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Abstract The cut polytope of a graph arises in many fields. Although much
is known about facets of the cut polytope of the complete graph, very little is
known for general graphs. The study of Bell inequalities in quantum information
science requires knowledge of the facets of the cut polytope of the complete
bipartite graph or, more generally, the complete k-partite graph. Lifting is a
central tool to prove certain inequalities are facet inducing for the cut polytope.
In this paper we introduce a lifting operation, named triangular elimination,
applicable to the cut polytope of a wide range of graphs. Triangular elimina-
tion is a specific combination of zero-lifting and Fourier–Motzkin elimination
using the triangle inequality. We prove sufficient conditions for the triangular
elimination of facet inducing inequalities to be facet inducing. The proof is
based on a variation of the lifting lemma adapted to general graphs. The result
can be used to derive facet inducing inequalities of the cut polytope of various
graphs from those of the complete graph. We also investigate the symmetry of
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1 Introduction

Cut polytope and related polytopes. The cut polytope arises in many fields
[13–15], and the structure of facets of the cut polytope has been intensively
studied. For the complete graph with n nodes, a complete list of the facets of
the cut polytope CUTn is known for n ≤ 7 [17], as well as many classes of
facet producing valid inequalities. The hypermetric inequalities (see Chap. 28
of [15]) and the clique-web inequalities [12] (also Chap. 29 of [15]), an extension
of hypermetric inequalities, are examples of such classes. Very little is known
about classes of facets for the cut polytope of an arbitrary graph. One such class
are the cycle inequalities, which are projections of the triangle inequalities. They
were shown to be facet producing by Barahona and Majoub [5]. The structure
of facets of the cut polytope is of both theoretical and practical interest. In the
branch-and-cut approach to solve the MAX-CUT problem, facets of the cut
polytope are the most powerful cutting planes. However, under the reasonable
assumption that NP �= coNP, the complete list of the facets of the cut polytope
does not have a compact representation [24], even for the complete graphs [1,
25]. This implies that we cannot hope to enumerate all of its facets, but rather
should look for strong valid inequalities.

A lifting operation is a procedure which converts a given valid inequality of
the cut polytope of a small graph to a new valid inequality of the cut polytope of
a larger graph, and is an established method for deriving new facets systemati-
cally. The most fundamental example of the lifting operations is zero-lifting (for
the complete graph [10,11] and for general graphs [27]). Readers are referred
to Sect. 26.5 and Chaps. 28–30 of [15] for more examples of classes of valid
inequalities and lifting operations.

The MAX-CUT problem is equivalent to unconstrained quadratic 0–1 pro-
gramming [18], and the associated boolean quadric polytope is linearly iso-
morphic to the cut polytope. This linear isomorphism is called the covariance
mapping (see Sect. 5.2 of [15]). The boolean quadric polytope is also known as
the correlation polytope, especially in the physics literature.

Relation of the cut polytope to quantum information processing. The poly-
topes described in the previous section have many applications in quantum
physics and quantum information theory [14,15]. McRae and Davidson [20]
showed the power of polytope theory in quantum physics by proving that
the possible solutions to some problems arising in quantum physics form a
convex polytope and deriving inequalities for such solutions by convex hull
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algorithms. One of the polytopes discussed there is identical to the boolean
quadric polytope.

In quantum information processing, the cut polytope and the boolean quad-
ric polytope arise in relation to Bell inequalities. In this area, Bell inequalities,
a generalization of Bell’s original inequality [6], are intensively studied [19,
29] to better understand the nonlocality of quantum physics. Bell inequalities
deal with probabilities, and the search for explicit formulae for Bell inequalities
is related to Boole’s problem [7]. It is natural to consider Bell inequalities as
inequalities valid for certain convex polytopes [16,22–25] much in the same
way as considering Boole’s problem as a problem about certain convex poly-
topes [14]. In particular, Bell inequalities involving joint probabilities of two
probabilistic events are exactly inequalities valid for the boolean quadric poly-
tope of a graph [24,25]. To enumerate all the Bell inequalities for a given
physical setting, it is sufficient to enumerate the facets of the corresponding
polytope by using a convex hull algorithm. Exhaustive enumeration of the Bell
inequalities has been performed [9,26] in physical settings where parameters
such as the number of observables and the number of possible outcomes of
each observable are small enough.

Bell inequalities for two parties are inequalities valid for the boolean quadric
polytope of the complete bipartite graph Kr,s, and they correspond to inequali-
ties valid for the cut polytope CUT�(∇Kr,s) via the covariance mapping. ∇Kr,s
denotes the suspension graph of Kr,s, that is, the graph obtained by adding a
new node to Kr,s and connecting it to all the existing nodes, and in other words,
it is the complete tripartite graph K1,r,s. Enumeration of the facets of the cut
polytope of the complete graph uses symmetry and other structure specific to
the cut polytope, and they are often beyond the reach of general convex hull
packages. Avis, Imai, Ito and Sasaki [3] proposed an operation named triangular
elimination, which is a combination of zero-lifting and Fourier–Motzkin elimi-
nation (see e.g. [30]) using the triangle inequality. They proved that triangular
elimination maps facet inducing inequalities of the cut polytope of the complete
graph to facet inducing inequalities of the cut polytope of ∇Kr,s.

The cut polytope of ∇Kr,s can be projected to the cut polytope of Kr,s,
and this means that some Bell inequalities for the correlation polytope of Kr,s

correspond to inequalities valid for CUT�(Kr,s) via the covariance mapping.
Such Bell inequalities have good properties in relation to quantum games [8].
They correspond to inequalities for correlation functions [2], whose multi-party
version is discussed by Werner and Wolf [28] and Żukowski and Bruckner [31].

Our results. In this paper, we generalize triangular elimination introduced
in [3] to an operation which maps inequalities valid for the cut polytope
CUT�(G) to those for CUT�(G′) for graphs G and G′ satisfying a certain
condition. From the viewpoint of combinatorial optimization, triangular elimi-
nation is one of the lifting operations on inequalities valid for the cut polytope.

Though the triangular elimination of an inequality is not uniquely defined,
all the choices are switching equivalent (Proposition 5) and therefore triangular
elimination can be seen as an operation which, given a switching equivalent class
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of inequalities valid for CUT�(G), uniquely produces a switching equivalent
class of inequalities valid for CUT�(G′).

We prove a sufficient condition (Theorem 4) for the triangular elimination
of a facet inducing inequality to be facet inducing. The proof is similar to that of
the zero-lifting theorem by Deza and Laurent [11,15], where the lifting lemma
used in the course of the proof is replaced with a version adapted to general
graphs.

For certain graphs G and G′ which do not satisfy the conditions of Theorem 4,
we can sometimes perform repeated triangular eliminations on a sequence of
graphs starting from G and ending with G′. Using this idea, we prove another
sufficient condition in case where G = Kn. This sufficient condition extends
Theorem 2.1 in [3]. It provides a method to derive a large number of inequal-
ities which define facets of the cut polytope of the complete k-partite graph.
These are relevant to k-party games, in light of the connection between Bell
inequalities and quantum games [8].

We also prove a necessary and sufficient condition for the triangular elimi-
nations of two facet inducing inequalities to be equivalent up to permutation
and switching in the case G = Kn and G′ = Kr,s.

Organization of the paper. The rest of this paper is organized as follows.
Sect. 2 reviews basic notions about the cut polytope. Section 3 gives the defini-
tion of triangular elimination for general graphs and proves its basic properties
and the main theorem stating a sufficient condition for the triangular elimination
of a facet to be a facet. In Sect. 4, we prove additional properties of triangular
elimination from the complete graph. Section 5 states open problems.

2 Preliminaries

We briefly review basic notions about the cut polytope used in later sections.
Definitions, theorems and other results stated in this section are from the com-
prehensive reference [15] on this topic, which readers are referred to for more
information. We assume that readers are familiar with basic notions in convex
polytope theory such as convex polytope, facet, projection and Fourier–Motzkin
elimination. Readers are referred to a textbook [30] for details.

Throughout this paper, we use the following notation on graphs. We denote
the edge between two nodes u and v by uv. For a graph G = (V, E) and a node
v ∈ V, we denote the neighbourhood of v by NG(v).

2.1 Cut polytope and cone

The cut polytope (resp. cut cone) of a graph G = (V, E) is the convex hull (resp.
conic hull) of the cut vectors of G. A formal definition is as follows.

Definition 1 (Cut polyhedra) The cut polytope of a graph G = (V, E), denoted
CUT�(G), is the convex hull of the cut vectors δG(S) of G defined by all the
subsets S ⊆ V in the |E|-dimensional vector space R

E. The cut vector δG(S) of G
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defined by S ⊆ V is a vector in R
E whose uv-coordinate is defined as follows:

δuv(S) =
{

1 if |S ∩ {u, v}| = 1,
0 otherwise,

for uv ∈ E.

The cut cone of G, denoted CUT(G), is the conic hull of the cut vectors δG(S) ∈
R

E of G for all the subsets S ⊆ V. If G is the complete graph Kn, we denote
CUT�(Kn) and CUT(Kn) also as CUT�

n and CUTn, respectively.

For a subset F of a set E, the incidence vector of F (in E) 1 is the vector
x ∈ {0, 1}E defined by xe = 1 for e ∈ F and xe = 0 for e ∈ E \ F. Using this
term, the definition of the cut vector can also be stated as follows: δG(S) is the
incidence vector of the cut set {uv ∈ E | |S ∩ {u, v}| = 1} in E.

The cut polytope and cone are full-dimensional in R
E [4]. The following

inequalities are the first class of facets of the cut cone of an arbitrary graph.

Theorem 1 [5]

(i) For a graph G = (V, E), a cycle C ⊆ E in G and an edge uw ∈ C, the
cycle inequality

xuw −
∑

e∈C\{uw}
xe ≤ 0 (1)

is valid for CUT(G).
(ii) If C is a chordless cycle in G, then (1) is facet inducing for CUT(G).

The following proposition follows immediately from the fact that the origin
is a vertex of CUT�(G).

Proposition 1 Inequality aTx ≤ 0 is valid (resp. facet inducing) for CUT�(G) if
and only if it is valid (resp. facet inducing) for CUT(G).

2.2 Operations on inequalities

2.2.1 Symmetric transformations

Let G = (V, E) be a graph. The cut polytope CUT�(G) admits two kinds of
symmetric transformations, which correspond to operations on valid inequali-
ties which preserve their properties.

Definition 2 (Permutation) Let σ a permutation on V which is an automor-
phism of G. Then the σ -permutation of an inequality aTx ≤ a0 is an inequality
(a′)Tx ≤ a0 where a′ ∈ R

E is defined by a′
ij = aσ(i)σ (j). Such an inequality is said

to be permutation equivalent to aTx ≤ a0.

1 The set E is sometimes not specified explicitly when E is clear from the context or the choice of
E does not make any difference.
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Definition 3 (Switching) Let S be a subset of V. Then the S-switching of an
inequality aTx ≤ a0 is an inequality (a′)Tx ≤ a0 − aTδG(S) where a′ ∈ R

E is
defined by a′

ij = (−1)δij(S)aij. Such an inequality is said to be switching equiva-

lent to aTx ≤ a0.

Generalizing the cycle inequality in the form of (1), the cycle inequality [5]
for the cut polytope CUT�(G) is defined as follows. For a cycle C ⊆ E in G and
a subset F ⊆ C with |F| odd,

∑
e∈F

xe −
∑

e∈C\F

xe ≤ |F| − 1. (2)

Inequality (2) is switching equivalent to (1), since it is the S-switching of (1)
where S is a subset of the nodes in C such that the intersection of C and the
cut set defined by S is equal to F � {uw}. Here F � {uw} denotes the symmetric
difference of the two sets F and {uw}.

We say (a′)Tx ≤ a′
0 is permutation-switching equivalent to aTx ≤ a0 if they

can be transformed to each other by using permutation and/or switching equiv-
alence.

The following proposition is stated as Lemma 26.2.1 and Corollary 26.3.7 in
[15].

Proposition 2 Let aTx ≤ a0 and (a′)Tx ≤ a′
0 be permutation-switching equiva-

lent inequalities. Then aTx ≤ a0 is valid (resp. facet inducing) for CUT�(G) if
and only if (a′)Tx ≤ a′

0 is valid (resp. facet inducing) for CUT�(G).

A root of an inequality is a cut vector that satisfies it as an equation. The fol-
lowing well-known proposition, which follows from the definition of switching,
shows the essential equivalence of the cut cone and polytope.

Proposition 3 Let aTx ≤ a0 be an inequality, valid for CUT�(G), which has a
root δG(S). Then its S-switching (a′)Tx ≤ 0 is valid for CUT(G).

From Theorem 1 and Proposition 2, the following corollary follows immedi-
ately.

Corollary 1 [5]

1. For a graph G = (V, E), a cycle C ⊆ E in G and a subset F ⊆ C with |F|
odd, the cycle inequality (2) is valid for CUT�(G).

2. If C is a chordless cycle, then (2) is facet inducing for CUT�(G).

2.2.2 Collapsing

Let uv be an edge of a graph G = (V, E). The intersection of the cut polytope
CUT�(G) and the hyperplane xuv = 0 is linearly isomorphic to the cut poly-
tope CUT�(G/uv) where G/uv denotes the contraction of G at the edge uv. We
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denote by u the node in G/uv representing the edge uv in G. The uv-collapsing
of an inequality aTx ≤ a0 is an inequality (a′)Tx ≤ a0 defined by

a′
ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

aij if i, j �= u,
auj if i = u, uj ∈ E, vj /∈ E,
avj if i = u, uj /∈ E, vj ∈ E,
auj + avj if i = u, uj, vj ∈ E,

for every edge ij of G/uv.
The following lemma is given as Lemma 26.4.1 (i) in [15].

Lemma 1 Any collapsing of a valid inequality is valid.

2.2.3 Lifting operations

The term lifting refers to any general operations which derive an inequality valid
for a polyhedron P from an inequality valid for a polyhedron P ∩ {x | xe = 0}
for some coordinate e [21]. It is an important way to derive facet inducing
inequalities for combinatorial polyhedra. In context of the cut polytope, a lifting
operation means an operation which converts an inequality valid for CUT�(G)

to an inequality valid for CUT�(G′) where G is obtained by contracting some
edges of G′.

Most lifting operations convert an inequality aTx ≤ a0 to an inequality whose
appropriate collapsing is the inequality aTx ≤ a0. Such lifting operations are
sometimes called node splitting (see Sect. 26.5 of [15]).

The most fundamental lifting operation is zero-lifting. The following defini-
tion and theorem about the zero-lifting of inequalities for general graphs are
due to De Simone [27].

Definition 4 (Zero-lifting of inequalities) Let G = (V, E) be a subgraph of
G′ = (V′, E′). For a ∈ R

E and a0 ∈ R, the zero-lifting of aTx ≤ a0 is an inequal-
ity (a′)Tx ≤ a0 where a′ ∈ R

E′
is defined by a′

uv = auv for uv ∈ E and a′
uv = 0 for

uv ∈ E′ \ E.

Theorem 2 Let G = (V, E) be a graph with n nodes (n ≥ 3) and G′ = (V′, E′) be
a graph with n+1 nodes V′ = V∪{w} such that V induces G in G′. Let (a′)Tx ≤ a0
be the zero-lifting of aTx ≤ a0 and u be a node of G. Then (a′)Tx ≤ a0 is facet
inducing for CUT�(G′) if the following conditions are met:

(i) aTx ≤ a0 is facet inducing for CUT�(G).
(ii) NG′(w) \ {u} ⊆ NG(u).

(iii) The support graph G(a) of aTx ≤ a0 has at least three nodes.

Theorem 26.5.1 of [15] is the case of Theorem 2 where G and G′ are the
complete graphs and a0 = 0. The proof of Theorem 26.5.1 of [15] uses what
is called the lifting lemma (Proposition 2.7 of [11] and Lemma 26.5.3 of [15]),
which has a wide range of applications.



310 D. Avis et al.

Lemma 2 (Lifting lemma) Let G = (V, E) be the complete graph with n nodes
V = {1, . . . , n} (n ≥ 3). Let G′ = (V′, E′) be the complete graph with n + 1 nodes
V′ = V ∪ {n + 1}. Let a ∈ R

E and a′ ∈ R
E′

. Suppose that the following assertions
hold.

(i) The inequality aTx ≤ 0 is facet inducing for CUT(G) and the inequality
(a′)Tx ≤ 0 is valid for CUT(G′).

(ii) There exist |E| − 1 subsets Sj of V \ {1} such that the cut vectors δG(Sj) are
linearly independent roots of aTx ≤ 0 and the cut vectors δG′(Sj) are roots
of (a′)Tx ≤ 0.

(iii) There exist n subsets Tk of V′ with 1 /∈ Tk and n + 1 ∈ Tk such that the
cut vectors δG′(Tk) are roots of (a′)Tx ≤ 0 and the incidence vectors of the
sets Tk are linearly independent.

Then the inequality (a′)Tx ≤ 0 is facet inducing for CUT(G′).

3 Triangular elimination for general graphs

3.1 Definition and validity

Suppose that we have an inequality aTx ≤ a0 which is facet inducing for the
cut polytope CUT�(G) of a graph G = (V, E). We would like to remove an
edge uv from G and instead add some nodes and edges, converting the inequal-
ity aTx ≤ a0 to a facet inducing inequality of CUT�(G′) for the new graph
G′ = (V′, E′).

One way to do this is to add a new node w and new edges uw and vw, and add
the triangle inequality on u, v and w to eliminate the term xuv from the inequal-
ity aTx ≤ a0. For simplicity, we restrict ourselves to the case where a0 = 0 and
auv > 0. Then the triangle inequality to add is −auvxuv + auvxuw − auvxvw ≤ 0.
This can be seen as a variation of lifting operation since collapsing the node
w to v restores the original inequality, though it removes an edge from the
underlying graph.

Proposition 4 Let G = (V, E) be a graph and uv be an edge in G. Let aTx ≤ 0 be
a facet inducing inequality of CUT(G) with auv > 0. Let w be a new node which
does not belong to V, and let G′ = (V′, E′) be a graph with V′ = V ∪ {w} and
E′ = (E\{uv})∪{uw, vw}. Then the inequality aTx−auvxuv+auvxuw−auvxvw ≤ 0
is facet inducing for CUT(G′).

Proposition 4 is a special case of Corollary 2.10 (a) of [5]. We will give a direct
proof of Proposition 4 here since the proof of Theorem 4 will follow the same
steps (though with more complicated details).

Proof Let (a′)Tx ≤ 0 be the new inequality. The inequality (a′)Tx ≤ 0 is valid
for CUT(G′′), where G′′ = (V′, E ∪ E′), since it is the sum of two inequali-
ties aTx ≤ 0 and −auvxuv + auvxuw − auvxvw ≤ 0 both of which are valid for
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CUT(G′′). The inequality (a′)Tx ≤ 0 is also valid for CUT(G′) since it consists
of terms corresponding to edges of G′, which is a subgraph of G′′.

Since aTx ≤ 0 is facet inducing for CUT(G), there exist |E| − 1 subsets
S1, . . . , S|E|−1 of V \ {v} such that the |E| − 1 cut vectors δG(Sj) are linearly
independent roots of aTx ≤ 0.

If we collapse the node w to the node v in (a′)Tx ≤ 0, we obtain the inequality
aTx ≤ 0. This implies that δG′(Sj) are linearly independent roots of (a′)Tx ≤ 0.
The |E| − 1 cut vectors δG′(Sj) satisfy an equation xvw = 0. On the other hand,
a cut vector δG′({w}) is a root of (a′)Tx ≤ 0 with xvw = 1 �= 0. Therefore, the
|E| = |E′| − 1 roots δG′(Sj) and δG′({w}) of (a′)Tx ≤ 0 are linearly independent.
This implies that (a′)Tx ≤ 0 is facet inducing for CUT(G′). ��

A special case of Theorem 1 (ii) where the graph G is identical to the cycle C
may be proved by using Proposition 4 repeatedly as follows.

Corollary 2 The cycle inequality (1) is facet inducing for CUT(C).

Proof The proof is by induction on the length n of the cycle C. If n = 3, then
the inequality (1) is the triangle inequality and facet inducing for CUT(C). In
case of n > 3, we let v be the node in C adjacent of w other than u and apply
Proposition 4 with G = C/vw, G′ = C, and aTx ≤ 0 is the cycle inequality in
C/vw, which is facet inducing for C/vw by the induction hypothesis. ��

One question arises here: can we add more edges to G′ keeping the property
that the new inequality is facet inducing for CUT�(G′)? We will answer this
question affirmatively by Theorem 4. The main ingredient of the proof is the
notion of triangular elimination, which generalizes the operation described in
Proposition 4.

In what follows, we use the following notation and terms. Let �(u, v; w) =
xuv −xuw −xvw and �(u, v, w) = xuv +xuw +xvw −2 for any three nodes u, v, w in
the graph in question. The notation �{u, v, w} ambiguously denotes one of the
four triangular forms �(u, v; w), �(w, v; u), �(u, w; v) or �(u, v, w). The support
graph of a vector a ∈ R

E is a subgraph G(a) = (V(a), E(a)) of G whose edges
are all edges e in G with ae �= 0 and nodes are all the endpoints of the edges
in E(a). For a vector a ∈ R

E, a scalar a0 ∈ R and a subset F ⊆ E, we say the
inequality aTx ≤ a0 is completely supported by F when E(a) is included in F.

Definition 5 (Triangular elimination for graphs) Let G = (V, E) be a graph, t
be an integer, and let F = {uivi | i = 1, . . . , t} be any subset of E. The graph
G′ = (V′, E′) is a triangular elimination of G (with respect to F) if V′ = V ∪
{w1, . . . , wt}, E′ ⊇ {wiui, wivi | i = 1, . . . , t}, and E′ ∩ E = E \ F. Here w1, . . . , wt
are distinct nodes not in V. Node wi of G′ is said to be associated with edge uivi
of G.

Definition 6 (Triangular elimination for inequalities) Let G′ = (V′, E′) be a
triangular elimination of G = (V, E), and suppose we are given a ∈ R

E, a0 ∈ R,
a′ ∈ R

E′
, a′

0 ∈ R. Then inequality (a′)Tx ≤ a′
0 is a triangular elimination of
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Fig. 1 A graph G′ and two inequalities obtained as the triangular eliminations of G = K5 and its
facet inducing pentagonal inequality

aTx ≤ a0 if for some choices of triangular forms �i{ui, vi, wi}, i = 1, . . . , t, we
have

(a′)Tx − a′
0 = aTx − a0 +

t∑
i=1

|auivi |�i{ui, vi, wi}.

The operation in Proposition 4 is the case where t = 1, u1 = u, v1 = v,
w1 = w, �1{u, v, w} = �(u, w; v), and w has no neighbours other than u and v
in G′.

Example 1 To understand how triangular elimination typically works, let us
consider another, more explicit, example (see Fig. 1). Let G = (V, E) be the
complete graph K5 with nodes labelled as 1, . . . , 5 and G′ = (V′, E′) be the
complete 4-partite graph K3,1,1,3 with vertices partitioned as {1, 2, 3}, {4}, {5}
and {6, 7, 8}. Then G′ is a triangular elimination of G with respect to F =
E \ E′ = {12, 13, 23}, where u1v1 = 12, u2v2 = 13, u3v3 = 23 and wi = 5 + i
for i = 1, 2, 3. Let aTx ≤ a0 be the pentagonal inequality x12 + x34 + x35 +
x45 − ∑

1≤u≤2,3≤v≤5 xuv ≤ 0. Then one of the triangular eliminations (a′)Tx ≤
a′

0 of aTx ≤ a0 is obtained by using triangular forms �{1, 2, 6} = �(1, 6; 2),
�{1, 3, 7} = �(1, 3; 7) and �{2, 3, 8} = �(2, 3; 8), and it is −∑

1≤u≤2,4≤v≤5 xuv +
x34 + x35 + x45 + x16 − x26 − x17 − x37 − x28 − x38 ≤ 0. Another triangular
elimination (a′′)Tx ≤ a′′

0 of aTx ≤ a0 is obtained by using �{1, 2, 6} = �(2, 6; 1),
�{1, 3, 7} = �(1, 3; 7) and �{2, 3, 8} = �(2, 3, 8), and it is −∑

1≤u≤2,4≤v≤5 xuv +
x34 + x35 + x45 − x16 + x26 − x17 − x37 + x28 + x38 ≤ 2.
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Triangular elimination of an inequality can also be seen as a specific combi-
nation of zero-lifting operation and Fourier–Motzkin elimination. Let aTx ≤ a0

be a valid inequality of CUT�(G). Consider a graph G′′ = (V′, E ∪ E′) and the
zero-lifting of aTx ≤ a0 to CUT�(G′′). Then apply Fourier-Motzkin elimina-
tion to project out the variables xuv for uv ∈ F, adding triangle inequalities to
aTx ≤ a0. This gives a triangular elimination of aTx ≤ a0.

The “if” part of the following theorem is straightforward from the definitions.

Theorem 3 Let G′ = (V′, E′) be a triangular elimination of G = (V, E), and let
(a′)Tx ≤ a′

0 be a triangular elimination of aTx ≤ a0. Then (a′)Tx ≤ a′
0 is valid for

CUT�(G′) if and only if aTx ≤ a0 is valid for CUT�(G).

Proof (Proof of the “if” part of Theorem 3) Let G′′ = (V′, E∪E′). The inequal-
ity (a′)Tx ≤ a′

0 is valid for CUT�(G′′) since it is a sum of an inequality aTx ≤ a0

and triangle inequalities all of which are valid for CUT�(G′′). The inequality
(a′)Tx ≤ a′

0 is also valid for CUT�(G′) since it consists of terms corresponding
to edges of G′, which is a subgraph of G′′. ��

We prove the “only if” part in Sect. 3.2.

3.2 Switching of the triangular elimination

As is shown in Example 1, Definition 6 allows several choices of �i{ui, vi, wi},
and different choices give apparently different inequalities. This may complicate
handling of triangular elimination. It turns out that if we deal with equivalence
classes of inequalities under switching equivalence instead of the inequalities
themselves, triangular elimination is easier to handle.

Proposition 5 Let G′ be a triangular elimination of G. Let (a′)Tx ≤ a′
0 be a

triangular elimination of aTx ≤ a0 and (b′)Tx ≤ b′
0 be a triangular elimination

of bTx ≤ b0 such that the association of nodes in G′ with edges in G are the same
in both triangular eliminations. If aTx ≤ a0 is switching equivalent to bTx ≤ b0,
then (a′)Tx ≤ a′

0 is switching equivalent to (b′)Tx ≤ b′
0.

Proof Let

((a′)Tx − a′
0) − (aTx − a0) =

∑
1≤i≤t

|auivi |�i{ui, vi, wi}.

First we prove the proposition when a = b and a0 = b0. In this case, let

((b′)Tx − b′
0) − (aTx − a0) =

∑
1≤i≤t

|auivi |�̃i{ui, vi, wi}.

For i = 1, . . . , t, if auivi �= 0, then �i{ui, vi, wi} and �̃i{ui, vi, wi} are either iden-
tical or the {wi}-switching of each other, by comparing their xuivi-coefficient.
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Let S be the set of wi for i such that �i{ui, vi, wi} and �̃i{ui, vi, wi} are the {wi}-
switching of each other. Then two inequalities (a′)Tx ≤ a′

0 and (b′)Tx ≤ b′
0 are

the S-switching of each other.
Next we prove the general case. Let S be a subset of V such that aTx ≤ a0

and bTx ≤ b0 are the S-switching of each other. Let (b′′)Tx ≤ b′′
0 be the S-

switching of (a′)Tx ≤ a′
0. Then ((b′′)Tx − b′′

0)− (bTx − b0) ≤ 0 is the S-switching
of the inequality ((a′)Tx − a′

0) − (aTx − a0) ≤ 0 and therefore the S-switch-
ing of

∑
1≤i≤t|auivi |�i{ui, vi, wi} ≤ 0. This means that (b′′)Tx ≤ b′′

0 as well as
(b′)Tx ≤ b′

0 is a triangular elimination of bTx ≤ b0. By the case we already
proved, (b′)Tx ≤ b′

0 and (b′′)Tx ≤ b′′
0 are switching equivalent. Therefore,

(a′)Tx ≤ a′
0 and (b′)Tx ≤ b′

0 are switching equivalent. ��
Example 2 (continued from Example 1) Both inequalities (a′)Tx ≤ a′

0 and
(a′′)Tx ≤ a′′

0 described in Example 1 are the triangular eliminations of aTx ≤ a0.
By Proposition 5, (a′)Tx ≤ a′

0 and (a′′)Tx ≤ a′′
0 are switching equivalent. In fact,

they are the {6, 8}-switching equivalent of each other.

Proposition 5 essentially states that triangular elimination is well-defined as
an operation acting on switching-equivalence classes of inequalities. By Propo-
sition 5, we can freely replace aTx ≤ a0 with its switching and we do not need to
care the choice of �i when we are interested in switching-invariant properties
of the inequalities obtained by triangular elimination such as whether it is valid
or not, facet inducing or not, and so on. Any properties of inequalities that we
deal with in the rest of the paper are switching-invariant.

By using Proposition 5, we can now complete the proof of Theorem 3.

Proof (Proof of the “only if” part of Theorem 3) Suppose that (a′)Tx ≤ a′
0 is

valid for CUT�(G′). By Proposition 5, we can assume without loss of generality
that for 1 ≤ i ≤ t, �i{ui, vi, wi} = �(ui, vi; wi) (if auivi ≤ 0) or �i{ui, vi, wi} =
�(ui, wi; vi) (if auivi ≥ 0). Then the inequality aTx ≤ a0 is obtained from (a′)Tx ≤
a′

0 by collapsing the node wi to vi for every 1 ≤ i ≤ t. This means that the
inequality aTx ≤ a0 is also valid. ��

3.3 Facets and triangular elimination

We state and prove a sufficient condition for triangular elimination to be facet
preserving. Note the similarity to the conditions in Theorem 2.

Theorem 4 Let G′ = (V′, E′) be a triangular elimination of G = (V, E), and let
(a′)Tx ≤ a′

0 be a triangular elimination of aTx ≤ a0. Then (a′)Tx ≤ a′
0 is facet

inducing for CUT�(G′) if the following conditions apply:

(i) The inequality aTx ≤ a0 is facet inducing for CUT�(G).
(ii) For i = 1, . . . , t, NG′(wi) \ {ui, vi} ⊆ NG(ui) ∩ NG(vi).

(iii) For i = 1, . . . , t, the inequality aTx ≤ a0 is not completely supported by the
edge set {uil, vil | l ∈ NG′(wi)}.
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Note that condition (ii) implies that the set {wi | i = 1, . . . , t} is an
independent set in G′.

Example 3 (continued from Example 1) The inequality (a′)Tx ≤ a′
0 described

in Example 1 is facet inducing for CUT�(G′), since the graphs G, G′ and the
inequalities aTx ≤ a0, (a′)Tx ≤ a′

0 satisfy the conditions in Theorem 4.

We prove Theorem 4 in a similar way to the proof of the zero-lifting theo-
rem, Theorem 26.5.1 of [15], as follows. We first introduce a variation of the
lifting lemma, Lemma 2, adapted to graphs other than the complete graphs and
contraction of multiple edges. Then to prove one of the preconditions of the
lemma, we use a lemma from [15].

First we introduce the variation of the lifting lemma.

Lemma 3 Let G′ = (V′, E′) be a graph and H = (V′, F) be a forest in G′ with
t edges F = {v1w1, . . . , vtwt} ⊆ E′. Let G = (V, E) be the graph obtained from
G′ by contracting the edges in H. Let Ui = NG′(vi) ∩ NG′(wi). We require that
|E′| = |E| + |U1| + · · · + |Ut| + t. Let a ∈ R

E and a′ ∈ R
E′

. Suppose that the
following assertions hold.

(i) The inequality aTx ≤ 0 is facet inducing for CUT(G) and the inequality
(a′)Tx ≤ 0 is valid for CUT(G′).

(ii) There exist |E| − 1 subsets S̃j of V such that the cut vectors δG(S̃j) are
linearly independent roots of aTx ≤ 0 and the cut vectors δG′(Sj) are roots
of (a′)Tx ≤ 0, where Sj = S̃j ∪ {wi | vi ∈ S̃j}.

(iii) For 1 ≤ i ≤ t, there exist |Ui| + 1 subsets Tik of V′ with vi /∈ Tik, wi ∈ Tik
and δvlwl(Tik) = 0 for 1 ≤ l ≤ t, l �= i such that the cut vectors δG′(Tik) are
roots of (a′)Tx ≤ 0 and the incidence vectors of the sets Tik ∩ (Ui ∪ {wi})
are linearly independent.

Then the inequality (a′)Tx ≤ 0 is facet inducing for CUT(G′).

Note that Lemma 2 is a special case of this lemma with t = 1, G = Kn,
G′ = Kn+1, v1 = 1 and w1 = n + 1. The proof is similar to the latter half of the
proof of Theorem 26.5.1 of [15], though our proof is a little more complicated
because we cannot use a correlation cone instead of the cut cone CUT(G′).

Remark 1 The same remark on node splitting as that given below Lemma 26.5.3
of [15] applies for Lemma 3. That is, if the inequality aTx ≤ 0 comes from
(a′)Tx ≤ 0 by collapsing the nodes wi to the corresponding nodes vi, then the
assertion (ii) is implied by the assertion (i).

Proof Note that |E′| − 1 = (|E| − 1) + (|U1| + 1) + · · · + (|Ut| + 1). We show
that |E′| − 1 cut vectors δG′(Sj) and δG′(Tik) are linearly independent. Let us
consider the |E′| × (|E′| − 1) matrix M, whose columns are these |E′| − 1 cut
vectors. We prove that M has full column rank. The rows of M are indexed by
the edges in E′, which can be grouped as E′ = I ∪ ⋃

1≤i≤t(Ji ∪ Ki ∪ Li):
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• I consists the edges in E′ which do not belong to any of the following groups,
• Ji = {viu | u ∈ Ui},
• Ki = {wiu | u ∈ Ui},
• Li = {viwi}.
Note that some edges in E′ may belong to more than one set. In that case, we
consider that M contains the corresponding rows twice. We can do so since this
does not change the rank of M. Then the matrix M is of the form:

M =

(Sj) (T1k) (T2k) · · · (Ttk)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(I) X0 X1 X2 · · · Xt
(J1) Y01 Y11 Y21 · · · Yt1
(J2) Y02 Y12 Y22 · · · Yt2

...
...

...
...

. . .
...

(Jt) Y0t Y1t Y2t · · · Ytt
(K1) Y01 1 − Y11 Y21 · · · Yt1
(L1) 0 1 0 · · · 0
(K2) Y02 Y12 1 − Y22 · · · Yt2
(L2) 0 0 1 · · · 0

...
...

...
...

. . .
...

(Kt) Y0t Y1t Y2t · · · 1 − Ytt
(Lt) 0 0 0 · · · 1

,

where 1 denotes the all-ones matrix. To prove that M has full column rank, we
transform M by reversible linear operations on its row vectors as follows: sub-
tract the rows corresponding to the edge viu in Ji from the rows corresponding
to the edge wiu in Ki, subtract the row Li from each row in Ki, and divide the
rows in Ki by −2. Then we obtain:

M′ =

(Sj) (T1k) (T2k) · · · (Ttk)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(I) X0 X1 X2 · · · Xt
(J1) Y01 Y11 Y21 · · · Yt1
(J2) Y02 Y12 Y22 · · · Yt2

...
...

...
...

. . .
...

(Jt) Y0t Y1t Y2t · · · Ytt
(K1) 0 Y11 0 · · · 0
(L1) 0 1 0 · · · 0
(K2) 0 0 Y22 · · · 0
(L2) 0 0 1 · · · 0

...
...

...
...

. . .
...

(Kt) 0 0 0 · · · Ytt
(Lt) 0 0 0 · · · 1

.
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The leftmost |E| − 1 columns of M′ have full column rank by assertion (ii).
The kth column of the square submatrix

( Yii
1

)
of order |Ui| + 1 of M′ is the

incidence vector of the set Tik ∩ (Ui ∪ {wi}). This implies that
( Yii

1

)
has full rank

by assertion (iii). Therefore, M′ (and also M) has full column rank. ��
The other lemma which we use is Lemma 26.5.2 (ii) of [15]. In [15] the graph

G is restricted to the complete graph, but this restriction is not relevant.

Lemma 4 [15] Let G = (V, E) be a graph and aTx ≤ 0 be an inequality inducing
a facet F of CUT(G). Let D be a subset of E and F ′ be the projection of F ⊆ R

E

to R
D. If there exists an edge e ∈ E \ D with ae �= 0, then F ′ is full-dimensional.

Otherwise, the dimension of F ′ is |D| − 1.

Using Lemmas 3 and 4, we prove Theorem 4.

Proof (Proof of Theorem 4) By Propositions 3 and 5, we can assume without
loss of generality that a0 is equal to zero and that for 1 ≤ i ≤ t, �i{ui, vi, wi} is
equal to �(ui, vi; wi) (if auivi ≤ 0) or �(ui, wi; vi) (if auivi ≥ 0). These assump-
tions imply that neither aTx ≤ a0 nor (a′)Tx ≤ a′

0 has a nonzero constant term.
By Proposition 1, this means that aTx ≤ 0 is facet inducing for the cut cone
CUT(G), and that (a′)Tx ≤ 0 is valid for the cut cone CUT(G′).

We prove that (a′)Tx ≤ 0 induces a facet of CUT(G′) by using Lemma 3.
The assertion (i) holds by Theorem 3. The assertion (ii) holds since the

inequality aTx ≤ 0 comes from the inequality (a′)Tx ≤ 0 by collapsing the nodes
wi to the corresponding nodes vi. All we need to do is to check the assertion (iii).

Let 1 ≤ i ≤ t and m = |Ui|. We define Di = {uivi} ∪ {uil, vil ∈ E | l ∈ Ui}. We
construct m + 1 subsets Tik of V′ satisfying the assertion (iii).

Let F be the facet of CUT(G) induced by aTx ≤ 0. By Lemma 4 with
D = Di, the projection Fi of F to R

Di is full-dimensional. This means that we
have |Di| = 2m + 1 subsets T̃ik of V with vi /∈ T̃ik such that δG(T̃ik) are roots of
aTx ≤ 0 and the 2m + 1 cut vectors δDi(T̃ik) are linearly independent.

We show that ui belongs to exactly m + 1 out of the 2m + 1 sets T̃ik. To show
this by contradiction, first suppose that ui belongs to at most m of them. This
means that at least m + 1 of them does not contain ui and that the intersec-
tion Fi ∩ {x ∈ R

Di | xuivi = 0} has a dimension at least m + 1. However, this
intersection is contained in the intersection CUT(Di) ∩ {x ∈ R

Di | xuivi = 0},2
whose dimension is m, a contradiction. Thus ui belongs to at least m + 1 out
of the 2m + 1 subsets. On the other hand, suppose that ui belongs to at least
m + 2 of them. If ui ∈ T̃ik, then δDi(T̃ik) satisfies equations xuivi = xuil + xvil for
all l ∈ Ui. This implies that the (m + 1)-dimensional subspace of R

Di defined
by xuivi = xuil + xvil for l ∈ Ui contains m + 2 linearly independent vectors, a
contradiction. Thus ui belongs to exactly m + 1 out of the 2m + 1 sets T̃ik. As a
result, we can assume ui ∈ T̃i1, . . . , T̃i,m+1 and ui /∈ T̃i,m+2, . . . , T̃i,2m+1 without

2 Here we denote by CUT(Di) the cut cone of the graph with edges Di and nodes V or any subset
of V that contains Ui ∪ {ui, vi}. We justify this slight abuse of the notation by the fact that adding
isolated nodes to a graph does not change the cut cone.
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loss of generality. We define m + 1 subsets Tik of V′ as follows. If auivi ≤ 0,
then let Tik = T̃ik ∪ {wl | vl ∈ T̃ik} ∪ {wi} for 1 ≤ k ≤ m + 1. Otherwise, let
Tik = T̃i,m+1+k ∪ {wl | vl ∈ T̃i,m+1+k} ∪ {wi} for 1 ≤ k ≤ m and Ti,m+1 = {wi}.

Now we prove that the incidence vectors of m + 1 sets Tik ∩ (Ui ∪ {wi})
are linearly independent. Let M be the (2m + 1) × (m + 1) matrix whose kth
column vector is the cut vector δDi(Tik), and M′ be the square matrix of order
m + 1 whose kth column vector is the incidence vector of Tik ∩ (Ui ∪ {wi}). We
prove that M′ is nonsingular. The matrix M′ is of the form M′ = (

X
1

)
, where

the bottommost row corresponds to the node wi. The rows of M correspond
to the edges in Di which are grouped as Di = J ∪ K ∪ L: J = {uil | l ∈ Ui},
K = {vil | l ∈ Ui} and L = {uivi}. If auivi ≤ 0, then the matrix M is given by:

M =
( )

(J) 1 − X
(K) X
(L) 1

,

and it has full column rank by assumption. Without decreasing its rank, we can
transform M to M′ by reversible linear operations on rows and removing all-
zero rows. This means M′ is nonsingular. Similarly, if auivi > 0, then the matrix
M is given by:

M =
( )

(J) X
(K) X
(L) 0

.

Its leftmost m columns are linearly independent and its rightmost column is the
all-zero vector by assumption. By a similar argument as above, the leftmost m
columns of X are linearly independent. This implies the m+1 column vectors of
X are affinely independent, or equivalently the matrix M′ is nonsingular. This
means the assertion (iii) is satisfied. ��

To make Theorem 4 easier to use, we show that condition (iii) in Theorem 4
holds for any facet inducing inequalities except for the triangle inequality and
the inequality of the forms xe ≥ 0 and xe ≤ 1.

Proposition 6 Let G = (V, E) be a graph and aTx ≤ a0 be a facet inducing
inequality of CUT�(G). Let u1v1, . . . , utvt be t distinct edges of G. If the support
graph of the vector a has more than three nodes, then the inequality aTx ≤ a0 is
not completely supported by the edge set {uil, vil | l ∈ NG(ui) ∩ NG(vi)} for any
i = 1, . . . , t.

To prove Proposition 6, we need the following lemma.

Lemma 5 Let G = (V, E) be a graph, a ∈ R
E be a vector, and a0 ∈ R be a scalar.

Suppose the following assumptions hold.
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(i) G contains a triangle on nodes l, u, v as a subgraph.
(ii) At least one of alu and alv is nonzero.

(iii) For any node i ∈ NG(l) \ {u, v}, ali = 0.

Then the inequality aTx ≤ a0 is not facet inducing for CUT�(G) unless it is a
triangle inequality on l, u, v.

Proof The proof is by contradiction. Suppose the inequality aTx ≤ a0 is facet
inducing for CUT�(G) but it is not a triangle inequality on l, u, v.

First we consider the case where alu = −λ ≤ 0 and alv = −µ ≤ 0. Without
loss of generality, we assume that λ ≤ µ. Then the inequality

λxuv − λxlu − µxlv = λ(xuv − xlu − xlv) − (µ − λ)xlv ≤ 0 (3)

is valid for CUT�(G). By assumption (ii), λ and µ are not both zero, and the
left hand side of the inequality (3) is not identically zero.

The inequality aTx ≤ a0 is the sum of (3) and an inequality

∑
ij∈E\{lu,lv,uv}

aijxij + (auv − λ)xuv ≤ a0. (4)

By assumption (iii), the node l is not used in the inequality (4). The inequality (4)
comes from the inequality aTx ≤ a0 by collapsing the node l to the node v, and
is therefore valid for CUT�(G). Therefore, the inequality aTx ≤ a0 is a sum of
two valid inequalities. By our assumption that the inequality aTx ≤ a0 is facet
inducing for CUT�(G), the inequality (4) is identically zero (especially a0 = 0)
and the inequality (3) is facet inducing for CUT�(G). The inequality (3) is facet
inducing only if λ = µ, and if this holds, then the inequality (3) is a triangle
inequality on l, u, v. This means that aTx ≤ a0 is the triangle inequality. This
contradicts our assumption.

Now we consider the cases where at least one of alu or alv is positive. Switch-
ing the inequality on an appropriate subset of {u, v}, we can make both alu and
alv nonpositive. This reduces general cases to the case where alu ≤ 0 and alv ≤ 0
hold. ��
Proof (Proof of Proposition 6) Suppose the contrary: the inequality aTx ≤ a0
is completely supported by the edge set {uil, vil | l ∈ NG(ui) ∩ NG(vi)}. Since
G(a) has more than three nodes, there exists a node l ∈ Ui \ {ui, vi} such that
at least one of auil and avil is nonzero. By Lemma 5 with u = ui and v = vi, the
inequality aTx ≤ a0 is not facet inducing for CUT�(G), a contradiction. ��

4 Triangular elimination from Kn

Triangular elimination from the complete graph to another graph is useful
because much is known about facets of the cut polytope of the complete graph.
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4.1 Facets and triangular elimination from Kn

Theorem 4 provides a sufficient condition for an inequality obtained by trian-
gular elimination to be facet inducing. We prove another sufficient condition
when G is the complete graph.

Theorem 5 Let G = (V, E) be the complete graph on n nodes with n ≥ 5.
Let V = V1 ∪ · · · ∪ Vm be a partition of V to m disjoint sets of nodes. We
denote by El = {ul1vl1, . . . , ultl vltl} the set of edges in the clique on Vl, where
tl = |El| = (|Vl|

2

)
. Let F = E1 ∪ · · · ∪ Em. Let G′ = (V′, E′) be a graph with

n + ∑
1≤l≤m tl nodes. n nodes in G′ are labelled by V, and we group the other

nodes into m sets W1, . . . , Wm with |Wl| = tl. We denote the nodes in Wl by
wl1, . . . , wltl . If the following conditions apply, then G′ is a triangular elimination
of G with respect to F associating node wli with edge ulivli, and the triangular
elimination of any non-triangle facet inducing inequality for CUT�(G) is facet
inducing.

(i) The subgraph of G′ induced by V is the complete m-partite graph
K|V1|,...,|Vm| whose nodes are partitioned as V1, . . . , Vm.

(ii) For l = 1, . . . , m, Wl is an independent set in G′.
(iii) For l = 1, . . . , m and i = 1, . . . , tl, uliwli, vliwli ∈ E′.

Proof By conditions (i) and (iii), it is straightforward to check that G′ is a
triangular elimination of G with respect to F.

Let aTx ≤ a0 be a facet inducing inequality of CUT�(G) which is not the
triangle inequality, and (a′)Tx ≤ a′

0 be a triangular elimination of aTx ≤ a0.
Similarly to the proof of Theorem 4, without loss of generality, we assume
a0 = a′

0 = 0 and that no triangle forms used in the process of the triangular
elimination has a nonzero constant term.

The idea is to apply Theorem 4 m times to convert aTx ≤ 0 of CUT�(G) to
(a′)Tx ≤ 0 of CUT�(G(m)) where G′ is a subgraph of G(m), and then project
the resulting facet to a facet of CUT�(G′) by using Lemma 4.

First we define intermediate graphs G(l) = (V(l), E(l)) and inequalities
(a(l))Tx ≤ 0 for l = 0, 1, . . . , m. Let G(0) = G and a(0) = a. For l = 1, . . . , m,
G(l) = (V(l), E(l)) is defined by V(l) = V(l−1) ∪Wl and E(l) = (E(l−1) \El)∪{vw |
v ∈ V(l−1), w ∈ Wl}. Then G(l) is a triangular elimination of G(l−1) with respect
to El where node wli ∈ Wl of G(l) is associated with edge ulivli ∈ El of G(l−1).

Let (a(l))Tx ≤ 0 be a triangular elimination of (a(l−1))Tx ≤ 0.
(a(0))Tx ≤ 0 is facet inducing for CUT�(G(0)), and the support graph of

(a(0))Tx ≤ 0 has more than three nodes. Since triangular elimination never
decreases the number of nodes of the support graph of an inequality, the sup-
port graph of (a(l))Tx ≤ 0 has more than three nodes for l = 1, . . . , m. By
applying Proposition 6 and Theorem 4 m times, (a(m))Tx ≤ 0 is facet inducing
for CUT�(G(m)).
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(a(m))Tx ≤ 0 is a triangular elimination of aTx ≤ 0 since

(a(m))Tx − aTx =
∑

1≤l≤m

((a(l))Tx − (a(l−1))Tx)

is the sum of the triangular forms used in m applications of triangular elimina-
tion. This combined with Proposition 5 implies that (a(m))Tx ≤ 0 is switching
equivalent to (a′)Tx ≤ 0.

By conditions (i) and (ii), G′ is a subgraph of G(m). The support graph of
(a(m))Tx ≤ 0 is a subgraph of a graph G′′ = (V′, E′′) obtained from K|V1|,...,|Vm|
by adding nodes in W1 ∪ · · · ∪ Wm and edges uliwli, vliwli for l = 1, . . . , m and
i = 1, . . . , tl. By conditions (i) and (iii), this support graph is a subgraph of G′.
By Lemma 4, the dimension of the face of CUT�(G′) defined by (a(m))Tx ≤ 0
is |E′| − 1, which implies that (a(m))Tx ≤ 0 is facet inducing for CUT�(G′).
Since (a(m))Tx ≤ 0 is switching equivalent to (a′)Tx ≤ 0, (a′)Tx ≤ 0 is also facet
inducing for CUT�(G′). ��
Remark 2 If aulivli = 0 for some edge ulivli ∈ F, then the associated node wli
is not used in the triangular elimination (a′)Tx ≤ a′

0, and the triangular elimi-
nation becomes facet inducing for CUT�(G′ − wli), where G′ − wli denotes a
graph obtained by removing node wli and edges incident to it from G′.

Corollary 3 Let G = (V, E), Vl, El, F, Wl and V′ as stated in Theorem 5. We
partition V′ into k (m ≤ k ≤ 2m) disjoint sets V′

1, . . . , V′
k, and let G′ = (V′, E′)

be the complete k-partite graph with vertices partitioned into the sets V′
1, . . . , V′

k.
If the following conditions are satisfied, then G′ is a triangular elimination of G,
and the triangular elimination of any non-triangle facet inducing inequality for
CUT�(G) is facet inducing.

(i) For l = 1, . . . , m, Vl and Wl are completely contained in some V′
i and V′

j ,
respectively, and i �= j.

(ii) For 1 ≤ l < l′ ≤ m, Vl and Vl′ are contained in different sets V′
i and V′

j
(i �= j).

Theorem 2.1 of [3] is the special case of Corollary 3 with m = k = 3, |V3| = 1
(which implies W3 = ∅), and G′ is the complete tripartite graph with nodes
partitioned into three sets V1 ∪ W2, V2 ∪ W1 and V3, except that Theorem 2.1
of [3] also deals with the triangular elimination of the triangle inequality.

4.2 Triangular elimination from Kn to Kr,s and equivalence of inequalities

Here we focus on the case m = k = 2 in Corollary 3, and we consider how Propo-
sition 5 extends to include permutation equivalence of inequalities. Before that,
we restate Corollary 3 in this case.

Corollary 4 Let G = (V, E) be the complete graph on n = p + q ≥ 5 nodes
A1, . . . , Ap, B1, . . . , Bq, and let G′ = (V′, E′) be the complete bipartite graph Kr,s
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with r = p + (q
2

)
, s = q + (p

2

)
where the nodes are partitioned into {Ai | 1 ≤ i ≤

p} ∪ {Ajj′ | 1 ≤ j < j′ ≤ q} and {Bj | 1 ≤ j ≤ q} ∪ {Bii′ | 1 ≤ i < i′ ≤ p}. Then
G′ is a triangular elimination of G with respect to F = {AiAi′ | 1 ≤ i < i′ ≤
p} ∪ {BjBj′ | 1 ≤ j < j′ ≤ q}, and the triangular elimination of any non-triangle

facet inducing inequality for CUT�(G) is facet inducing.

Even if two facet inducing inequalities aTx ≤ a0 and bTx ≤ b0 of CUT�(G)

are equivalent up to permutation and switching, their triangular eliminations
to CUT�(G′) are generally not, since different edges in G may be treated in
different ways in the course of triangular elimination. However, if we consider
triangular elimination from CUT�(Kn) to CUT�(Kr,s) as described in Corol-
lary 4, then we know exactly when the triangular eliminations of aTx ≤ a0 and
bTx ≤ b0 are equivalent up to permutation and switching.

Theorem 6 Let n = p + q ≥ 5, r = p + (q
2

)
and s = q + (p

2

)
, and label the nodes

of Kn and Kr,s as described in Corollary 4. For two non-triangle facet inducing
inequalities aTx ≤ a0 and bTx ≤ b0 of CUT�(Kn) and their respective triangu-
lar eliminations (a′)Tx ≤ a′

0 and (b′)Tx ≤ b′
0 to CUT�(Kr,s), the following two

conditions are equivalent.

(a) The two inequalities aTx ≤ a0 and bTx ≤ b0 can be transformed to each
other by applying some combination of the switching operation, the permu-
tation operation within {A1, . . . , Ap} or within {B1, . . . , Bq}, and if p = q,
the permutation operation swapping Ai and Bi for all i.

(b) The two inequalities (a′)Tx ≤ a′
0 and (b′)Tx ≤ b′

0 are permutation-switching
equivalent.

Remark 3 Condition (a) implies condition (b) even if aTx ≤ a0 and bTx ≤ b0 are
the triangle inequality, but the converse does not hold. Here is a counterexam-
ple: let p = 2 and q = 3. Let aTx ≤ a0 and bTx ≤ b0 be the triangle inequalities
−xA1A2 − xA1B1 + xA2B1 ≤ 0 and −xA1B1 + xA1B2 − xB1B2 ≤ 0, respectively, and
(a′)Tx ≤ a′

0 and (b′)Tx ≤ b′
0 be inequalities −xA1B1 +xA2B1 −xA1B12 −xA2B12 ≤ 0

and −xA1B1 + xA1B2 − xA12B1 − xA12B2 ≤ 0. Note that the condition (a) does not
hold since p �= q, whereas (a′)Tx ≤ a′

0 and (b′)Tx ≤ b′
0 are permutation-switch-

ing equivalent and the condition (b) is satisfied.

Now we give a proof of Theorem 6.

Proof First we prove (a) �⇒ (b). If aTx ≤ a0 and bTx ≤ b0 are switchings of
each other, then their triangular eliminations are also switching of each other
by Proposition 5.

If aTx ≤ a0 is transformed to bTx ≤ b0 by swapping Ai and Ai′ , then the
triangular elimination of aTx ≤ a0 is transformed to the triangular elimination
of bTx ≤ b0 by swapping Ai and Ai′ and swapping Bii′′ and Bi′i′′ for all i′′ �= i, i′,
if we also apply this permutation to �r for 1 ≤ r ≤ t.

If p = q and aTx ≤ a0 is transformed to bTx ≤ b0 by swapping Ai and Bi
for 1 ≤ i ≤ p at the same time, then the triangular elimination of aTx ≤ a0 is
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transformed to the triangular elimination of bTx ≤ b0 by swapping Ai and Bi
for 1 ≤ i ≤ p and swapping Aii′ and Bii′ for 1 ≤ i < i′ ≤ p at the same time.

Next we prove (b) �⇒ (a). Let (a′)Tx ≤ a′
0 and (b′)Tx ≤ b′

0 be the trian-
gular eliminations of aTx ≤ a0 and bTx ≤ b0 from CUT�(Kn) to CUT�(Kr,s),
respectively. We require that the triangle inequality �(ui, vi, wi) was not used
in triangular elimination to produce these two inequalities. Then a′

0 = a0 and
b′

0 = b0. In addition, this requirement guarantees aAiAi′ = max{a′
AiBii′ , a′

Ai′ Bii′ }
and aBjBj′ = max{a′

Ajj′ Bj
, a′

Ajj′ Bj′ }, and similar equations for the vectors b and b′.
By Proposition 5, we only need to consider the case where a0 = b0 = 0 and
(a′)Tx ≤ a0 and (b′)Tx ≤ b0 are equivalent up to permutation.

The key to proving the assertion (b) �⇒ (a) is that from Lemma 5, we
can distinguish the nodes Ai from the nodes Ajj′ by examining the inequality
(a′)Tx ≤ 0.

We prove the assertion (a) holds by case analysis on the permutation used to
transform (a′)Tx ≤ 0 to (b′)Tx ≤ 0. The automorphism group of Kr,s is gener-
ated by permutations within {A1, . . . , Ap, A12, . . . , Aq−1,q}, permutations within
{B1, . . . , Bq, B12, . . . , Bp−1,p}, and if r = s, the permutation τ0 which swaps Ai
and Bi for 1 ≤ i ≤ p and swaps Aii′ and Bii′ for 1 ≤ i < i′ ≤ p at the same time.
Since p + q ≥ 5, r = s if and only if p = q.

If p = q and (a′)Tx ≤ 0 is transformed to (b′)Tx ≤ 0 by the permutation τ0,
then aTx ≤ 0 is transformed to bTx ≤ 0 by swapping Ai and Bi for 1 ≤ i ≤ p
at the same time. Therefore, from now on, we can assume that (a′)Tx ≤ 0 is
transformed to (b′)Tx ≤ 0 by a permutation τ which permutes nodes within
{A1, . . . , Ap, A12, . . . , Aq−1,q} and nodes within {B1, . . . , Bq, B12, . . . , Bp−1,p}.

Recall that the support graph of a vector a is a subgraph G(a) = (V(a), E(a))

of G with all the edges e in G with ae �= 0 as its edges and all the endpoints
of edges in E(a) as its nodes. From Lemma 5, all the nodes in G(a) have a
degree more than two. Since triangular elimination does not change the degree
of existing nodes in the support graph, the nodes Ai and Bj, if present in G(a′),
have degree more than two in G(a′). On the other hand, from the definition of
triangular elimination, the nodes Ajj′ and Bii′ , if present in G(a′), have degree
equal to two. Therefore, we can partition the nodes of Kr,s into three groups:
V1 consists of those which do not appear in G(a′), V2 consists of those with
degree equal to two, and V3 consists of those with degree more than two. The
nodes Ai belong to V1 or V3, and the nodes Ajj′ belong to V1 or V2. The same
argument applies to G(b′), and we partition the nodes of Kr,s into W1, W2 and
W3 in a parallel way. The permutation τ maps V1 to W1, V2 to W2 and V3 to W3,
respectively. We define a permutation σ on {A1, . . . , Ap, B1, . . . , Bq} as follows.
If Ai ∈ V3, then let σ(Ai) = τ(Ai). If Bj ∈ V3, then let σ(Bj) = τ(Bj). The rest
of σ is defined so that σ maps the nodes in V1 of the form Ai to the nodes in
W1 of the form Ai, and the nodes in V1 of the form Bj to the nodes in W1 of the
form Bj.

We show that σ maps aTx ≤ 0 to bTx ≤ 0. All we have to prove is that for all
edges uv in Kn, we have auv = bσ(u)σ (v). If u belongs to V1, then σ(u) ∈ W1, and
we have auv = bσ(u)σ (v) = 0. Since the same applies for the case v ∈ V1, we only
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need to consider the case where both u and v belongs to V3. In this case, σ(u) =
τ(u) and σ(v) = τ(v). If u = Ai and v = Bj, then aAiBj = a′

AiBj
= b′

τ(Ai)τ (Bj)
=

bτ(Ai)τ (Bj) = bσ(Ai)σ (Bj). If u = Ai and v = Ai′ , then aAiAi′ = max{a′
AiBii′ , a′

Ai′ Bii′ }= max{b′
τ(Ai)τ (Bii′ ), b′

τ(Ai′ )τ (Bii′ )} = bτ(Ai)τ (Ai′ ) = bσ(Ai)σ (Ai′ ). The same applies

to the case where u = Bj and v = Bj′ . Therefore, aTx ≤ 0 is transformed to
bTx ≤ 0 by the permutation σ . ��

5 Concluding remarks

Theorems 4 and 5 are sufficient conditions for a triangular elimination of a
facet inducing inequality to be facet inducing. An open problem is: what are
necessary and sufficient conditions on graphs G and G′ for a triangular elimina-
tion of a non-triangle facet inducing inequality to be facet inducing? Extending
Theorem 6 to general graphs is another open problem.
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