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Abstract. Packing a maximum number of disjoint triangles into a given graph G is NP-hard, even for most
classes of structured graphs. In contrast, we show that packing a maximum number of independent (that is,
disjoint and nonadjacent) triangles is polynomial-time solvable for many classes of structured graphs, includ-
ing weakly chordal graphs, asteroidal triple-free graphs, polygon-circle graphs, and interval-filament graphs.
These classes contain other well-known classes such as chordal graphs, cocomparability graphs, circle graphs,
circular-arc graphs, and outerplanar graphs. Our results apply more generally to independent packings by
members of any family of connected graphs.
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1. Introduction

Let H be a fixed set of connected graphs. An H-packing of a given graph G is a pairwise
node-disjoint set of subgraphs of G, each isomorphic to a member of H. An independent
H-packing of a given graph G is an H-packing of G in which no two subgraphs of the
packing are joined by an edge of G. When H is a single graph H , we have H -packings
and independent H -packings of G. Thus a K2-packing of G is precisely a matching of G,
and an independent K2-packing of G is precisely an induced matching of G. Similarly,
an independent K1-packing of G is precisely an independent set of nodes in G. The
H-packing problem asks for the maximum number of nodes covered by an H-packing,
while the independent H-packing problem asks for the maximum number of graphs
contained in an independent H-packing, of the input graph G. We can similarly study
the alternate problems, of packings with maximum number of graphs, and independent
packings with maximum number of covered nodes, but the more natural problems are
the ones stated above. In any event, when H consists of one graph H , the two objectives
coincide.

It is known [32] that the H -packing problem is NP-hard for any connected graph H

with at least three nodes. (On the other hand, polynomial-time H-packing algorithms
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are known for nice families H [10, 27, 31, 33, 45].) The H -packing problem remains
NP-hard for many graphs H , even when restricted to chordal graphs, planar graphs,
line-graphs, and total graphs [26].

In this paper we show that independent H-packings can be found by polynomial-
time algorithms for any family H of connected graphs, when the input graphs have nice
structure. This applies to a number of different classes of structured graphs; the reason
for this seems to be related to the following construction.

Given a graph G and set H of graphs, we define another graph, H(G), whose nodes
are the subgraphs of G isomorphic to a member of H, and such that two nodes are
adjacent exactly when the subgraphs they correspond to intersect or are joined by an
edge of G. Then independent H-packings in G correspond precisely to independent
sets of nodes in H(G). Often, if G has nice structure, the structure is inherited by the
graph H(G). If H(G) can be constructed in time polynomial in the size of G, and if the
independent set problem is polytnomial-time-solvable in H(G), then the independent
H-packing problem is polynomial-time-solvable in G.

In particular, for a family H of connected graphs, we show that if G is a polygon-
circle graph, then so is H(G), and the same holds for cocomparability graphs, asteroidal
triple-free graphs, weakly chordal graphs and interval-filament graphs. It follows that
the independent H-packing problem is polynomial-time-solvable in these classes. Inter-
val-filament graphs include cocomparability graphs and polygon-circle graphs, and the
latter include circle graphs, circular-arc graphs, chordal graphs, and outerplanar graphs.
Definitions of these graph classes are given below. Figure 1 shows inclusion relations
between them.

These results have been anticipated, more or less independently, by two earlier devel-
opments. First of all, the problem of finding a largest induced matching, i.e., the inde-
pendent K2-packing problem, has been widely studied [5–9, 11–13, 22, 23, 38, 41, 46].
It is known to be NP-hard for bipartite graphs [5, 50], and for planar graphs [40]; polyno-
mial-time algorithms for various classes of structured graphs were given in [5–7, 9, 22,
23]. The techniques of those papers are closely related to the present paper. Secondly,
the problem of maximum sized independent r-clique packings, i.e., the independent
Kr -packing problem, has been solved in the class of chordal graphs in [34–37]. (Note
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that in (independent) Kr -packings, the size r of the cliques is fixed.) In addition to algo-
rithms, independent Kr -packings were related to generalizations of split graphs. In fact,
it is shown in [34, 36] that, for chordal graphs G, the maximum number of independent
Kr ’s in G is equal to the minimum number of cliques that meet all Kr ’s of G. These
results also include an efficient algorithm to find a minimum s such that a chordal graph
G can be partitioned into s cliques and r −1 independent sets. A weighted version of the
min-max theorem was given in [37]. While these papers also employ the general tech-
nique of the auxiliary graph H(G), they also offer direct algorithms using the perfect
elimination ordering of G, resulting in linear time performance.

We remark that the definition of H(G) can be extended so that we are allowed to
specify which subgraphs of G isomorphic to a member of H are to be included. For
instance one may want to only allow induced subgraphs, or some other pre-determined
family of subgraphs. (This point of view for ordinary packings has been taken in [10].)

For the independent H-packing problem in G, each node of H(G) has weight 1.
Different weightings of H(G) can be used to solve other problems. For example, if we
want to cover as many nodes as possible by an independent H-packing in G, we would
give the node of H(G) corresponding to a subgraph G′ of G weight equal to the number
of nodes of G′, and then find a maximum weight independent set of nodes in H(G). In
particular, a dissociation set is a set of nodes which induce a subgraph with maximum
degree 1. The problem of finding a largest dissociation set is NP-hard for bipartite graphs
[51], but polynomial-time-solvable for bipartite graphs without an induced “skew star”
[2]. Dissociation sets are precisely independent {K1, K2}-packings, so the problem of
finding a largest dissociation set in graph G can be solved by finding a maximum weight
independent set of nodes in H(G), where the weight of nodes corresponding to K1’s in
G is 1 and the weight of nodes corresponding to K2’s in G is 2. Our results imply that
dissociation set problem can be solved in polynomial time for chordal graphs, weakly
chordal graphs, asteroidal triple-free graphs and interval-filament graphs since maxi-
mum weight independent sets of nodes can be found in these graphs in polynomial time
[4, 16, 18, 29, 42, 48].

We now give a simple proof that packing independent triangles in general graphs is
NP-hard. We give a reduction from induced matching, which is known to be NP-hard
[5, 40, 50]. In fact, since induced matching is NP-hard for planar graphs [40], and our
reduction preserves planarity, it follows that packing independent triangles is NP-hard
in planar graphs. Let G be a graph; form a new graph G′ by adjoining to G one new
node ve for each edge e of G, which is adjacent to both endpoints of e. Then G has an
induced matching of k edges if and only if G′ has an independent packing of k triangles:
Each k independent edges of G give rise to k independent triangles of G′. Conversely, k
independent triangles of G′ yields k independent edges of G as follows: If the triangle
contains one of the added nodes ve, remove it to get the edge e. Otherwise, remove any
one node of the triangle to obtain an edge.

Given a family F of non-empty sets, the intersection graph I(F) of F has node-set
F and an edge between u and v exactly when u ∩ v �= ∅. There are many well-studied
classes of intersection graphs including the following. Interval graphs are the intersec-
tion graphs of a set of intervals on a line; chordal graphs are the intersection graphs
of a set of subtrees of a tree; circular-arc graphs are the intersection graphs of a set of
arcs of a circle; circle graphs are the intersection graphs of a set of chords of a circle;
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polygon-circle graphs are the intersection graphs of a set of convex polygons inscribed
on a circle. The class of polygon-circle graphs includes the classes of chordal graphs
[39], circular-arc graphs [39], circle graphs, and outerplanar graphs (see [43]).

Cocomparability graphs are the complements of comparability graphs, which are
graphs which have a transitive acyclic orientation. Cocomparability graphs can be char-
acterized as the intersection graphs of a set of curves between two parallel lines, L1 and
L2, in the plane, each curve having one endpoint on L1 and the other on L2 [24].

Recently, Gavril [18] has introduced a new class of graphs which he calls interval-
filament graphs. A graph is an interval-filament graph if it is the intersection graph of a
set of curves C (called interval-filaments) in the xy−plane with left endpoint, l(C), and
right endpoint, r(C), lying on the x−axis such that C lies in the plane above and within
the interval [l(C), r(C)]. The curves can be self-intersecting. Interval-filament graphs
include polygon-circle graphs and cocomparability graphs [18].

In this paper, we will also look at two other classes of graphs: asteroidal triple-free
graphs and weakly chordal graphs, which we now define. Neither class is known to be
the intersection graphs of some nice family. An independent set of three nodes is called
an asteroidal triple (AT) if between each pair in the triple there exists a path that avoids
the neighborhood of the third. A graph is asteroidal triple-free (AT-free) if it contains no
asteroidal triple. Interval graphs [44] and cocomparability graphs [14] are AT-free.

A graph is weakly chordal if neither the graph nor the complement of the graph has an
induced circuit on five or more nodes. Weakly chordal graphs were introduced by Hay-
ward in [28] and are a well-studied class of perfect graphs. The class of weakly chordal
graphs includes the classes of interval graphs, chordal graphs, permutation graphs, and
trapezoid graphs, and the complements of these. For more on specially structured classes
of graphs, see [3].

Finding a largest independent set of nodes in a graph, and in particular, in a per-
fect graph, is a well-studied problem in mathematical programming. Chordal, weakly
chordal, and cocomparability graphs are perfect, but other types of graphs discussed in
this paper - circular-arc graphs, circle graphs, polygon-circle graphs, interval-filament
graphs, and AT-free graphs - need not be perfect. There is a polynomial-time algorithm
for largest independent set in a perfect graph [25], but this algorithm is not combinatorial.
For the classes of graphs studied in this paper, there are combinatorial polynomial-time
algorithms for largest independent set, and these algorithms also have better complexity.
We sometimes study certain subclasses of a class of graphs, since often better algorithms
exist for the subclass.

For the rest of the paper, we shall always assume that H is a family of connected
graphs. We will show that for the classes of interval graphs, chordal graphs, circu-
lar-arc graphs, polygon-circle graphs, cocomparability graphs, interval-filament graphs,
AT-free graphs, and weakly chordal graphs, if G is in the class, then so is H(G). Since
the independent set problem is polynomial-time-solvable in each of these classes, so
is the independent H-packing problem, as long as H(G) can be constructed in time
polynomial in the size of G.

2. Intersection graphs

The following idea was used in [5] to prove that if G is chordal, then K2(G) is chordal.
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Proposition 1. Let G = I(F) be the intersection graph of a family F . Let H be a set
of graphs. Then H(G) is the intersection graph of the family F ′
={∪S : S is a subfamily of F corresponding to an H-subgraph of G}
= {Si1 ∪ . . .∪Sir : {i1, . . . , ir} is the node-set of a subgraph of G isomorphic to a graph
in H, Sik ∈ F}.
That is, H(G) = I(F ′).

Proof. Let {Si1 , . . . , Sim} ⊆ F and {Sj1 , . . . , Sjn} ⊆ F correspond to the node-sets of
subgraphs Ci and Cj of G, each isomorphic to a graph in H.
(Si1 ∪ . . . ∪ Sim) ∩ (Sj1 ∪ . . . ∪ Sjn) �= ∅
if and only if there exist p and q such that Sip ∩ Sjq �= ∅
if and only if there exist p and q such that ip is a node of Ci , jq is a node of

Cj and either ip and jq are the same node or are joined by an edge in G

if and only if Ci and Cj have a node in common or are joined by an edge. �	

Note that if S is a set of subtrees of a tree T whose intersection graph is connected,
then ∪S is also a subtree of T . Similarly, if S is a set of intervals on a line L whose
intersection graph is connected, then ∪S is also an interval on L, and, if S is a set of arcs
of a circle C whose intersection graph is connected, then ∪S is also an arc of C, or can
be replaced by an arc of C without changing the graph (in case ∪S is the entire circle).
These observations, together with Proposition 1 give the following corollaries.

Corollary 1. If G is a chordal graph, then H(G) is also a chordal graph.

Corollary 2. If G is an interval graph, then H(G) is also an interval graph.

Corollary 3. If G is a circular-arc graph, then H(G) is also a circular-arc graph.

We now prove that for the classes of polygon-circle graphs, cocomparability graphs,
and interval-filament graphs, if G is in the class, then so is H(G). These results are
more difficult than for interval, chordal, and circular-arc graphs, because the union of
a set of pairwise intersecting polygons inscribed on a circle is not generally another
polygon inscribed on a circle, the union of a set of pairwise intersecting curves between
two parallel lines is not generally another such curve, and the union of a set of pairwise
intersecting interval-filaments is not generally another interval-filament. Thus we can’t
apply Proposition 1 directly. Rather, we show that in each case, if G is the intersection
graph of a family F, then H(G) is the intersection graph of a family F ′′
= {M(Z) : Z ∈ F ′}
= {M(∪S) : S is a subfamily of F corresponding to an H-subgraph of G}
= {M(Si1 ∪ . . . ∪ Sim) : {i1, . . . , im} is the node-set of a subgraph of G isomorphic to
a graph in H, Sik ∈ F},
where M has the properties that for ∪{Si1 , . . . , Sim}, ∪{Sj1 , . . . , Sjn} ∈ F ′,

1. If (∪{Si1 , . . . , Sim}) ∩ (∪{Sj1 , . . . , Sjn}) �= ∅,

then M(∪{Si1 , . . . , Sim}) ∩ M(∪{Sj1 , . . . , Sjn}) �= ∅.

2. If M(∪{Si1 , . . . , Sim}) ∩ M(∪{Sj1 , . . . , Sjn}) �= ∅,

then (∪{Si1 , . . . , Sim}) ∩ (∪{Sj1 , . . . , Sjn}) �= ∅.



206 K. Cameron, P. Hell

Then, since H(G) is the intersection graph of F ′, it is also the intersection graph of
F ′′.

Theorem 1. If G is a polygon-circle graph, then H(G) is also a polygon-circle graph.

Proof. Let CH(Z) denote the convex hull of Z. For M = CH, property (1) above
clearly holds since a set is contained in its convex hull. To prove (2), we first note the
following.

Claim 1. If {Si1 , . . . , Sim} is a set of polygons inscribed on a circle C, whose intersection
graph is connected, and if P is another polygon inscribed on C, then

CH(∪{Si1 , . . . , Sim}) ∩ P �= ∅ implies there is a k such that Sik ∩ P �= ∅.
Then (2) follows by applying Claim 1 twice, once with P = CH(∪{Sj1 , . . . , Sjn}),

and then a second time, replacing CH(∪{Si1 , . . . , Sim}) with CH(∪{Sj1 , . . . , Sjn}) and
replacing P by the Sik which intersects CH(∪{Sj1 , . . . , Sjn}). For m = 2, Claim 1 was
proved in [6].

Proof of Claim. Assume CH(∪{Si1 , . . . , Sim}) ∩ P �= ∅. Polygons CH(∪{Si1 , . . . ,

Sim}) and P are convex, so assuming they intersect, they intersect in a boundary point
B of each. Now B is either a vertex of P or lies on an edge E of P. In the first case, B

lies on the circle C, and it follows that B must be a vertex of some Sik . In the second
case, edge E is a chord of the circle. If E does not intersect any Sik , then each Sik lies
completely in the left half L of C − E or the right half R of C − E. If all of the Sik ’s
lie completely on one side of the line segment E, then so does CH(∪{Si1 , . . . , Sim}),
a contradiction. Suppose polygon Sip lies in L and Siq lies in R. Since the intersection
graph of {Si1 , . . . , Sim} is connected, there is a path between the nodes corresponding
to Sip and Siq ; that is, there exists a sequence of Sik ’s starting with Sip ∈ L and ending
with Siq ∈ R, such that adjacent members of the sequence intersect. But then one of
these must intersect the line segment E, a contradiction. �	

Note that not all nice subclasses of polygon-circle graphs have the property that for
G in the subclass, Kr(G) is also in the subclass. This is not true for the outerplanar
graph C5, the circuit on five nodes, for instance, since K2(C5) is the complete graph on
five nodes, which is not outerplanar. In [6], an example is given of a circle graph G for
which K2(G) is not a circle graph.

Theorem 2. If G is an interval-filament graph, then H(G) is also an interval-filament
graph.

Proof. Let G be the intersection graph of a set C of interval-filaments on a horizontal
line L. We now describe the construction of M(Z) satisfying (1) and (2). Without loss of
generality, we may assume that no two filaments have a common endpoint. Consider a
set of members of C, say C1, . . . , Cr , whose intersection graph is connected. Consider a
plane (multi)graph H , whose nodes are the endpoints and intersection points of the Ci’s
and whose edges are the pieces of the Ci’s between these points. Clearly, H is connected.
All nodes of H except the endpoints of the Ci’s have even degree. Let l∗ be the leftmost
of the left endpoints of the Ci’s and let r∗ be the rightmost of the right endpoints of the
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Ci’s. Pair up the endpoints of the Ci’s other than l∗ and r∗ in their left-to-right order. For
each pair, find a chordless path in H between the members of the pair. Create a plane
graph H ′ from H by doubling the edges of each of these paths in H, (that is, for each
edge of one of the paths, add a new edge parallel to it), keeping each new edge “close” to
the original, so that a copy of a piece of Ci intersects only filaments that Ci does. Then
H ′ is a plane graph with exactly two nodes of degree 1, l∗ and r∗, and the rest of even
degree, and thus corresponds to a single (self-intersecting) filament W with endpoints
l∗ and r∗. Let M(∪{Si1 , . . . , Sir }) = W. Then it is clear that (1) and (2) hold, and thus
H(G) is also an interval-filament graph. �	

This idea can also be used to prove:

Theorem 3. If G is a cocomparability graph, then H(G) is also a cocomparability
graph.

Proof of Theorem 3. Let cocomparability graph G be the intersection graph of a set C of
curves between two parallel vertical lines, L1 and L2, in the plane, each curve having one
endpoint on L1 and the other on L2. Without loss of generality, we may assume that no
two curves have a common endpoint. Consider a set of members of C, say C1, . . . , Cr ,
whose intersection graph is connected. Consider a plane (multi)graph H , whose nodes
are the endpoints and intersection points of the Ci’s and whose edges are the pieces of
the Ci’s between these points. All nodes of H except the endpoints of the Ci’s have even
degree. Let l∗ be one of the left endpoints of the Ci’s, say the topmost one, and let r∗ be
one of the right endpoints of the Ci’s, say the topmost one. Pair up the endpoints of the
Ci’s other than l∗ and r∗ in their top-to-bottom order. For each pair, find a chordless path
in H between the members of the pair. Create a plane graph H ′ from H by doubling the
edges of each path in H, keeping each new edge “close” to the original, so that a copy of
a piece of Ci intersects only curves that Ci does. Then H ′ is a plane graph with exactly
two nodes of degree 1, l∗ and r∗, and the rest of even degree, and thus corresponds to
a single (self-intersecting) curve W with one endpoint (l∗) on L1 and the other (r∗) on
L2. Let M(∪{Si1 , . . . , Sir }) = W. Then it is clear that (1) and (2) hold, and thus H(G)

is also a cocomparability graph. �	
Polynomial-time algorithms have been given for finding a largest independent set

of nodes in chordal graphs [16], in circular-arc graphs [17, 21], and in interval-filament
graphs [18], and one is well-known for cocomparability graphs (find a transitive acyclic
orientation of the complement [19, 20] and then find a largest clique). By Corollary
1, Corollary 3, Theorem 2 and Theorem 3, these provide polynomial-time algorithms
for finding a largest independent H-packing in these classes, as long H(G) can be
constructed in time polynomial in the size of G. This is for instance the case for the
independent Kr -packing problem.

Gavril’s algorithm for finding a largest independent set of nodes in an interval-filament
graph requires as input the interval-filament representation. Where H(G) can be con-
structed in time polynomial in the size of G, if we are given the interval-filament rep-
resentation of G, an interval-filament representation of H(G) can be constructed in
polynomial time as described in the proof of Theorem 2. Then Gavril’s algorithm can be
applied to find a largest independent set of nodes in H(G), giving a largest independent
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H-packing in G assuming every graph in H is connected. In particular, this works for
the independent Kr -packing problem.

So far, the only polynomial-time algorithm known for the independent set problem
in polygon-circle graphs is Gavril’s algorithm for the more general class of interval-
filament graphs. For the other classes of graphs mentioned, namely, chordal graphs,
cocomparability graphs, and circular-arc graphs, polynomial-time algorithms exist for
the independent set problem, and thus for the independent Kr -packing problem and
certain independent H-packing problems, which do not require any representation but
simply the adjacency information. (However, we note that more efficient algorithms can
sometimes be obtained by directly describing a representation of H(G) from that for
G. For instance, in [35], this is done for independent Kr -packings of chordal graphs,
represented by simplicial orderings.)

An NC-algorithm is one which uses polynomially many parallel processors and
whose running time is polynomial in the logarithm of the length of the input. For fixed
r , it is straightforward to design an NC algorithm to find Kr(G) for graph G. Thus the
NC algorithm in [47] for finding a largest independent set of nodes in chordal graphs
provides an NC algorithm for finding a maximum independent Kr -packing in chordal
graphs. Similarly, NC algorithms for maximum independent set of nodes in circular-arc
graphs [1, 49] provide NC algorithms for maximum independent Kr -packing in this
class.

3. Asteroidal triple-free and weakly chordal graphs

An independent set of three nodes is called an asteroidal triple (AT) if between each
pair in the triple there exists a path (which can be assumed to be chordless) that avoids
the neighborhood of the third. A graph is asteroidal triple-free (AT-free) if it contains no
asteroidal triple. AT-free graphs are not yet known to be the intersection graphs of some
nice family, however they contain several classes of intersection graphs including inter-
val graphs [44] and cocomparability graphs [14]. Chordal graphs may have asteroidal
triples.

Theorem 4. If G is AT-free, then H(G) is also AT-free.

Proof. We will prove the contrapositive. Where C is a subgraph of G isomorphic to a
graph inH, letv(C)denote the corresponding node ofH(G).Suppose {v(X), v(Y ), v(Z)}
is an AT in H(G). Let v(X) = v(C1), v(C2), . . . v(Ck) = v(Y ) be the nodes of a chord-
less path P in H(G), which avoids the neighbourhood of v(Z). Since v(Ci)v(Ci+1) is an
edge of H(G), Ci and Ci+1 either contain a common node of G or are joined by an edge
of G. If three of the Ci’s contained a common node of G, then the corresponding v(Ci)’s
would induce a triangle in H(G), so P would not be a chordless path in H(G). Also, Ci

can only intersect Ci−1 and Ci+1, since if Ci intersects Cj , where j /∈ {i−1, i+1}, then
P would have a chord between v(Ci) and v(Cj ). Where Cq, Cq+1, . . . , Cr is a maximal
sequence of Ci’s where each Ci intersects the one(s) next to it in the sequence, we’ll call
Cq ∪Cq+1 ∪ . . .∪Cr an H-string. Where Cj does not intersect any other Ci’s, we’ll call
Cj an H-graph. It follows that {Ci : 1 ≤ i ≤ k} is a set of pairwise-disjoint H-graphs
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and H-strings. Let’s call these H-graphs and H-strings D1, D2, . . . , Dm, where D1 is
either C1 or the H-string (of P ) containing C1, and the others follow in order as in P.

The edge of P between the nodes of H(G) representing Dj and Dj+1 corresponds
to a set of edges in G; choose one such edge of G for each j and call these the suppressed
edges. (If m = 1, the set of suppressed edges is empty.) Note that each suppressed edge
has one end in some Ci and the other end in Ci+1. Let x′ be any node of X and let y′ be
any node of Y . Extend the suppressed edges to a x′y′-path in G by choosing a path from
each Dj . These paths exist because each Ci is isomorphic to a graph in H, and thus is
connected, and thus so is Dj . Call the x′y′-path, P ′.

Note that every node of P ′ is in some Ci.

Let z′ be any node of Z. We claim that {x′, y′, z′} is an AT in G. Since {v(X), v(Y ),

v(Z)} is an independent set of nodes in H(G), {x′, y′, z′} is an independent set of nodes
in G. Path P ′ does not contain any neighbours of z′ in G because if node u of P ′
is a neighbour of z′ in G, and u is in Ci , then v(Ci) and v(Z) are joined in H(G),

contradicting the choice of P. It follows that {x′, y′, z′} is an AT in G. �	

In [4] and [42], polynomial-time algorithms are given for finding a largest inde-
pendent set of nodes in AT-free graphs. Thus these algorithms provide polynomial-time
algorithms for finding a largest independent H-packing, as long as H(G) can be con-
structed in time polynomial in the size of G.

A hole in a graph G is an induced circuit on four or more nodes. An antihole is the
complement of a hole. A graph is weakly chordal if it has no hole or antihole on five or
more nodes. Interval graphs, chordal graphs, permutation graphs, and trapezoid graphs,
and the complements of these are all weakly chordal.

We will show that if G is weakly chordal, then H(G) is also weakly chordal. Poly-
nomial-time algorithms for finding a largest independent set of nodes in weakly chordal
graphs are known [29, 48, 30]. This then provides a polynomial-time algorithm for the
largest independent Kr -packing problem in weakly chordal graphs, and for the largest
independent H-packing problem in weakly chordal graphs in cases where H(G) can be
constructed in time polynomial in the size of G.

A graph is chordal bipartite if it is both weakly chordal and bipartite; equivalently,
a bipartite graph is chordal bipartite if it has no holes on six or more nodes. Theorem 5
below implies that the largest independent H-packing problem can be solved in poly-
nomial time for chordal bipartite graphs in cases where H(G) can be constructed in
time polynomial in the size of G, whereas the largest independent H-packing problem
is NP-hard for general bipartite graphs since the induced matching problem is [5, 50,
46].

Theorem 5. If G is a weakly chordal graph, then H(G) is also a weakly chordal graph.

Our proof extends the proof in [7]. We first prove two lemmas.

Lemma 1. If G has no holes on at least k nodes, where k ≥ 4, then H(G) has no holes
on at least k nodes.

Proof. Where C is a subgraph of G isomorphic to a graph in H, let v(C) denote the
corresponding node of H(G). Let P = v(C1), v(C2), . . . , v(Ck) be the nodes of a hole
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in H(G) where k ≥ 4. We will show that G has a hole on at least k nodes. In what
follows, arithmetic is either mod k or mod m, as appropriate.

Since v(Ci)v(Ci+1) is an edge of H(G), Ci and Ci+1 either contain a common
node of G or are joined by an edge of G. If three of the Ci’s contained a common node
of G, then the corresponding v(Ci)’s would induce a triangle in H(G), so P would
not be chordless. Also, Ci can only intersect Ci−1 and Ci+1, since if Ci intersects Cj ,

where j /∈ {i − 1, i + 1}, then P would have a chord between v(Ci) and v(Cj ). Where
Cq, Cq+1, . . . , Cr is a maximal sequence of Ci’s where each Ci intersects the one(s)
next to it in the sequence, we’ll call Cq ∪ Cq+1 ∪ . . . ∪ Cr an H-string. Where Cj does
not intersect any other Ci’s, we’ll call Cj an H-graph. It follows that {Ci : 1 ≤ i ≤ k}
is a set of pairwise-disjoint H-graphs and H-strings. Let’s call these H-graphs and H-
strings D1, D2, . . . , Dm, where D1 is either C1 or the H-string containing C1, and the
others follow in order as in P. We will first assume that m > 1. Then, without loss of
generality, assume that C1 is either an H-graph or the beginning of an H-string.

The edge of P between the nodes of H(G) representing Dj and Dj+1 corresponds to
a set of edges in G; choose one such edge of G for each j and call these the suppressed
edges. Note that each suppressed edge has one end in some Ci and the other end in
Ci+1; in fact, one end is in Ci − Ci−1 and the other end is in Ci+1 − Ci+2. Extend the
suppressed edges to a circuit in G by choosing a chordless path from each Dj . These
paths exist because each Ci is isomorphic to a graph in H, and thus is connected, and
thus so is Dj . Call the circuit P ′.

Note that every node of P ′ is in some Ci. In fact, the nodes of P ′ are nodes of C1,
followed by nodes of C2, and so on to Ck . We now show that circuit P ′ contains at least
one node from each Ci. Since Ci and Ci+1 either contain a common node of G or are
joined by an edge of G, and since Ci and Cj , j /∈ {i − 1, i + 1}, neither contain a
common node of G nor are joined by an edge of G, and since suppressed edges have
one end in Ci − Ci−1 and the other end is in Ci+1 − Ci+2 for some i, it follows that
circuit P ′ intersects H-string Dj = Cq ∪ Cq+1 ∪ . . . ∪ Cr at a node of Cq − Cq+1, then
a node of Ci, i ∈ q + 1, . . . , r − 1, and finally a node of Cr − Cr−1. It follows that P ′
has at least as many nodes as P.

Any chord of P ′ must have its ends in two consecutive Ci’s; in fact, in Ci − Ci−1
and Ci+1 − Ci+2, for some i. A hole in G with at least as many nodes as P has can be
found as follows.

Starting with i = 1, for each i, if there is a chord of P ′ with ends in Ci and Ci+1,
choose a longest such chord, say ei (that is, a chord such that the part of P ′ between its
ends has the largest number of edges), and replace the part of P ′ between the ends of ei

by ei . The circuit obtained has no chord between nodes of Ci and Ci+1, however it still
has a node from each Ci , and thus has at least as many nodes as P.

We now look at the case when m = 1; that is, when the union of the Ci’s is a single
“closed” H-string. Choose a node u in C1 ∩ C2 and a node v in C1 ∩ Ck . Note that u

and v are distinct. Find a chordless path P1 between u and v in C1 and a chordless path
P2 between u and v in C2 ∪ C3 ∪ . . . ∪ Ck . Considering P2 to be a path from u to v, let
u′ be the last node of P2 which is also a node of P1. Considering P2 to be a path from
v to u, let v′ be the last node of P2 which is also a node of P1. The union of the parts
of the paths between u′ and v′ is a circuit Q. Any chord of Q must have one end in C1
and the other in C2 or Ck . As in the m > 1 case, by first choosing a longest such chord
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between Ck and C1 and replacing the part of Q between the ends of the chord by the
chord, and then doing the same with a longest remaining chord between C1 and C2 , we
get a hole Q′. By an argument similar to that in the m > 1 case, it follows that Q′ has a
node from each Ci . �	
Lemma 2. If G is weakly chordal, then H(G) does not contain an antihole on five or
more nodes.

Our proof relies on a known structural property of weakly chordal graphs. We need
to introduce some notation and definitions. Let S be a set of nodes in graph G. We use
G[S] to denote the subgraph induced in G by S. We use G[S] to denote the subgraph
induced by S in G, the complement of G. The neighbourhood, N(S), is the set of nodes
of G − S that are adjacent to at least one node of S. We say S separates sets X and Y of
nodes if every path from a node in X to a node in Y contains some node in S. We say S

minimally separates X and Y if no proper subset of S separates X and Y . The following
theorem was proved by Hayward [28]:

Theorem 6 ([28]). Let S, X, and Y be sets of nodes in a weakly chordal graph G such
that X and Y induce connected components of G − S, S minimally separates X and Y ,
and G[S] is connected. Then X and Y each contain a node that is adjacent to every node
of S.

We prove Lemma 2 by contradiction. We show that if graph G is weakly chordal,
but the graph H(G) contains an antihole on five or more nodes, we can find a induced
subgraph F of G such that the weakly chordal graph F has sets X, Y , and S that satisfy
the hypotheses of Theorem 6, but not the conclusion of Theorem 6.

Proof of Lemma 2. Suppose G is weakly chordal, but H(G) contains the antihole
v(C1), v(C2), v(C3), v(C4), . . . , v(Ck) as an induced subgraph, where k ≥ 5. The or-
der of the nodes listed corresponds to the cyclic order along the hole in the complement
of H(G).

Each Ci is a subgraph of G. We refer to the nodes of Ci in G as type i nodes. Note
that it is possible for a node of G to be a type i node as well as a type j node, where
i �= j . Note however, that
(*) no type i node is equal to or adjacent to a type i + 1 node, where addition is mod k.
Let F be the subgraph induced in G by the union of type 1 through type k nodes. Sub-
graph F must be weakly chordal as G is weakly chordal. In what follows, any adjacency
mentioned is with respect to the graph F .

Let S′ = N(C1). Note that the type of every node in N(C1) is among 3 through
k − 1, and further, S′ has at least one node of type i, for each i, 3 ≤ i ≤ k − 1. Also,
since there is no edge between C1 and C2 in F , it must be the case that S′ separates C1
from C2 in F .

Let Y be the component of F − S′ that contains C2. Note that, since there are no
edges of F between C1 and C2 or between C1 and Ck , and since the union of type 2 and
type k nodes induces a connected subgraph in F (since C2 is adjacent to Ck in H(G),
and both C2 and Ck are connected), all the type 2 and type k nodes belong to Y .

Now, let S = N(Y ) ∩ S′ and let X be the component of F − S that contains C1.
Note that S minimally separates X from Y in F . As S ⊆ S′, the type of any node in S
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is among 3 through k − 1. Trivially, all the type 1 nodes belong to X and all the type 2
and type k nodes belong to Y .

We now claim that S has at least one node of type i, for each i, 3 ≤ i ≤ k − 1. First
assume that S had no type 3 nodes. Then, as type 1, type 3, and type k nodes induce a
connected subgraph in F , there would exist a path in F − S from a type 1 node in X to
a type k node in Y contradicting the assumption that S separates X from Y in F . Now
suppose none of the type i nodes are in S, for some i between 4 and k − 1 inclusive.
Then a similar argument applied to type 1, type i, and type 2 nodes (in place of type 1,
type 3, and type k nodes respectively) shows that X and Y are not separated in F by S, a
contradiction. Finally, by *, in F , every type i node is adjacent to every type i + 1 node
(3 ≤ i ≤ k − 2). It follows that F [S] is connected. Therefore, F is a weakly chordal
graph in which the sets X, Y , and S satisfy the conditions of Theorem 6.

We will now show that no node in Y can be adjacent to all the nodes in S, contradict-
ing Theorem 6. We observe that the type of any node in Y must be among 2 through k.
By *, a type i node in Y can not be adjacent to a type i + 1 node in S, 2 ≤ i ≤ k − 2.
Also by *, a type k − 1 node in Y can not be adjacent to a type k − 2 node in S. Finally,
again by *, a type k node in Y can not be adjacent to a type k − 1 node in S. �	
Proof of Theorem 5. Suppose G is weakly chordal. Then G contains neither a hole on
at least five nodes nor an antihole on at least five nodes. It then follows from Lemma 1
and Lemma 2 that H(G) is also weakly chordal. �	
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12. Faudree, R.J., Gyárfás, A., Schelp, R.H., Tuza, Zs., Induced matchings in bipartite graphs. Discrete

Mathematics 78, 83–87 (1989)
13. Fricke G., Laskar, R.C., Strong matchings on trees. Congressus Numerantium 89, 239–243 (1992)
14. Gallai, T.: Transitiv orientierbare Graphen (German). Acta Mathematica Academiae Scientiarum Hun-

garicae 18 (1967), 25-66. English translation by F. Maffray and M. Preissmann in Perfect Graphs, J.L.
Ramı́rez Alfonsı́n and B.A. Reed, eds., John Wiley and Sons, Chichester, 2001

15. Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitiou, C.H., The complexity of coloring circular arcs
and chords. SIAM J Algebraic and Discrete Methods 1, 216–227 (1980)



Independent packings in structured graphs 213

16. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and max-
imum independent set of a chordal graph. SIAM J Computing 1, 180–187 (1972)

17. Gavril, F.: Algorithms on circular-arc graphs. Networks 4, 357–369 (1974)
18. Gavril, F.: Maximum weight independent sets and cliques in intersection graphs of filaments. Information

Processing Letters 73, 181–188 (2000)
19. Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and interval graphs. Canadian

J Mathematics 16, 539–548 (1964)
20. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980
21. Golumbic, M.C., Hammer, P.L.: Stability in circular arc graphs. J Algorithms 9, 314–320 (1988)
22. Golumbic, M.C., Laskar, R.C.: Irredundancy in circular-arc graphs. Discrete Applied Mathematics 44,

79–89 (1993)
23. Golumbic, M.C., Lewenstein, M.: New results on induced matchings. Discrete Applied Mathematics 101,

157–165 (2000)
24. Golumbic, M.C., Rotem, D., Urrutia, J.: Comparability graphs and intersection graphs. Discrete Mathe-

matics 43, 37–46 (1983)
25. Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs. Topics on perfect

graphs, 325–356, North-Holland Math. Stud., 88, North-Holland, Amsterdam, 1984
26. Guruswami, V., Pandu Rangan, C., Chang, M.S., Chang, G.J., Wong, C.K.: The Kr -packing problem.

Computing 66, 79–89 (2001)
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