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Abstract An interior point method defines a search direction at each interior
point of the feasible region. The search directions at all interior points together
form a direction field, which gives rise to a system of ordinary differential equa-
tions (ODEs). Given an initial point in the interior of the feasible region, the
unique solution of the ODE system is a curve passing through the point, with
tangents parallel to the search directions along the curve. We call such curves
off-central paths. We study off-central paths for the monotone semidefinite lin-
ear complementarity problem (SDLCP). We show that each off-central path
is a well-defined analytic curve with parameter µ ranging over (0, ∞) and any
accumulation point of the off-central path is a solution to SDLCP. Through a
simple example we show that the off-central paths are not analytic as a func-
tion of

√
µ and have first derivatives which are unbounded as a function of µ

at µ = 0 in general. On the other hand, for the same example, we can find a
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subset of off-central paths which are analytic at µ = 0. These “nice” paths are
characterized by some algebraic equations.

1 Introduction

1.1 How are paths related to IPM and What roles do paths play in IPM?

The notion of a central path was introduced by Sonnevend [24] in 1985 with
regard to interior point methods (IPMs). Since then, people have realized that
an IPM is actually a homotopy method following underlying paths (central and
off-central paths) and that many remarkable properties of IPMs are attributed
to the nice geometry of the underlying paths. Readers who are interested in the
basic geometry of underlying paths may refer to [3].

In [25,26,36,37,39] it was found that, for solving a linear program (LP) or a
linear complementarity problem (LCP), the number of iterations needed by a
predictor-corrector path-following algorithm to reduce the duality gap µ from
µ0 to ε > 0 is equivalent to the integral of the curvature of the central path from
µ0 to ε. This equivalence relates a discrete analysis (complexity analysis) to a
continuous analysis (curvature of path) and thus opens a new way to estimate
upper and lower bounds of the complexity of IPMs. On the other hand, in [32]
the authors showed that the complexity of their layered least squares path-fol-
lowing LP algorithm depends only on the constraint matrix, by observing those
regions where the central path is straight or crossing over. This topic is further
studied in [13] and [19].

Another important role underlying paths play in the study of IPMs is to show
fast local convergence. The classical proof of local convergence of an iterative
method, such as the Newton’s method, for finding the solution of a system of
equations relies on the nonsingularity of the Jacobian matrix. However, the
Jacobian matrix of the equation system defining the central path in an IPM may
be singular at the optimal solution. Thus traditional approach of local conver-
gence analysis does not work for IPMs. The fast local convergence of IPMs has
instead been successfully proved by relating it to the boundedness of derivatives
of the underlying paths in, e.g., [14,29,33,34].

The study of fast local convergence is particularly important for the semidefi-
nite linear complementarity problem (SDLCP), with the semidefinite program-
ming (SDP) as a special case, because, in contrast to LCP, the exact solution of
a SDLCP cannot be obtained from an approximate solution by determining a
complementary basis.

1.2 How are the underlying paths defined?

We assume that the reader is familiar with the definition of underlying paths for
LP and LCP. Here we will concentrate on SDLCP (and view SDP as a special
case).
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The central path, i.e., the set of analytic centers, cf.[24], is defined by the
following system:

F(X, Y) = 0

XY = µI,
(1)

where µ > 0 is the parameter, X, Y ∈ Sn+, and F : Sn+ × Sn+ → Rñ is linear,
ñ = n(n + 1)/2. Since staying on the central path is not practical for compu-
tation, investigation of neighboring paths is necessary. A natual way to define
neighboring paths, i.e., off-central paths, is to replace I in (1) with a positive
definite matrix M. For SDLCP, symmetrization of search direction is required,
cf. [10,15]. A straightforward way to extend the central path to symmetrized
off-central paths is to define them by

F(X, Y) = 0

HP(XY) = µM,
(2)

where HP(U) := 1/2(PUP−1+(PUP−1)T) and P ∈ �n×n is an invertible matrix.
Such paths have been studied in [11,17,20,22]. The paper [5] also proposes a
definition of paths which requires a Cholesky factorization in addition to the
algebraic Eq. (2).

While such an off-central path is a natual extension of the central path and
imitates certain geometry of the central path, it does not seem to be directly
related to the main ingredient of IPMs: search directions. The complexity and
convergence speed of IPMs are determined by the search directions, in partic-
ular, affine-scaling directions through which the duality gap is reduced.

As mentioned before, an IPM is a homotopy method whose search directions
are determined by the underlying paths. This motivates us to define paths in
connection with the field of affine-scaling directions. That is, a path is a curve
in the interior of the feasible region such that the tangent of the curve at any
point coincides with the direction in the field at this point. More precisely, such
paths are defined by a system of ordinary differential equations (ODEs), which
will be presented in Sect. 2.

1.3 Main results

In this paper, we propose a new definition for the underlying paths of an IPM
for solving SDLCP. Our underlying paths possess an important property: the
tangent of each path at a point coincides with the symmetrized Newton direc-
tion at that point. This property is not found in any existing definitions of paths
for SDLCP with symmetrization other than AHO.

The study of off-central paths can be divided into two parts: (a) a study of
the paths for µ > 0 and (b) a study of the limiting behavior of the paths.
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In the first part, we present a few basic properties, including the well-posed-
ness of the ODE system for defining the paths and the analyticity of the paths
for µ > 0. The smoothness of the paths that a homotopy method, like IPM,
follows is essential to the efficiency of the method. For instance, the relation
between the complexity of an IPM for finding an ε-approximate solution and
the curvature integral of the central path [36,39] is based on the analyticity of
the underlying paths (both central and off-central) for µ ∈ [ε, µ0].

In the second part, we determine (a) whether a limit point of a path is a solu-
tion of SDLCP and (b) whether a path is analytic or has bounded derivatives
at the limit point of the path if the path converges. We will show a confirmative
answer to the first question, i.e., any accumulation point of a path is a solution
to the SDLCP. For the second question, there is a rather surprising observation.
While all existing study (no matter for LCP [27] or for SDLCP [11,12,22]),
assuming the existence of strictly complementary solutions, has shown that any
underlying path (with generic definition given by (2) in the case of SDLCP) is
analytic as a function of µ or

√
µ at its limit point, we have observed, through

an example, that an off-central path, no matter how close it is to the central
path, need not be analytic at its limit point, even with respect to

√
µ. We also

show that these off-central paths have unbounded first derivatives as µ → 0.
Some conclusions can be drawn from this observation. First of all, the AHO
direction where P = I and the other directions where P depends on X and
Y are essentially different. Analyticity of off-central paths at a limit point for
AHO-IPM has been shown by [12,22] while non-analyticity of off-central paths
at a limit point for HKM-IPM is observed through this example. Secondly, the
central path and off-central paths are essentally different. The central path has
been proven to be analytic at its limit point while off-central paths are observed
to be non-analytic even as a function of

√
µ at their limit points, no matter

how close the path is to the central path. To date, such an essential difference
between central path and off-central paths has not been observed in other conic
programming problems.

1.4 Notations and common definitions

The space of symmetric n × n matrices is denoted by Sn. Given matrices X and
Y in �p×q, the standard inner product is defined by X • Y ≡ Tr(XTY), where
Tr(·) denotes the trace of a matrix. If X ∈ Sn is positive semidefinite (resp.,
definite), we write X � 0 (resp., X � 0). The cone of positive semidefinite
(resp., definite) symmetric matrices is denoted by Sn+ (resp., Sn++). Either the
identity matrix or operator will be denoted by I. ‖ · ‖ for a vector in �n refers
the Euclidean norm and for a matrix in �p×q, it refers to the Frobenius norm.

Given function f : � −→ E and g : � −→ �++, where � is an arbitrary set
and E is a normed vector space, and a subset ˜� ⊆ �. We write f (w) = O(g(w))

for all w ∈ ˜� to mean that ‖f (w)‖ ≤ Mg(w) for all w ∈ ˜� and a constant M > 0;
moreover, for a function U : � −→ Sn++, we write U(w) = �(g(w)) for all
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w ∈ ˜� if U(w) = O(g(w)) and U(w)−1 = O(g(w)−1) for all w ∈ ˜�. The latter
condition is equivalent to the existence of a constant M > 0 such that

1
M

I � 1
g(w)

U(w) � MI ∀w ∈ ˜�.

The subset ˜� should be clear from the context whenever it is used. Usually,
˜� = (0, w̄) for a small w̄ > 0.

2 Definition and basic properties of off-central paths

In this section, we elaborate further on what was described in Sect. 1.2 on how
we obtain our definition of an off-central path by considering path-following
interior point algorithm. We also prove the existence of such off-central path.

Let us consider the following SDLCP:

XY = 0
A(X) + B(Y) = q

X, Y ∈ Sn+,
(3)

where A, B : Sn −→ �ñ are linear operators mapping Sn to the space �ñ, where
ñ := n(n + 1)/2. Hence A and B have the form A(X) = (A1 • X, . . . , Añ • X)T

resp. B(Y) = (B1 • Y, . . . , Bñ • Y)T , where Ai, Bi ∈ Sn for all i = 1, . . . , ñ.
We have the following assumptions on SDLCP:

Assumption 2.1

(a) SDLCP is monotone, i.e., A(X) + B(Y) = 0 for X, Y ∈ Sn ⇒ X • Y ≥ 0.
(b) There exists X1, Y1 � 0 such that A(X1) + B(Y1) = q.

In the predictor step of the predictor–corrector path-following algorithm, the
algorithm searches a new point in the affine scaling direction, which is defined as
the symmetrized Newton direction for the system XY = 0 and A(X)+B(Y) = q,
more precisely, by the system (cf. [35])

HP(X�Y + �XY) = −HP(XY) (4)

A(�X) + B(�Y) = 0, (5)

where HP(U) := 1/2(PUP−1+(PUP−1)T) and P ∈ �n×n is an invertible matrix.
Because the affine scaling direction is aiming at an optimal solution at which

XY = 0, it is more convenient to consider the direction field as comprising of
scaled affine scaling directions −1/µ(�X, �Y), where µ is a parameter pro-
portional to Tr(XY). By letting the derivative of a path to coincide with this
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direction, i.e., (X ′, Y ′) = −1/µ(�X, �Y), we obtain from (4) to (5) the follow-
ing ODE system

HP(XY ′ + X ′Y) = 1
µ

HP(XY) (6)

A(X ′) + B(Y ′) = 0 (7)

(X, Y)(1) = (X0, Y0), (8)

where X0, Y0 � 0 and A(X0) + B(Y0) = q. We only consider solution,
(X(µ), Y(µ)), to (6)–(8) such that X(µ), Y(µ) ∈ Sn++. We called such solu-
tion the off-central path of SDLCP (3) with respect to P and passing through
(X0, Y0).

For the AHO direction, P = I. Hence (6) reduces to

(XY + YX)′ = 1
µ

(XY + YX).

This and (7) with the initial condition at µ = 1 yield the algebraic equations

(XY + YX) = µ(X0Y0 + Y0X0)

A(X) + B(Y) = q.

For other directions, such as the HKM and NT directions, P is a function of
(X, Y), thus it is not possible to solve (6)–(8) to get an algebraic expression. This
is an aspect which distinguishes the other directions from the AHO direction.
Significant distinctions between off-central paths for AHO direction and for the
other directions can be observed by comparing results in [12,22] and this paper.
In the rest of this paper we will consider the case in which P is a nonconstant
analytic function of (X, Y), such as the HKM and NT directions.

It is well-known that the central path is defined by

(XY)(µ) = µI (9)

A(X(µ)) + B(Y(µ)) = q (10)

in the literature of interior point methods. It is easy to see (by differentiating
these equations) that the central path satisfies the ODE system (6)–(8) for any
P and for the initial point (X0, Y0) such that X0Y0 = I. Thus, the path defined
by the system of ODEs (6)–(8) with X0Y0 = I is the central path. The existing
research [based on (9)–(10)] has shown that this central path, if SDLCP (3)
satisfies strict complementarity condition, possesses many nice properties, in
particular, it can be analytically (with respect to µ) extended to µ = 0 [7]. In
general, however, solutions of the ODE system (6)–(8) with different initial
points do not satisfy an algebraic system and cannot be analytically extended
to µ = 0 (even with respect to

√
µ, as will be discussed later). This implies that

the central path and off-central path are essentially different.
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If (X(µ), Y(µ)) is the solution of the system of ODEs with initial point
(X0, Y0), then for any scalar α > 0, (αX(µ), αY(µ)) is also the solution of the
system of ODEs but with initial point (αX0, αY0). Thus, we can always scale
an initial (X0, Y0) such that Tr(X0Y0) = n. The reason for such scaled initial
points can be seen in Lemma 2.1 below.

As in [30], we only consider P such that PXYP−1 is symmetric. We also
assume P is an analytic function of X, Y � 0. Such P include the well-known
directions like the HKM and NT directions. Therefore, we have the following
further assumptions:

Assumption 2.2

(a) The initial data (X0, Y0) in (8) when µ = 1 satisfies Tr(X0Y0) = n.
(b) The matrix P in (6) is such that PXYP−1 is symmetric and P is also an

analytic function of X, Y � 0.

Lemma 2.1 Under Assumption 2.2(a), for any invertible matrix P, the solution
of the ODE system (6)–(7), (X(µ), Y(µ)), satisfies

Tr(XY)(µ) = nµ. (11)

Proof Because

Tr(HP(U)) = Tr(U) and Tr(U′) = (Tr(U))′

for any P and U, taking “Tr” on both sides of (6), we obtain

(Tr(XY))′ = 1
µ

Tr(XY).

This leads to

Tr(XY)(µ) = µTr(X0Y0) = nµ.

��
Remark 2.1 Under Assumption 2.2(a), we see from Lemma 2.1 that the param-
eter µ in the ODE system (6)–(7) actually represents the duality gap, X(µ) •
Y(µ), at the point (X(µ), Y(µ)) on the path.

We will show next that, given the initial point (X0, Y0) ∈ Sn++ × Sn++, the
solution to (6)–(8), (X(µ), Y(µ)) ∈ Sn++ × Sn++, exists over µ ∈ (0, ∞) and is
unique and analytic. [Recall that a function f = (f1, . . . , fm) from a subset O
of �k to �m is analytic at a point x = (x1, . . . , xk) if f is defined in an open
neighborhood of x and each fi, i = 1, . . . , m, can be written as a convergent
power series expansion about (x1, . . . , xk) in this open neighborhood.] Thus, it
defines a path for the SDLCP.
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We are going to use a result from ODE theory, taken from [2, p. 100, 4,
p. 196], and their theorem and corollary are combined as a theorem below for
completeness:

Theorem 2.1 Assume that a function f is continuously differentiable from J × D
to E, where J ⊂ � is an open interval, E is a finite dimensional Banach space
over �, D ⊂ E is open. Then for every (t0, x0) ∈ J × D, there exists an unique
nonextensible solution

u(·; t0, x0) : J(t0, x0) → D

of the IVP

ẋ = f (t, x), x(t0) = x0.

The maximal interval of existence J(t0, x0) := (t−, t+) is open. We either have

t− = inf J, resp. t+ = sup J,

or

lim
t→t±

min{dist(u(t, t0, x0), ∂D), ‖u(t; t0, x0)‖−1} = 0.

(We use the convention: dist(x, ∅) = ∞.)
When f is analytic over J × D, where D ⊂ E = �n, the solution u is analytic

over J(t0, x0).

In order to use Theorem 2.1, we need to express (6)–(7) in the form of IVP as
in the theorem.

Now, (6) can be written as

((PX) ⊗s P−T)svec(Y ′) + (P ⊗s (P−TY))svec(X ′) = 1
µ

svec(HP(XY)).

Remark 2.2 Note that the operation ⊗s and the map “svec” are used exten-
sively in this paper. For their definitions and properties, the reader can refer to
pp. 775–776 and the appendix of [30].

Writing (7) in a similar way using svec, we can rewrite (6)–(7) as

⎛

⎜

⎜

⎜

⎝

svec(A1)
T svec(B1)

T

...
...

svec(Añ)T svec(Bñ)T

P ⊗s (P−TY) (PX) ⊗s P−T

⎞

⎟

⎟

⎟

⎠

(

svec(X ′)
svec(Y ′)

)

= 1
µ

(

0
svec(HP(XY))

)

, (12)

which is another form of (6)–(7).
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Similar to [30], it can be shown that the matrix in (12) is invertible for all
X, Y � 0 under Assumption 2.2(b).

Let the matrix in (12) be denoted by A(X, Y). Then A(X, Y) is invertible for
all X, Y � 0. Therefore, we can write (12) in the IVP form as

(

svec(X ′)
svec(Y ′)

)

= F(µ, X, Y),

where

F(µ, X, Y) = 1
µ

A−1(X, Y)

(

0
svec(HP(XY))

)

.

One can see that F is analytic on �++ × (Sn++ × Sn++). Hence, by Theorem 2.1,
given (1, (X0, Y0)) ∈ �++ × (Sn++ × Sn++) (where A(X0) + B(Y0) = q), there
exists a maximal interval of existence

J0 = (µ−, µ+) ⊆ �++ (13)

and an unique analytic solution X, Y : J0 �−→ Sn++ × Sn++ of the IVP

(

svec(X ′)
svec(Y ′)

)

= F(µ, X, Y), X(1) = X0, Y(1) = Y0. (14)

We have either

µ− = 0, resp. µ+ = +∞ or

lim
µ→µ± min{dist((X(µ), Y(µ)), ∂(Sn++ × Sn++)), ‖(X(µ), Y(µ))‖−1} = 0. (15)

It is not apparent so far what values µ− and µ+ should take. We will deter-
mine them later. Now we first show that, although X(µ) and Y(µ) do not satisfy
the algebraic equation X(µ)Y(µ) = µX0Y0, the maximum and minimum ei-
genvalues of X(µ)Y(µ) do. This result is useful as we will see later on.

Theorem 2.2 For all µ ∈ J0, λmin(XY)(µ) = λmin(X0Y0)µ and λmax(XY)(µ) =
λmax(X0Y0)µ.

Proof Recall that P in (6) is invertible and an analytic function of X, Y. There-
fore, with X(µ), Y(µ) analytic with respect to µ, we have P = P(µ) is analytic
with respect to µ. Also, P(µ) satisfies (PXYP−1)(µ) = ((PXYP−1)(µ))T . We
are going to use the latter two facts in the proof here.

For µ ∈ J0. Let v0 ∈ �n, ‖v0‖ = 1, be such that HP(µ)((XY)(µ))v0 =
λmin(HP(µ)((XY)(µ)))v0 = λmin(XY)(µ)v0. (The last equality holds because
(PXYP−1)(µ) is symmetric.)
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Therefore, by (6) and this choice of v0, we have

vT
0 HP(µ)((XY)′(µ))v0 = 1

µ
λmin(XY)(µ).

We now focus our attention on the left-hand expression of the above equality.
We have

vT
0 HP(µ)((XY)′(µ))v0

= lim sup
h→0+

vT
0

(

HP(µ)((XY)(µ + h)) − HP(µ)((XY)(µ))

h

)

v0

= lim sup
h→0+

(vT
0 HP(µ)((XY)(µ + h))v0 − λmin(XY)(µ))/h

≥ lim inf
h→0+ (vT

0 HP(µ)((XY)(µ + h))v0 − vT
0 HP(µ+h)((XY)(µ + h))v0)/h

+ lim sup
h→0+

(vT
0 HP(µ+h)((XY)(µ + h))v0 − λmin(XY)(µ))/h

≥ lim inf
h→0+ (vT

0 HP(µ)((XY)(µ + h))v0 − vT
0 HP(µ+h)((XY)(µ + h))v0)/h

+ lim sup
h→0+

( min
‖v‖=1

vTHP(µ+h)((XY)(µ + h))v − λmin(XY)(µ))/h

= lim inf
h→0+ (vT

0 HP(µ)((XY)(µ + h))v0 − vT
0 HP(µ+h)((XY)(µ + h))v0)/h

+ lim sup
h→0+

(λmin(XY)(µ + h) − λmin(XY)(µ))/h.

Let f (ξ) = vT
0 P(µ + ξ)(XY)(µ + h)P−1(µ + ξ)v0.

Therefore,

lim inf
h→0+ (vT

0 HP(µ)((XY)(µ + h))v0 − vT
0 HP(µ+h)((XY)(µ + h))v0)/h

in above is equal to

− lim inf
h→0+

f (h) − f (0)

h
= − lim inf

h→0+ f ′(ξh),

where the last equality follows from the mean value theorem and 0 < ξh < h.
Let us try to find the value of the last limit.
We have

f ′(ξh) = vT
0 P

′
(µ + ξh)(XY)(µ + h)P−1(µ + ξh)v0

+vT
0 P(µ + ξh)(XY)(µ + h)(P−1)′(µ + ξh)v0

= vT
0 P

′
(µ + ξh)(XY)(µ + h)P−1(µ + ξh)v0

−vT
0 P(µ + ξh)(XY)(µ + h)P−1(µ + ξh)P

′
(µ + ξh)P−1(µ + ξh)v0.
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Hence,

lim inf
h→0+ f ′(ξh) = vT

0 P′(µ)(XY)(µ)P−1(µ)v0

−vT
0 P(µ)(XY)(µ)P−1(µ)P′(µ)P−1(µ)v0

= vT
0 P′(µ)P−1(µ)(P(µ)(XY)(µ)P−1(µ)v0)

−(P(µ)(XY)(µ)P−1(µ)v0)
TP′(µ)P−1(µ)v0

= λmin(XY)(µ)vT
0 P′(µ)P−1(µ)v0

−λmin(XY)(µ)vT
0 P′(µ)P−1(µ)v0

= 0,

where the second equality follows from (PXYP−1)(µ) = ((PXYP−1)(µ))T

and the third equality follows from (PXYP−1)(µ)v0 = HP(µ)(XY(µ))v0 =
λmin(XY)(µ)v0.

Therefore,

1
µ

λmin(XY)(µ) ≥ lim sup
h→0+

λmin(XY)(µ + h) − λmin(XY)(µ)

h
.

On the other hand, consider (in what follows, in order to make reading easier,
we suppress the dependence of P on µ)

min
‖v‖=1

vTHP((XY)′(µ))v

which is equal to

lim
h→0+

(

min
‖v‖=1

vTHP

(

(XY)(µ + h) − (XY)(µ)

h

)

v
)

.

Let v1 ∈ �n, ‖v1‖ = 1 be such that

HP((XY)(µ + h))v1 = λmin(HP((XY)(µ + h)))v1.

Therefore, we have

min
‖v‖=1

vTHP

(

(XY)(µ + h) − (XY)(µ)

h

)

v

≤ vT
1 HP

(

(XY)(µ + h) − (XY)(µ)

h

)

v1

= (λmin(HP((XY)(µ + h))) − vT
1 HP((XY)(µ))v1)/h

≤ (λmin(XY)(µ + h) − λmin(XY)(µ))/h.
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Taking limit infimum as h tends to 0+ in above, we have

min
‖v‖=1

vTHP((XY)′(µ))v = lim
h→0+

(

min
‖v‖=1

vTHP

(

(XY)(µ + h) − (XY)(µ)

h

)

v
)

≤ lim inf
h→0+

λmin(XY)(µ + h) − λmin(XY)(µ)

h
.

But

min
‖v‖=1

vTHP((XY)′(µ))v = 1
µ

λmin(XY)(µ).

This implies that (1/µ)λmin(XY)(µ) ≤ lim infh→0+(λmin(XY)(µ + h) −
λmin(XY)(µ))/h.

Hence λ′
min(XY)(µ) exists for all µ ∈ J0 and

λ′
min(XY)(µ) = λmin(XY)(µ)

µ
.

Therefore, integrating with respect to µ and using (X(1), Y(1)) = (X0, Y0), we
obtain λmin(XY)(µ) = λmin(X0Y0)µ.

Similarly, we can show that λmax(XY)(µ) = λmax(X0Y0)µ. ��
Theorem 2.3 Under Assumptions 2.1 and 2.2, the followings hold true:

(a) The system of ODEs (6)–(7) has an unique solution (X(µ), Y(µ)) ∈ Sn++ ×
Sn++ which is analytic on (0, +∞).

(b) For any 0 < µ̄ < +∞, the solution (X(µ), Y(µ)) of the ODE system (6)–(7)

is bounded on (0, µ̄].
Proof We first show that the solution is bounded on any bounded interval
(µ−, µ̄] of the maximal interval of existence J0 = (µ−, µ+). Secondly, we show
that µ− = 0 and µ+ = +∞. This shows (b), and together with Theorem 2.1
implies the property (a).

Let (X1, Y1) be a feasible point in Sn++ × Sn++ [which exists by Assumption
2.1(b)]. Then we have A(X(µ)−X1)+B(Y(µ)−Y1) = 0. By Assumption 2.1(a),
SDLCP is monotone, thus (X(µ) − X1) • (Y(µ) − Y1) ≥ 0. From Lemma 2.1,
it follows that

Y1 • X(µ) + X1 • Y(µ) ≤ X1 • Y1 + nµ.

Since X1, Y1, X(µ), Y(µ) ∈ Sn++ and the products, Y1 •X(µ) and X1 •Y(µ), are
bounded from above on (µ−, µ̄], we have X(µ), Y(µ) are bounded on (µ−, µ̄]
for any µ̄ ∈ (µ−, µ+).

Now we show µ− = 0, µ+ = +∞.
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Suppose µ− > 0. Then since X(µ), Y(µ) are bounded near µ = µ−, we must
have by (15), limµ→µ− dist((X(µ), Y(µ)), ∂(Sn++ × Sn++)) = 0. But by Theo-
rem 2.2, we have λmin(XY)(µ) = λmin(X0Y0)µ. Therefore, with X(µ), Y(µ) ∈
Sn++ and bounded for all µ > µ− and close to µ−, all accumulation points
of X(µ), Y(µ) as µ → µ− are positive definite and bounded. Hence, we have
limµ→µ− dist((X(µ), Y(µ)), ∂(Sn++×Sn++)) > 0, which is a contradiction. There-
fore, we have µ− = 0.

Similarly, µ+ = +∞. ��
We state in the theorem below, using Theorem 2.2, the relationship between

any accumulation point of (X(µ), Y(µ)) as µ tends to zero and the original
SDLCP.

Theorem 2.4 Let (X∗, Y∗) be an accumulation point of the solution, (X(µ),
Y(µ)), to the system of ODEs (6)–(7) as µ → 0. Then (X∗, Y∗) is a solution to
the SDLCP (3).

Proof Let (X∗, Y∗) be an accumulation point of (X(µ), Y(µ)) as µ tends to
zero.

Then, by Theorem 2.2, λmin(X∗Y∗) = λmax(X∗Y∗) = 0 and X∗, Y∗ ∈ Sn+
implies that X∗Y∗ = 0. The latter together with A(X∗) + B(Y∗) = q, X∗, Y∗ ∈
Sn+ implies that (X∗, Y∗) is a solution to the SDLCP (3). ��
Corollary 2.1 If the given SDLCP (3) has an unique solution, then every of its
off-central paths will converge to the unique solution as µ approaches zero.

Proof Since X(µ), Y(µ) are bounded near µ = 0 by Theorem 2.3(b), and all
accumulation points of (X(µ), Y(µ)) is a solution to the SDLCP (3) by Theorem
2.4, we must have (X(µ), Y(µ)) converges as µ → 0 and its limit point is the
unique solution to the SDLCP (3). ��
Remark 2.3 When the SDLCP (3) has multiple solutions, then whether an off-
central path converges is still an open question.

3 Limiting behavior of off-central paths

In this section, we show that an off-central path need not be analytic as a func-
tion of

√
µ at the limit point µ = 0 and has unbounded first derivative as a

function of µ, even if it is close to the central path. We observe this fact through
an example. The example we choose has all the nice properties (e.g., primal
and dual nondegeneracy) used in the literature and is representative of the
common SDP (which is a special class of the monotone SDLCP) encountered
in practice. This observation tells a bad news that interior point method with
certain symmetrized directions, such as the HKM, for SDP and SDLCP cannot
have fast local convergence in general. On a positive side, we will show, through
the same example, that certain off-central paths, characterized by a condition,
are analytic at the limit point.
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We analyze the following primal-dual SDP pair:

(P) min

(

0 0
0 1

)

• X

subject to
(

2 0
0 0

)

• X = 2,
(

0 −1
−1 2

)

• X = 0, X ∈ S2+

and

(D) max 2v1

subject to v1

(

2 0
0 0

)

+ v2

(

0 −1
−1 2

)

+ Y =
(

0 0
0 1

)

, Y ∈ S2+.

This example is taken from [9]. Note that the example satisfies the standard
assumptions for SDP that appear in the literature.

It has an unique solution,
((

1 0
0 0

)

,
(

0 0
0 1

))

, which satisfies strict comple-

mentarity and nondegeneracy. (The concept of nondegeneracy is discussed for
example in [9] and is widely used in the literature.) In this sense, the example is
a nice, typical SDLCP example.

We choose this example from [9] mainly because it is simple and its nice
properties. What we discussed below using this example, however, is not directly
related to its discussion in [9].

Written as a SDLCP, the example can be expressed as

XY = 0
Asvec(X) + Bsvec(Y) = q

X, Y ∈ S2+,

where A =
⎛

⎝

2 0 0
0 0 0
0 −√

2 2

⎞

⎠, B =
⎛

⎝

0 0 0
0

√
2 1

0 0 0

⎞

⎠ and q =
⎛

⎝

2
1
0

⎞

⎠. Note that A

and B is the corresponding matrix representation of the linear operator A and
B in (3).

We are going to analyze the asymptotic behavior of the off-central path
(X(µ), Y(µ)) defined by the system of ODEs (12) (which is equivalent to (6)–
(7)) for the example considered here. We specialized to the case when P = Y1/2,
that is, the dual HKM direction. In this case, (12) can be written as

(A B
I X ⊗s Y−1

) (

svec(X ′)
svec(Y ′)

)

= 1
µ

(

0
svec(X)

)

(16)
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with the initial conditions: (X, Y)(1) = (X0, Y0), where (X0, Y0) satisfies

Asvec(X0) + Bsvec(Y0) = q (17)

Tr(X0Y0) = 2 (18)

X0, Y0 ∈ S2++. (19)

Note that we obtain (18) from Assumption 2.2(a).
Equations (16) and (17) imply that (X(µ), Y(µ)) satisfies

Asvec(X) + Bsvec(Y) = q.

From this equality, we see that

X(µ) =
(

1 x(µ)

x(µ) x(µ)

)

and Y(µ) =
(

y1(µ) y2(µ)

y2(µ) 1 − 2y2(µ)

)

for some x(µ), y1(µ), y2(µ) ∈ �.
By Assumption 2.1(a),

A
(

X(µ) −
(

1 0
0 0

))

+ B
(

Y(µ) −
(

0 0
0 1

))

= 0

implies that x(µ) + y1(µ) ≤ Tr(XY)(µ). But Tr(XY)(µ) = 2µ, by Lemma 2.1.
Hence, with x(µ) and y1(µ) positive for µ > 0, we have x(µ) = O(µ) and
y1(µ) = O(µ). Also, det(Y(µ)) > 0, 1 − 2y2(µ) bounded above by 1 near µ = 0
and y1(µ) = O(µ) imply that y2(µ) = O(

√
µ).

To analyze the asymptotic behavior of (X(µ), Y(µ)) as a function of
√

µ

at µ = 0, let us introduce a new variable t = √
µ and write ˜X(t) = X(t2),

˜Y(t) = Y(t2), x̃(t) = (1/t2)x(t2), ỹ1(t) = (1/t2)y1(t2) and ỹ2(t) = (1/t)y2(t2). (By
asking whether X(µ), Y(µ) are analytic w.r.t

√
µ at µ = 0, it is the same as

asking whether ˜X(t), ˜Y(t) are analytic at t = 0.) Then

˜X(t) =
(

1 t2̃x(t)
t2̃x(t) t2̃x(t)

)

and ˜Y(t) =
(

t2̃y1(t) t̃y2(t)
t̃y2(t) 1 − 2t̃y2(t)

)

and x̃(t), ỹ1(t), and ỹ2(t) are bounded near t = 0.
Expressing the ODE system (16) in terms of ˜X(t) and ˜Y(t), we have

(A B
I ˜X ⊗s ˜Y−1

) (

svec(˜X ′)
svec(˜Y ′)

)

= 2
t

(

0
svec(˜X)

)

(20)

with initial conditions: (˜X, ˜Y)(1) = (X0, Y0) where (X0, Y0) satisfies (17)–(19).
First, we would like to simplify the above ODE system (20).
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Proposition 3.1 (˜X(t), ˜Y(t)) satisfies the system of ODEs (20) and the initial
conditions (17)–(19) if and only if

(˜X(t), ˜Y(t)) =
((

1 t2(2 − ỹ1(t))
t2(2 − ỹ1(t)) t2(2 − ỹ1(t))

)

,
(

t2̃y1(t) t̃y2(t)
t̃y2(t) 1 − 2t̃y2(t)

))

and (̃y1(t), ỹ2(t)) satisfies the following equations:

(

1 − 2t̃y2 −̃y2 + t(2 − ỹ1)

−̃y2 + t(2 − ỹ1) 2

) (

ỹ′
1

ỹ′
2

)

= 1
t

( −̃y2(̃y2 + t(2 − ỹ1))

2((̃y1 − 2)(̃y2 + t̃y1) + ỹ2)

)

(21)

with the initial condition on (̃y1(1), ỹ2(1)) such that

(

1 2 − ỹ1(1)

2 − ỹ1(1) 2 − ỹ1(1)

)

,
(

ỹ1(1) ỹ2(1)

ỹ2(1) 1 − 2̃y2(1)

)

∈ S2++.

Proof Since Tr(XY)(µ) = 2µ, that is, Tr(˜X˜Y)(t) = 2t2, we have x(µ) = 2µ −
y1(µ) and x̃(t) = 2 − ỹ1(t). Therefore,

X(µ) =
(

1 2µ − y1(µ)

2µ − y1(µ) 2µ − y1(µ)

)

, Y(µ) =
(

y1(µ) y2(µ)

y2(µ) 1 − 2y2(µ)

)

(22)

and

˜X(t) =
(

1 t2(2 − ỹ1(t))
t2(2 − ỹ1(t)) t2(2 − ỹ1(t))

)

, ˜Y(t) =
(

t2̃y1(t) t̃y2(t)
t̃y2(t) 1 − 2t̃y2(t)

)

. (23)

Since (˜X(t), ˜Y(t)) has been expressed in terms of ỹ1(t) and ỹ2(t) in the form of
(23), (˜X(t), ˜Y(t)) satisfies (20) if and only if ỹ1(t) and ỹ2(t) satisfy

(1 − 2t̃y2)̃y′
1 + (−̃y2 + t(2 − ỹ1))̃y

′
2 = −̃y2(̃y2 + t(2 − ỹ1))/t, (24)

(1 − 2t̃y2)(t(2 − ỹ1) − (2t̃y1 + ỹ2))̃y′
1 + 2(1 − t(2 − ỹ1)(t̃y1 + ỹ2))̃y′

2= −(2 − ỹ1)(1 − 2t̃y2)(̃y2 + 2t̃y1)/t + ỹ1ỹ2(1 + 2t2(2 − ỹ1))/t
(25)

and

(̃y1(1 − 3t̃y2) + ỹ2(2t − ỹ2))̃y′
1 + (2 − ỹ1)(t̃y1 + ỹ2)̃y′

2= −̃y2(2 − ỹ1)(̃y2 + 3t̃y1)/t.
(26)

Adding Eq. (25) to 2t of Eq. (26) and simplifying, we obtain the following
equation:

(2t − t̃y1 − ỹ2)̃y′
1 + 2̃y′

2 = 2((̃y1 − 2)(t̃y1 + ỹ2) + ỹ2)/t. (27)

From Eqs. (24) and (27), we obtain the desired system (21).
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The initial condition on (y1(1), y2(1)) can be easily seen from (19) and (23).
��

Remark 3.1 Since ˜X(t), ˜Y(t) ∈ S2++ for all t > 0, from their expressions in (23),
we see that 0 < ỹ1(t) < 2 for all t > 0. Furthermore, if we define

˜X1(t) :=
(

1 0
0 1/t

)

˜X(t)
(

1 0
0 1/t

)

=
(

1 t(2 − ỹ1(t))
t(2 − ỹ1(t)) 2 − ỹ1(t)

)

and

˜Y1(t) :=
(

1/t 0
0 1

)

˜Y(t)
(

1/t 0
0 1

)

=
(

ỹ1(t) ỹ2(t)
ỹ2(t) 1 − 2t̃y2(t)

)

,

from λmin(˜X˜Y)(t) = t2λmin(X0Y0), we have

λmin(˜X1˜Y1)(t) = λmin(X0Y0) = constant > 0 (28)

for all t > 0.
Since ˜X1(t), ˜Y1(t) ∈ S2++ are bounded for t ∈ (0, 1], it follows from (28) that

λmin(˜X1(t)), λmin(˜Y1(t)) ≥ constant > 0 for all t ∈ (0, 1]. Thus, ỹ1(t), 2 − ỹ1(t) are
positive and bounded away from zero for t > 0 and as t → 0.

We want to write the system of ODEs (21) in IVP form, for analysis. In order
to do this, let us look at the determinant of the matrix in (21).

It can be seen easily that

det
(

1 − 2t̃y2(t) −̃y2(t) + t(2 − ỹ1(t))
−̃y2(t) + t(2 − ỹ1(t)) 2

)

= det(˜X1(t)) + det(˜Y1(t)) �= 0 for all t > 0,

where ˜X1 and ˜Y1 are defined in Remark 3.1. Therefore, we can invert the matrix
in (21) to obtain the following:

(

ỹ′
1

ỹ′
2

)

= 1
t(det(˜X1) + det(˜Y1))

×
(

2(̃y1 − 2)(t̃y1(t̃y1 − 2t + 2̃y2) + ỹ2
2)

2t̃y2(−̃y2 + 2t − t̃y1) + (t̃y1 + ỹ2)(−̃y2
2 + (2 − ỹ1)(3t̃y2 − 2)) + 2̃y2

)

.
(29)

Before analyzing the analyticity of off-central paths at the limit point, let us
first state without proof the following lemma [8]:

Lemma 3.1 Let f be a function defined on [0, ∞). Suppose f is analytic on [0, ∞)

and f (0) is not a nonnegative integer. Let z be a solution of z′(µ) = (z(µ)/µ)f (µ)

for µ > 0 with z(0) = 0. If z is analytic at µ = 0, then z(µ) is identically equal to
zero for µ ≥ 0.
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We have the following main theorem for this section:

Theorem 3.1 Let ˜X(t) and ˜Y(t), given by (23), be positive definite for t > 0. Then
(˜X(t), ˜Y(t)) is a solution to (20) for t > 0 and is analytic at t = 0 if and only if
ỹ2(t) = −t̃y1(t) for all t > 0, where ỹ1(t) satisfies ỹ′

1 = 2t̃y1(2−ỹ1)/(1+2t2(̃y1−1)).

Proof (⇒) Given that (˜X(t), ˜Y(t)) is a solution to (20) for t > 0 and is analytic
at t = 0.

We have ỹ1(t), ỹ2(t) satisfy (29). From the first differential Eq. in (29), for
limt→0+ ỹ′

1(t) to exists (which must be true since (˜X(t), ˜Y(t)) is analytic at t = 0),
we see that ỹ2(t) must approach zero as t → 0. Therefore, since ỹ2(t) is analytic
at t = 0, we have ỹ2(t) = tw(t), where w(t) is analytic at t = 0. We want to show
that w(t) = −̃y1(t).

Now, from the first differential equation in (29), we have

ỹ′
1 = 2(̃y1 − 2)(t̃y1(t̃y1 − 2t + 2̃y2) + ỹ2

2)

t(2 − ỹ1 − t2(2 − ỹ1)
2 + ỹ1(1 − 2t̃y2) − ỹ2

2)
.

Substituting ỹ2 = tw into the above equation and simplifying, we have

ỹ′
1 = 2t(̃y1 − 2)(̃y1(̃y1 − 2 + 2w) + w2)

2 − t2((2 − ỹ1)
2 + 2w̃y1 + w2)

. (30)

From the second differential equation in (29), we have

ỹ′
2 = 2t̃y2(−̃y2 + 2t − t̃y1) + (t̃y1 + ỹ2)(−̃y2

2 + (2 − ỹ1)(3t̃y2 − 2)) + 2̃y2

t(2 − ỹ1 − t2(2 − ỹ1)
2 + ỹ1(1 − 2t̃y2) − ỹ2

2)
.

Substituting tw for ỹ2 and tw′ + w for ỹ′
2 into the above equation, we have, after

bringing w to the right hand side of the resulting equation, dividing throughout
by t and simplifying,

w′ = 2(2 − ỹ1)((w + ỹ1)(t2w − 1) + 2t2w)

t(2 − t2((2 − ỹ1)
2 + 2w̃y1 + w2))

. (31)

Adding up Eqs. (30) and (31) and upon simplifications, we obtain

(̃y1 + w)′(t) = 2(2 − ỹ1(t))(t2(2 − ỹ1(t)) − 1)

t(2 − t2((2 − ỹ1(t))2 + 2w̃y1 + w2))
(̃y1(t) + w(t)).

Let z(t) = ỹ1(t) + w(t). Then z(t) is analytic at t = 0, since ỹ1(t) and w(t) are
analytic at t = 0. We have the following differential equation:

z′(t) = z(t)
t

(

2(2 − ỹ1(t))(t2(2 − ỹ1(t)) − 1)

2 − t2((2 − ỹ1(t))2 + z2 − ỹ2
1)

)

. (32)
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Let f (t) = 2(2 − ỹ1(t))(t2(2 − ỹ1(t)) − 1)/(2 − t2((2 − ỹ1(t))2 + z2 − ỹ2
1)). Then

f (t) is analytic for all t ≥ 0. Also, f (0) = −(2 − ỹ1(0)), which is strictly less than
zero by Remark 3.1.

From (32), we see that in order for z′(t) to exist as t approaches zero, which
should be the case since z(t) is analytic at t = 0, we must have z(0) = 0, since f (0)

is nonzero. Now z(t), f (t) here satisfy the conditions in Lemma 3.1. Therefore,
by the lemma, z(t) is identically equal to zero which implies that w(t) = −̃y1(t).

Using w(t) = −̃y1(t), expressing the differential equation (30) in terms of ỹ1,
we obtain the ODE of ỹ1 in the theorem.

(⇐) Suppose ỹ2(t) = −t̃y1(t) for all t > 0, where ỹ1(t) satisfies

ỹ′
1 = 2t̃y1(2 − ỹ1)

1 + 2t2(̃y1 − 1)
for t > 0. (33)

Then, since the right-hand side of the above ODE of ỹ1 is analytic at t = 0
and ỹ1 ∈ �, we have, by Theorem 2.1, that ỹ1(t) can be analytically extended to
t = 0. Hence ỹ2(t) can also be analytically extended to t = 0. These imply that
˜X(t), ˜Y(t) are analytic at t = 0.

With ỹ2(t) related to ỹ1(t) by ỹ2(t) = −t̃y1(t), where ỹ1(t) satisfying the ODE
(33), we can also check easily that ỹ1(t) and ỹ2(t) satisfy (21). Hence, by Propo-
sition 3.1, (˜X(t), ˜Y(t)) satisfies (20) for t > 0. ��

Letting (X(µ), Y(µ)) be a solution of the ODE system (16) and using the
relations y1(µ) = µ̃y1(

√
µ), y2(µ) = √

µ̃y2(
√

µ), we have the following neat
equivalences:

Theorem 3.2 Let (X(µ), Y(µ)) ∈ Sn++ × Sn++, given by (22), be the solution to
(16) for µ > 0 with initial conditions given by (17)–(19), i.e., (X(µ), Y(µ)) is an
off-central path. Then the followings are equivalent:

(a) y2(µ0) = −y1(µ0) for some µ0 > 0.
(b) y2(µ) = −y1(µ) for all µ > 0.
(c) (X(µ), Y(µ)) can be extended analytically to µ = 0.
(d) (X̃(t), Ỹ(t)) can be extended analytically to t = √

µ = 0.

Proof Note that conditions (a) and (b) can be written in terms of t, e.g., (b) is
equivalent to

ỹ2(t) = −tỹ1(t). (34)

(a) ⇒ (d). Suppose ỹ2(t0) = −t0ỹ1(t0) for some t0 > 0.
Define

˜U(t) :=
(

1 t2(2 − ṽ1(t))
t2(2 − ṽ1(t)) t2(2 − ṽ1(t))

)

, ˜V(t) :=
(

t2̃v1(t) t̃v2(t)
t̃v2(t) 1 − 2t̃v2(t)

)

for t > 0,

such that ṽ1(t0) = ỹ1(t0), ṽ2(t0) = ỹ2(t0), ṽ2(t) = −t̃v1(t) for all t > 0 and ṽ1(t)
satisfies ṽ′

1 = 2t̃v1(2 − ṽ1)/(1 + 2t2(̃v1 − 1)). We have ˜U(t), ˜V(t) ∈ Sn++ in a
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neighborhood of t = t0. Also (˜U(t), ˜V(t)) satisfies (20) in this neighborhood.
By uniqueness of off-central path, we then have ˜U(t) = ˜X(t), ˜V(t) = ˜Y(t)
in this neighborhood of t = t0. Hence, by an analytic continuity argument,
(˜X(t), ˜Y(t)) = (˜U(t), ˜V(t)) for all t > 0 and (˜X(t), ˜Y(t)) satisfies the necessary
conditions in Theorem 3.1 since (˜U(t), ˜V(t)) is defined using these conditions.
Therefore, by the theorem, (˜X(t), ˜Y(t)) can be extended analytically to t = 0.

(d) ⇒ (b). The result follows from (34) and Theorem 3.1.
(b) ⇒ (a). Obvious.
(c) ⇒ (d). This is clear.
(d) ⇒ (c). Suppose (X(µ), Y(µ)) is analytic w.r.t

√
µ at µ = 0.

Then (˜X(t), ˜Y(t)) is analytic at t = 0. Hence, by Thereom 3.1, we have ỹ2(t) =
−t̃y1(t) for all t > 0, where ỹ1(t) satisfies ỹ′

1 = 2t̃y1(2 − ỹ1)/(1 + 2t2(̃y1 − 1)).
It is clear that y1(µ) = µ̃y1(

√
µ) and y2(µ) = √

µ̃y2(
√

µ). Therefore ỹ2(t) =
−t̃y1(t) implies that y2(µ) = −y1(µ). The special structure of the ODE sat-
isfied by ỹ1, i.e., ỹ′

1 = 2t̃y1(2 − ỹ1)/(1 + 2t2(̃y1 − 1)), the relations y1 = µ̃y1
and y2 = −y1, turn out to be the keys in showing that (X(µ), Y(µ)) can be
extended analytically to µ = 0 as follows. Letting ˜ỹ1(µ) to be ỹ1(

√
µ), we see

that y1(µ) = µ˜ỹ1(µ), where ˜ỹ1(µ) satisfies ˜ỹ′
1 = ˜ỹ1(2 −˜ỹ1)/(1 + 2µ(˜ỹ1 − 1))

since˜ỹ′
1 = ỹ′

1/(2
√

µ) and ỹ′
1 = 2

√
µ̃y1(2 − ỹ1)/(1 + 2µ(̃y1 − 1)). Since the right-

hand side of the ODE satisfied by ˜ỹ1(µ) is analytic at µ = 0 and ˜ỹ1 ∈ �, we
have, by Theorem 2.1, ˜ỹ1(µ) can be extended analytically to µ = 0. Therefore,
y1(µ) and y2(µ) are analytically extensible to µ = 0, which further implies that
(X(µ), Y(µ)) is analytic w.r.t. µ at µ = 0. ��

We see from Theorem 3.2, that, unlike [11], where off-central paths are
defined differently and are analytically extensible as a function of

√
µ to µ = 0,

no matter how close we consider a starting point (for the off-central path) to
the central path of the SDP example, we can always start off with a point whose
off-central path is not analytic as a function of µ or

√
µ at µ = 0. On the

other hand, if the initial point satisfies a certain condition, namely, y2 = −y1,
its off-central path can be analytically extended to µ = 0.

Remark 3.2 Similar theorems as Theorems 3.1 and 3.2 can be stated if we con-
sider P = X−1/2, which corresponds to the so-called HKM direction.

We know from Theorem 3.2 that given an off-central path, (X(µ), Y(µ)), of
form (22), if y2(µ0) �= −y1(µ0) for some µ0 > 0, then (X(µ), Y(µ)) cannot be
analytically extended to µ = 0. One may ask what further asymptotic behavior
does (X(µ), Y(µ)) have when y2(µ0) �= −y1(µ0) for some µ0 > 0, besides being
not analytically extensible to µ = 0?

In what follows, we show that the first derivative of such (X(µ), Y(µ)) is
unbounded as µ → 0. From this, it clearly shows that although the example
given satisfies all kinds of regularity conditions, its off-central paths defined
using the dual HKM direction have bad behavior near the optimal solution of
the example.
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Theorem 3.3 Let (X(µ), Y(µ)), given by (22), be the solution to (16) for µ > 0
with initial conditions given by (17)–(19), i.e., (X(µ), Y(µ)) is an off-central path.
If y2(µ0) �= −y1(µ0) for some µ0 > 0, then the first derivative of (X(µ), Y(µ)) is
unbounded as µ → 0.

Proof Now, if (X(µ), Y(µ)) is an off-central path of the example, then

X(µ)=
(

1 2µ − y1(µ)

2µ − y1(µ) 2µ − y1(µ)

)

, Y(µ)=
(

y1(µ) y2(µ)

y2(µ) 1 − 2y2(µ)

)

[see (22)].

We have y1(µ) = µ̃y1(
√

µ), y2(µ) = √
µ̃y2(

√
µ), where ỹ1, ỹ2 satisfy the system

of ODEs (29) with t = √
µ. Expressing (29) in terms of y1, y2 and their first

derivatives, and µ, we obtain

(

y′
1

y′
2

)

= y1(1 − 2y2) − y2
2

µ(2µ(1 − 2y2) − (2µ − y1 − y2)2)

(

2µ

−(2µ − y1 − y2)

)

. (35)

Let

y1(µ) := µ˜ỹ1(µ) for µ > 0. (36)

We have, by Remark 3.1, that ˜ỹ1(µ) and 2 −˜ỹ1(µ) are positive and bounded
away from zero as µ → 0.

From y′
2 = −(2µ−y1−y2)(y1(1−2y2)−y2

2)/(µ(2µ(1−2y2)−(2µ−y1−y2)
2))

in (35), using y1(µ) = µ̃y1(
√

µ), y2(µ) = √
µ̃y2(

√
µ) and the boundedness of

ỹ1, ỹ2 near µ = 0, we see that if y2(µ) �= O(µ), then y′
2 is unbounded as µ → 0.

Hence (X(µ), Y(µ)) has unbounded first derivative as µ → 0.
Therefore assuming that y2(µ) = O(µ), we wish to show that if y2(µ0) �=

−y1(µ0) for some µ0 > 0, then (X(µ), Y(µ)) has unbounded first derivative as
µ → 0.

We do this by showing that y′′
2 behaves like 1/µ for µ close to zero. From this,

we see that y′
2 is unbounded as µ → 0.

Since y2(µ) is assumed to be O(µ), let

y2(µ) := µw̃(µ) for µ > 0, (37)

where w̃(µ) = O(1).
Upon computing y′′

2 using the second equation in (35), we obtain

y′′
2 = gh

µ(2µ(1 − 2y2) − (2µ − y1 − y2)2)
, (38)
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where

g(µ) := y1(1 − 2y2) − y2
2

µ(2µ(1 − 2y2) − (2µ − y1 − y2)2)
,

h(µ) := −4µ(2µ − y1 − y2)
2 − (2µ − y1 − y2)

2(−4µ2g + (y1 + y2)(1 − 2µg))

+2(2µ − y1 − y2)(1 − 2y2)µ − 4µ2(1 − 2y2)

+(y1 + y2)(y1(1 − 2y2) − y2
2).

Let us now estimate g and h.
Substituting y1 = µ˜ỹ1 and y2 = µw̃ into the expressions for g and h above,

we have

g = µ˜ỹ1(1 − 2µw̃) − µ2w̃2

µ(2µ(1 − 2µw̃) − (2µ − µ˜ỹ1 − µw̃)2)

= �(1/µ),

where we have used ˜ỹ1 is bounded away from zero as µ approaches zero and
w̃(µ) = O(1) to obtain the estimate. And grouping terms containing µ3 together
in h and after simplifications, we obtain

h = µ2(˜ỹ1 − 2)(˜ỹ1 + w̃) + O(µ3).

Therefore from (38)

y′′
2 = gh

µ(2µ(1 − 2y2) − (2µ − y1 − y2)2)

= �(1/µ)

µ2(2(1 − 2µw̃) − µ(2 −˜ỹ1 − w̃)2)
(µ2(˜ỹ1 − 2)(˜ỹ1 + w̃) + O(µ3))

= −�(1/µ)(˜ỹ1 + w̃) + O(1), (39)

where the last equality follows since 2 −˜ỹ1 is positive and bounded away from
zero for µ close to zero and w̃(µ) = O(1).

We want to investigate˜ỹ1 +w̃ further for µ close to zero. We use its derivative
in this investigation.

Using (35) and the relations y1 = µ˜ỹ1, y2 = µw̃, we have

(˜ỹ1 + w̃)′ = (˜ỹ1 + w̃)(2 −˜ỹ1)((2 −˜ỹ1)µ − 1)

µ(2(1 − 2µw̃) − µ(2 −˜ỹ1 − w̃)2)
. (40)

Now, we are ready to show using (39) and (40) that if y2(µ) = O(µ), then
y2(µ0) �= −y1(µ0) for some µ0 > 0 implies that (X(µ), Y(µ)) has unbounded
first derivative as µ → 0.

Suppose y2(µ0) > −y1(µ0) for some µ0 > 0. We recall that˜ỹ1, w̃ are related
to y1 and y2 by (36) and (37) respectively, hence there exists ε > 0 such that
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˜ỹ1(µ1) + w̃(µ1) = ε for some 0 < µ1 ≤ 2/(4 + ε2). [If not, then we have
y2(µ1) = −y1(µ1) which implies that y2(µ) = −y1(µ) for all µ > 0 by The-
orem 3.2, a contradiction to y2(µ0) > −y1(µ0).] Then from (40), we see that
(˜ỹ1 + w̃)′(µ1) ≤ 0. Therefore, ˜ỹ1(µ) + w̃(µ) ≥ ε for µ ≤ µ1 and close to µ1. In
fact, we see that by the continuity of˜ỹ1(µ) + w̃(µ) for 0 < µ ≤ µ1 and (40) that
˜ỹ1(µ) + w̃(µ) ≥ ε for all µ between 0 and µ1. Hence, from (39), y′′

2 = −�(1/µ)

which implies that y′
2 is unbounded as µ approaches zero, i.e., the first derivative

of (X(µ), Y(µ)) is unbounded as µ → 0.
Similarly, if y2(µ0) < −y1(µ0) for some µ0 > 0, we also have the first deriv-

ative of (X(µ), Y(µ)) unbounded near µ = 0. ��

4 Conclusions

An IPM is a homotopy method in which the search direction at a point is par-
allel to the tangent to the path at that point. This inspires the idea of defining
underlying paths of an IPM (where search directions are known) as solutions
of the ODE associated with the field of search directions of the IPM. Since the
behavior of an IPM, such as convergence, complexity, etc, depends mainly on
its search directions, the characteristics of the underlying paths, which we have
proposed in this paper, are helpful in analyzing and anticipating the behavior
of IPMs.

We have shown that the paths, i.e., the solutions of the ODE system, uniquely
exist and are analytic on (0, +∞). We have also shown that any accumulation
point of a path is a solution of SDLCP. A surprising observation by analyzing
an example is that off-central paths under our definition are usually not ana-
lytic with respect to

√
µ at µ = 0. This observation sharply contrasts with what

has been reported by other researchers, namely that, all paths (central paths,
off-central paths, associated with AHO, HKM, etc, symmetrization operators)
under various definitions [11,12,22] are analytic with respect to

√
µ (and in the

case of AHO direction, even analytic with respect to µ) at µ = 0, under strict
complementarity condition.

It is interesting to see that different definitions of paths lead to such sharp
contrasting behaviors of paths and each definition has its own implications.
Since our paths are defined by fields of search directions which decide the
convergence behavior of an IPM, the bad behavior (not being analytic and hav-
ing unbounded derivative if y2 �= −y1 in the example) of the underlying paths
strongly indicates slow convergence of IPM near a solution to a SDLCP. Kojima
et al. [9] observed certain evidence that IPMs do not converge superlinearly
without “shrinking” the neighborhood using the HKM direction. Through the
analysis of underlying paths here, we provide further evidence which antici-
pates the slow local convergence of IPMs for SDP and SDLCP using the HKM
direction.

On the other hand, our ability to find a set of nice off-central paths casts a ray
of hope; starting from certain points (e.g., satisfying y2 = −y1), the IPM in our
example problem can follow paths which are analytic at µ = 0, and hence can
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converge superlinearly without “neighborhood shrinking” [23]. Whether this is
true for general SDPs and SDLCPs is still an open problem.

In this paper we have defined off-central paths and established their basic
properties. However, what we have seen about these paths is very limited. The
real behavior and rich structure of these paths and their implications to the
study of IPMs have yet to be unveiled.
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