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Abstract We study the Clarke–Rockafellar directional derivatives of the regu-
larized gap functions (and of some modified ones) for the variational inequality
problem (VIP) defined by a locally Lipschitz but not necessarily differentiable
function on a closed convex set in an Euclidean space. As applications we show
that, under the strong monotonicity assumption, the regularized gap functions
have fractional exponent error bounds and consequently that the sequences
provided by an algorithm of Armijo type converge to the solution of the (VIP).
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1 Introduction

Throughout this paper let P denote a nonempty closed convex set in an Euclid-
ean space Rn and let F be a locally Lipschitz map from P to Rn. We consider
VIP(F, P), the variational inequality problem associated with F and P, that is,
to find a vector x∗ ∈ P such that
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〈F(x∗), x − x∗〉 ≥ 0 ∀x ∈ P. (1)

When P is the nonnegative orthant in Rn, VIP(F, P) reduces to the nonlin-
ear complementarity problem NCP(F, P). The variational inequality prob-
lems have many applications in different fields (including mathematical pro-
gramming problems and some equilibrium problems), we refer the reader
to the very informative recent boobook [3] by Facchinei and Pang for the
background information and motivations of the variational inequality prob-
lems covering both smooth and nonsmooth functions (in fact nonsmooth var-
iational problems are quite abundant, see [7, 17, B.F. Hobbs and J.S. Pang,
submitted]for recent developments). Many authors have studied these prob-
lems (with various degree of generality such as for smooth or nonsmooth F)
using various methods pertinent to various issues or aspects of the problem.
See [2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 18, 24, 26, 27]. One approach is by merit
functions such as the regularized gap function fγ [5] defined by

fγ (τ ) := − inf
x∈P

{
〈F(τ ), x − τ 〉 + γ

2
‖x − τ‖2

}
, τ ∈ P, γ > 0. (2)

By [26, Proposition 3.3 and Theorem 3.1] x∗ solves VIP(F, P) if and only if
fγ (x∗) = 0 and x∗ solves the constrained minimization problem

min fγ (τ ) subject to τ ∈ P. (3)

In the case when F is continuously differentiable on P, fγ is also continuously
differentiable, and in fact one has [26]

∇fγ (τ ) = −∇F(τ )
(
πγ (τ) − τ

)+ F(τ ) + γ
(
πγ (τ) − τ

)
, (4)

where πγ (τ) denotes the best approximation to τ − F(τ )
γ

from P, namely

πγ (τ) = ProjP

(
τ − F(τ )

γ

)
. (5)

An advantage of the regularized gap function is its differentiability when F is
smooth and this helps to develop descent-based algorithms to solve the original
VIP. In particular, by virtue of the consideration of differentials, Wu et al. [26],
Yamashita et al. [27], and Huang et al. [8] have addressed the error bound issues
for fγ when F is assumed to be strongly monotone, and thereby established con-
vergence results of sequences obtained by an algorithm of Armijo type. The
above results are extended here to cover the case that F is not necessarily
smooth. We show in particular that the regularized gap function fγ is locally
Lipshitz on P when F is, and hence the corresponding Clarke–Rockafellar
directional derivative can play a similar role as that played by the directional
derivative for the smooth case with the above mentioned algorithm of Armijo
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type. The organization of the rest of this paper as follows. In the next sec-
tion we set our notations (which are standard) and preliminaries. In particular
three basic lemmas regarding the Clarke–Rockafellar directional derivatives
are given. These results are more or less folklore (cf. [1, 19, 20, 21, 25, 29]). But
as, in the literature, we cannot find results presented in the forms required
for our need we include their proofs here even though the proofs are quite
technical. Although fγ is not necessarily smooth at certain points, we show
in sect. 4 that the Clarke–Rockafellar directional derivatives of fγ (and of f γ

which agrees with fγ on P but takes value +∞ on Rn\P) at these points can
be explicitly represented in a similar spirit as that given in [1, Theorem 2.8.6].
This is established via a more general result in Sect. 3 regarding max-functions.
Applications are given in the last two sections: we show in Sect. 5 that

√
fγ

has an error bound on P and in Sect. 6 we present a convergence result for a
descent method of Armijo type leading to the solution of the corresponding
VIP. Our treatment here follows the earlier ones given by Yamashita et al. [27]
and Huang et al. [8] except that the Armijo-type line search is justified now by
the study of the Clarke–Rockafellar directional derivative of the regularized
gap function (in place of the directional derivative in the smooth case).

2 Notation and preliminary results

For a proper lower semicontinuous function h : Rn → R ∪ {+∞}, let dom h :=
{x ∈ Rn : h(x) < +∞}. For any x ∈ dom h and v ∈ Rn, we denote upper and
lower Dini-directional derivatives, respectively, by

d
+

h(x)(v) := lim sup
t↓0

h(x + tv) − h(x)

t

and

d+h(x)(v) := lim inf
t↓0

h(x + tv) − h(x)

t
.

The Clarke–Rockafellar directional derivative of h at x in the direction v is
denoted by h↑(x, v) and defined by (cf. [29])

h↑(x, v) = lim
ε↓0

lim sup
y→hx,t↓0

inf‖u−v‖≤ε

h(y + tu) − h(y)

t
, (6)

where y →h x means that y → x and h(y) → h(x). The Clarke subdifferential
of h at x is defined by (cf. [29])

∂Ch(x) := {ξ ∈ Rn : 〈ξ , v〉 ≤ h↑(x, v) for all v in Rn}.
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It is well known (cf. [29, Proposition 3.2.2]) that the epigraph of h↑(x, ·) equals
the Clarke tangent cone of the epigraph of h at (x, h(x)), that is

epi h↑(x, ·) = TC
(
epi h, (x, h(x))

)
. (7)

Throughout we use B to denote the open unit ball of Rn. The following three
lemmas regarding the directional derivatives will be useful for us.

Lemma 1 Let h : Rn → R ∪ {+∞} be a proper lower semicontinuous function,
x ∈ dom h, and v ∈ Rn. Then the following assertions hold:

(i) For any function ξ with the property that ξ(y) → v when y →h x, one has

h↑(x, v) ≤ lim sup
y→hx,t↓0

h(y + tξ(y)) − h(y)

t
.

(ii) For any sequences (xk) and (tk) with (xk) →h x and (tk) ↓ 0, there exists a
sequence (vk) such that (vk) → v and

lim sup
k→+∞

h(xk + tkvk) − h(xk)

tk
≤ h↑(x, v). (8)

(iii) If h is assumed to be Lipschitz around x, then there exist sequences (xk),
(tk) and (vk) such that (xk) →h x, (tk) ↓ 0, (vk) → v and

lim
k→+∞

h(xk + tkvk) − h(xk)

tk
= h↑(x, v). (9)

Proof Let ε > 0. Then there exists δ0 > 0 such that ‖ξ(y) − v‖ < ε whenever
‖y − x‖ < δ0 and |h(y) − h(x)| < δ0. Thus, for any δ ∈ (0, δ0)

sup
‖y−x‖≤δ,0<t≤δ

|h(y)−h(x)|≤δ

inf‖u−v‖≤ε

h(y + tu) − h(y)

t
≤ sup

‖y−x‖≤δ,0<t≤δ

|h(y)−h(x)|≤δ

h(y + tξ(y)) − h(y)

t
.

Taking infima on both sides over all δ ∈ (0, δ0), it follows that

lim sup
y→hx
t↓0

inf‖u−v‖≤ε

h(y + tu) − h(y)

t
≤ lim sup

y→hx,t↓0

h(y + tξ(y)) − h(y)

t
.

Since this is true for arbitrary ε > 0, (i) follows. To prove (ii), let (tk) ↓ 0 and
(xk) →h x, that is (xk, h(xk)) → (x, h(x)) in epi h. Since (v, h↑(x, v)) belongs
to TC

(
epi h, (x, h(x))

)
by (7), it follows that there exists a sequence (vk, sk) →

(v, h↑(x, v)) such that (xk, h(xk)) + tk(vk, sk) ∈ epi h, i.e., h(xk + tkvk) ≤ h(xk) +
tksk for each k. Thus,

h(xk + tkvk) − h(xk)

tk
≤ sk.
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Letting k → +∞, we see that (ii) holds. Finally by (i), we have

h↑(x, v) ≤ lim sup
y→hx,t↓0

h (y + t(v + x − y)) − h(y)

t
,

and hence there exist sequences (xk), (tk) such that (xk) →h x, (tk) ↓ 0 and

h↑(x, v) ≤ lim
k→+∞

h (xk + tk(v + x − xk)) − h(xk)

tk
. (10)

Let (vk) be a sequence with the properties as that stated in (8) of (ii). Since h is
assumed to be Lipschitz around x, (9) follows by combining (8) and (10). Thus
(iii) is valid and the proof is complete. ��

Recall that the cone of feasible directions of a convex set C ⊂ Rn at a point
x ∈ C is, by definition, the set

FC(x) := {v ∈ Rn : x + tv ∈ C for some t > 0}, (11)

that is FC(x) is the cone generated by C − x.

Lemma 2 Let h : Rn → R ∪ {+∞} be a proper lower semicontinuous function.
Suppose that dom h is a convex set and that the restriction of h to dom h is locally
Lipschitz. Let x ∈ dom h and v ∈ Fdom h(x). Then

d
+

h(x)(v) ≤ h↑(x, v). (12)

Moreover, if 0 < h(x) < +∞ then

d
+√

h(x)(v) ≤ h↑(x, v)

2
√

h(x)
. (13)

Proof By assumptions, there exist r > 0 and Kx > 0 such that

|h(x1) − h(x2)| ≤ Kx‖x1 − x2‖ ∀x1, x2 ∈ (x + rB) ∩ dom h, (14)

and there exists t0 > 0 such that

x + tv ∈ dom h for all 0 < t ≤ t0. (15)

Let ε > 0, δ := min {r/‖v‖ + ε, t0} and let U := {u ∈ v + εB : x + t0u ∈ dom h}.
Then x + tu ∈ (x + rB) ∩ dom h for all t ∈ (0, δ) and u ∈ U. It follows from (14)
and (15) that

|h(x + tu) − h(x + tv)| ≤ Kxt ‖v − u‖ ≤ Kxtε, for all t ∈ (0, δ), u ∈ U.
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Hence

inf‖u−v‖≤ε

h(x + tu) − h(x)

t
≥ −Kxε + h(x + tv) − h(x)

t
.

Taking upper limits on both sides, we have

lim sup
y→hx,t↓0

inf‖u−v‖≤ε

h(y + tu) − h(y)

t

≥ lim sup
t↓0

inf‖u−v‖≤ε

h(x + tu) − h(x)

t

≥ −Kxε + lim sup
t↓0

h(x + tv) − h(x)

t

= −Kxε + d
+

h(x)(v),

and (12) follows by taking limits as ε → 0.
Finally, suppose h(x) > 0. Then h(x + tv) > 0 when t > 0 is small enough (since
h is continuous on dom h). Passing to the upper limits in

√
h(x + tv) − √

h(x)

t
= h(x + tv) − h(x)

t
• 1√

h(x + tv) + √
h(x)

,

one has

d
+√

h(x)(v) = d
+

h(x)(v)

2
√

h(x)

and so (13) follows from (12).

Lemma 3 Let h, x and v be as in Lemma 2. Then

lim sup
y→hx

q→v,q∈Fdom h(y)

h↑(y, q) ≤ h↑(x, v),

where

lim sup
y→hx

q→v,q∈Fdom h(y)

h↑(y, q) := inf
δ>0

sup
‖y−x‖≤δ,|h(y)−h(x)|≤δ

‖q−v‖≤δ,q∈Fdom h(y)

h↑(y, q).

Proof We assume h↑(x, v) �= +∞. Let (yk) and (vk) be two arbitrary sequences
such that (yk) →h x, (vk) → v and vk ∈ Fdom h(yk) with the associate λk > 0
(that is the line-segment [yk, yk + λkvk] is contained in dom h) for each k. It
suffices to show that
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lim sup
k→+∞

h↑(yk, vk) ≤ h↑(x, v). (16)

For each k, by the definition, we have

h↑(yk, vk) = sup
ε>0

lim sup
y→hyk,t↓0

inf
{

h(y+tu)−h(y)
t : ‖u − vk‖ ≤ ε

}

≤ sup
ε>0

lim sup
y→hyk,t↓0

inf
{

h(y+tu)−h(y)
t : u ∈ Fdom h(y) and ‖u − vk‖ ≤ ε

}

(note that the set 	(y) := {u : u ∈ Fdom h(y) and ‖u − vk‖ ≤ ε} is not empty
for any y ∈ yk + λkεB; for instance it contains vk + yk − y/λk).
Let (mk) be a sequence with mk < h↑(yk, vk) for each k. Then there exists a
sequence (εk) ↓ 0 such that εkλk < 1/k for each k and

mk < lim sup
y→hyk,t↓0

inf

{
h(y + tu) − h(y)

t
: u ∈ Fdom h(y) and ‖u − vk‖ ≤ εk

}
.

Hence, for each k, there exist zk and tk > 0 such that

‖zk − yk‖ ≤ εkλk, 0 < tk ≤ εkλk, ‖h(zk) − h(yk)‖ ≤ εkλk (17)

and

mk < inf

{
h(zk + tku) − h(zk)

tk
: u ∈ Fdom h(zk) and ‖u − vk‖ ≤ εk

}
. (18)

Let uk := vk + yk − zk/λk. Then ‖uk − vk‖ = ‖yk − zk‖/λk ≤ εk and uk ∈
Fdom h(zk) because zk + λkuk = yk + λkvk ∈ dom h. Hence by (18), one has

mk <
h(zk + tkuk) − h(zk)

tk
. (19)

Since (yk) →h x and by (17), we have (zk) →h x. Hence one can apply
Lemma 1 (ii) to find (u′

k) such that (u′
k) → v and

lim sup
k→+∞

h
(
zk + tku′

k

)− h(zk)

tk
≤ h↑(x, v). (20)

Moreover we assume without loss of generality that u′
k ∈ Fdom h(zk) with

zk + tku′
k ∈ dom h for each k thanks to the fact that h↑(x, v) < +∞. Therefore,

by (19),

mk ≤ h
(
zk + tku′

k

)− h(zk)

tk
+ h (zk + tkuk) − h

(
zk + tku′

k

)

tk
, (21)
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where the second term converges to zero as k → +∞ because the restriction
of h to dom h is assumed to be locally Lipschitz. Thus, by (20) and (21), one has

lim sup
k→+∞

mk ≤ h↑(x, v).

Therefore (16) is true since each mk is any (arbitrary) number such that mk <

h↑(yk, vk). ��
We end this section with two propositions from the measure theory. The first
is an extended version of Rademacher’s Theorem (see [4]). The proof for the
second result will be omitted as it is standard (via the polar coordinates).

Proposition 1 Let h : E → R be a real-valued measurable function defined on a
bounded measurable set E in Rn. Then h is differentiable almost everywhere on E
if and only if the difference quotients of h are locally bounded almost everywhere
on E.

Proposition 2 Let S be a set in Rn of measure zero, and let z0 ∈ Rn. Then, for
almost every y ∈ Rn, the intersection of S with the line-segment L(y) with the end
points y and z0 is of zero measure with respect to the 1-dimensional Lebesgue
measure of L(y).

3 Max-functions

This section is devoted to study the max-function G of the following type

G(τ ) = max
i∈I

Gi(τ ), for each τ ∈ C, (22)

where I is an index-set, C is a nonempty closed convex subset of Rn and each
Gi is a real-valued function on C. The investigation here follows closely to that
of Clarke given in [1, Theorem 2.8.6], but our arguments are more complicated
because of the presence of the constraint set C. For simplicity, assume that C
affinely spans Rn. (Hence C is of positive measure in Rn.) Further, we make the
following blanket assumptions which are in force throughout this section.

Assumption 1

(I) For each τ ∈ C, assume the active index subset I(τ ) for τ is nonempty, that
is

I(τ ) := {i ∈ I : Gi(τ ) = G(τ )} �= ∅. (23)

(II) For each τ ∈ C, there exist positive real numbers δτ , Lτ such that for each
z ∈ (τ + δτ B) ∩ C and each i ∈ I(z), Gi is Lipschitz on (τ + δτ B) ∩ C with
modulus Lτ , that is

|Gi
(
τ ′)− Gi

(
τ ′′) | ≤ Lτ‖τ ′ − τ ′′‖, ∀τ ′, τ ′′ ∈ (τ + δτ B) ∩ C. (24)
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Remark 1

(a) By (24), G is also locally Lipschitz around τ with modulus Lτ , that is,

|G (τ ′)− G
(
τ ′′) | ≤ Lτ‖τ ′ − τ ′′‖, ∀τ ′, τ ′′ ∈ (τ + δτ B) ∩ C. (25)

In fact, for i ∈ I
(
τ ′), one has

G
(
τ ′)− G

(
τ ′′) = Gi

(
τ ′)− G

(
τ ′′) ≤ Gi

(
τ ′)− Gi

(
τ ′′) ≤ Lτ‖τ ′ − τ ′′‖,

where τ ′, τ ′′ ∈ (τ + δτ B) ∩ C; thus (25) holds by symmetry.

(b) By (a) and the Rademacher Theorem (see Proposition 1), G and each Gi
are differentiable almost everywhere on C. Note that, if z ∈ (τ + δτ B) ∩
int C and if G (resp.Gi) is differentiable at z, then

‖∇G(z)‖ ≤ Lτ (resp. ‖∇Gi(z)‖ ≤ Lτ ). (26)

For our convenience and for our subsequent use, we define a “modified func-
tion” G of G by

G(τ ) =
{

G(τ ), τ ∈ C;
+∞, otherwise.

Clearly, G satisfies the conditions assumed in Lemma 2 (stated for the
function h). Modified from [1, Theorem 2.8.6], we have the following propo-

sition that provides an upper estimate for the directional derivative G
↑
(τ , v) at

τ ∈ C along a feasible direction v (see (28)).

Proposition 3 Let τ ∈ C and v ∈ FC(τ ) with the associate λ0 > 0 such that the
line-segment

[τ , τ + λ0v] ⊂ C. (27)

Let S be a subset of C with measure zero and let A(v) be defined by

A(v) : =
{

lim
k→+∞

〈∇Gik(τk), v〉 : τk, zk → τ with ik ∈ I(zk),

τk ∈ int C\S and zk ∈ C for each k
}

,

A1(v) : =
{

lim
k→+∞

〈∇Gik(τk), vk〉 : τk, zk → τ with ik ∈ I(zk),

τk ∈ int C\S and zk ∈ C for each k
}

,

where (vk) is any sequence convergent to v; for example, corresponding to
(τk) → τ , let vk := v + (τ − τk/λ0).
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Then the following assertions hold:

(i) A1(v) = A(v).
(ii) A(v) is nonempty and compact.

(iii) A real number r belongs to A(v) if and only if for any each ε > 0, there exist
τ ε ∈ (τ + εB) /S, zε ∈ τ + εB and tε ∈ I(zε) such that Gtε is differentiable
at τ ε and

|r − 〈∇Gtε
(
τ ε
)

, v〉| < ε.

(iv) The Clarke–Rockafellar directional derivative of G at τ along the direction
v satisfies the inequality

G
↑
(τ , v) ≤ max A(v) := max

ξ∈A(v)
ξ . (28)

Proof Take a sequence (zk) → τ with zk ∈ C for each k. By (I) of Assump-
tion 1, there exists a sequence (ik) such that ik ∈ I(zk) for any k. Let 
 =
∪+∞

k=1
ik where 
ik denotes the set of points in (τ + δτ B) ∩ C at which Gik
fails to be differentiable. Then 
 is of measure zero by the Rademacher The-
orem. Since int C is dense in C (as aff C = Rn and C is convex), it follows
that ((τ + δτ B) ∩ int C) / (S ∪ 
) is dense in (τ + δτ B) ∩ C. Thus there exists a
sequences (τk) in (τ + δτ B) ∩ (int C\S) convergent to τ such that for each k,
∇Gik(τk) exists. Note further that

‖∇Gik(τk)‖ ≤ Lτ for each k.

It is now clear that A(v) is a nonempty bounded set. Moreover, for any (vk) as
in the definition for set A1(v), one has

‖〈∇Gik(τk), v〉 − 〈∇Gik(τk), vk〉‖ ≤ Lτ‖v − vk‖,

and it follows that A1(v) = A(v). The verification for (iii) is routine, as well as
the verification that A(v) is closed thanks to (iii). Therefore A(v) is compact
and hence has a maximal element. Recalling that FC(τ ) is the cone generated
by C − τ , to prove (28) it suffices to consider the case when v ∈ C − τ (then
λ0 = 1 in (27)). Denote m for max A(v). Then for any ε > 0, the definitions of m
and A1(v) imply that there exists δ ∈ (0, δτ /2) such that if y, z ∈ (τ + 2δB) ∩ C
and i ∈ I(z) satisfy

y ∈ int C\S, ∇Gi(y) exists,

then one has

〈∇Gi(y), v + (τ − y)〉 < m + ε. (29)
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Let x be any point in (τ + δB) ∩ C. Let λ1 = min{(1/2), (δ/2‖v‖)} and s be
any number in (0, λ1]. Let z = x + s(v + τ − x) and i ∈ I(z). Let 
i be the set
of points in (τ + δτ B) ∩ C at which Gi fails to be differentiable. Then 
i is of
measure zero. For all y ∈ (τ + δB) ∩ C, one has

[y, y + s(v + τ − y)] ⊂ [y, y + (v + τ − y)] = [y, τ + v],

‖y + λ1(v + τ − y) − y‖ ≤ λ1‖v‖ + λ1‖τ − y‖ < δ,

and so, by (27)

[y, y + s(v + τ − y)] ⊂ (τ + 2δB) ∩ C,

(in particular, replacing y by x one has z ∈ (τ + 2δB) ∩ C). On the other hand,
S∪bdry C ∪
i is of measure zero since int C is dense in C. Thus, it follows from
Proposition 2 (applied to v + τ in place of z0) that for almost every y ∈ Rn, the
intersection of S ∪ bdry C ∪ 
i with the line-segment [y, v + τ ] is of measure
zero with respect to the measure in that line-segment; for our convenience let
Y denote the set of all y ∈ Rn with the above property. Then (τ + δB) ∩ C ∩ Y
is dense in (τ + δB) ∩ C. Moreover, let y ∈ (τ + δB) ∩ C ∩ Y. Note that the set
{µ ∈ [0, s] : y+µ(v+τ −y) ∈ S∪bdry C∪
i} = {µ ∈ [0, s] : (1−µ)y+µ(v+τ) ∈
S ∪ bdry C ∪ 
i} is of measure zero in [0, s]. Consequently, it follows from (29)
that for almost every µ ∈ [0, s]

〈
∇Gi (y + µ (v + τ − y)) , v + τ − (y + µ (v + τ − y))

〉
< m + ε,

that is

〈
∇Gi (y + µ (v + τ − y)) , v + τ − y

〉
<

1
1 − µ

(m + ε) .

By integration over [0, s] with respect to µ, this gives

Gi (y + s (v + τ − y)) − Gi(y) ≤ (m + ε)

s∫

0

1
1 − µ

dµ

= (m + ε) ln
1

1 − s
. (30)

By the continuity of Gi, it follows that (30) holds for every y in (τ + δB) ∩ C.
Taking y = x, we have

G(z) − G(x) ≤ Gi(z) − Gi(x)

= Gi (x + s (v + τ − x)) − Gi(x)

≤ (m + ε) ln 1
1−s .
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That is

1
s

[
G (x + s (v + τ − x)) − G(x)

]
= 1

s

[
G (x + s (v + τ − x)) − G(x)

]

≤ 1
s (m + ε) ln 1

1−s .

Passing to the limits as x →C τ and s ↓ 0, this implies that

lim sup
x→Cτ ,s↓0

G (x + s (v + τ − x)) − G(x)

s
≤ m + ε,

and it follows from Lemma 1 (i) that

G
↑
(τ , v) ≤ m + ε.

Then (28) holds as ε > 0 is arbitrary.

4 Regularized gap functions

Without loss of generality, we assume throughout that P affinely spans Rn and
that P contains the origin (by a translation argument if needed). We always
assume that F : P → Rn is a locally Lipschitz map. Let γ > 0 and let fγ be
defined as (2), namely

fγ (τ ) = max
x∈P

�(x, τ) = �
(
πγ (τ), τ

)
, (31)

where πγ (τ) is defined as in (5) and

�(x, τ) := 〈F(τ ), τ − x〉 − γ
2 ‖x − τ‖2,

= − γ
2 ‖τ − F(τ )

γ
− x‖2 + ‖F(τ )‖2

2γ
∀(x, τ) ∈ P × P.

(32)

It is not difficult to verify that πγ and fγ are locally Lipschitz on P.
Define f γ : Rn → R ∪ {+∞} by

f γ (τ ) =
{

fγ (τ ), τ ∈ P;
+∞, otherwise.

(33)

Then dom f γ = P and f γ satisfies the condition assumed in Lemma 2 stated
for h. Hence by (13), for each τ ∈ P with fγ (τ ) > 0 and v ∈ FP(τ ),

d+
√

f γ (τ )(v) ≤ d
+√

f γ (τ )(v) ≤ f
↑
γ (τ , v)

2
√

fγ (τ )
. (34)
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Recall from (5), (31) and (32) that

fγ (τ ) = max
x∈P

�(x, τ),

the maximum being attained exactly at one point x = πγ (τ). Together with
the following lemma, (fγ , �(x, ·), P, x ∈ P) satisfies Assumption 1 stated for
(G, Gi, C, i ∈ I) and hence, by Proposition 3,

f
↑
γ (τ , v) ≤ max A(v) for all τ ∈ P and v ∈ FP(τ ), (35)

where

A(v) =
{

lim
k→+∞

〈∇2�
(
πγ (zk), τk

)
, v〉 : τk, zk → τ with each

τk ∈ int P\
F

}
, (36)

∇2�
(
πγ (zk), τk

)
denotes the derivative of the function �

(
πγ (zk), ·) at τk, Uτ :=

(τ + δτ B) ∩ P with some δτ > 0 is a neighborhood of τ on which F is Lipschitz,
and


F := {y ∈ Uτ : F fails to be differentiable at y}
(
F is of measure zero by the Rademacher Theorem and int P �= ∅ since P is
convex and aff P = Rn).

Lemma 4 Let τ ∈ P. Let Uτ and 
F be as explained before the statement of the
lemma. Then there exists a constant Lτ > 0 such that each function in the family

{� (πγ (z), ·) : z ∈ Uτ }

is Lipschitz on Uτ with modulus Lτ , that is for each z ∈ Uτ

|� (πγ (z), τ ′)− �
(
πγ (z), τ ′′) | ≤ Lτ‖τ ′ − τ ′′‖ for each τ ′, τ ′′ ∈ Uτ . (37)

Consequently, fγ is also Lipschitz with modulus Lτ on Uτ .

Proof Let Mτ > 0 be a Lipschitz constant for F on Uτ . Then there exists a
constant C1 > 0 such that ‖F

(
τ ′) ‖ ≤ C1 for all τ ′ ∈ Uτ (e.g., take C1 :=

‖F(τ )‖ + Mτ δτ ). Similarly, by (5) and since the projection is non-expansive,
there exist constants M2, C2 > 0 such that

‖πγ

(
τ ′)− πγ

(
τ ′′) ‖ ≤ M2‖τ ′ − τ ′′‖ ∀τ ′, τ ′′ ∈ Uτ

and

‖πγ

(
τ ′) ‖ ≤ C2 ∀τ ′ ∈ Uτ .
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Now, in view of (32), we write for all z, τ ′ ∈ Uτ ,

�
(
πγ (z), τ ′) = −�2

1

(
πγ (z), τ ′)+ �2

2
(
πγ (z), τ ′)

where

�1
(
πγ (z), τ ′) :=

(γ

2

) 1
2

∥∥∥∥∥τ
′ − F

(
τ ′)

γ
− πγ (z)

∥∥∥∥∥

�2
(
πγ (z), τ ′) :=

(
1

2γ

) 1
2 ‖F

(
τ ′) ‖.

Then there exist M3, C3 > 0 such that for z ∈ Uτ , �1
(
πγ (z), ·) is Lipschitz on

Uτ with modulus M3 and

|�1
(
πγ (z), ·) | ≤ C3 on Uτ .

Similar constants M4, C4 are for �2. Note that, for all z, τ ′, τ ′′ ∈ Uτ ,

|�2
1

(
πγ (z), τ ′)− �2

1

(
πγ (z), τ ′′) |

≤ 2C3‖�1
(
πγ (z), τ ′)− �1

(
πγ (z), τ ′′) ‖

≤ 2C3M3‖τ ′ − τ ′′‖

and

|�2
2
(
πγ (z), τ ′)− �2

2
(
πγ (z), τ ′′) | ≤ 2C4M4‖τ ′ − τ ′′‖.

Thus, (37) holds with Lτ := 2C3M3 + 2C4M4. Consequently, it follows from
Remark 1 (a) that fγ is also Lipschitz with modulus Lτ on Uτ because fγ (τ ) =
maxx∈P �(x, τ) and

(
fγ , �(x, ·), P, x ∈ P, πγ (z)

)
satisfies Assumption 1 stated

for (G, Gi, C, i ∈ I, I(z)).

Theorem 1 Let τ ∈ P and ω = πγ (τ) − τ . Let v ∈ FP(τ ). Then

f
↑
γ (τ , v) = max{〈ξ , −v〉 : ξ ∈ D(ω)} + 〈F(τ ), v〉 + γ 〈ω, v〉 (38)

where

D(ω) :=
{

lim
k→+∞

∇F(τk)ω : (τk) → τ and τk ∈ int P\
F for each k
}

. (39)
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Proof Let M := max A(v), where A(v) is as in (36). Then f
↑
γ (τ , v) ≤ M as in

(35) and there exist some sequences (τk), (zk) in Uτ convergent to τ such that
each τk ∈ int P\
F and

M = lim
k→+∞

〈∇2�
(
πγ (zk), τk

)
, v
〉
.

By (32), we note (similar as in (4)) that

∇2�
(
πγ (zk), τk

) = ∇F(τk)
(
τk − πγ (zk)

)+ F(τk) + γ
(
πγ (zk) − τk

)
.

Since F is Lipschitz around τ and τk ∈ int P for all k, we assume without loss of
generality that limk→+∞ ∇F(τk) exists, and it follows that

lim
k→+∞

∇2�
(
πγ (zk), τk

) = lim
k→+∞

∇F(τk)(−ω) + F(τ ) + γω = −ξ + F(τ ) + γω,

where ξ := limk→+∞ ∇F(τk)ω. Note that ξ ∈ D(ω) by (39) and

f
↑
γ (τ , v) ≤ M = 〈−ξ + F(τ ) + γω, v

〉
.

Therefore, to prove (38), it suffices to show that

f
↑
γ (τ , v) ≥ 〈ξ , −v〉 + 〈F(τ ), v〉 + γ 〈ω, v〉 for each ξ ∈ D(ω). (40)

To do this, let ξ ∈ D(ω). Then ξ = θ · ω where θ = lim
k→+∞

∇F(τk) for some

sequence (τk) → τ such that τk ∈ int P\
F for all k. Note that

〈ξ , −v〉 = 〈θ · ω, − v〉
=
〈
−ω, lim

k→+∞
∇F(τk)Tv

〉

=
〈

lim
k→+∞

lim
t↓0

F(τk+tv)−F(τk)
t , − ω

〉
.

Consequently there exist a subsequence
(
τki

)
of (τk) and a sequence (ti) ↓ 0

such that

〈ξ , −v〉 =
〈

lim
i→+∞

F
(
τki + tiv

)− F
(
τki

)

ti
, − ω

〉
.

For simplicity of notations, we henceforth assume that the above
(
τki

)
is (τk)

itself, that is

〈ξ , −v〉 =
〈

lim
k→+∞

F (τk + tkv) − F (τk)

tk
, − ω

〉
. (41)
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On the other hand, by Lemma 1 (ii), there exists a sequence (vk) → v such that

lim sup
k→+∞

f γ (τk + tkvk) − f γ (τk)

tk
≤ f

↑
γ (τ , v) (≤ M < +∞) . (42)

Then we can assume that f γ (τk + tkvk) < ∞ for each k, and f γ can be
replaced by fγ in the left-hand side of (42). We note that

fγ (τk + tkvk) − fγ (τk)

= �
(
πγ (τk + tkvk) , τk + tkvk

)− �
(
πγ (τk) , τk

)

≥ �
(
πγ (τk), τk + tkvk

)− �
(
πγ (τk), τk

)

= 〈F (τk + tkvk) , τk + tkvk − πγ (τk)〉 − γ

2
‖πγ (τk) − (τk + tkvk) ‖2

−〈F(τk), τk − πγ (τk)〉 + γ

2
‖πγ (τk) − τk‖2

= 〈F (τk + tkvk) − F(τk), τk − πγ (τk)〉 + 〈F (τk + tkvk) , tkvk〉
−γ

2

(
‖πγ (τk) − (τk + tkvk)‖2 − ‖πγ (τk) − τk‖2

)

and hence that

1
tk

[
fγ (τk + tkvk) − fγ (τk)

]

≥
〈

F (τk + tkvk) − F(τk)

tk
, − (πγ (τk) − τk

)〉+ 〈F (τk + tkvk) , vk〉

−γ

2
‖πγ (τk) − (τk + tkvk) ‖2 − ‖πγ (τk) − τk‖2

tk
→ 〈ξ , −v〉 + 〈F(τ ), v〉 + γ 〈ω, v〉 as k → +∞.

Here we have made use of (41) as well as the facts that
(
πγ (τk) − τk

) → ω,
vk → v and that F is Lipschitz on Uτ (and so {F (τk + tkvk) − F(τk)/tk : k ∈ N}
is bounded ). Consequently it follows from (42) that

f
↑
γ (τ , v) ≥ 〈ξ , −v〉 + 〈F(τ ), v〉 + γ 〈ω, v〉,

i.e., (40) holds. ��

5 Error bounds results

For the remainder of this paper, let F, P, γ , fγ and � be as at the beginning of
the Sect. 4 and we assume that F is strongly monotone with modulus λ > 0
namely
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〈F(x′) − F(x), x′ − x〉 ≥ λ ‖ x′ − x ‖2 ∀x, x′ ∈ P. (43)

Under this assumption, VIP(F, P) is known to have a unique solution (cf. [3,
Theorem 2.3.3]). We use x∗ to denote the unique solution of VIP(F, P). Thanks
to the assumption (43), the following result is known (cf. [27, Lemma 3.1] and
[26, Theorem 3.1]): For any τ ∈ P , fγ (τ ) ≥ 0 and

fγ (τ ) = 0 ⇐⇒ πγ (τ) = τ ⇐⇒ τ solves VIP(F, P). (44)

This section is devoted to show that the function
√

f
γ

has an error bound.
Recall that (see e.g. [8, 15] and references therein) a proper function h : Rn →
R ∪ {+∞} is said to have an error bound δ > 0 on P if

δ dist(Lh, x) ≤ h(x) for each x ∈ P

where Lh := {z ∈ P : h(z) ≤ 0} and dist(Lh, x) denotes the distance from x to
Lh. Recall from the beginning of this section that x∗ denotes the unique solution
of VIP (F, P). By (44), we have

0 = inf
τ∈P

√
fγ (τ ) =

√
fγ (x∗) and L√

fγ
= {x∗}.

Lemma 5 Let τ , ω and D(ω) be as in Theorem 1. Then

f
↑
γ (τ , ω) = max{〈ξ , −ω〉 : ξ ∈ D(ω)} + 〈F(τ ), ω〉 + γ ‖ω‖2. (45)

Moreover,

d+
√

f γ (τ )(ω) ≤ d
+√

f γ (τ )(ω) ≤ f
↑
γ (τ , ω)

2
√

fγ (τ )
. (46)

Proof Since P is convex, it is easy to verify that ω ∈ FP(τ ). Thus (45) and (46)
follow from (38) and (34) respectively. ��
Definition 1 Let λ > 0. Let ιλ : (0, +∞) → (0, +∞) be defined by

ιλ(t) := min

{√
λ

2
,

λ

2
√

t

}
=
{ √

λ
2 , 0 < t ≤ λ
λ

2
√

t
, t > λ.

Theorem 2 Let F, λ satisfy (43) and let γ > 0. Then for any τ ∈ P\{x∗}, one has

f
↑
γ

(
τ ,

πγ (τ) − τ

‖πγ (τ) − τ‖
)

≤ −2ιλ

(γ

2

)√
fγ (τ ) (47)
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and

ιλ

(γ

2

)
‖τ − x∗‖ ≤

√
fγ (τ ) for each τ ∈ P, (48)

where fγ , f γ are defined by (31) and (33).

Proof Let τ ∈ P\{x∗}. Then fγ (τ ) > 0 and (33) shows that f γ (τ ) = fγ (τ ). For
brevity, we denote ω := πγ (τ) − τ as in Theorem 1. If (47) is valid, then

d+
√

f γ (τ )

(
ω

‖ω‖
)

≤ f
↑
γ

(
τ ,

ω

‖ω‖
)/(

2
√

fγ (τ )
)

≤ −ιλ

(γ

2

)
, (49)

thanks to (46). Therefore,(48) follows from (47) and [15, Corollary 2.6]. We
claim that

f
↑
γ (τ , ω) ≤ −

(
λ − γ

2

)
‖ω‖2 − fγ (τ ). (50)

To prove (50), note first that Lemma 5 shows

f
↑
γ (τ , ω) = max{〈ξ , −ω〉 : ξ ∈ D(ω)} + 〈F(τ ), ω〉 + γ ‖ω‖2. (51)

By (39), each ξ in D(ω) can be expressed in the form ξ = lim
k→+∞

∇F(τk)ω for

some sequence (τk) → τ such that τk ∈ int P\
F for each k. Since by (43),
〈∇F(τk)ω, ω〉 ≥ λ‖ω‖2, it follows that

〈ξ , −ω〉 ≤ −λ‖ω‖2. (52)

On the other hand, since πγ (τ) is the maximizer of the function �(·, τ) on P, the
first order optimality condition implies that 〈∇1�

(
πγ (τ), τ

)
, τ ′−πγ (τ)〉 ≤ 0 for

any τ ′ ∈ P. Letting τ ′ = τ and noting ∇1�
(
πγ (τ), τ

) = −F(τ ) − γ
(
πγ (τ) − τ

)
,

we have

〈F(τ ) + γ
(
πγ (τ) − τ

)
, πγ (τ) − τ 〉 ≤ 0,

that is

〈F(τ ), ω〉 + γ ‖ω‖2 ≤ 0.

Moreover, noting that fγ (τ ) = 〈F(τ ), −ω〉− γ
2 ‖ω‖2, the above inequality shows

that

‖ω‖√
fγ (τ )

≤
√

2
γ

(53)
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and (51), (52) also imply that

f
↑
γ (τ , ω) + fγ (τ ) ≤ −λ‖ω‖2 + γ

2
‖ω‖2.

So, we have (50). The verification for (47) is now divided into three cases.
(a) γ /2 ≤ λ and ‖ω‖/√fγ (τ ) < 1/

√
λ.

(b) γ /2 ≤ λ and ‖ω‖/√fγ (τ ) ≥ 1/
√

λ.
(c) γ /2 > λ.
In case (a), we have by (50) that

f
↑
γ

(
τ , ω

‖ω‖
)

≤ − (λ − γ
2

) ‖ω‖ − fγ (τ )

‖ω‖
≤ − fγ (τ )

‖ω‖
< −√

λ
√

fγ (τ )

= −2ιλ
( γ

2

)√
fγ (τ ).

where the last equality holds by Definition 1.
In case (b), we have by (50) and (53) that

f
↑
γ

(
τ ,

ω

‖ω‖
)

≤ −λ‖ω‖ ≤ −λ · 1√
λ

√
fγ (τ ) = −√

λ

√
fγ (τ ) = −2ιλ

(γ

2

)√
fγ (τ ).

Finally, in case (c), we have by (50) and (53) that

f
↑
γ

(
τ , ω

‖ω‖
)

≤ ( γ
2 − λ

) ‖ω‖ − fγ (τ )

‖ω‖
≤ ( γ

2 − λ
)√ 2

γ

√
fγ (τ ) −

√
γ
2

√
fγ (τ )

= −λ
√

2
γ

√
fγ (τ )

= −2ιλ
( γ

2

)√
fγ (τ ).

Therefore, (47) holds in all cases. ��
Remark 2 One can consider more general type of regularized gap functions
such as the one defined by (55) below, where one replaces the term (1/2)‖x−τ‖2

in (32) by a general function θ with the property (54). The following result not
only extends [8, Theorem 2.1] (to the nonsmooth setting), but also provides an
error bound constant which is defined by a function of one variable rather than
by that of two variables as done in [8]. See Lemma 6 for the relation of these
two functions.

Theorem 3 Let F satisfy (43). Let θ : P × P → [0, ∞) be a function and A > 0
such that

θ(x, τ) ≤ A‖x − τ‖2, for all x, τ ∈ P. (54)
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Let γ > 0 and γ ′ = γ A. Let f θ
γ be defined by

f θ
γ (τ ) := − inf

x∈P
{F(τ )(x − τ) + γ θ(x, τ)}, for each τ ∈ P. (55)

Then, for any τ ∈ P,

√
f θ
γ (τ ) ≥ ιλ(γ

′)‖τ − x∗‖. (56)

Proof By (2), we have

f2γ ′(τ ) := − inf
x∈P

{〈F(τ ), x − τ 〉 + γ ′‖x − τ‖2} for each τ ∈ P.

Then, by Theorem 2,

ιλ(γ
′)‖τ − x∗‖ ≤

√
f2γ ′(τ ). (57)

By (54) , we have

−γ θ(x, τ) ≥ −γ ′‖x − τ‖2,

which implies that f θ
γ (τ ) ≥ f2γ ′(τ ) for each τ ∈ P. Therefore, the result follows

from (57).

Let λ > 0. For any γ > 0, following [8], we define δγ : (0, +∞) × (0, +∞) →
[0, +∞) by

δγ (σ , η) :=

⎧⎪⎨
⎪⎩

min
{
λσ , 1

4σ

}
, if 0 < γ ≤ λ

min {λσ , ησ }, if γ > λ and 0 < σ ≤ 1
2
√

γ−λ+η

0, otherwise.

(58)

For the case when F is assumed to be smooth, it was shown in [8] that each
non-zero value δγ ′(σ , η)(γ ′ is defined as in Theorem 3) is an error bound for
the function f θ

γ (see (55)).

Lemma 6 Let γ ′ be defined as in Theorem 3. Then

ιλ(γ
′) = max

σ ,η>0
δγ ′(σ , η).

Proof First, we claim that

ιλ(γ
′) ≥ δγ ′(σ , η) for all σ , η > 0. (59)
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If δγ ′(σ , η) = 0, (59) is trivial. We suppose henceforth that δγ ′(σ , η) > 0. If
0 < γ ′ ≤ λ, then by Definition 1, ιλ(γ

′) = √
λ/2 ≥ δγ ′(σ , η) because

δγ ′(σ , η) = min

{
λσ ,

1
4σ

}
=
⎧⎨
⎩

λσ ≤
√

λ
2 , if σ ≤ 1

2
√

λ
1

4σ
≤

√
λ

2 , if σ ≥ 1
2
√

λ
.

If γ ′ > λ, Definition 1 shows that

ιλ(γ
′) = λ

2
√

γ ′ = λ

2
√

γ ′ − λ + λ
. (60)

In view of (58), we may suppose also that 0 < σ ≤ 1
2
√

γ ′−λ+η
. Then

λσ ≤ λ

2
√

γ ′ − λ + η
and ησ ≤ η

2
√

γ ′ − λ + η
. (61)

Since λ

2
√

γ ′−λ+λ
dominates λ

2
√

γ ′−λ+η
if λ ≤ η and η

2
√

γ ′−λ+η
if λ > η, it follows

from (60) and (61) that

ιλ(γ
′) ≥ min{λσ , ησ } = δγ ′(σ , η).

Therefore, by (58), (59) holds in all cases.

It remains to show that there exist σ0, η0 > 0 such that δγ ′(σ0, η0) = ιλ(γ
′).

Indeed, if 0 < γ ′ ≤ λ, then letting σ0 = 1/2
√

λ, it follows from the Defini-
tions that δγ ′(σ0, η) = ιλ(γ

′) = √
λ/2 for any η > 0. Otherwise, γ ′ ≥ λ, take

σ0 = 1/2
√

γ ′ and η0 = λ. Then δγ ′(σ0, η0) = ιλ(γ
′) = λ/2

√
γ ′.

6 A descent method

Let γ > 0. Then by Theorem 2 one has for each τ ∈ P\{x∗} and ω := πγ (τ)− τ ,

f
↑
γ

(
τ ,

ω

‖ω‖
)

≤ −2ιλ

(γ

2

)√
fγ (τ ) < 0 (62)

and

0 < ιλ(
γ

2
)‖τ − x∗‖ ≤

√
fγ (τ ). (63)
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Furthermore, it follows from (46) that

d
+√

f γ (τ )(ω) ≤ f
↑
γ (τ , ω)

2
√

fγ (τ )
≤ −ιλ

(γ

2

)
‖ω‖ < 0. (64)

Hence

√
f γ (τ + tω) −

√
f γ (τ ) < − ιλ(

γ
2 )

2
t‖ω‖, τ ∈ P\{x∗} (65)

for all sufficiently small t > 0 . Moreover, f γ can be replaced by fγ in (65),
because P is convex and f = f on P. Below we consider an algorithm of Armijo
type.

Algorithm

Step 1. Let ρ ∈ (0, 1). Let τ0 be a given vector in P. Set k = 0.
Step 2. If fγ (τk) = 0 then stop. If not then go to step 3.
Step 3. Let ωk := πγ (τk) − τk.
Step 4. Let mk be the smallest nonnegative integer such that

√
fγ (τk + ρmkωk) −

√
fγ (τk) ≤ − ιλ(γ /2)

2
ρmk‖ωk‖ (66)

and set τk+1 = τk + ρmkωk. Return to step 2 with k replace by k + 1.

Remark 3 By (65) and since ρ ∈ (0, 1), mk in (66) dose exist. Moreover τk+1 ∈ P
because P is convex.

The following result is known as the Zagrodny Mean-valued theorem (see
[28]), and we state it in a version that is convenient to us.

Lemma 7 Let h be a lower semicontinuous function on Rn, a, b ∈ dom h and
a �= b. Let r ∈ R with r ≤ h(b). Then there exist sequences (xk), (xk)∗ in Rn and
a point c ∈ [a, b) such that (xk) →h c and (xk)∗ ∈ ∂Ch(xk) for each k such that

r − h(a) ≤ lim inf
k→+∞

〈(xk)∗, b − a〉.

Theorem 4 Let γ > 0. Suppose that F is strongly monotone and locally Lipschitz
on P. Then the sequence (τk) generated by the above algorithm converges to the
unique solution of VIP(F, P).

Proof If fγ (τk) = 0 then τk = x∗ by (44). Suppose therefore that fγ (τk) > 0
for each k. It follows from (66) that the sequence (fγ (τk)) is decreasing and
hence converges to a nonnegative real number. Noting that the number of the
right-hand side of (66) is negative, it follows that
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lim
k→+∞

ρmk‖ωk‖ = 0. (67)

Moreover the monotonicity of
(√

fγ (τk)
)

also implies that

τk ∈ P and fγ (τk) ≤ fγ (τ0) for each k (68)

and we deduce from (63) that

ιλ

(γ

2

)
‖τk − x∗‖ ≤

√
fγ (τk) ≤

√
fγ (τ0) for each k.

In particular the sequence (τk) is bounded. Suppose that (τki) is a subsequence
of {τk} such that lim(ki→+∞) τki = x∗ for some x∗. If πγ (x∗) = x∗, then x∗ is
the solution of VIP(F, P) by (44). Now we assume that πγ (x∗) �= x∗. Since
ωki = πγ (τki)− τki → πγ (x∗)− x∗ �= 0, and by considering subsequences if nec-
essary we suppose without loss of generality that {‖ωki‖}+∞

i=1 is bounded away
from zero. Thus, (67) implies that limki→+∞ ρmki = 0 (and so mki → +∞).
Note that, by continuity

ωki

‖ωki‖
= πγ (τki) − τki

‖πγ (τki) − τki‖
→ πγ (x∗) − x∗

‖πγ (x∗) − x∗‖ .

Below let us consider an arbitrary i and keep it fixed. By Lemma 7 (applied
to f γ , τki , τki + ρmki−1ωki and f γ (τki + ρmki−1ωki) in place of h, a, b and r),

there exist a point cki ∈ [τki , τki +ρmki −1ωki) and sequences (xj
ki

) and (xj
ki

)∗ with

(xj
ki

) →f γ
cki and (xj

ki
)∗ ∈ ∂Cf γ (xj

ki
) for every natural number j such that

fγ (τki + ρmki −1ωki) − fγ (τki)

ρmki −1‖ωki‖
≤ lim inf

j→+∞

〈
(xj

ki
)∗,

ωki

‖ωki‖
〉

≤ lim inf
j→+∞ f

↑
γ

(
xj

ki
,

ωki

‖ωki‖
)

.

Since (xj
ki

) → cki , (f γ (xj
ki

)) → f γ (cki) and ωki‖ωki‖ ∈ FP(cki), one can apply
Lemma 3 to conclude that

fγ (τki + ρmki−1ωki) − fγ (τki)

ρmki−1‖ωki‖
≤ lim sup

j→+∞
f
↑
γ

(
xj

ki
,

ωki

‖ωki‖
)

≤ f
↑
γ

(
cki ,

ωki

‖ωki‖
)

. (69)

As this is shown to be valid for an arbitrary i, in passing to the limits as i → +∞,
it follows that

lim sup
i→+∞

fγ (τki + ρmki−1ωki) − fγ (τki)

ρmki−1‖ωki‖
≤ lim sup

i→+∞
f
↑
γ

(
cki ,

ωki

‖ωki‖
)

≤ f
↑
γ

(
x∗,

πγ (x∗) − x∗
‖πγ (x∗) − x∗‖

)
, (70)
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where the last inequality holds by Lemma 3 as πγ (x∗) − x∗/‖πγ (x∗) − x∗‖ ∈
FP(x∗) and cki →f γ

x∗ because f γ is continuous on P and (cki) ⊂ P. Since the

line search rule (step 4) ensures

√
fγ (τki + ρmki−1ωki) −√fγ (τki)

ρmki−1‖ωki‖
> − ιλ(

γ
2 )

2
for each i, (71)

it follows from (70) that

fγ
↑ (

x∗, πγ (x∗)−x∗
‖πγ (x∗)−x∗‖

)

≥ lim sup
ki→+∞

fγ (τki+ρ
mki −1

ωki )−fγ (τki )

ρ
mki −1‖ωki‖

= lim sup
ki→+∞

√
fγ (τki+ρ

mki −1
ωki )−

√
fγ (τki )

ρ
mki −1‖ωki‖

× lim
ki→+∞

(√
fγ (τki + ρmki−1ωki) +√fγ (τki)

)

≥ − ιλ(
γ
2 )

2 lim
ki→+∞

(√
fγ (τki + ρmki−1ωki) +√fγ (τki)

)

= −ιλ(
γ
2 )
√

fγ (x∗).

This contradicts (62) unless x∗ = x∗. Consequently, (τk) must also converge
to x∗. ��
Remark 4 There already exist projection-type methods providing iterative se-
quences that converge to a solution assuming only F is monotone and continuous
(e.g., [22, 23]). Our present approach (which requires the stronger assumption
that F is strongly monotone and locally Lipschitz) is based on the consideration
of error bounds of the merit function fγ and hence we not only have the con-
vergence result Theorem 4 but also know by (63) that how near to the solution
from the kth point of the iteration.
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