
Digital Object Identifier (DOI) 10.1007/s10107-005-0662-8

Math. Program., Ser. B 105, 471–499 (2006)

Roberto De Franceschi · Matteo Fischetti · Paolo Toth

A new ILP-based refinement heuristic for Vehicle Routing
Problems�

Received: May 23, 2004 / Accepted: December 1, 2004
Published online: 14 November 2005 – © Springer-Verlag 2005

Abstract. In this paper we address the Distance-Constrained CapacitatedVehicle Routing Problem (DCVRP),
where k minimum-cost routes through a central depot have to be constructed so as to cover all customers while
satisfying, for each route, both a capacity and a total-distance-travelled limit.

Our starting point is the following refinement procedure proposed in 1981 by Sarvanov and Doroshko for
the pure Travelling Salesman Problem (TSP): given a starting tour, (a) remove all the nodes in even position,
thus leaving an equal number of “empty holes” in the tour; (b) optimally re-assign the removed nodes to the
empty holes through the efficient solution of a min-sum assignment (weighted bipartite matching) problem.
We first extend the Sarvanov-Doroshko method to DCVRP, and then generalize it. Our generalization involves
a procedure to generate a large number of new sequences through the extracted nodes, as well as a more
sophisticated ILP model for the reallocation of some of these sequences. An important feature of our method
is that it does not rely on any specialized ILP code, as any general-purpose ILP solver can be used to solve the
reallocation model.

We report computational results on a large set of capacitated VRP instances from the literature (with sym-
metric/asymmetric costs and with/without distance constraints), along with an analysis of the performance
of the new method and of its features. Interestingly, in 13 cases the new method was able to improve the
best-know solution available from the literature.

Key words. Vehicle Routing Problems – Heuristics – Large Neighborhood Search – Computational
Analysis – Distance-Constrained Vehicle Routing Problem

1. Introduction

In this paper we address the following NP-hard (in the strong sense) Distance-
Constrained Capacitated Vehicle Routing Problem (DCVRP). We are given a central
depot and a set of n− 1 customers, which are associated with the nodes of a complete
undirected graph G = (V ,E) (where |V | = n and node 1 represents the depot). Each
edge [i, j] ∈ E has an associated finite cost cij ≥ 0. Each node j ∈ V has a request
dj ≥ 0 (d1 = 0 for the depot node 1). Customers need to be served by k cycles (routes)
passing through the depot, where k is fixed in advance. Each route must have a total
duration (computed as the sum of the edge costs in the route) not exceeding a given limit

R. D. Franceschi: DEI, University of Padova, Via Gradenigo 6/A, 35131 Padova, Italy.
e-mail: robertodefranceschi@inwind.it

M. Fischetti: DEI, University of Padova, Via Gradenigo 6/A, 35131 Padova, Italy.
e-mail: matteo.fischetti@unipd.it

P. Toth: DEIS, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy.
e-mail: ptoth@deis.unibo.it

� Work supported by M.I.U.R. and by C.N.R., Italy.

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.2 Optimize For Fast Web View: Yes Embed Thumbnails: Yes Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [600 600] dpi Paper Size: [595 842] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 900 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Warn and ContinueEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Convert All Colors to sRGB Intent: DefaultWorking Spaces: Grayscale ICC Profile: RGB ICC Profile: sRGB IEC61966-2.1 CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: No ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: NoOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [600 600]>> setpagedevice

472 R. De Franceschi et al.

D, and can visit a subset S of customers whose total request
∑
j∈S dj does not exceed

a given capacity C. The problem then consists of finding a feasible solution covering
exactly once all the nodes v ∈ V \ {1} and having a minimum overall cost; see, e.g., [7,
43].

We propose a new refinement heuristic for the DCVRP. The method is an elabo-
ration of a refinement procedure originally proposed by Sarvanov and Doroshko [40]
(SD) for the pure Travelling Salesman Problem (TSP), i.e., for the problem of find-
ing a min-cost Hamiltonian cycle (tour) in a graph. (A similar methodology has been
proposed, independently, by Gutin [26].) Given a starting TSP tour T to improve, the
SD procedure is based on two simple steps: (1) all the nodes in even position in T are
removed,1 thus leaving an equal number of “empty holes” in the tour; (2) the removed
nodes are optimally re-assigned to the empty holes through the efficient solution of a
min-sum assignment (weighted bipartite matching) problem. An important property of
the method is that it only requires polynomial time to implicitly enumerate an expo-
nential number of alternative tours, i.e., it belongs to the family of Large Neighborhood
Search (LNS) meta-heuristics (see, e.g., [1, 2, 4, 10–13, 25, 31]). As such, it has has
been investigated theoretically by several authors, including Deineko e Woeginger [8],
Weismantel [14], Punnen [36], Gutin [27] and Gutin, Yeo and Zverovitch [28]. We refer
the reader to [5] for a thoughtful survey on recent VRP meta-heuristics.

Our approach goes far beyond the original SD scheme, and is based on a more
sophisticated node removal policy followed by a procedure to construct a large number
of new potential sequences through the extracted nodes. As a consequence, our reallo-
cation cannot be rephrased as just a min-sum assignment problem, but it is based on
the solution of a more sophisticated Integer Linear Programming (ILP) model. Our ILP
has the structure of a set-partitioning model asking for the reallocation of a subset of
the generated sequences, with the constraint that each extracted node has to belong to
exactly one of the allocated sequences. Moreover, for each VRP route the new allocation
has to fulfill the associated capacity and distance constraints. An important feature of
our method is that it does not require a specialized ILP code, as any general-purpose
ILP solver can be used to solve the allocation model.

As an extreme case, arising when extracting all the nodes and re-combining them
in all possible sequences, our method then yields the well-known set partitioning VRP
model (see, e.g., [43]). In this case, no matter the starting solution, the method would
guarantee to return (in one step) a provably optimal solution, but it would require a
typically unacceptable computing time for the construction of the sequences through the
extracted nodes and for the exact solution of the associated set-partitioning ILP. At the
other extreme, we have the Sarvanov-Doroshko approach where the nodes can only be
extracted according to a rigid even-position criterion, only singleton node sequences are
considered, and the ILP becomes essentially a min-sum assignment problem—plus the
route constraints, in case the VRP instead of the TSP is addressed. The motivation of the
present paper was precisely to find a proper balancing between the exact (yet too time
consuming) set-partitioning model and the efficient (yet too rigid) Sarvanov-Doroshko
proposal.

1 Of course, the role of the even- and odd-position nodes could be interchanged

A new ILP-based refinement heuristic for Vehicle Routing Problems 473

The paper is organized as follows. In Section 2 we describe the original method of
Sarvanov and Doroshko. This basic method is extended in Section 3 and generalized
to the DCVRP. Our generalization involves a procedure to generate a large number of
new sequences through the extracted nodes, as well as a more sophisticated ILP model
for the reallocation of some of these sequences. The implementation of the resulting
SERR (for Selection, Extraction, Recombination, and Reallocation) algorithm is given
in Section 4. Computational results on a large set of VRP instances from the literature
(with symmetric/asymmetric costs and with/without distance constraints) are reported in
Section 5, with an analysis of the performance of the method and of its positive features.
Some solutions found by our method and improving the best-know solutions from the
literature are finally illustrated in the Appendix.

2. The ASSIGN neighborhood for TSP

In their 1981 paper, Sarvanov and Doroshko [40] investigated the so-called Assign
neighborhood for the TSP, defined as follows: Given a certain TSP solution (viewed
as node sequence < v1 = 1, v2, . . . , vn >), the neighborhood contains all the �n/2�!
TSP solutions that can be obtained by permuting, in any possible way, the nodes in
even position in the original sequence. In other words, any solution (ψ1, ψ2, . . . , ψn)

in the neighborhood is such that ψi = vi for all odd i. An interesting feature of the
neighborhood is that it can be explored exactly in polynomial time, though it contains
an exponential number of solutions. Indeed, for any given starting solution the min-cost
TSP solution in the corresponding Assign neighborhood can be found efficiently by
solving a min-cost assignment problem on a �n/2� × �n/2� matrix; see e.g. [28]

Starting from a given solution, an improving heuristic then consists of exploring the
Assign neighborhood according to the following two phases:

– node extraction, during which the nodes in even position (w.r.t. the current solu-
tion) are removed from the tour, thus leaving an equal number of “free holes” in the
sequence;

– node re-insertion, during which the removed nodes are reallocated in the available
holes in an optimal way by solving a min-sum assignment problem.

The simple example in Figure 1 gives an illustration of the kind of “improving
moves” involved in the method. The figure draws a part of a tour, corresponding to
the node sequence 〈v1, v2, . . . , v9〉. In the node extraction phase, the nodes in even
position v2, v4, v6 e v8 are removed from the sequence, whereas all the other nodes
retain their position. In Figure 1b the black nodes represent the fixed ones, while the
holes left by the extracted nodes are represented as white circles. If we use symbol
“−” to represent a free hole, the sequence corresponding to Figure 1b is therefore
〈v1,−, v3,−, v5,−, v7,−, v9〉. The second step of the procedure, i.e., the optimal node
reallocation, is illustrated in Figure 1c, where nodes v4 and v6 swap their position whereas
v2 and v8 are reallocated as in the original sequence. This produces the improved part
of tour 〈v1, v2, v3, v6, v5, v4, v7, v8, v9〉.

In the example, the same final tour could have been constructed by a simple 2-opt
move. However, for more realistic cases the number of possible reallocation is exponen-
tial in the number of extracted nodes, hence the possible reallocation patterns are much

474 R. De Franceschi et al.

Fig. 1. A simple example of node extraction and reallocation

more complex and allow, e.g., for a controlled worsening of some parts of the solution
which are compensated by large improvement in other parts.

Besides its important theoretical properties, the method suggests a framework for
designing more and more sophisticated extract-and-reassign heuristics for TSP and
related problems. A first step in this direction has been performed by Punnen [36],
who suggested some variants of the basic method where node-sequences (as opposed to
single nodes) are extracted and optimally reallocated by still solving a min-sum assign-
ment problem. The (unpublished) preliminary results reported in [28], however, seem to
suggest that this method is not very successful in practice. In our view, this is manly due
to the too-rigid extract-and-reallocate paradigm, which is in turn a direct consequence of
the requirement of using a min-cost assignment method to find an optimal reallocation.
Our working hypothesis here was that much better results could be obtained in practice
by replacing the (polynomially solvable) assignment problem by a more sophisticated set
partitioning model (which is theoretically NP-hard, but effectively solvable in practice).

3. From TSP to DCVRP

We conjectured that the Assign neighborhood would have been more useful in practice
if applied to VRP problems rather than to the “pure” TSP. Indeed, due to the presence
of several routes and of the associated route constraints, in VRP problems the node
sequence is not the only issue to be considered when constructing a good solution: an
equally-important aspect of the optimization is to find a balanced distribution of the
nodes between the routes. In this respect, heuristic refinement procedures involving

A new ILP-based refinement heuristic for Vehicle Routing Problems 475

Fig. 2. The assignment of node v3 to route r1 is not optimal

complex patterns of node reallocations among the routes (akin to those in the span of
the SD method) are likely to be quite effective in practice.

We therefore decided to extend the SD method to DCVRP so as to allow for more
powerful move patterns, while generalizing its basic scheme so as to get rid off the
too simple min-sum assignment model for node reallocation in favor of a more flexible
reallocation model based on the (heuristic) solution of a more complex ILP model. The
resulting method will be introduced, step by step, with the help of the examples reported
in the sequel.

The first two very natural extensions we consider are akin to those proposed by
Punnen [36]. Let us consider Figure 2, where a non-optimal part of a (geographical)
VRP solution is depicted. It is clear that the position of node v3 is not very clever, in
that inserting v3 between node v1 and v2 is likely to produce a better solution (assuming
this new solution be feasible because of the route constraints). This move is however
beyond the possibility of the pure SD method, where the extracted nodes can only be
assigned to a hole left free by the removal of another node—while no hole between v1 e
v2 exists which could accommodate v3. The example then suggests a first extension of
the basic SD method, consisting of removing the 1-1 correspondence between extracted
nodes and empty holes. We therefore consider the concept of insertion point: after having
extracted the selected nodes, we construct a restricted solution through the remaining
nodes, obtained from the original one by short-cutting the removed nodes. All the edges
in the restricted solution are then viewed as potential insertion points for the extracted
nodes. In the example, removing v3 but not v1 and v2 would produce the restricted solu-
tion depicted in Figure 3a, where all dashed edges are possible insertion points for the
extracted nodes—this allows the method to produce the solution in Figure 3b.

A second important extension leads to a more flexible node extraction scheme that
allows for the removal of a sequence of nodes, to be assigned as a whole to a certain
insertion point. Note that, in case of symmetric costs, this assignment can be done in
two different ways, depending on the orientation of the sequence. This however is not
an issue in practice, as one can consider both orientations and keep the one producing
the smallest reallocation cost.

So far we have assumed that a single insertion point can accommodate, at most,
one of the extracted sequences. Unfortunately, it does not appear easy to get rid of
this limitation. Instead, we suggest the use of a heuristic procedure to generate new
sequences through the extracted nodes, to be allocated to the given insertion points.

476 R. De Franceschi et al.

Fig. 3. Improving the solution depicted in Figure 2

To be more specific, starting from the extracted nodes sequences one can create new
derived sequences that combine the extracted nodes in a different way. Of course, one
never knows in advance which are the best sequences to be used, so all the (original and
derived) sequences should be available when solving the reallocation problem.

The above considerations imply the use of a reallocation model which goes far
beyond the scope of the original one, which is based on the solution of an easy min-cost
assignment problem. Indeed, the new reallocation model becomes a set-partitioning ILP
that receives as input the set of insertion points along with a (typically large) set of node
sequences through the extracted nodes, and provides an (almost) optimal allocation of at
most one sequence to each insertion point, with the constraint that each extracted node
has to belong to one of the allocated sequences, while fulfilling the additional constraints
on the capacity and distance constraints on the routes. This model will be described in
more detail in the next section.

4. The SERR algorithm

Here is our specific implementation of the ideas outlined in the previous section, leading
to the so-called Selection, Extraction, Recombination, and Reallocation (SERR) method.

(i) (Initialization). Apply a fast heuristic method to find a first (possibly infeasible,
see below) DCVRP solution.

A new ILP-based refinement heuristic for Vehicle Routing Problems 477

(ii) (Selection). Apply one of the available criteria (to be described later) to determine
the nodes to be extracted—the nodes need not be consecutive, any node subset
qualifies as a valid choice.

(iii) (Extraction). Extract the nodes selected in the previous step, and construct the
corresponding restricted DCVRP solution obtained by short-cutting the extracted
nodes. All edges in the restricted solution are put in the list I of the available
insertion points.

(iv) (Recombination). The node sequences extracted in the previous step (called basic
in the sequel) are initially stored in a sequence pool. Thereafter, heuristic pro-
cedures (to be described later) are applied to derive new sequences through the
extracted nodes, which are added to the sequence pool. During this phase, dual
information derived from the LP relaxation of the reallocation model can be used
to find new profitable sequences—the so-called pricing step. Each sequence s in
the final pool is then associated with a (heuristically determined) subset Is of the
available insertion points in I. For all basic sequences s we assume that Is contains
(among others) the pivot insertion point associated to s in the original tour, so as
to make it feasible to retrieve the original solution by just reallocating each basic
sequence to the associated pivot insertion point.

(v) (Reallocation). A suitable ILP (to be described later in greater details) is set-up
and solved heuristically through a general-purpose MIP solver. This model has
a binary variable xsi for each pair (s, i), where s is a sequence in the pool and
i ∈ Is , whose value 1 means that s has to be allocated to i. The constraints in
the ILP stipulate that each extracted node has to be covered by exactly one of the
selected sequences s, while each insertion point i can be associated to at most one
sequence. Further constraints impose the capacity and distance constraints in each
route. Once an (almost) optimal ILP solution has been found, the corresponding
solution is constructed and the current best solution is possibly updated (in which
case each route in the new solution is processed by a 3-OPT [38] exchange heuristic
in the attempt of further improving it).

(vi) (Termination). If at least one improved solution has been found in the last n
iterations, we repeat from step (ii); otherwise the method terminates.

4.1. Finding a starting solution

Finding a DCVRP solution that is guaranteed to be feasible is an NP-hard problem,
hence we have to content ourselves with the construction of solutions that, in some hard
cases, may be infeasible—typically because the total-distance-travelled constraint is
violated for some routes. In this case, the overall infeasibility of the starting solution can
hopefully be driven to zero by a modification of the SERR recombination model where
the capacity and distance constraints are treated in a soft way through the introduction
of highly-penalized slack variables. (In addition, one could start with a partial solution,
and use a modified SERR method to allocate the uncovered nodes.)

As customary in VRP problems, we assume that each node is assigned a coordinate
pair (x, y) giving the geographical position of the corresponding customer/depot in a
2-dimensional map.

478 R. De Franceschi et al.

One option for the initialization of the current solution required at step (i) of the
SERR method, is to apply the classical two-phase method of Fisher and Jaikumar (FJ)
[18]. This method can be implemented in a very natural way in our context in that it is
based on a (heuristic) solution of an ILP whose structure is close to that of our realloca-
tion model. In our implementation, the Fisher-Jaikumar heuristic is run 15 + n/k times
with different choices of the seed nodes (spots) that give the initial shape of the routes.

According to our computational experience, however, the solution provided by the
Fisher-Jaikumar heuristic is sometimes “too balanced”, in the sense that the routes are
filled so tightly that leave not enough freedom to the subsequent steps of our SERR
procedure. Better results are sometimes obtained starting from a less-optimized solution
whose costs exceed even by 20% the optimal cost, as e.g. the one obtained by using
the following simple sweep method akin to the Gillett-Miller one [20]. We heuristically
subdivide the customers in k clusters according to the angle with the depot node, in
such a way that the total request in each cluster hopefully does not exceed the vehicle
capacity—if this is not the case, we first try to repair the cluster by means of simple node
exchanges among the routes, and then resort to the Fisher-Jaikumar heuristic. Once the
clusters have been determined, for each of them we construct a route by applying a TSP
nearest-neighbor heuristic [38], followed by a 3-OPT phase—this typically produces a
route that satisfies the total-distance constraint.

A second possibility is instead to start from an extremely-good solution provided
by highly-effective (and time consuming) heuristics or meta-heuristics, in the attempt
of improving this solution even further. In order to evaluate this option, in our compu-
tational experiments we considered the extreme case of starting from the best-known
solution of some very hard instances, as reported in the literature.

4.2. Node selection criteria

At each execution of step (ii) we apply one of the following selection schemes.

– scheme Random-Alternate: This criterion is akin to the SD one, and selects in
some randomly-selected routes all the nodes in even position, while in the remain-
ing routes the extracted nodes are those in odd position—the position parity being
determined by visiting each route in a random direction.

– scheme Scattered: Each node had a uniform probability of 50% of being extracted;
this scheme allows for the removal of consecutive nodes, i.e., of route subsequences.

– scheme Neighborhood: Here we concentrate on a seed node, say v∗, and remove
the nodes v with a probability that is inversely proportional to the distance cvv∗ of
v from v∗. To be more specific, once the seed node v∗ has been located (according
to a criterion described in the sequel), we construct an ordered list containing the
remaining nodes v sorted by increasing distance cvv∗ from v∗. Node v∗ is extracted
along with the first 4 nodes in the list. The remaining part of the list is then subdi-
vided into 5 sub-lists of equal size, and the corresponding nodes are extracted with a
probability of 80%, 60%, 30%, 20%, and 10% for the first, second, third, fourth and
fifth sub-list, respectively. The choice of the seed node v∗ is done with the aim of
(a) improving the chances that the first seed nodes lead to a significant improvement
of the incumbent solution, and (b) allowing each node to be selected with a certain

A new ILP-based refinement heuristic for Vehicle Routing Problems 479

Fig. 4. Definition of the sequence cost and of the allowed insertion points

probability. This is obtained by assigning a score to each node v∗, which is defined
so as to be proportional to the number of nodes which are “close” to v∗. A list of
the potential seed nodes ordered by decreasing scores is then initialized. At each
application of the Neighborhood scheme, we select the next node in the list (in a
circular way) to play the role of the seed node v∗.

Schemes Random-Alternate and Scattered appear particularly suited to improve
the first solutions, whereas the Neighborhood scheme seems more appropriate to deal
with the solutions available after the first iterations. Therefore, in our SERR implemen-
tation, the above schemes are alternated as follows: we first apply 3 times the Random-
Alternate scheme, then we apply 3 times the Scattered scheme, and afterwards
the Neighborhood scheme is used. Each time the incumbent solution is updated, the
schemes are re-applied from the beginning: 3 times Random-Alternate, then 3 times
Scattered, and thereafter Neighborhood. This implies that in the first iterations of the
method, where the incumbent solution is likely to be updated frequently, the Random-
Alternate and Scattered scheme are mainly used. In the last iterations, on the other
hand, the Neighborhood scheme is mainly used.

4.3. Reallocation model

Given the sequences stored in the pool and the associated insertion points (defined
through the heuristics outlined in the next subsection), our aim is to reallocate the
sequences so as to find a feasible solution of improved cost (if any). To this end, we
need to introduce some additional notation, as illustrated in the example of Figure 4.

Let F denote the set of the extracted nodes, S the sequence pool, and R the set of
routes r in the restricted solution. For any sequence s ∈ S, let c(s) be the sum of the
costs of the edges in the sequence, and let d(s) be the sum of the requests dj associated
with the internal nodes of s; e.g., c(s) := ckl + clm and d(s) := dl in the figure.

For each insertion point i ∈ I we then define extra-cost γsi for assigning sequence
s (in its best possible orientation) to the insertion point i; in the example, this cost is
computed as γsi := c(s) + min{cak + cmb, cam + ckb} − cab. For each route r ∈ R in
the restricted solution, let I(r) denote the set of the insertion points (i.e., edges) associ-
ated with r , while let d̃(r) and c̃(r) denote, respectively, the total request and distance
computed for route r—still in the restricted tour.

As already mentioned, our ILP model is based on the following decision variables.

xsi =
{

1 if sequence s is allocated to the insertion point i ∈ Is
0 otherwise

(1)

480 R. De Franceschi et al.

The model then reads:
∑

r∈R
c̃(r)+ min

∑

s∈S

∑

i∈Is
γsixsi (2)

subject to:
∑

s�v

∑

i∈Is
xsi = 1 ∀v ∈ F (3)

∑

s∈S:i∈Is
xsi ≤ 1 ∀i ∈ I (4)

d̃(r)+
∑

s∈S

∑

i∈Is∩I(r)
d(s)xsi ≤ C ∀r ∈ R (5)

c̃(r)+
∑

s∈S

∑

i∈Is∩I(r)
γsixsi ≤ D ∀s ∈ S, r ∈ R (6)

0 ≤ xsi ≤ 1 integer ∀s ∈ S, i ∈ Is (7)

The objective function, to be minimized, gives the cost of the final DCVRP solution.
Indeed, each coefficient gives the cost of an inserted sequence, including the linking cost,
minus the cost of the “saved” edge in the restricted solution. Constraints (3) impose that
each extracted node belongs to exactly one of the selected sequences, i.e., that it is cov-
ered exactly once in the final solution. Note that, in the case of triangular costs, one
could replace = by ≥ in (3), thus obtaining a typically easier-to-solve ILP having the
structure of a set-covering (instead of set-partitioning) problem with side constraints.
Constraints (4) avoid a same insertion point is used to allocated two or more sequences.
Finally, constraints (5) and (6) impose that each route in the final solution fulfills the
capacity and distance restriction, respectively.

In order to avoid to overload the model by an excessive number of variables, a partic-
ular attention has to be paid to reduce the number of sequences and, for each sequence,
the number of the associated insertion points. As described in the next subsection, this
is obtained by first generating them in a clever but conservative way, so as to produce a
first set of variables for which the LP relaxation of the reallocation model can be solved
easily. Afterwards, we enter a (pricing) loop where more and more (sequence, insertion
point) pairs are generated. To this end, we first solve the LP relaxation of the current
reallocation model, and save the corresponding optimal dual solution. For each candi-
date pair produced by our simple heuristics (to be discussed later), the LP reduced cost
of the associated variable is computed by using the saved dual solution vector, and the
pair is stored in case this cost is below a certain threshold.

As soon as the pricing loop does not produce any new variable, we freeze the current
set of variables and invoke a general-purpose ILP solver to find an almost-optimal inte-
ger solution of the model. In our experiments, we used the commercial software ILOG

A new ILP-based refinement heuristic for Vehicle Routing Problems 481

Cplex 8.0 with a limit of 30,000 branching nodes, emphasizing the search of integer
solutions. Moreover, we provide on input to the ILP solver the feasible solution that
corresponds to the current incumbent DCVRP solution, where each basic sequence is
just reallocated to its corresponding pivot insertion point. In this way the ILP solver can
immediately initialize its own incumbent solution, so every subsequent update (if any)
will correspond to an improved DCVRP solution—the run being interrupted as soon as
the internal ILP lower bound gives no hope to find such improvement.

4.4. Node recombination and construction of derived sequences

This is a very crucial step in the SERR method, and is in fact one of the main novel-
ties of our method. It consists not just of generating new “good” sequences through the
extracted nodes, but also in associating each sequence to a clever set of possible insertion
points that can conveniently accommodate it. Therefore, we have two complementary
approaches to attack this problem: (a) we start from the insertion points, and for each
insertion point we try to construct a reasonable number of new sequences which are
likely to “fit well”; or (b) we start from the extracted nodes, and try to construct new
sequences of small cost, no matter the position of the insertion points.

After extensive computational testing, we decided to implement the following two-
phase method.

In the first phase, we initialize the sequence pool by means of the original (basic)
sequences, and associate each of them to its corresponding (pivot) insertion point. This
choice guarantees that the current DCVRP solution can be reconstructed by simply
selecting all the basic sequences and putting them back in their pivot insertion point.
Moreover, when the Neighborhood selection scheme is used a further set of sequences
is generated as follows. Let v∗ be the extracted seed node, and letN(v∗) contain v∗ plus
the 4 closest nodes (which have been extracted together with v∗). We apply a complete
enumerative scheme to generate all the sequences through N(v∗), of any cardinality,
and add them to the pool. This choice is intended to increase the chances of improving
locally the current solution, by exploiting appropriate sequences to reallocate the nodes
in N(v∗) in an optimal way.

The second phase is only applied for the Neighborhood and Scattered selection
schemes, and corresponds to a pricing loop based on the dual information available after
having solved the LP relaxation of the current reallocation model.

At each iteration of the pricing loop, we consider, in turn, each insertion point i ∈ I,
and construct a number of new sequences that “fit well” with i. To be more specific,
given the insertion point i we apply the following steps.

(i) We initialize an iteration counter L = 0 along with a set S containing a single
dummy sequence s =<> of cardinality 0, i.e., covering no nodes. At the generic
iteration L, the set S will contain at most Nmax (say) sequences of length L.

(ii) We setL := L+1 and generate new sequences of lengthL according to the follow-
ing scheme. For each s =< v1, v2, . . . , v|s| >∈ S and for each extracted node v not
in s, we generate all the sequences obtained from s by inserting, in any possible way,
node v into s, namely sequences < v, v1, v2, . . . , v|s| >, < v1, v, v2 . . . , v|s| >,
..., < v1, v2, . . . , v, v|s| >, and < v1, v2, . . . , v|s|, v >.

482 R. De Franceschi et al.

(iii) For each sequence s obtained at step (ii), we consider the variable xsi associated
with the allocation of s to the given insertion point i, and evaluate the corresponding
LP reduced cost rcsi .

(iv) We reset S = ∅, and then insert in S theNmin sequences s with smallest rcsi , along
with the sequences s such that either rcsi ≤ max{RCmax, δ rc∗}, where rc∗ is the
smallest reduced cost generated so far, and RCmax and δ are given parameters. In
any case, no more than Nmax sequences are inserted. The corresponding variables
xsi are then added to the current LP model, but the LP is not re-optimized yet.

(vi) If the last sequences inserted in S have a length smaller than Lmax (say), we repeat
from step (ii); otherwise, the next insertion point i is considered.

When the last insertion point has been considered, the current LP is re-optimized,
and we repeat.

In our implementation, we defined Nmin = 5 (N(1)
min = 10 at the iteration L = 1),

Nmax = 10, Lmax = 5, δ = 3, and RCmax = 10.
In the very first application of steps (i)-(vi) above, when no LP has been solved

yet, all dual LP variables are set to zero, and RCmax = +∞. Moreover, when L = 1
(i.e., in case of singleton sequences s =< v >), at step (ii) we heuristically define
rcsi = cav + cvb, where [a, b] is the edge in the restricted solution that corresponds to
insertion point i. This is because we noticed that the LP reduced costs tend to give an
unreliable estimate of the real effectiveness of the variables associated with singleton
sequences.

Still in the second phase, we construct the following additional sequences s and add
the corresponding variables xsi to the LP model, but only for the insertion points i ∈ I
(if any) such that the reduced cost rcsi ≤ RCmax .

(i) all the sequences s generated so far;
(ii) all possible sequences s of cardinality 2 through the extracted nodes;

(iii) all possible sequences s of cardinality 3 that can be obtained as an extension of
the sequences s′ considered at step (ii), but only in case the corresponding variable
xs′i has a reduced cost rcs′i ≤ RCmax for at least one i ∈ I.

Steps (i)–(iii) are iterated until no new variable is added to the model. Hashing
techniques are used in order to avoid the generation of duplicated variables.

5. Computational results

Algorithm SERR has been tested on an AMD Athlon XP 2400+ PC with 1 GByte RAM.
The ILP solver used in the experiments is ILOG Cplex 8.0 [29]. The algorithm has
been coded in C++, and exploits the ILOG Concert Technology 1.2 interface [30]; the
corresponding compiler is GNU gcc 3.0.4 with GNU GLIBC 2.2 libraries.

The performance of the algorithm was evaluated by considering two classes of exper-
iments, corresponding to two different possibilities for finding the starting solution to
be improved. In Class 1, the starting solution is obtained by means of one of the two fast
initialization procedures described in Section 4.1 (namely, procedure FJ or procedure
SWEEP), which are often quite far from optimality. In Class 2, instead, we start from an
extremely-good feasible solution (typically, the best-known heuristic solution reported

A new ILP-based refinement heuristic for Vehicle Routing Problems 483

in the literature), with the aim of evaluating the capability of our method to further
improve it—this is of course possible only if the starting solution does not happen to be
optimal, as it is likely the case for several of them.

Our computational analysis considers several Euclidean CVRP and DCVRP
instances from the literature, that are generally used as a standard benchmark for the
considered problems. Both real cost and integer-rounded cost instances have been con-
sidered.A group of CVRP instances with asymmetric costs (ACVRP) has been addressed
as well, after a minor modification of our code needed to deal with directed (as opposed
to undirected) graphs.

For the first class of experiments, CVRP, DCVRP and ACVRP instances with up to
100 customers were solved. In particular, our benchmark includes all the CVRP inte-
ger-rounded cost instances (with number of customers between 50 and 100) available at
http://www.branchandcut.org/VRP, a site maintained by T. Ralphs (Lehigh University,
Bethlehem, PA). These instances are denoted as X-nY-kZ, where “X”, “Y”, and “Z”
represent, respectively, the instance “series” (i.e., A, B, E, P), the number n of nodes of
graph G, and the number k of routes. In addition, we considered the integer-rounded
cost instance F-n72-k4 as well as the eight classical VRP and DVRP real cost instances
with no more than 100 customers described in Christofides and Eilon [6] and Christo-
fides, Mingozzi and Toth [7]. These instances are denoted as WnY-Zu, where “W” is
equal to “E” for the CVRP instances and “D” for the DVRP ones, while “Y” and “Z”
have the meaning previously defined. For several instances, the optimal solution value
has been found very recently by the exact algorithms proposed by Lysgaard, Letchford
and Eglese [34], Fukasawa, Poggi de Aragão, Reis and Uchoa [19], Wenger [45], and
Baldacci, Hadjiconstantinou and Mingozzi [3]. As to ACVRP, we considered the eight
integer-rounded cost instances proposed (and solved to proven optimality) by Fischetti,
Toth and Vigo [16]; these instances are denoted as A-nY-kZ.

Tables 1 and 2 report the results obtained by algorithm SERR with initialization
procedures FJ and SWEEP, respectively, when applied to CVRP instances. A time
limit of 7,200 seconds (i.e., 2 hours) was imposed for each run. All the computing
times reported in the tables are expressed in AMD Athlon XP 2400+ CPU seconds. The
columns in the tables have the following meaning:

– Best is the best known solution value from the literature (including the improvements
found in [19, 45, 3]; provable optimal values are marked by ∗);

– Start is the value of the initial solution;
– SERR is the value of the solution found by SERR;
– %err is the percentage error between the value found by SERR and the best solution

value;
– %imp is the percentage improvement of the value found by SERR with respect to

the initial solution value;
– Total is the total computing time required by SERR to obtain its final solution;
– Cplex is the computing time required by Cplex to solve the ILP instances;
– Recomb. is the computing time required by SERR for the Recombination phase.

The last three columns of the two tables refer a simplified version of SERR in which
the recombination phase (see Section 4.4) is not performed. Columns have the following
meaning:

484 R. De Franceschi et al.

Ta
bl

e
1.

C
om

pl
et

e
m

et
ho

d
an

d
no

re
co

m
bi

na
tio

n
m

et
ho

d,
w

ith
FJ

in
iti

al
so

lu
tio

n.
(∗

)
pr

ov
ab

le
op

tim
al

so
lu

tio
n

va
lu

e

So
lu

tio
n

va
lu

es
C

om
pu

tin
g

tim
es

N
o

re
co

m
bi

na
tio

n

Pr
ob

le
m

B
es

t
St

ar
t

SE
R

R
%

er
r

%
im

p
To

ta
l

C
pl

ex
R

ec
om

b.
So

l.
%

im
p

T
im

e

A
-n

53
-k

7
*

10
10

10
92

10
11

0.
1

7.
4

14
1.

0
16

.5
89

.7
10

21
6.

5
3.

1
A

-n
54

-k
7

*
11

67
12

30
11

79
1.

0
4.

1
82

.3
4.

6
61

.0
11

95
2.

8
0.

3
A

-n
55

-k
9

*
10

73
11

59
10

73
0.

0
7.

4
17

1.
6

14
.9

12
1.

7
11

25
2.

9
1.

6
A

-n
60

-k
9

*
13

54
14

48
13

63
0.

7
5.

9
67

0.
6

30
7.

1
28

7.
1

13
63

5.
9

0.
2

A
-n

61
-k

9
*

10
34

11
33

10
64

2.
9

6.
1

27
1.

3
12

0.
9

10
7.

4
10

94
3.

4
2.

5
A

-n
62

-k
8

*
12

88
13

88
12

88
0.

0
7.

2
35

6.
5

14
.9

29
6.

1
13

01
6.

3
9.

9
A

-n
63

-k
9

*
16

16
17

00
16

41
1.

5
3.

5
78

.1
21

.8
44

.5
16

51
2.

9
13

.1
A

-n
63

-k
10

*
13

14
14

41
13

19
0.

4
8.

5
20

3.
0

40
.5

12
7.

8
13

23
8.

2
7.

6
A

-n
64

-k
9

*
14

01
15

50
14

31
2.

1
7.

7
56

5.
0

23
6.

5
26

8.
7

14
07

9.
2

16
.7

A
-n

65
-k

9
*

11
74

12
03

11
74

0.
0

2.
4

12
3.

2
0.

8
92

.2
11

90
1.

1
0.

6
A

-n
69

-k
9

*
11

59
12

16
11

59
0.

0
4.

7
20

7.
8

20
.2

16
3.

1
11

80
3.

0
0.

4
A

-n
80

-k
10

*
17

63
18

62
17

93
1.

7
3.

7
20

87
.7

74
5.

3
12

01
.9

18
04

3.
1

41
.2

B
-n

50
-k

7
*

74
1

76
4

74
3

0.
3

2.
7

24
8.

2
90

.0
12

0.
8

74
1

3.
0

0.
5

B
-n

50
-k

8
*

13
12

13
77

13
24

0.
9

3.
8

22
33

.2
14

44
.5

72
2.

7
13

31
3.

3
5.

5
B

-n
51

-k
7

*
10

32
10

56
10

32
0.

0
2.

3
56

1.
8

24
6.

9
25

7.
7

10
32

2.
3

5.
1

B
-n

52
-k

7
*

74
7

75
9

74
7

0.
0

1.
6

42
8.

2
29

9.
4

10
8.

9
75

0
1.

2
5.

0
B

-n
56

-k
7

*
70

7
74

3
71

0
0.

4
4.

4
37

0.
0

16
0.

5
19

1.
9

72
6

2.
3

1.
4

B
-n

57
-k

7
*

11
53

11
86

11
53

0.
0

2.
8

66
2.

5
35

5.
6

26
6.

8
11

72
1.

2
1.

1
B

-n
57

-k
9

*
15

98
16

67
16

25
1.

7
2.

5
12

69
.0

54
7.

3
63

9.
4

16
45

1.
3

0.
6

B
-n

63
-k

10
*

14
96

15
81

15
48

3.
5

2.
1

17
8.

4
63

.4
97

.3
15

54
1.

7
0.

4
B

-n
64

-k
9

*
86

1
91

3
86

3
0.

2
5.

5
12

62
.7

68
1.

1
53

2.
7

89
0

2.
5

3.
7

B
-n

66
-k

9
*

13
16

13
85

13
22

0.
5

4.
5

40
55

.3
12

11
.2

27
48

.8
13

26
4.

3
19

.8
B

-n
67

-k
10

*
10

32
10

75
10

33
0.

1
3.

9
18

26
.6

38
7.

4
13

58
.6

10
65

0.
9

4.
6

B
-n

68
-k

9
*

12
72

13
26

12
88

1.
3

2.
9

43
7.

3
29

5.
5

12
8.

2
12

88
2.

9
13

.7
B

-n
78

-k
10

*
12

21
12

78
12

31
0.

8
3.

7
33

7.
4

43
.3

27
6.

7
12

51
2.

1
19

.9

A new ILP-based refinement heuristic for Vehicle Routing Problems 485

Ta
bl

e
1.

(c
on

d.
)

So
lu

tio
n

va
lu

es
C

om
pu

tin
g

tim
es

N
o

re
co

m
bi

na
tio

n

Pr
ob

le
m

B
es

t
St

ar
t

SE
R

R
%

er
r

%
im

p
To

ta
l

C
pl

ex
R

ec
om

b.
So

l.
%

im
p

T
im

e

E
-n

51
-k

5
*

52
1

52
1

52
1

0.
0

0.
0

0.
7

0.
0

0.
0

52
1

0.
0

0.
0

E
-n

76
-k

7
*

68
2

70
5

69
7

2.
2

1.
1

99
.6

0.
0

95
.3

70
2

0.
4

0.
5

E
-n

76
-k

8
*

73
5

75
1

73
7

0.
3

1.
9

67
0.

6
0.

8
63

8.
6

74
0

1.
5

20
.4

E
-n

76
-k

10
*

83
0

84
8

84
0

1.
2

0.
9

20
2.

9
11

.4
18

0.
2

84
3

0.
6

8.
7

E
-n

76
-k

14
*

10
21

10
75

10
27

0.
6

4.
5

33
82

.5
17

13
.5

15
40

.3
10

59
1.

5
18

.6
E

-n
10

1-
k8

*
81

5
83

4
82

2
0.

9
1.

4
56

41
.1

1.
7

55
44

.0
83

1
0.

4
5.

9
E

-n
10

1-
k1

4
10

71
11

53
10

88
1.

6
5.

6
50

94
.2

20
21

.6
30

21
.3

11
03

4.
3

43
.0

P-
n5

0-
k8

*
63

1
64

9
63

1
0.

0
2.

8
12

4.
7

21
.8

71
.1

64
9

0.
0

0.
0

P-
n5

5-
k1

0
*

69
4

71
8

70
4

1.
4

1.
9

10
0.

0
8.

2
78

.4
71

2
0.

8
4.

8
P-

n6
0-

k1
0

*
74

4
77

1
74

7
0.

4
3.

1
12

3.
8

8.
7

10
2.

5
75

8
1.

7
7.

9
P-

n6
0-

k1
5

*
96

8
10

24
97

4
0.

6
4.

9
77

8.
0

23
9.

1
45

3.
1

99
2

3.
1

2.
0

P-
n6

5-
k1

0
*

79
2

82
2

80
2

1.
3

2.
4

83
0.

5
60

.4
69

9.
2

81
8

0.
5

1.
4

P-
n7

0-
k1

0
*

82
7

84
3

83
6

1.
1

0.
8

18
1.

8
15

.4
15

3.
6

84
2

0.
1

2.
2

P-
n1

01
-k

4
*

68
1

70
3

68
6

0.
7

2.
4

55
8.

2
0.

2
54

2.
4

68
9

2.
0

15
.1

F-
n7

2-
k4

*
23

7
24

5
23

7
0.

0
3.

3
36

3.
1

5.
4

35
1.

8
24

5
0.

0
0.

0

E
05

1-
05

e
*

52
4.

61
52

4.
61

52
4.

61
0.

0
0.

0
0.

8
0.

0
0.

0
52

4.
61

0.
0

0.
0

E
07

6-
10

e
83

5.
26

85
5.

91
84

5.
84

1.
3

1.
2

15
88

.9
18

1.
8

13
19

.7
84

9.
68

0.
7

17
.7

E
10

1-
08

e
82

6.
14

84
9.

29
83

4.
75

1.
0

1.
7

62
00

.2
7.

9
60

69
.9

83
5.

75
1.

6
39

.8
E

10
1-

10
c

81
9.

56
82

5.
65

81
9.

56
0.

0
0.

7
29

23
.6

0.
9

28
73

.2
81

9.
56

0.
7

18
.2

486 R. De Franceschi et al.

Ta
bl

e
2.

C
om

pl
et

e
m

et
ho

d
an

d
no

re
co

m
bi

na
tio

n
m

et
ho

d,
w

ith
SW

E
E

P
in

iti
al

so
lu

tio
n.

(∗
)

pr
ov

ab
le

op
tim

al
so

lu
tio

n
va

lu
e

So
lu

tio
n

va
lu

es
C

om
pu

tin
g

tim
es

N
o

re
co

m
bi

na
tio

n

Pr
ob

le
m

B
es

t
St

ar
t

SE
R

R
%

er
r

%
im

p
To

ta
l

C
pl

ex
R

ec
om

b.
So

l.
%

im
p

T
im

e

A
-n

53
-k

7
*

10
10

12
95

10
17

0.
7

21
.5

22
2.

4
14

.0
15

6.
0

10
17

21
.5

10
.7

A
-n

54
-k

7
*

11
67

13
63

11
72

0.
4

14
.0

20
8.

3
34

.2
13

8.
9

12
01

11
.9

7.
4

A
-n

55
-k

9
*

10
73

12
54

10
73

0.
0

14
.4

10
8.

0
18

.4
69

.3
10

81
13

.8
9.

2
A

-n
60

-k
9

*
13

54
17

40
13

58
0.

3
22

.0
30

8.
5

72
.5

20
4.

0
14

03
19

.4
16

.3
A

-n
61

-k
9

*
10

34
13

34
10

38
0.

4
22

.2
15

39
.2

83
9.

6
57

7.
3

11
13

16
.6

6.
3

A
-n

62
-k

8
*

12
88

16
56

12
88

0.
0

22
.2

98
1.

2
21

6.
0

66
7.

8
13

21
20

.2
10

.1
A

-n
63

-k
9

*
16

16
21

49
16

27
0.

7
24

.3
83

7.
2

45
7.

7
32

6.
2

16
62

22
.7

15
.4

A
-n

63
-k

10
*

13
14

19
43

13
22

0.
6

32
.0

16
65

.6
77

8.
1

75
8.

4
13

32
31

.4
21

.4
A

-n
64

-k
9

*
14

01
17

86
14

10
0.

6
21

.1
92

8.
8

46
2.

2
40

4.
2

14
30

19
.9

12
.2

A
-n

65
-k

9
*

11
74

15
77

11
77

0.
3

25
.4

84
9.

9
46

6.
5

31
9.

8
12

30
22

.0
11

.0
A

-n
69

-k
9

*
11

59
14

91
11

63
0.

4
22

.0
34

4.
8

54
.1

25
5.

3
11

99
19

.6
9.

2
A

-n
80

-k
10

*
17

63
22

15
17

80
1.

0
19

.6
29

12
.4

15
63

.7
12

51
.6

17
86

19
.4

16
.5

B
-n

50
-k

7
*

74
1

10
82

74
1

0.
0

31
.5

24
.5

7.
9

13
.5

74
1

31
.5

13
.6

B
-n

50
-k

8
*

13
12

14
58

13
18

0.
5

9.
6

36
37

.2
26

24
.0

95
2.

6
13

22
9.

3
6.

1
B

-n
51

-k
7

*
10

32
11

68
10

32
0.

0
11

.6
47

7.
7

26
7.

2
17

2.
5

10
57

9.
5

5.
3

B
-n

52
-k

7
*

74
7

10
05

74
7

0.
0

25
.7

19
6.

0
10

4.
3

78
.3

74
7

25
.7

19
.5

B
-n

56
-k

7
*

70
7

94
1

71
0

0.
4

24
.5

69
6.

0
29

5.
7

36
6.

5
74

8
20

.5
8.

6
B

-n
57

-k
7

*
11

53
17

01
11

93
3.

5
29

.9
59

68
.0

41
82

.5
16

92
.9

12
36

27
.3

24
.1

B
-n

57
-k

9
*

15
98

21
26

15
99

0.
1

24
.8

15
00

.9
63

1.
1

78
1.

4
16

14
24

.1
16

.1
B

-n
63

-k
10

*
14

96
20

33
15

10
0.

9
25

.7
71

45
.6

43
89

.1
25

32
.6

15
41

24
.2

17
.9

B
-n

64
-k

9
*

86
1

13
70

86
4

0.
4

36
.9

92
4.

0
57

8.
5

32
2.

2
87

7
36

.0
28

.4
B

-n
66

-k
9

*
13

16
16

68
13

16
0.

0
21

.1
55

73
.9

15
56

.9
39

34
.3

13
40

19
.7

13
.4

B
-n

67
-k

10
*

10
32

14
81

10
37

0.
5

30
.0

12
15

.7
47

5.
6

70
1.

2
10

40
29

.8
18

.5
B

-n
68

-k
9

*
12

72
15

58
12

75
0.

2
18

.2
71

08
.8

44
21

.4
25

40
.1

13
17

15
.5

13
.5

B
-n

78
-k

10
*

12
21

15
27

12
60

3.
2

17
.5

46
20

.3
18

95
.1

26
27

.7
12

87
15

.7
11

.2

A new ILP-based refinement heuristic for Vehicle Routing Problems 487

Ta
bl

e
2.

(c
on

d.
)

So
lu

tio
n

va
lu

es
C

om
pu

tin
g

tim
es

N
o

re
co

m
bi

na
tio

n

Pr
ob

le
m

B
es

t
St

ar
t

SE
R

R
%

er
r

%
im

p
To

ta
l

C
pl

ex
R

ec
om

b.
So

l.
%

im
p

T
im

e

E
-n

51
-k

5
*

52
1

63
0

52
1

0.
0

17
.3

34
.6

0.
9

27
.3

52
6

16
.5

2.
8

E
-n

76
-k

7
*

68
2

85
3

69
0

1.
2

19
.1

13
1.

4
2.

6
12

2.
2

69
4

18
.6

11
.6

E
-n

76
-k

8
*

73
5

95
6

73
8

0.
4

22
.8

13
02

.8
75

.1
11

73
.8

74
0

22
.6

15
.6

E
-n

76
-k

10
*

83
0

96
3

83
1

0.
1

13
.7

29
41

.4
63

0.
6

21
81

.0
86

7
10

.0
4.

6
E

-n
76

-k
14

*
10

21
12

94
10

32
1.

1
20

.2
59

26
.1

37
95

.2
20

09
.6

10
64

17
.8

14
.8

E
-n

10
1-

k8
*

81
5

96
9

83
0

1.
8

14
.3

14
79

.4
11

.4
14

42
.0

83
5

13
.8

10
.6

E
-n

10
1-

k1
4

10
71

13
54

11
01

2.
8

18
.7

41
67

.8
14

52
.4

26
94

.2
10

99
18

.8
10

.0

P-
n5

0-
k8

*
63

1
86

7
64

3
1.

9
25

.8
21

17
.2

16
90

.5
32

6.
2

65
0

25
.0

22
.8

P-
n5

5-
k1

0
*

69
4

88
9

69
8

0.
6

21
.5

94
4.

8
26

1.
0

58
3.

2
70

3
20

.9
15

.9
P-

n6
0-

k1
0

*
74

4
95

5
74

4
0.

0
22

.1
80

7.
6

16
5.

8
57

0.
9

76
4

20
.0

8.
4

P-
n6

0-
k1

5
*

96
8

12
45

96
8

0.
0

22
.2

86
9.

8
19

3.
3

57
4.

7
10

08
19

.0
4.

8
P-

n6
5-

k1
0

*
79

2
92

2
80

0
1.

0
13

.2
53

1.
8

41
.2

44
4.

3
80

9
12

.3
6.

9
P-

n7
0-

k1
0

*
82

7
10

57
82

7
0.

0
21

.8
16

58
.4

47
1.

2
10

99
.4

87
6

17
.1

11
.3

P-
n1

01
-k

4
*

68
1

78
8

69
3

1.
8

12
.1

13
74

.2
0.

1
13

43
.2

68
7

12
.8

7.
3

F-
n7

2-
k4

*
23

7
36

9
23

8
0.

4
35

.5
40

6.
4

4.
9

39
5.

7
25

0
32

.2
21

.9

E
05

1-
05

e
*

52
4.

61
63

3.
38

52
4.

61
0.

0
17

.2
32

.9
1.

3
25

.2
52

7.
67

16
.7

6.
7

E
07

6-
10

e
83

5.
26

96
5.

86
84

8.
55

1.
6

12
.1

29
07

.1
10

40
.0

17
66

.5
85

8.
79

11
.1

7.
6

E
10

1-
08

e
82

6.
14

98
1.

71
83

1.
91

0.
7

15
.3

61
53

.5
47

.5
59

85
.2

84
6.

61
13

.8
9.

2
E

10
1-

10
c

81
9.

56
11

42
.5

9
81

9.
56

0.
0

28
.3

36
97

.9
17

5.
9

34
60

.6
88

0.
45

22
.9

15
.4

488 R. De Franceschi et al.

– Sol. is the solution value found by the algorithm;
– %imp is the percentage improvement of the value found by the algorithm with

respect to the initial solution value;
– Time is the total computing time required by the algorithm to obtain its final solution.

The tables show that our refining algorithm is able to improve substantially the
initial solutions. The average improvement is about 3.5% and 24.4% for the initiali-
zation procedures FJ and SWEEP, respectively. With respect to the best known solu-
tions available in the literature, algorithm SERR is able to find the best solution for 13
instances by starting with procedures FJ or SWEEP. With respect to the values given in
[37] and corresponding to the best solutions found by heuristic and metaheuristic algo-
rithms, algorithm SERR delivers an improved solution for instancesA-n62-k8, P-n50-k8,
P-n60-k10, P-n60-k15 (starting both from FJ and SWEEP), and P-n70-k10 (starting with
SWEEP), the values reported in [37] for these instances being, respectively, 1290, 649,
756, 1033, 834.

Tables 3 and 4 address DCVRP instances, with a larger time-limit allowed; columns
have the same meaning as in the previous tables. In the tables, (*) denotes instances for
which the refining algorithm started from an infeasible initial solution. The performance
of SERR for these instances is very satisfactory, in that the method is always able to
recover the initial infeasibility (with a single exception arising when starting with the FJ
solution) and to approach very closely the best-known solution. In one case, D101-11c,
the method even improves the best-known solution from the literature.

Table 5 gives the solution values and times for the ACVRP instances; for these
instances, only the FJ starting procedure is used—SWEEP heuristic requires customer
coordinates, that are not specified in the asymmetric instances. Again, SERR proves
quite effective in improving the initial (very poor) FJ solution, and delivers solution that
are (on average) 3.7 % worse than the best-known (actually, provable optimal) ones.

For the second class of experiments, in which we start from an extremely-good
feasible solution taken from the literature, the following CVRP and DCVRP instances
have been considered:

– real cost instances: the 14 standard test problems proposed by Christofides and Eilon
[6] and Christofides, Mingozzi and Toth [7];

– rounded integer cost instances: the same 14 standard test problems as before, plus
instances E-n101-k14, M-n151-k12, M-n151-k12a, and D200-18c.

Problems M-n151-k12 and M-n151-k12a actually correspond to the same instance,
the only difference being the order in which the customers are given on input. The
corresponding initial solutions are taken from Gendreau, Hertz and Laporte [21] for
the 14 standard instances, from Taillard’s web page [41] for instances M-n151-k12 and
D200-18c, and from Vigo’s VRPLIB web page [44] for instances M-n151-k12a and
E-n101-k14.

Table 6 reports the results obtained by algorithm SERR for the instances for which
it is able to improve the corresponding initial solution. The columns have the same
meaning as in the previous tables; a negative value for %err means that the new solution
is strictly better than the previous best-known solution from the literature. For all the
integer rounded cost DCVRP instances we assume that the starting solution, taken from

A new ILP-based refinement heuristic for Vehicle Routing Problems 489

Ta
bl

e
3.

C
om

pl
et

e
an

d
no

re
co

m
bi

na
tio

n
m

et
ho

d
fo

r
D

C
V

R
P

in
st

an
ce

s,
w

ith
FJ

in
iti

al
so

lu
tio

n.
(†

)
in

fe
as

ib
le

in
iti

al
so

lu
tio

n

So
lu

tio
n

va
lu

es
C

om
pu

tin
g

tim
es

N
o

re
co

m
bi

na
tio

n

Pr
ob

le
m

B
es

t
St

ar
t

SE
R

R
%

er
r

%
im

p
To

ta
l

C
pl

ex
R

ec
om

b.
So

l.
%

im
p

T
im

e

D
05

1-
06

c
54

8
†5

59
55

6
1.

5
–

13
.8

<
0.

1
10

.9
55

6
–

4.
0

D
07

6-
11

c
90

7
†8

97
90

9
0.

2
–

88
87

.5
56

07
.0

22
53

.7
–

–
62

.2
D

10
1-

09
c

85
6

†8
75

86
3

0.
8

–
16

56
.2

6.
3

16
25

.3
86

1
–

70
.6

D
10

1-
11

c
86

6
†8

58
86

5
−0

.1
–

11
73

3.
5

38
61

.1
77

36
.4

87
6

–
50

.1
D

05
1-

06
c

55
5.

43
†5

64
.4

1
55

6.
68

0.
2

–
32

0.
1

2.
2

25
7.

6
55

6.
68

–
12

.0
D

07
6-

11
c

90
9.

68
†9

02
.2

2
–

–
–

93
52

.9
78

74
.5

13
95

.6
–

–
14

5.
6

D
10

1-
09

c
86

5.
94

†8
85

.9
0

87
1.

93
0.

7
–

13
67

1.
0

49
.1

13
39

6.
2

89
2.

79
–

58
.4

D
10

1-
11

c
86

6.
37

†8
59

.4
9

86
7.

65
0.

1
–

21
46

5.
6

90
22

.1
12

21
2.

1
90

7.
85

–
94

.1

Ta
bl

e
4.

C
om

pl
et

e
an

d
no

re
co

m
bi

na
tio

n
m

et
ho

d
fo

r
D

C
V

R
P

in
st

an
ce

s,
w

ith
SW

E
E

P
in

iti
al

so
lu

tio
n.

(†
)

in
fe

as
ib

le
in

iti
al

so
lu

tio
n

So
lu

tio
n

va
lu

es
C

om
pu

tin
g

tim
es

N
o

re
co

m
bi

na
tio

n

Pr
ob

le
m

B
es

t
St

ar
t

SE
R

R
%

er
r

%
im

p
To

ta
l

C
pl

ex
R

ec
om

b.
So

l.
%

im
p

T
im

e

D
05

1-
06

c
54

8
†6

30
55

9
2.

0
–

74
.3

12
.3

48
.2

56
8

–
4.

5
D

07
6-

11
c

90
7

†9
63

91
8

1.
2

–
63

85
.7

41
55

.1
21

09
.9

–
–

90
.1

D
10

1-
09

c
85

6
†9

69
86

9
1.

5
–

14
05

.9
10

6.
9

12
77

.2
91

6
–

12
9.

0
D

10
1-

11
c

86
6

†1
14

3
86

5
−0

.1
–

28
58

8.
2

12
55

0.
8

15
78

8.
8

92
8

–
11

3.
8

D
05

1-
06

c
55

5.
43

†6
33

.3
8

56
0.

24
0.

9
–

26
4.

8
24

.1
19

5.
5

57
0.

81
–

12
.5

D
07

6-
11

c
90

9.
68

†9
65

.8
6

91
1.

76
0.

2
–

15
83

8.
5

97
87

.2
57

13
.2

–
–

29
5.

7
D

10
1-

09
c

86
5.

94
†9

81
.7

1
87

4.
96

1.
0

–
91

75
.6

16
9.

7
88

43
.9

88
0.

10
–

19
1.

1
D

10
1-

11
c

86
6.

37
†1

14
2.

59
87

8.
52

1.
4

–
75

79
.6

41
72

.5
33

37
.1

87
9.

32
–

19
6.

2

490 R. De Franceschi et al.

Ta
bl

e
5.

C
om

pl
et

e
an

d
no

re
co

m
bi

na
tio

n
m

et
ho

d
fo

rA
C

V
R

P
in

st
an

ce
s,

w
ith

FJ
in

iti
al

so
lu

tio
n.

(∗
)

pr
ov

ab
le

op
tim

al
so

lu
tio

n
va

lu
e

So
lu

tio
n

va
lu

es
C

om
pu

tin
g

tim
es

N
o

re
co

m
bi

na
tio

n

Pr
ob

le
m

B
es

t
St

ar
t

SE
R

R
%

er
r

%
im

p
To

ta
l

C
pl

ex
R

ec
om

b.
So

l.
%

im
p

T
im

e

A
03

4-
02

f
*

14
06

16
07

14
09

0.
2

12
.3

6.
7

0.
1

0.
1

15
30

4.
8

0.
1

A
03

6-
03

f
*

16
44

19
81

17
24

4.
9

13
.0

1.
5

<
0.

1
<

0.
1

17
32

12
.6

0.
1

A
03

9-
03

f
*

16
54

21
00

17
80

7.
6

15
.2

21
.1

0.
4

0.
4

18
09

13
.9

2.
4

A
04

5-
03

f
*

17
40

21
50

18
29

5.
1

14
.9

16
.2

0.
2

2.
0

18
29

14
.9

2.
2

A
04

8-
03

f
*

18
91

22
62

19
62

3.
8

13
.3

4.
7

<
0.

1
1.

6
19

97
11

.7
2.

6
A

05
6-

03
f

*
17

39
20

71
17

77
2.

2
14

.2
8.

0
<

0.
1

5.
5

18
06

12
.8

0.
7

A
06

5-
03

f
*

19
74

25
34

20
37

3.
2

19
.6

16
0.

9
0.

5
11

2.
2

21
26

16
.1

3.
4

A
07

1-
03

f
*

20
54

24
06

21
11

2.
8

12
.3

11
3.

5
<

0.
1

96
.1

21
60

10
.2

13
.3

A new ILP-based refinement heuristic for Vehicle Routing Problems 491

Table 6. Complete method: improvements from good CVRP/DCVRP solutions from the literature. (∗)
provable optimal solution value. (#) solution with one empty route

Solution values

Problem Best Start Source SERR %err %imp Comp. time

E076-10e * 830 832 [22] 831 0.1 0.1 279.4
E101-10c * 820 824 [22] 820 0.0 0.5 18.3
E121-07c * 1034 1035 [22] 1034 0.0 0.1 88.7
E151-12c 1016 1024 [22] 1022 0.6 0.2 461.2
E200-17c 1316 1316 [22] 1307 −0.7 0.7 48487.7
D076-11c 907 907 [22] 905 −0.2 0.2 178.1
D101-11c 866 866 [22] 865 −0.1 0.1 1273.5
D121-11c 1529 1529 [22] 1526 −0.2 0.2 26622.1
D151-14c 1180 1180 [22] 1161 −1.6 1.6 44578.4
D200-18c 1404 1404 [22] 1398 −0.4 0.4 4074.8
E076-10e 835.26 836.37 [22] 835.26 0.0 0.1 380.7
E101-10c 819.56 822.85 [22] 819.56 0.0 0.4 20.0
E121-07c 1042.11 1043.94 [22] 1043.42 0.1 <0.1 114.8
E151-12c 1028.42 1034.90 [22] 1034.50 0.6 <0.1 396.5
E200-17b 1291.29 1311.35 [44] 1305.35 1.1 0.5 18386.0
D121-11c 1541.14 1551.63 [22] 1546.10 0.3 0.4 232465.9
D151-14c 1162.55 1189.79 [22] 1178.02 1.3 1.0 7431.4
D200-18c 1395.85 1421.88 [22] 1416.47 1.5 0.4 42261.9

E-n101-k14 1071 1076 [44] 1067 -0.4 0.8 2865.7
M-n151-k12 1016 1016 [41] 1015 -0.1 0.1 377.4
M-n151-k12a 1016 1023 [44] 1022 0.6 0.1 11090.2
D200-18c 1395.85 1395.85 [41] 1352.01 -3.2 3.1 79820.4
D200-18c 1395.85 1395.85 [41] # 1347.61 -3.6 3.5 113447.2

[21], corresponds to the best known one—unfortunately, for the integer-rounded-cost
DCVRP instances we could not find an explicit statement of this property in the lit-
erature. The table shows that SERR delivers an improved solution in 22 out of the 32
cases, while obtains a new best-known solution for 9 hard instances from the literature.
Moreover, a modified SERR implementation allowing for empty routes delivers a new
best-known solution for problem D200-18c. Finally, for both M-n151-k12 and M-n151-
k12a algorithm SERR is able to improve the previous-best heuristic solution–the best
solution value for both being 1015.

According to the previous table, the SERR method is very effective in improving
the starting solution, even if it is of very-good quality. The computational effort appears
quite substantial in some cases. However, as shown in Figures 5 and 6, the quality of
the incumbent SERR solution improves quickly at the very beginning of the compu-
tation, so one could think of imposing a much shorter time limit without a significant
deterioration of the final solution. Moreover, our computational experiments show that
the no-recombination method often has an acceptable performance, so a faster SERR
implementation could be obtained by applying the fast no-recombination method first,
so as to quickly improve the incumbent solution, and only afterwards the more time-
consuming complete method.

We finally addressed larger instances with more than 200 customers, in the attempt
of improving the corresponding best-known solution values reported in the literature. In
order to reduce the computational time required by our method, in the node recombination
phase described in Subsection 4.4 we inhibited the generation of derived sequences of

492 R. De Franceschi et al.

Fig. 5. Time evolution of the SERR solution for various CVRP instances, with FJ initial solution

Fig. 6. Time evolution of the SERR solution for various CVRP instances, with SWEEP initial solution

length larger than 2, and used the following alternative parameter setting: RCmax =
Lmax = 3, Nmin = 2, Nmax = 5, and δ = 2. The following 13 instances have
been considered: E241-22k, E253-27k, E256-14k, E301-28k, E321-30k, E324-16k,

A new ILP-based refinement heuristic for Vehicle Routing Problems 493

E361-33k, E397-34k, E400-18k, E421-41k, E481-38k, and E484-19k from [24], and
Tai385 from [41]. The SERR method was able to improve 4 solutions, namely, E324-
16k (from the previous best-known value 742.03 to 741.70, in 61661.9 seconds), E361-
33k (from 1366.8579 to 1366,8578, in 1032.0 seconds), E400-18k (from 918.4464542 to
918.4151609, in 5584.76 seconds), and Tai385 (from 24431.44 to 24422.50, in 152286.5
seconds).2 The new best-known solutions are given in the appendix.

6. Conclusions and future research directions

We have proposed a new refinement heuristic for DCVRP. The method is an elaboration
of a refinement procedure originally proposed by Sarvanov and Doroshko [40] (SD) for
the pure Travelling Salesman Problem (TSP).

Our approach goes far beyond the original SD scheme, and is based on a more
sophisticated node removal policy followed by a procedure to construct a large number
of new potential sequences through the extracted nodes.

Computational results on a large set of capacitated VRP instances from the literature
(with symmetric/asymmetric costs and with/without distance constraints) show that the
SERR method is quite effective. In 13 cases, some of which are reported in theAppendix,
it was even able to improve the best-known solution reported in the literature.

Future directions of work should address the possibility of extending the SERR
method to even more constrained VRP versions. An obvious extension is to consider
route-dependent limits on the capacity and/or on the total-distance travelled. arc costs.
Also interesting is the adaptation of the SERR method to scheduling problems (including
the crew and vehicle scheduling problems addressed, e.g., in [15], for which the method
can be viewed as a generalization of the refinement heuristic proposed in [9]), or to the
VRP with backhauls [43]. An even more intriguing extension is to consider the DCVRP
with precedence constraints, and important variant where a set of precedences among
the nodes is specified. In the SERR context, these additional constraints would lead to
(a) removing some variables xsi , in case the allocation of sequence s into insertion point
i is impossible due to some precedences between a node covered in sequence s and
one of the nodes in the restricted route that are visited before the insertion point i, and
(b) introducing new constraints among the xsi variables corresponding to the insertion
points i belonging to a same route, stipulating incompatibility conditions of the type
xs′i′ + xsi ≤ 1 whenever there exists a precedence between a node in s′ and a node s
which is incompatible with the relative position of the insertion points i and i′ in the
route (these constraints possibly need to be strengthened by lifting techniques).

Acknowledgements. We thank David Mester for having provided us with the best-known solutions for the
instances given in [24]. Thanks are also due to the two anonymous referees for their helpful comments.

References

1. Ahuja, R.K., Ergun, O., Orlin, J.B., Punnen, A.B.: A survey of very large-scale neighborhood search
techniques. Discrete Applied Math. 123, 75–102 (2002)

2 With a slightly different tuning, for problem E324-16k we found a solution of value 742.02 within 45.9
seconds, whereas for problem Tai385 we found a solution of value 24427.51 within 35842.1 seconds.

494 R. De Franceschi et al.

2. Balas, E., Simonetti, N.: Linear time dynamic programming algorithms for new classes of Restricted
TSPs. Informs J. Comput. 13, 56–75 (2001)

3. Baldacci, R., Hadjiconstantinou, E.A., Mingozzi, A.: An exact algorithm for the capacitated vehicle
routing problem based on a two-commodity network flow formulation. Oper. Res. 2004 (forthcoming)

4. Burkard, R.E., Deineko, V.G.: Polynomially solvable cases of the traveling salesman problem and a new
exponential neighborhood. Comput. 54, 191–211 (1995)

5. Cordeau, J.-F., Gendreau, M., Hertz, A., Laporte, G., Sormany, J.-S.: New heuristics for the vehicle rout-
ing problem. In: A. Langevin, D. Riopel (eds.). Logistics Systems: Design and Optimization, Kluwer,
Boston, 2005 forthcoming

6. Christofides, N., Eilon, S.: Expected distances in distribution problems. Oper. Res. Quarterly 20 (4),
437–443 (1969)

7. Christofides, N., Mingozzi,A., Toth, P.: The vehicle routing problem. Combinatorial Optimization (Wiley,
Chichester), 1979

8. Deineko,V.G.,Woeginger, G.J.:A study of exponential neighborhoods for the travelling salesman problem
and for the quadratic assignment problem. Math. Programming 87, 519–542 (2000)

9. Dell’Amico, M., Fischetti, M., Toth, P.: Heuristic algorithms for the multiple depot vehicle scheduling
problem. Management Sci. 39, 115–125 (1993)

10. Ergun, O.: New neighborhood search algorithms based on exponentially large neighborhoods. Operations
Research Center Thesis, MIT, 2001

11. Ergun, O., Orlin, J.B.: Two dynamic programming methodologies in very large scale neighborhood search
applied to the Traveling Salesman Problem. Working Paper 4463-03, MIT Sloan School of Management,
2003

12. Ergun, O., Orlin, J.B., Steele-Feldman, A.: A computational study on a large-scale neighborhood search
algorithm for the vehicle routing problem with capacity and distance constraints. Working paper, School
of Ind. and Sys. Engr. Georgia Institute of Technology, Atlanta, 2002

13. Ergun, O., Orlin, J.B., Steele-Feldman, A.: Creating very large scale neighborhoods out of smaller ones
by compounding moves: a study on the Vehicle Routing Problem. Working Paper 4393-02, MIT Sloan
School of Management, 2002

14. Firla, R.T., Spille, B., Weismantel, R.: Exponentialirreducible neighborhoods for combinatorial optimi-
zation problems. Math. Meth. Oper. Res. 56, 29–44 (2002)

15. Fischetti, M., Lodi, A., Martello, S., Toth, P.: A polyhedral approach to simplified crew scheduling and
vehicle scheduling problems. Management Sci. 47 (6), 833–850 (2001)

16. Fischetti, M., Toth, P., Vigo, D.:A branch and bound algorithm for the capacitated vehicle routing problem
on directed graphs. Oper. Res. 42, 846–859 (1994)

17. Fisher, M.: Vehicle routing. In: M.O. Ball, T.L. Magnanti, C.L. Monma, G.L. Nemhauser (eds.). Network
Routing, Handbooks in OR & MS Vol. 8, Elsevier, Amsterdam, 1995

18. Fisher, M.L., Jaikumar, R.: A generalized assignment heuristic for vehicle routing. Networks 11, 109–124
(1981)

19. Fukasawa, R., Poggi de Aragão, M., Reis, M., Uchoa, E: Robust branch-and-cut-and-price for the capac-
itated vehicle routing problem, Relatórios de Pesquisa em Engenharia de Produção, RPEP 3 (8), Univer-
sidade Federal Fluminense, 2003

20. Gillett, B.E., Miller, L.R.: A heuristic algorithm for the vehicle dispatch problem. Oper. Res. 22, 340–349
(1974)

21. Gendreau, M., Hertz, A., Laporte, G.: A Tabu Search Heuristic for the VRP, Technical Reoprt CRT-777,
1991

22. Gendreau, M., Hertz,A., Laporte, G.:A tabu search heuristic for the vehicle routing problem. Management
Sci. 40, 1276–1290 (1994)

23. Gendreau, M., Laporte, G., Potvin, J.-Y.: Metaheuristics for the capacitated VRP. In: P. Toth, D. Vigo
(eds.). The Vehicle Routing Problem. SIAM Monographs on Discrete Mathematics and Applications,
2002

24. Golden, B.L., Wasil, E.A., Kelly, J.P., Chao, I-M.: Metaheuristics in Vehicle Routing. In: T.G. Crainic,
G. Laporte (eds.). Fleet Management and Logictics. Kluwer, Boston, 1998 pp. 33–56

25. Glover, F., Punnen, A.P.: The traveling salesman problem: New solvable cases and linkages with the
development of approximation algorithms. J. Oper. Res. Soc. 48, 502–510 (1997)

26. Gutin, G.M.: On an approach to solving the traveling salesman problem, Proc. The USSR Conference on
System Research (Moscow, USSR), 1984 pp. 184–185 (in Russian)

27. Gutin, G.M.: Exponential neighborhood local search for the traveling salesman problem. Comput. Oper.
Res. 26, 313–320 (1999)

28. Gutin, G., Yeo, A., Zverovitch, A.: Exponential neighborhoods and domination analysis for the TSP.
In: G. Gutin, A. Punnen (eds.). The Traveling Salesman Problem and its Variations. Kluwer, 2002 pp.
223–256

A new ILP-based refinement heuristic for Vehicle Routing Problems 495

29. ILOG Cplex 8.1: user’s manual and reference manual, ILOG, S.A., http://www.ilog.com/, 2003
30. ILOG Concert Technology 1.2: User’s manual and reference manual, ILOG, S.A.,

http://www.ilog.com/, 2003
31. Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP. In: G. Gutin, A.P.

Punnen (eds.). The Traveling Salesman Problem and Its Variations Kluwer Academic Publishers, 9, pp.
369–487, 2002

32. Laporte, G., Semet, F.: Classical heuristics for the capacitated VRP. In: P. Toth, D. Vigo (eds.). The Vehicle
Routing Problem SIAM Monographs on Discrete Mathematics and Applications, Chap. 5, 2002

33. Li, F., Golden, B.L., Wasil, E.A.: Very large-scale vehicle routing: New test problems, algorithms, and
results. Comput. Oper. Res. 2004 (forthcoming)

34. Lysgaard, J., Letchford, A.N., Eglese, R.W.: A new branch-and-cut algorithm for the capacitated vehicle
routing problem. Math. Prog. 100 (2), 423–442 2004

35. Mester, D., Braysy, O.: Active guided evolution strategies for the large scale vehicle routing problems
with time windows. Comput. Oper. Res. 2004 (forthcoming)

36. Punnen, A.P.: The Traveling Salesman Problem: new polynomial approximation and domination analysis.
J. Information Optim. Sci. 22, 191–206 (2001)

37. Ralphs, T.: Branch and Cut and Price Applications: Vehicle Routing, http://branchandcut.org/VRP/
38. Rego, C., Glover, F.: Local search and metaheuristcs. In: G. Gutin, A. Punnen (eds.). The Traveling

Salesman Problem and its Variations, Kluwer, 2002 pp. 309–368
39. Reimann, M., Doerner, K., Hartl, R.F.: D-Ants: Savings based ants divide and conquer the vehicle routing

problem. Comput. Oper. Res. 2004 (forthcoming)
40. Sarvanov, V.I., Doroshko, N.N.: The approximate solution of the travelling salesman problem by a local

algorithm with scanning neighborhoods of factorial cardinality in cubic time, (in Russian), Software:
Algorithms and Programs 31, Mathematical Institute of the Belorussian Academy of Sciences, Minsk,
1981, pp. 11–13

41. Taillard, E.: Eric Taillard’s Page, Vehicle Routing Instances, http://ina.eivd.ch/collaborateurs/etd/proble-
mes.dir/vrp.dir/vrp.html.

42. Tarantilis, C.-D., Kiranoudis, C.T.: Bone Route: An adaptive memory-based method for effective fleet
management. Ann. Oper. Res. 115, 227–241 (2002)

43. Toth, P., Vigo, D.: An overview of vehicle routing problems. In: P. Toth, D. Vigo (eds.). The Vehicle
Routing Problem, SIAM Monographs on Discrete Mathematics and Applications, 2002

44. Vigo, D.: VRPLIB: A Vehicle Routing Problem LIBrary, http://www.or.deis.unibo.it/research pages/OR
instances/VRPLIB/VRPLIB. html

45. Wenger, K.M.: Generic cut generation methods for routing problems. Ph.D Dissertation, Institute of
Computer Science, University of Heidelberg, 2003

7. Appendix: Improved solutions

We next present some improved solutions found by our SERR method.

New best-known solution for instance E-n101-k14, having cost 1067

R1: 61, 16, 86, 38, 44, 91, 98
R2: 1, 51, 9, 81, 33, 79, 50
R3: 58, 2, 57, 42, 14, 43, 15, 41, 22, 74, 73
R4: 69, 70, 30, 32, 90, 63, 10, 31
R5: 80, 24, 29, 78, 34, 35, 71, 65, 66, 20
R6: 12, 68, 3, 77, 76, 28
R7: 82, 48, 47, 19, 7, 52
R8: 88, 62, 11, 64, 49, 36, 46, 8, 18
R9: 96, 99, 93, 85, 100, 37, 92
R10: 54, 55, 25, 39, 67, 23
R11: 6, 59, 5, 84, 17, 45, 83, 60, 89
R12: 40, 21, 72, 75, 56, 4, 26
R13: 94, 95, 97, 87, 13
R14: 53, 27

496 R. De Franceschi et al.

New best-known solution for instance M-n151-k12, having cost 1015

R1: 69, 101, 70, 30, 20, 128, 66, 71, 65, 136, 35, 135, 34, 78, 129, 79
R2: 137, 2, 115, 145, 41, 22, 133, 23, 56, 75, 74, 72, 73, 21, 40
R3: 138, 109, 54, 130, 55, 25, 67, 39, 139, 4, 110, 149, 26
R4: 132, 1, 122, 51, 103, 9, 120, 81, 33, 102, 50, 111
R5: 27, 127, 31, 10, 108, 131, 32, 90, 63, 126, 62, 148, 88
R6: 18, 114, 46, 124, 47, 36, 143, 49, 64, 11, 107, 19, 123, 7, 146
R7: 89, 118, 60, 83, 125, 45, 8, 82, 48, 106, 52
R8: 147, 5, 84, 17, 113, 86, 140, 38, 43, 15, 57, 144, 58
R9: 112, 53, 105
R10: 28, 76, 116, 77, 3, 121, 29, 24, 134, 80, 150, 68, 12
R11: 6, 96, 104, 99, 61, 16, 141, 44, 119, 14, 142, 42, 87, 97, 117
R12: 94, 59, 93, 85, 91, 100, 37, 98, 92, 95, 13

New best known solution for instance D200-18c, having cost 1352.01

R1: 110, 155, 4, 139, 187, 39, 186, 56, 197, 198, 180, 53
R2: 40, 73, 171, 74, 133, 22, 41, 145, 115, 178, 2, 58, 152
R3: 12, 109, 177, 80, 150, 163, 24, 134, 54, 195, 26, 105
R4: 27, 167, 127, 190, 88, 182, 194, 106, 52, 146
R5: 149, 179, 130, 165, 55, 25, 170, 67, 23, 75, 72, 21
R6: 156
R7: 37, 100, 192, 119, 14, 38, 140, 44, 141, 191, 91, 193, 59
R8: 6, 96, 104, 99, 93, 85, 98, 151, 92, 95, 94, 183
R9: 60, 118, 84, 17, 113, 86, 16, 61, 173, 5, 147
R10: 137, 144, 57, 15, 43, 142, 42, 172, 87, 97, 117, 13, 112
R11: 7, 123, 19, 49, 143, 36, 47, 168, 124, 48, 82, 153
R12: 89, 166, 83, 199, 125, 45, 46, 174, 8, 114, 18
R13: 154, 138, 184, 116, 196, 76, 28
R14: 68, 121, 29, 169, 34, 164, 78, 129, 79, 158, 3, 77
R15: 111, 50, 102, 157, 33, 9, 103, 66, 188, 20, 122, 1
R16: 31, 159, 126, 63, 181, 64, 11, 175, 107, 62, 148
R17: 132, 69, 101, 70, 30, 128, 160, 131, 32, 90, 108, 189, 10, 162
R18: 185, 81, 120, 135, 35, 136, 65, 71, 161, 51, 176

New best known solution for instance D200-18c, having cost 1347.61 (with one empty route)

R1: 110, 155, 4, 139, 187, 39, 186, 56, 197, 198, 180, 53
R2: 40, 73, 171, 74, 133, 22, 41, 145, 115, 178, 2, 58, 152
R3: 12, 109, 177, 150, 80, 163, 24, 134, 54, 195, 26, 105
R4: 149, 179, 130, 165, 55, 25, 170, 67, 23, 75, 72, 21
R5: 27, 167, 127, 190, 88, 182, 194, 106, 52, 146
R6: 37, 100, 192, 119, 14, 38, 140, 44, 141, 191, 91, 193, 59
R7: 183, 94, 95, 92, 151, 98, 85, 93, 104, 99, 96, 6
R8: 60, 118, 84, 17, 113, 86, 16, 61, 173, 5, 147
R9: 137, 144, 57, 15, 43, 142, 42, 172, 87, 97, 117, 13, 112, 156
R10: 153, 82, 48, 124, 168, 47, 36, 143, 49, 19, 123, 7
R11: 89, 166, 83, 199, 125, 45, 46, 174, 8, 114, 18
R12: 138, 154, 184, 116, 196, 76, 28
R13: 77, 3, 158, 79, 129, 78, 164, 34, 169, 29, 121, 68
R14: 111, 50, 102, 157, 33, 9, 103, 66, 188, 20, 122, 1
R15: 31, 159, 126, 63, 181, 64, 11, 175, 107, 62, 148
R16: 132, 69, 101, 70, 30, 128, 160, 131, 32, 90, 108, 10, 189, 162
R17: 185, 81, 120, 135, 35, 136, 65, 71, 161, 51, 176

A new ILP-based refinement heuristic for Vehicle Routing Problems 497

New best known solution for instance E324-16k, having cost 741.70

R1: 129, 163, 181, 213, 228, 241, 254, 276, 285, 293, 300, 306, 311,
315, 318, 314, 309, 303, 297, 290, 281, 271, 261, 237, 224, 209, 194,
178, 143, 83
R2: 61, 85, 113, 145, 180, 197, 212, 227, 240, 253, 265, 275, 284, 274,
264, 252, 239, 226, 196, 162, 128, 98, 72
R3: 164, 182, 199, 215, 230, 243, 267, 278, 287, 295, 302, 308, 313,
317, 320, 322, 323, 321, 319, 316, 312, 307, 301, 294, 286, 277, 266,
255, 242, 229, 214, 198, 146, 99
R4: 127, 161, 195, 210, 238, 250, 262, 272, 282, 291, 298, 304, 310,
305, 299, 292, 283, 273, 263, 251, 225, 211, 179, 144, 112, 84
R5: 8, 9, 5, 2
R6: 4, 1
R7: 17, 23, 30, 39, 49, 60, 50, 40, 31, 24
R8: 13, 19, 14, 20, 26, 33, 25, 18, 12
R9: 32, 41, 51, 73, 86, 114, 130, 147, 165, 183, 200, 184, 166, 148,
131, 115, 100, 74, 62, 42
R10: 71, 97, 111, 126, 160, 177, 193, 208, 223, 236, 249, 260, 248, 235,
222, 207, 192, 176, 159, 142, 110, 96, 70, 59
R11: 95, 109, 124, 140, 157, 174, 190, 206, 220, 233, 246, 258, 269,
279, 288, 296, 289, 280, 270, 259, 247, 234, 221, 191, 175, 158, 141,
125, 82, 48
R12: 38, 47, 57, 68, 80, 93, 107, 122, 138, 155, 172, 188, 204, 219,
205, 189, 173, 156, 139, 123, 108, 94, 81, 69, 58
R13: 3, 6, 10, 15, 22, 16, 11, 7
R14: 52, 87, 101, 116, 132, 149, 167, 185, 202, 217, 201, 216, 231, 244,
256, 268, 257, 245, 232, 218, 203, 186, 168, 150, 133, 117, 102, 88,
75, 63
R15: 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 187, 169, 151,
134, 118, 103, 89, 76, 64, 53, 43, 34
R16: 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 154, 137,
121, 106, 92, 79, 67, 56, 46, 37, 29

New best known solution for instance E361-33k, having cost 1366.8578

R1: 14, 23, 24, 25, 84, 85, 67, 80, 7, 20, 19
R2: 34, 35, 36, 9, 101, 69, 160, 100, 40, 39
R3: 41, 161, 221, 189, 276, 335, 334, 275, 216, 129, 156, 96
R4: 140, 200, 260, 247, 325, 307, 320, 319, 318, 259, 199
R5: 172, 232, 292, 251, 357, 311, 352, 351, 350, 291, 231
R6: 212, 213, 272, 331, 332, 273, 188, 208, 128, 153, 93
R7: 3, 63, 123, 142, 91, 82, 31, 22
R8: 207, 267, 268, 248, 333, 308, 328, 327, 326, 321, 266
R9: 287, 338, 347, 348, 349, 310, 344, 250, 289, 288, 228
R10: 43, 44, 10, 104, 70, 164, 163, 103, 102, 42, 37
R11: 109, 169, 130, 229, 190, 284, 343, 342, 283, 224, 223
R12: 1, 61, 121, 174, 75, 16, 15, 114, 54
R13: 79, 139, 198, 253, 258, 313, 301, 241, 294, 195, 136
R14: 51, 52, 11, 112, 71, 117, 116, 57, 56, 55, 46
R15: 38, 47, 98, 107, 158, 125, 65, 5
R16: 220, 280, 281, 249, 336, 309, 341, 340, 339, 330, 279
R17: 255, 354, 315, 316, 317, 312, 360, 252, 257, 256, 196
R18: 45, 50, 105, 110, 165, 170, 225, 185, 218, 167, 108, 49, 48
R19: 21, 26, 27, 28, 87, 147, 148, 68, 88, 8, 33
R20: 60, 120, 72, 180, 239, 298, 353, 306, 346, 295, 286, 235, 175
R21: 17, 12, 76, 135, 234, 181, 193, 138, 133, 78, 73, 18, 13
R22: 32, 151, 202, 183, 243, 269, 214, 209, 154, 149, 94, 89, 29
R23: 53, 58, 113, 118, 173, 126, 66, 6

498 R. De Franceschi et al.

R24: 4, 64, 124, 184, 210, 150, 90, 30
R25: 144, 204, 264, 323, 324, 265, 187, 205, 127, 145
R26: 177, 131, 237, 191, 297, 356, 355, 296, 236, 176
R27: 168, 227, 278, 245, 305, 345, 290, 285, 230, 171, 111
R28: 77, 137, 132, 197, 192, 300, 359, 358, 299, 240, 179
R29: 74, 83, 134, 143, 194, 203, 254, 263, 314, 302, 242, 261, 206, 146
R30: 92, 152, 211, 262, 271, 322, 303, 329, 274, 215, 155, 95
R31: 106, 115, 166, 226, 186, 246, 293, 238, 233, 178, 119, 59
R32: 99, 159, 219, 270, 244, 304, 337, 282, 277, 222, 217, 162, 157, 97
R33: 81, 86, 141, 201, 182, 122, 62, 2

New best known solution for instance Tai385, having cost 24422.50

R1: 341, 342, 349, 346, 347, 348, 383, 375
R2: 336, 333, 334
R3: 246, 242, 228, 227
R4: 262, 261, 260, 259, 266, 276
R5: 139, 180, 179, 178, 190, 183, 182, 186, 185, 345, 378
R6: 193, 203, 205, 206, 213, 214, 216, 373, 217, 219, 32, 33, 34, 35, 5,
160, 161, 162, 163, 164
R7: 382, 358, 364
R8: 360, 357, 325
R9: 319, 281, 385, 49, 50, 57, 52
R10: 209, 210, 211, 212, 215, 365, 218, 220, 37, 39, 38, 40, 45, 384,
43, 42, 44, 48, 47, 46, 41, 36, 368, 192
R11: 300, 327, 359, 361, 362, 363, 323, 324
R12: 239, 238, 235, 233, 249, 250, 379
R13: 241, 236, 229, 230, 3, 223, 224, 231, 232, 234, 237, 240
R14: 314
R15: 351, 352, 221, 222
R16: 320, 279, 265, 254, 255, 380, 256, 251, 252, 248, 243, 244, 245,
247, 253, 374, 1
R17: 353, 354, 356, 355, 350, 225, 226
R18: 269, 338, 339, 340, 343, 208, 367, 202, 344, 189, 184, 181
R19: 308, 307
R20: 145, 121, 112, 113, 118, 115, 114, 146, 149, 151
R21: 142, 171, 381, 167, 165, 191, 199, 194, 176, 177, 175, 174, 173
R22: 302, 311
R23: 72, 69, 64, 65, 18, 19, 63, 62, 73, 81
R24: 88, 82, 80, 79, 78, 58, 59, 60, 61, 76, 77, 75, 74, 103, 90
R25: 275, 288, 294
R26: 310
R27: 136, 2, 140, 134, 133, 127, 128
R28: 305, 290, 289, 85, 54, 53, 283, 284, 291, 292, 321, 303, 309
R29: 96, 101, 102, 104, 105, 108, 130, 126, 97
R30: 188, 376, 124, 106, 71, 70, 107, 125, 98
R31: 304, 86, 84, 83, 56, 55, 187, 51, 282, 280, 257, 258, 286, 295
R32: 287, 263, 264, 277, 278, 285, 293
R33: 317
R34: 322, 301
R35: 274, 270, 332, 268
R36: 330, 331, 335
R37: 297, 267, 329
R38: 296, 273, 272, 298
R39: 138, 318
R40: 306, 87, 89, 100, 99, 312
R41: 94, 137, 132, 95, 93, 92, 91
R42: 315, 313
R43: 371, 110, 66, 68, 15, 17, 16, 29, 13, 24, 22, 23, 20, 21, 30, 31,

A new ILP-based refinement heuristic for Vehicle Routing Problems 499

12, 11, 10, 9, 8, 7, 25, 26, 14, 370, 377, 67, 109, 122, 123, 129
R44: 135, 144, 152, 150, 155, 156, 157, 4, 158, 159, 366, 198, 201, 197,
200, 207, 204, 195, 196, 169, 172, 170
R45: 111, 119, 120, 28, 27, 6, 369, 117, 116, 147, 148, 154, 166, 153,
168, 143, 141, 131
R46: 299, 316, 372
R47: 326, 328, 337, 271

New best known solution for instance E400-18k, having cost 918.4151609

R1: 5, 9, 14, 20, 27, 43, 34, 26, 19, 13
R2: 53, 64, 76, 89, 103, 118, 134, 150, 168, 151, 169, 188, 208, 227,
246, 228, 209, 189, 170, 152, 135, 119, 104, 90, 77, 65, 54, 44, 35
R3: 33, 42, 51, 62, 61, 73, 86, 99, 85, 72, 60, 50, 41, 25
R4: 2, 8, 4
R5: 162, 200, 238, 288, 316, 328, 339, 349, 359, 368, 375, 381, 387,
392, 395, 397, 399, 398, 396, 393, 388, 382, 376, 369, 360, 350, 340,
329, 317, 303, 273, 257, 201, 163
R6: 1
R7: 114, 146, 182, 221, 240, 258, 274, 289, 304, 290, 305, 318, 330,
341, 351, 361, 352, 342, 331, 319, 306, 292, 276, 291, 275, 259, 241,
222, 202, 164, 130, 100
R8: 52, 63, 75, 88, 102, 117, 133, 149, 167, 186, 206, 187, 207, 226,
245, 263, 279, 262, 244, 225, 205, 185, 166, 148, 132, 116, 101, 87, 74
R9: 3, 6, 10, 15, 21, 29, 22, 16, 7
R10: 12, 18, 24, 32, 40, 31, 17, 11
R11: 113, 129, 145, 181, 220, 239, 256, 272, 287, 302, 315, 327, 338,
326, 314, 301, 286, 271, 255, 237, 219, 180, 144, 128, 98
R12: 161, 199, 218, 254, 270, 300, 313, 325, 337, 348, 358, 367, 374,
380, 386, 391, 394, 390, 385, 379, 373, 366, 357, 347, 336, 324, 312,
299, 285, 269, 253, 236, 198, 179
R13: 115, 131, 165, 184, 204, 224, 243, 261, 278, 294, 308, 321, 333,
344, 354, 363, 371, 378, 384, 389, 383, 377, 370, 362, 353, 343, 332,
320, 307, 293, 277, 260, 242, 223, 203, 183, 147
R14: 69, 95, 109, 124, 140, 157, 176, 195, 214, 232, 249, 265, 280, 295,
309, 296, 281, 266, 282, 267, 250, 233, 215, 196, 177, 158, 141, 125,
110, 70
R15: 23, 39, 49, 59, 71, 83, 97, 112, 127, 111, 96, 82, 58, 48, 30
R16: 38, 81, 94, 108, 123, 139, 156, 175, 194, 213, 231, 248, 264, 247,
229, 210, 190, 171, 153, 136, 120, 105, 91, 78, 66, 55, 45, 36, 28
R17: 47, 57, 68, 80, 93, 107, 122, 138, 155, 174, 193, 173, 192, 212,
230, 211, 191, 172, 154, 137, 121, 106, 92, 79, 67, 56, 46, 37
R18: 84, 43, 160, 178, 217, 235, 252, 284, 298, 311, 323, 335, 346, 356,
365, 372, 364, 355, 345, 334, 322, 310, 297, 283, 268, 251, 234, 216,
197, 159, 142, 126

