
π

4

it follows that:

E[(b1r1 + b2r2)f (r1)] = k sin(π/k)

2
√

π
b1 = k sin(π/k)

2
√

π
(b · c)

as desired. ��
We are now ready to prove the main result of this section.

Theorem 1 Suppose that Q is Hermitian and positive semidefinite. Then, there

exists an
(k sin( π

k ))2

4π
-approximation algorithm for (3).

Proof By Lemmas 1 and 2, we have

E

[{
(b · r) − 2

√
π

k sin(π
k )

f (b · r)
}{

(c · r) − 2
√

π

k sin(π
k )

f (c · r)

}]

= −(b · c) + 4π

(k sin(π
k ))2 E[f (b · r)f (c · r)]

Now, for each vector u ∈ Cn, let us define the function hu : Cn → C by:

hu(r) = u · r − 2
√

π

k sin(π
k )

f (u · r)

It then follows that:

E[ẑHQẑ] = (k sin(π
k ))2

4π

[
n∑

l=1

n∑

m=1

qlm(vl · vm) +
n∑

l=1

n∑

m=1

qlmE
[
hvl hvm

]
]

(7)
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Now, we claim that:
n∑

l=1

n∑

m=1

qlmE
[
hvl hvm

]
≥ 0 (8)

To see this, let G be the standard complex Gaussian measure, i.e.:

dG(r) = 1
πn exp

(
−‖r‖2

)
dr

where ‖r‖2 = |r1|2 +· · ·+ |rn|2 and dr is the 2n-dimensional Lebesgue measure.
Consider the Hilbert space L2(G), i.e. the space of all complex-valued measur-
able functions f on Cn with

∫
Cn |f |2 dG < ∞. Recall that the inner product on

L2(G) is given by:

〈fu, fv〉 ≡
∫

Cn

fu(r)fv(r) dG(r) = E[fufv]

In particular, since hu ∈ L2(G) for each u ∈ Cn, we see that E
[
hvl hvm

]
is an

inner product of two vectors in the Hilbert space L2(G). Moreover, we may
consider Q as a positive semidefinite operator defined on the n-dimensional
subspace spanned by the vectors {hv1 , . . . , hvn}. These observations allow us to
conclude that (8) holds. Finally, upon substituting (8) into (7), we obtain:

E
[
ẑHQẑ

]
≥ (k sin(π

k ))2

4π

n∑

l=1

n∑

m=1

qlm(vl · vm) = (k sin(π
k ))2

4π
wSDP

i.e. our algorithm gives an
(k sin( π

k ))2

4π
-approximation. ��

As an application of Theorem 1, we consider the MAX-3-CUT problem,
which is defined as follows. We are given an undirected graph G = (V, E) with
V being the set of nodes and E being the set of edges. For each edge (i, j) ∈ E,
there is a weight wij that could be positive or negative. For a partition of V into
three subsets V1, V2 and V3, we define:

δ(V1, V2, V3) = {(i, j) ∈ E : i ∈ Vk, j ∈ Vl for k �= l}

and

w(δ(V1, V2, V3)) =
∑

(i,j)∈δ(V1,V2,V3)

wij

Our goal is to find a tripartition (V1, V2, V3) such that w(δ(V1, V2, V3)) is max-
imized. Notice that the MAX-3-CUT problem is a generalization of the well-
known MAX-CUT problem. In the MAX-CUT problem, we require one of the
subsets, say V3, to be empty.
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Goemans and Williamson [8] have given the following complex quadratic
programming formulation for the MAX-3-CUT problem:

maximize 1
3
∑

(i,j)∈E wij
(
2 − zi · zj − zj · zi

)

subject to zj ∈ {1, ω, ω2} for all j ∈ V
(9)

Based on this formulation and its SDP relaxation, Goemans and Willimason [8]
are able to give an 0.836-approximation algorithm for the MAX-3-CUT prob-
lem when the weights of the edges are nonnegative, i.e. wij ≥ 0 for all (i, j) ∈ E.
(They also show that their algorithm is actually the same as that of Frieze and
Jerrum [5], and thus give a tighter analysis of the algorithm in [5].) However,
their analysis does not apply if some of the edges have negative weights.

Notice that since wij = wji, Problem (9) is equivalent to:

maximize 2
3 zHLz

subject to zj ∈ {1, ω, ω2} for all j ∈ V
(10)

where L is the Laplacian matrix of the graph G = (V, E), i.e. Lij = −wij and
Lii = ∑

j:(i,j)∈E wij. However, by Theorem 1, Problem (10) can be approximated

by a factor of
(3 sin( π

3 ))2

4π
≈ 0.537. Therefore, we obtain the following result:

Corollary 1 There is a randomized 0.537-approximation algorithm for the MAX-
3-CUT problem when the Laplacian matrix is positive semidefinite.

Now, let us consider Problem (4) when Q is positive semidefinite. This prob-
lem can be seen as a special case of (3) by letting k → ∞. In this case, the
function f (·) is defined as follows:

f (t) =
{ t

|t| if |t| > 0

0 if t = 0
(11)

Note that as k → ∞, we have
(k sin( π

k ))2

4π
→ π/4. This establishes the following

result, which has been proven independently by Ben–Tal, Nemirovski and Roos
[3], and Zhang and Huang [16]. However, our proof is quite a bit simpler.

Corollary 2 Suppose that Q is positive semidefinite and Hermitian. Then, there
exists an π

4 -approximation algorithm for (4).

Next, we show that our analysis is in fact tight for the continuous complex
quadratic optimization problem (4). We give a family of examples which shows
that the natural SDP relaxation for the above problem has a gap arbitrarily
close to π/4. We begin with a technical lemma.
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Lemma 3 Let u, v be two random, independent vectors on the unit sphere of Cp.
Then, we have

E
[
|u · v|2

]
= 1

p
; E[|u · v|] =

(√
π

2
+ o(1)

)
1√
p

Proof By rotation invariance, we may assume that v = (1, 0, . . . , 0). Observe
that u and r/‖r‖2, where r ∼ NC(0, Ip), have the same distribution. Thus, the
first statement follows from:

E
[
|u · v|2

]
= E

[
|u1|2

]
= 1

p
E
[
|u1|2 + · · · + |up|2

]
= 1

p

using symmetry and linearity of expectation. For the second statement, observe
that:

E [|u · v|] = E[|u1|] =
∫

Cn

|r1|√
|r1|2 + · · · + |rp|2

dG(r)

Since |r1|2, |r2|2, . . . are i.i.d. with E
[|r1|2

] = 1, we have, by the Strong Law of
Large Numbers, that:

√
|r1|2 + · · · + |rp|2 → √

p a.s.

It then follows that:
∫

Cn

|r1|√
|r1|2 + · · · + |rp|2

dG(r) = 1 + o(1)√
p

·
∫

C

|r1| dG(r1)

=
(√

π

2
+ o(1)

)
1√
p

as desired. ��
To construct the tight example, let p and n � p be fixed. Let v1, . . . , vn be inde-
pendent random vectors chosen uniformly according to the normalized Haar
measure on the unit sphere of Cp. We define A = (aij) by aij = 1

n2 (vi · vj). By
construction, the matrix A is positive semidefinite and Hermitian. Moreover,
we have

∑

i,j

aij(vi · vj) = 1
n2

∑

i,j

|vi · vj|2

By taking n → ∞, the right-hand side converges to the average of the square
of the inner product between two random vectors on the unit sphere of Cn.
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By Lemma 3, this value is 1/p, and hence the optimal value of the SDP relaxa-
tion is at least 1/p.

Now, let zi ∈ C be such that |zi| = 1. Then, we have

zHAz =
∑

i,j

aijzizj =
∣
∣
∣
∣
∣
1
n

n∑

i=1

zivi

∣
∣
∣
∣
∣

2

Hence, the value of the original SDP is the square of the maximum possible
modulus of a vector 1

n

∑n
i=1 zivi. If we somehow know that the direction of this

optimal vector is given by the unit vector c, then we must set zi = f (vi · c) in
order to maximize the modulus. It then follows that:

1
n

n∑

i=1

zivi · c =
∣
∣
∣
∣
∣
1
n

n∑

i=1

zivi

∣
∣
∣
∣
∣

by the Cauchy–Schwarz inequality. Moreover, this quantity converges to the
average value of |v · c| as n → ∞. By letting n arbitrarily large and choosing
an appropriate ε-net of directions on the sphere, we conclude that with high
probability, the value of the original SDP is at most [(√π/2 + o(1))/

√
p]2 =

(π/4 + o(1))/p, which yields the desired result.

4 Continuous problems where Q is not positive semidefinite

In this section, we deal with Problem (4) where the matrix Q is not positive
semidefinite. However, for convenience, we assume that wSDP > 0 so that the
standard definition of approximation algorithm makes sense for our problem.
It is clear that wSDP > 0 as long as all the diagonal entries of Q are zeros.

Assumption 1 The diagonal entries of Q are all zeros, i.e. Qii = 0 for i =
1, 2, . . . , n.

In fact, Assumption 1 leads to the following even stronger result.

Lemma 4 If Q satisfies Assumption 1, then there exists a constant C > 0 such
that:

wSDP ≥ C
√ ∑

1≤i,j≤n

|qij|2 > 0

Proof It is straightforward to show that Problem (4) is equivalent to:

maximize (xT, yT)

(
Re(Q) Im(Q)

−Im(Q) Re(Q)

)(
x
y

)

subject to x2
j + y2

j = 1 j = 1, 2, . . . , n

x, y ∈ Rn

(12)
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Moreover, the objective value of (12) is bounded below by the objective value
of the following problem:

maximize
(
xT, yT)

(
Re(Q) Im(Q)

−Im(Q) Re(Q)

)(
x
y

)

subject to x2
j = 1

2 j = 1, 2, . . . , n

y2
j = 1

2 j = 1, 2, . . . , n

x, y ∈ Rn

(13)

Since Q satisfies Assumption 1, the diagonal entries of

(
Re(Q) Im(Q)

−Im(Q) Re(Q)

)

must also be zeros. It has been shown in [1] that for any real matrix A = (aij)n×n
with a zero diagonal, the optimal objective value of

maximize xTAx

subject to x2
j = 1 j = 1, 2, . . . , n

x ∈ Rn

(14)

is bounded below by C
√

2
∑

1≤i,j≤n |aij|2, for some constant C > 0 which is

independent of A. This implies that the optimal objective value of Problem (13)
is at least

1
2

C
√

2
∑

1≤i,j≤n

2
(|Re(qij)|2 + |Im(qij)|2

) ≥ C
√ ∑

1≤i,j≤n

|qij|2

which leads to the desired result. ��
Again, we use our generic algorithm presented in Sect. 2. In this case, we

specify the function f (·) as follows:

f (t) =
{ t

T if |t| ≤ T
t
|t| if |t| > T

(15)

where T is a parameter which will be fixed later. If we let zj = f (vj · r), then the
solution z = (z1, . . . , zn) obtained by this rounding may not be feasible, as the
point may not have unit modulus. However, we know that |zj| ≤ 1. Thus, we
can further round the solution as follows:

ẑ =
{

z/|z| with probability (1 + |z|)/2

−z̄/|z| with probability (1 − |z|)/2
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The following lemma is a direct consequence of the second randomized
rounding.

Lemma 5 For i �= j, we have E[ẑiẑj] = E[zizj].

Proof By definition, conditioning on zi, zj, we have

E[ẑiẑj | zi, zj] = Pr{ẑi = zi/|zi|, ẑj = zj/|zj|} · zizj

|zi| · |zj|
+ Pr{ẑi = zi/|zi|, ẑj = −zj/|zj|} ·

(
− zizj

|zi| · |zj|
)

+ Pr{ẑi = −zi/|zi|, ẑj = zj/|zj|} ·
(

− zizj

|zi| · |zj|
)

+ Pr{ẑi = −zi/|zi|, ẑj = −zj/|zj|} · zizj

|zi| · |zj|
= 1

2

(
1 + |zi| · |zj|

) · zizj

|zi| · |zj| − 1
2

(
1 − |zi| · |zj|

) · zizj

|zi| · |zj|
= zizj

The desired result then follows from the tower property of conditional
expectation. ��

This shows that the expected value of the solution on the circle equals that
of the “fractional” solution obtained by applying f (·) to the SDP solution.
Therefore, we could still restrict ourselves to the rounding function f (·).

Now, define:

g(T) = 1
T

− 1
T

e−T2 + √
π(1 − 	(

√
2T))

where 	(·) is the probability distribution function of N (0, 1).

Lemma 6 For any pair of vectors b, c ∈ Cn and r ∼ NC(0, In), we have:

E[(b · r)f (c · r)] = g(T)(b · c)

Proof Again, without loss of generality, we assume that c = (1, 0, . . . , 0) and
b = (b1, b2, 0, . . . , 0). Let 1A be the indicator function of the set A, i.e. 1A(ω) = 1
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if ω ∈ A and 1A(ω) = 0 otherwise. Then, we have

E[(b · r)f (c · r)] = E
[
(b1r̄1 + b2r̄2)

r1

T
· 1{|r1|≤T}

]

+E
[
(b1r̄1 + b2r̄2)

r1

|r1| · 1{|r1|>T}
]

= 1
T

E
[
b1|r1|2 · 1{|r1|≤T}

]
+ E

[
b1|r1| · 1{|r1|>T}

]

= b1

T
· 1
π

∫

x2+y2≤T2

(
x2 + y2) exp

( − (
x2 + y2))dxdy

+b1

π

∫

x2+y2>T2

√
x2 + y2 exp

( − (
x2 + y2))dxdy

= b1

πT

2π∫

0

T∫

0

ρ3 exp
( − ρ2) dρdθ

+b1

π

2π∫

0

∞∫

T

ρ2 exp
( − ρ2) dρdθ

= g(T)b1

where the last equality follows from the facts

T∫

0

ρ3 exp
( − ρ2)dρ = 1

2

(
1 − (

T2 + 1
)

exp
( − T2)

)

and

∞∫

T

ρ2 exp
( − ρ2)dρ = 1

2

(
T exp

( − T2) + √
π
(
1 − 	

(√
2T

)))

This completes the proof. ��
Lemma 7 For any pair of vectors b, c ∈ Cn and r ∼ NC(0, In), we have:

E[f (c · r)f (c · r)] = 1
T2 − 1

T2 exp
( − T2)
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Proof The proof is similar to that of Lemma 2. We again assume that c =
(1, 0, . . . , 0). Then, we have

E[f (c · r)f (c · r)] = E
[

r̄1

T
r1

T
· 1{|r1|≤T}

]
+ E

[
r̄1

|r1|
r1

|r1| · 1{|r1|>T}
]

= 1
T2 · 1

π

∫

x2+y2≤T2

(
x2 + y2) exp

( − (
x2 + y2)) dxdy

+ 1
π

∫

x2+y2>T2

exp
( − (

x2 + y2)) dxdy

= 1
T2 · 1

π

2π∫

0

T∫

0

ρ3 exp
( − ρ2) dρdθ

+ 1
π

2π∫

0

∞∫

T

ρ exp
( − ρ2) dρdθ

= 1
T2

(
1 − (

T2 + 1
)

exp
( − T2)) + exp

( − T2)

= 1
T2 − 1

T2 exp
( − T2)

��

Theorem 2 If Q satisfies Assumption 1, then there exists a constant C > 0 such
that

E
[
ẑHQẑ

]
≥ 1

3 log(β)
wSDP

where β = max

{

5,
∑

1≤k,m≤n |qkm|
C
√∑

1≤k,m≤n |qkm|2

}

.

Proof By Lemmas 1 and 6, we have

E[{(b · r) − Tf (b · r)}{(c · r) − Tf (c · r)}]

= (1 − 2Tg(T))(b · c) + T2E[f (b · r)f (c · r)]



108 A. Man-Cho So et al.

It follows that

E
[
ẑHQẑ

]
=

n∑

k=1

n∑

m=1

2Tg(T) − 1
T2 qkm(vk · vm)

+ 1
T2

n∑

k=1

n∑

m=1

qkmE[{(vk · r) − Tf (vk · r)}{(vm · r) − Tf (vm · r)}]

Again, the quantity E[{(b · r) − Tf (b · r)}{(c · r) − Tf (c · r)}] can be seen as an
inner product of two vectors in a Hilbert space. Moreover, by letting b = c
and using Lemma 7, we know that the norm of an Euclidean unit vector in this
Hilbert space is:

2 − 2Tg(T) − exp
( − T2) = exp

( − T2) − 2T
√

π
(
1 − 	

(√
2T

))

It follows that

1
T2

n∑

k=1

n∑

m=1

qkmE[{(vk · r) − Tf (vk · r)} · {(vm · r) − Tf (vm · r)}]

≥ −exp
( − T2) − 2T

√
π
(
1 − 	

(√
2T

))

T2

n∑

k=1

n∑

m=1

|qkm|

On the other hand, by Lemma 4, we have wSDP ≥ C
√∑

1≤k,m≤n |qkm|2 > 0 for

some constant C > 0. It follows that

1
T2

n∑

k=1

n∑

m=1

qkmE[{(vk · r) − Tf (vk · r)} · {(vm · r) − Tf (vm · r)}]

≥ −exp
( − T2) − 2T

√
π
(
1 − 	

(√
2T

))

T2 ·
∑

1≤k,m≤n |qkm|
C
√∑

1≤k,m≤n |qkm|2
· wSDP

≥ −exp
( − T2) − 2T

√
π
(
1 − 	

(√
2T

))

T2 β · wSDP

where β = max

{

5,
∑

1≤k,m≤n |qkm|
C
√∑

1≤k,m≤n |qkm|2

}

. This implies that

E
[
ẑHQẑ

]
≥

(
2Tg(T) − 1

T2 − exp
( − T2) − 2T

√
π
(
1 − 	

(√
2T

))

T2 n

)

wSDP

≥ 1 − (2 + β) exp
( − T2)

T2 wSDP
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By letting T = √
2 log β, we have E

[
ẑHQẑ

] ≥ 1
3 log β

wSDP. ��

Notice that by the Cauchy–Schwarz inequality, we have

∑
1≤k,m≤n |qkm|

√∑
1≤k,m≤n |qkm|2

≤ √
n

This yields the following corollary.

Corollary 3 If Q satisfies Assumption 1, then E
[
ẑHQẑ

] ≥ �
( 1

log n

) · wSDP.

Remarks Corollary 3 can also be derived from the result of [10]. Indeed, since
the diagonal entries of Q are all zeros, Problem (12), which is equivalent to
Problem (4), is also equivalent to the following problem:

maximize uTAu

subject to uTAju ≤ 1 j = 1, 2, . . . , n

u ∈ R2n

(16)

Here, we have u = (x, y),

A =
(

Re(Q) Im(Q)

−Im(Q) Re(Q)

)
, Aj =

(
Ij 0
0 Ij

)

where Ij ∈ Rn×n is the matrix whose jth diagonal entry is 1 and all other
entries zero. In particular, we have

∑n
j=1 Aj = I � 0 and rank(Aj) = 2 for

all j = 1, . . . , n. Hence, we may apply the result of [10] and conclude that we
can find a feasible solution û to (16) in polynomial time whose value is at least
�(1/ log n) times the optimum. This in turn implies an �(1/ log n) approxima-
tion to the original problem.

5 Conclusion

We have studied a class of discrete and continuous quadratic optimization
problems in the complex Hermitian form and obtained good approximation
guarantees for these problems. The techniques we used in analyzing the SDP
relaxations suggest that they may have a wider applicability, and it would be
interesting to explore those possibilities. In addition, it would be interesting to
refine our analysis and obtain better approximation guarantees for the discrete
quadratic optimization problem considered in this paper.
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