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Abstract. A popular approach to solving the nonlinear complementarity problem (NCP) is to reformulate it
as the global minimization of a certain merit function over IRn. A popular choice of the merit function is the
squared norm of the Fischer-Burmeister function, shown to be smooth over IRn and, for monotone NCP, each
stationary point is a solution of the NCP. This merit function and its analysis were subsequently extended to
the semidefinite complementarity problem (SDCP), although only differentiability, not continuous differen-
tiability, was established. In this paper, we extend this merit function and its analysis, including continuous
differentiability, to the second-order cone complementarity problem (SOCCP). Although SOCCP is reducible
to a SDCP, the reduction does not allow for easy translation of the analysis from SDCP to SOCCP. Instead, our
analysis exploits properties of the Jordan product and spectral factorization associated with the second-order
cone. We also report preliminary numerical experience with solving DIMACS second-order cone programs
using a limited-memory BFGS method to minimize the merit function.

Key words. Second-order cone – Complementarity – Merit function – Spectral factorization – Jordan product
– Level set – Error bound

1. Introduction

We consider the following conic complementarity problem of finding x, y ∈ IRn and
ζ ∈ IRn satisfying

〈x, y〉 = 0, x ∈ K, y ∈ K, (1)

x = F(ζ ), y = G(ζ), (2)

where 〈·, ·〉 is the Euclidean inner product,F : IRn → IRn andG : IRn → IRn are smooth
(i.e., continuously differentiable) mappings, and K is a closed convex cone in IRn that
is self-dual in the sense that K equals its dual cone K∗ := {y | 〈x, y〉 ≥ 0 ∀x ∈ K}. We
will focus on the case where K is the Cartesian product of second-order cones (SOC),
also called Lorentz cones [11]. In other words,

K = Kn1 × · · · × KnN , (3)
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where N, n1, . . . , nN ≥ 1, n1 + · · · + nN = n, and

Kni := {(x1, x2) ∈ IR × IRni−1 | ‖x2‖ ≤ x1},
with ‖ ·‖ denoting the Euclidean norm and K1 denoting the set of nonnegative reals IR+.
A special case of (3) is K = IRn+, the nonnegative orthant in IRn, which corresponds to
N = n and n1 = · · · = nN = 1. We will refer to (1), (2), (3) as the second-order cone
complementarity problem (SOCCP).

An important special case of SOCCP corresponds toG(ζ) = ζ for all ζ ∈ IRn. Then
(1) and (2) reduce to

〈F(ζ ), ζ 〉 = 0, F (ζ ) ∈ K, ζ ∈ K. (4)

If K = IRn+, then (4) reduces to the nonlinear complementarity problem (NCP) and (1)–
(2) reduce to the vertical NCP [9]. The NCP plays a fundamental role in optimization
theory and has many applications in engineering and economics; see, e.g., [9, 13–15].

Another important special case of SOCCP corresponds to the Karush-Kuhn-Tucker
(KKT) optimality conditions for the convex second-order cone program (CSOCP):

minimize g(x)
subject to Ax = b, x ∈ K, (5)

where A ∈ IRm×n has full row rank, b ∈ IRm and g : IRn → IR is a convex twice con-
tinuously differentiable function. When g is linear, this reduces to the SOCP which has
numerous applications in engineering design, finance, robust optimization, and includes
as special cases convex quadratically constrained quadratic programs and linear pro-
grams (LP); see [1, 33] and references therein. The KKT optimality conditions for (5),
which are sufficient but not necessary for optimality, are (1) and

Ax = b, y = ∇g(x)− AT ζd for some ζd ∈ IRm.

Choose any d ∈ IRn satisfying Ad = b. (If no such d exists, then (5) has no feasible
solution.) Let B ∈ IRn×(n−m) be any matrix whose columns span the null space of A.
Then x satisfies Ax = b if and only if x = d + Bζp for some ζp ∈ IRn−m. Thus, the
KKT optimality conditions can be written in the form of (1) and (2) with

ζ := (ζp, ζd), F (ζ ) := d + Bζp, G(ζ ) := ∇g(F (ζ ))− AT ζd. (6)

Alternatively, since any ζ ∈ IRn can be decomposed into the sum of its orthogonal
projection onto the column space of AT and the null space of A,

F(ζ ) := d + (I − AT (AAT )−1A)ζ, G(ζ ) := ∇g(F (ζ ))− AT (AAT )−1Aζ (7)

can also be used in place of (6). For large problems whereA is sparse, (7) has the advan-
tage that the main cost of evaluating the Jacobians ∇F and ∇G lies in inverting AAT ,
which can be done efficiently via sparse Cholesky factorization. In contrast, (6) entails
multiplication by the matrix B, which can be dense.

There have been proposed various methods for solving CSOCP and SOCCP. They
include interior-point methods [2, 3, 33, 36, 37, 42, 52], reformulating SOC constraints
as smooth convex constraints [4], (non-interior) smoothing Newton methods [6, 19],
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and smoothing–regularization methods [22]. These methods require solving a nontrivial
system of linear equations at each iteration. For the case where G ≡ I and F is affine
with ∇F strictly K-copositive, a matrix splitting method has been proposed [21]. In this
paper, we study an alternative approach based on reformulating CSOCP and SOCCP as
an unconstrained smooth minimization problem. In particular, we aim to find a smooth
function ψ : IRn × IRn → IR+ such that

ψ(x, y) = 0 ⇐⇒ (x, y) satisfies (1). (8)

We call such a ψ a merit function. Then SOCCP can be expressed as an unconstrained
smooth (global) minimization problem:

min
ζ∈IRn

f (ζ ) := ψ(F(ζ ),G(ζ )). (9)

Various gradient methods, such as conjugate gradient methods and (limited-memory)
quasi-Newton methods [5, 18, 38], can now be applied to solve (9). They have the advan-
tage of requiring less work per iteration than interior-point methods and non-interior
Newton methods. This approach can also be combined with smoothing and nonsmooth
Newton methods to improve the efficiency and robustness of the latter, as was done in
the case of NCP [7, 8, 12, 17, 24, 27, 30]. For this approach to be effective, the choice of
ψ is crucial. In the case of NCP, corresponding to (4) and K = IRn+, a popular choice is

ψ(x, y) = 1

2

n∑

i=1

φ(xi, yi)
2

for all x = (x1, ..., xn)
T ∈ IRn, where φ is the well-known Fischer-Burmeister (FB)

NCP-function [16, 17] defined by

φ(xi, yi) =
√
x2
i + y2

i − xi − yi.

It has been shown thatψ is smooth (even though φ is not differentiable) and satisfies (8)
[10, 25, 26]. Moreover, when F is monotone or, more generally, a P0-function, every
stationary point of ζ �→ ψ(F(ζ ), ζ ) is a solution of NCP [10, 20]. This is an important
property since (i) gradient methods are guaranteed to find stationary points only, and (ii)
when an LP is reformulated as an NCP, the resulting F is monotone, but neither strongly
monotone nor a uniformly P -function. In contrast, other smooth merit functions for
NCP, such as the implicit Lagrangian and the D-gap function [28, 35, 40, 45, 51, 54],
require F to be a uniformly P -function in order for stationary points to be solutions of
NCP. Thus these other merit functions cannot be used for LP. Subsequently, a number of
variants ofψ with additional desirable properties have been proposed, e.g., [6, 10, 29, 31,
34, 41, 47, 49, 53]. A recent discussion of these variants can be found in the paper [47].
Moreover, the above merit function ψ , as well as a related merit function of Yamashita
and Fukushima [53], have been extended to the semidefinite complementarity problem
(SDCP), which has the form (1), (2), but with x, y being q × q (q ≥ 1) real symmetric
block-diagonal matrices of fixed block sizes, 〈·, ·〉 being the trace inner product, and K
being the cone of q × q block-diagonal positive semidefinite matrices of fixed block
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sizes [50, 53]. However, the analysis in [50] showed ψ to be differentiable, but did not
show it to be smooth.1

Can the above merit functions for NCP be extended to SOCCP? To our knowledge,
this question has not been studied previously. We study it in this paper. We are motivated
by previous work on extending merit function from NCP to SDCP [50, 53]. We are
further motivated by a recent work [19] showing that the FB function extends from NCP
to SOCCP using the Jordan product associated with SOC [11]. Nice properties of the
FB function, such as strong semismoothness, are preserved when extended to SOCCP
[48]. More specifically, for any x = (x1, x2), y = (y1, y2) ∈ IR × IRn−1, we define their
Jordan product associated with Kn as

x · y := (〈x, y〉, y1x2 + x1y2). (10)

The identity element under this product is e := (1, 0, . . . , 0)T ∈ IRn. We write x2 to
mean x · x and write x + y to mean the usual componentwise addition of vectors. It is
known that x2 ∈ Kn for all x ∈ IRn. Moreover, if x ∈ Kn, then there exists a unique
vector in Kn, denoted by x1/2, such that (x1/2)2 = x1/2 · x1/2 = x. Then,

φ(x, y) := (x2 + y2)1/2 − x − y (11)

is well defined for all (x, y) ∈ IRn × IRn and maps IRn × IRn to IRn. It was shown in
[19] that φ(x, y) = 0 if and only if (x, y) satisfies (1). Thus,

ψFB(x, y) := 1

2

N∑

i=1

‖φ(xi, yi)‖2, (12)

where x = (x1, . . . , xN)
T , y = (y1, . . . , yN)

T ∈ IRn1 × · · ·× IRnN , is a merit function
for SOCCP. We will show that, like the NCP case, ψFB is smooth and, when ∇F and
−∇G are column monotone, every stationary point of (9) solves SOCCP; see Propo-
sitions 2 and 3. The same holds for the following analog of the SDCP merit function
studied by Yamashita and Fukushima [53]:

ψYF (x, y) := ψ0(〈x, y〉)+ ψFB(x, y), (13)

where ψ0 : IR → [0,∞) is any smooth function satisfying

ψ0(t) = 0 ∀t ≤ 0 and ψ ′
0(t) > 0 ∀t > 0; (14)

see Proposition 4. In [53], ψ0(t) = 1
4 (max{0, t})4 was considered. Analogous to the

NCP and SDCP cases, when ∇G(ζ) is invertible, a ∇F -free descent direction for

fFB(ζ ) := ψFB(F (ζ ),G(ζ )) (15)

and

fYF (ζ ) := ψYF (F (ζ ),G(ζ )) (16)

1 During the revising of this paper, a proof of smoothness is reported in [43].
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can be found. The function fYF , compared to fFB , has additional bounded level-set and
error bound properties; see Section 5. Our proof of the smoothness of ψFB in Section 3
is quite technical, but further simplification seems difficult. In particular, neither general
properties of the Jordan product associated with symmetric cones [11] nor the strong
semismoothness proof for φ given in [48] lend themselves readily to a smoothness proof
for ψFB . In Section 6, we report our numerical experience with solving SOCP (5) from
the DIMACS library by using a limited-memory BFGS (L-BFGS) method to minimize
fFB , with F and G given by (7). On problems with n � m and for low-to-medium
solution accuracy, L-BFGS appears to be competitive with interior-point methods. We
also report our experience with solving CSOCP using a BFGS method to minimize fFB .

It is known that SOCCP can be reduced to an SDCP by observing that, for any
x = (x1, x2) ∈ IR × IRn−1, we have x ∈ Kn if and only if

Lx :=
[
x1 x

T
2

x2 x1I

]

is positive semidefinite (also see [19, p. 437] and [44]). However, this reduction increases
the problem dimension from n to n(n+ 1)/2 and it is not known whether this increase
can be mitigated by exploiting the special “arrow” structure of Lx .

Throughout this paper, IRn denotes the space of n-dimensional real column vectors
and T denotes transpose. For any differentiable function f : IRn → IR, ∇f (x) denotes
the gradient of f at x. For any differentiable mapping F = (F1, ..., Fm)

T : IRn → IRm,
∇F(x) = [∇F1(x) · · · ∇Fm(x)] denotes the transpose Jacobian of F at x. For any
symmetric matrices A,B ∈ IRn×n, we write A � B (respectively, A � B) to mean
A− B is positive semidefinite (respectively, positive definite). For nonnegative scalars
α and β, we write α = O(β) to mean α ≤ Cβ, with C independent of α and β.

2. Jordan product and spectral factorization

It is known that Kn is a closed convex self-dual cone with nonempty interior given by

int(Kn) = {(x1, x2) ∈ IR × IRn−1 | ‖x2‖ < x1}.
The Jordan product (10), unlike scalar or matrix multiplication, is not associative, which
is a main source of complication in the analysis of SOCCP. For any x = (x1, x2) ∈
IR × IRn−1, its determinant is defined by

det (x) := x2
1 − ‖x2‖2.

In general, det (x · y) �= det (x)det (y) unless x2 = y2.
We next recall from [19] that each x = (x1, x2) ∈ IR × IRn−1 admits a spectral

factorization, associated with Kn, of the form

x = λ1u
(1) + λ2u

(2),

where λ1, λ2 and u(1), u(2) are the spectral values and the associated spectral vectors of
x given by
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λi = x1 + (−1)i‖x2‖,

u(i) =






1
2

(
1, (−1)i

x2

‖x2‖
)

if x2 �= 0;
1
2

(
1, (−1)iw2

)
if x2 = 0,

for i = 1, 2, with w2 being any vector in IRn−1 satisfying ‖w2‖ = 1. If x2 �= 0, the
factorization is unique.

The above spectral factorization of x, as well as x2 and x1/2 and the matrix Lx , have
various interesting properties; see [19]. We list four properties that we will use later.

Property 1. For any x = (x1, x2) ∈ IR × IRn−1, with spectral values λ1, λ2 and spectral
vectors u(1), u(2), the following results hold.

(a) x2 = λ2
1u
(1) + λ2

2u
(2) ∈ Kn.

(b) If x ∈ Kn, then 0 ≤ λ1 ≤ λ2 and x1/2 = √
λ1 u

(1) + √
λ2 u

(2).
(c) If x ∈ int(Kn), then 0 < λ1 ≤ λ2, det (x) = λ1λ2, and Lx is invertible with

L−1
x = 1

det (x)




x1 −xT2

−x2
det (x)

x1
I + 1

x1
x2x

T
2



 .

(d) x · y = Lxy for all y ∈ IRn, and Lx � 0 if and only if x ∈ int(Kn).

3. Smoothness property of merit functions

In this section we show that the functions (12) and (13) are smooth functions satisfying
(8). For simplicity, we focus on the special case of N = 1, i.e.,

ψFB(x, y) = 1

2
‖φ(x, y)‖2 (17)

in this and the next two sections. Extension of our analyses to the general case ofN ≥ 1
is straightforward. We begin with the following result from [19] showing that the FB
function φ given by (11) has property analogous to the NCP and SDCP cases. Additional
properties of φ are studied in [19, 48].

Lemma 1. ([19, Proposition 2.1]) Let φ : IRn × IRn → IRn be given by (11). Then

φ(x, y) = 0 ⇐⇒ x, y ∈ Kn, x · y = 0,

⇐⇒ x, y ∈ Kn, 〈x, y〉 = 0.

Since x2, y2 ∈ Kn for any x, y ∈ IRn, we have that x2+y2 = (‖x‖2+‖y‖2, 2x1x2+
2y1y2) ∈ Kn. Thus

x2 + y2 �∈ int(Kn) ⇐⇒ ‖x‖2 + ‖y‖2 = 2‖x1x2 + y1y2‖. (18)

The spectral values of x2 + y2 are

λ1 := ‖x‖2 + ‖y‖2 − 2‖x1x2 + y1y2‖,
λ2 := ‖x‖2 + ‖y‖2 + 2‖x1x2 + y1y2‖. (19)
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Then, by Property 1(b), z := (x2 + y2)1/2 has the spectral values
√
λ1,

√
λ2 and

z = (z1, z2) =
(√

λ1 + √
λ2

2
,

√
λ2 − √

λ1

2
w2

)
, (20)

where w2 := x1x2 + y1y2

‖x1x2 + y1y2‖ if x1x2 + y1y2 �= 0 and otherwise w2 is any vector in

IRn−1 satisfying ‖w2‖ = 1. The next key lemma, describing special properties of x, y
with x2 + y2 �∈ int(Kn), will be used to prove Propositions 1, 2, and Lemma 6.

Lemma 2. For any x = (x1, x2), y = (y1, y2) ∈ IR × IRn−1 with x2 + y2 �∈ int(Kn),
we have

x2
1 = ‖x2‖2,

y2
1 = ‖y2‖2,

x1y1 = xT2 y2,

x1y2 = y1x2.

Proof. By (18), ‖x‖2 + ‖y‖2 = 2‖x1x2 + y1y2‖. Thus

(
‖x‖2 + ‖y‖2

)2

= 4‖x1x2 +
y1y2‖2, so that

‖x‖4 + 2‖x‖2‖y‖2 + ‖y‖4 = 4(x1x2 + y1y2)
T (x1x2 + y1y2).

Notice that ‖x‖2 = x2
1 + ‖x2‖2 and ‖y‖2 = y2

1 + ‖y2‖2. Thus,

(
x2

1 + ‖x2‖2
)2

+ 2‖x‖2‖y‖2+
(
y2

1 + ‖y2‖2
)2

=4x2
1‖x2‖2 + 8x1y1x

T
2 y2+4y2

1‖y2‖2.

Simplifying the above expression yields

(
x2

1 − ‖x2‖2
)2

+
(
y2

1 − ‖y2‖2
)2

+
(

2‖x‖2‖y‖2 − 8x1y1x
T
2 y2

)
= 0.

The first two terms are nonnegative. The third term is also nonnegative because

‖x‖2‖y‖2 =
(
x2

1 + ‖x2‖2
)(
y2

1 + ‖y2‖2
)

≥
(

2|x1|‖x2‖
)(

2|y1|‖y2‖
)

= 4|x1||y1|‖x2‖‖y2‖
≥ 4x1y1x

T
2 y2.

Hence

x2
1 = ‖x2‖2, y2

1 = ‖y2‖2, 2‖x‖2‖y‖2 − 8x1y1x
T
2 y2 = 0.

Substituting x2
1 = ‖x2‖2 and y2

1 = ‖y2‖2 into the last equation, the resulting three
equations imply x1y1 = xT2 y2.
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It remains to prove that x1y2 = y1x2. If x1 = 0, then ‖x2‖ = |x1| = 0 so this relation
is true. Symmetrically, if y1 = 0, then this relation is also true. Suppose that x1 �= 0 and
y1 �= 0. Then x2 �= 0, y2 �= 0, and

x1y1 = xT2 y2 = ‖x2‖‖y2‖ cos θ = |x1||y1| cos θ,

where θ is the angle between x2 and y2. Thus, cos θ ∈ {−1, 1}, i.e., y2 = αx2 for some
α �= 0. Then

x1y1 = xT2 y2 = α‖x2‖2 = αx2
1 ,

so that y1/x1 = α. Thus y2 = x2y1/x1.

The next technical lemma shows that two square terms are upper bounded by a quan-
tity that measures how close x2 +y2 comes to the boundary of Kn (cf. (18)). This lemma
will be used to prove Lemma 4 and Proposition 2.

Lemma 3. For any x = (x1, x2), y = (y1, y2) ∈ IR × IRn−1 with x1x2 + y1y2 �= 0, we
have

(
x1 − (x1x2 + y1y2)

T x2

‖x1x2 + y1y2‖
)2

≤
∥∥∥∥x2 − x1

x1x2 + y1y2

‖x1x2 + y1y2‖
∥∥∥∥

2

≤ ‖x‖2 + ‖y‖2 − 2‖x1x2 + y1y2‖.

Proof. The first inequality can be seen by expanding the square on both sides and using
the Cauchy-Schwarz inequality. It remains to prove the second inequality. Let us multiply
both sides of this inequality by

‖x1x2 + y1y2‖2 = x2
1‖x2‖2 + 2x1y1x

T
2 y2 + y2

1‖y2‖2

and let L and R denote, respectively, the left-hand side and the right-hand side. Since
x1x2 + y1y2 �= 0, the second inequality is equivalent to R − L ≥ 0. We have

L =
(

‖x2‖2 − 2x1
(x1x2 + y1y2)

T x2

‖x1x2 + y1y2‖ + x2
1

)
‖x1x2 + y1y2‖2

= ‖x2‖2
(
x2

1‖x2‖2 + 2x1y1x
T
2 y2 + y2

1‖y2‖2
)

−2x1

(
x1‖x2‖2 + y1x

T
2 y2

)
‖x1x2 + y1y2‖

+x2
1

(
x2

1‖x2‖2 + 2x1y1x
T
2 y2 + y2

1‖y2‖2
)

= x2
1‖x2‖4 + 2x1y1x

T
2 y2‖x2‖2 + y2

1‖x2‖2‖y2‖2

−2x2
1‖x2‖2‖x1x2 + y1y2‖ − 2x1y1x

T
2 y2‖x1x2 + y1y2‖

+x4
1‖x2‖2 + 2x3

1y1x
T
2 y2 + x2

1y
2
1‖y2‖2,
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and

R =
(

‖x‖2 + ‖y‖2 − 2‖x1x2 + y1y2‖
)

‖x1x2 + y1y2‖2

=
(
x2

1 + ‖x2‖2 − 2‖x1x2 + y1y2‖
)

‖x1x2 + y1y2‖2 + ‖y‖2‖x1x2 + y1y2‖2

=
(
x2

1 + ‖x2‖2 − 2‖x1x2 + y1y2‖
)(
x2

1‖x2‖2 + 2x1y1x
T
2 y2 + y2

1‖y2‖2
)

+‖y‖2‖x1x2 + y1y2‖2

= x4
1‖x2‖2 + 2x3

1y1x
T
2 y2 + x2

1y
2
1‖y2‖2 + x2

1‖x2‖4 + 2x1y1x
T
2 y2‖x2‖2

+y2
1‖x2‖2‖y2‖2 − 2x2

1‖x2‖2‖x1x2 + y1y2‖ − 4x1y1x
T
2 y2‖x1x2 + y1y2‖

−2y2
1‖y2‖2‖x1x2 + y1y2‖ + ‖y‖2‖x1x2 + y1y2‖2.

Thus, taking the difference and using the Cauchy-Schwarz inequality yields

R − L = ‖y‖2‖x1x2 + y1y2‖2−2x1y1x
T
2 y2‖x1x2 + y1y2‖ − 2y2

1‖y2‖2‖x1x2+y1y2‖
= y2

1‖x1x2 + y1y2‖2 + ‖y2‖2‖x1x2 + y1y2‖2

−2y1y
T
2 (x1x2 + y1y2)‖x1x2 + y1y2‖

≥ y2
1‖x1x2 + y1y2‖2 + ‖y2‖2‖x1x2 + y1y2‖2 − 2|y1|‖y2‖ ‖x1x2 + y1y2‖2

=
(

|y1| − ‖y2‖
)2

‖x1x2 + y1y2‖2

≥ 0.

Using Lemmas 1, 2, 3, and [19, Proposition 5.2], we prove our first main result
showing that ψFB is differentiable and its gradient has a computable formula.

Proposition 1. Let φ be given by (11). Then ψFB given by (17) has the following prop-
erties.

(a) ψFB : IRn × IRn → IR+ and satisfies (8).
(b) ψFB is differentiable at every (x, y) ∈ IRn × IRn. Moreover, ∇xψFB(0, 0)

= ∇yψFB(0, 0) = 0. If (x, y) �= (0, 0) and x2 + y2 ∈ int(Kn), then

∇xψFB(x, y) =
(
LxL

−1
(x2+y2)1/2

− I

)
φ(x, y),

∇yψFB(x, y) =
(
LyL

−1
(x2+y2)1/2

− I

)
φ(x, y). (21)

If (x, y) �= (0, 0) and x2 + y2 �∈ int(Kn), then x2
1 + y2

1 �= 0 and

∇xψFB(x, y) =


 x1√
x2

1 + y2
1

− 1



φ(x, y), (22)

∇yψFB(x, y) =


 y1√
x2

1 + y2
1

− 1



φ(x, y). (23)
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Proof. (a) This follows from Lemma 1.

(b) Case (1): x = y = 0.
For any h, k ∈ IRn, let µ1 ≤ µ2 be the spectral values and let v(1), v(2) be the corre-
sponding spectral vectors of h2 + k2. Then, by Property 1(b),

‖(h2 + k2)1/2 − h− k‖ = ‖√µ1v
(1) + √

µ2v
(2) − h− k‖

≤ √
µ1‖v(1)‖ + √

µ2‖v(2)‖ + ‖h‖ + ‖k‖
= (

√
µ1 + √

µ2)/
√

2 + ‖h‖ + ‖k‖.
Also

µ1 ≤ µ2 = ‖h‖2 + ‖k‖2 + 2‖h1h2 + k1k2‖
≤ ‖h‖2 + ‖k‖2 + 2|h1|‖h2‖ + 2|k1|‖k2‖
≤ 2‖h‖2 + 2‖k‖2.

Combining the above two inequalities yields

ψFB(h, k)− ψFB(0, 0) = ‖(h2 + k2)1/2 − h− k‖2

≤
(
(
√
µ1 + √

µ2)/
√

2 + ‖h‖ + ‖k‖
)2

≤
(

2
√

2‖h‖2 + 2‖k‖2/
√

2 + ‖h‖ + ‖k‖
)2

= O(‖h‖2 + ‖k‖2).

This shows that ψFB is differentiable at (0, 0) with

∇xψFB(0, 0) = ∇yψFB(0, 0) = 0.

Case (2): (x, y) �= (0, 0) and x2 + y2 ∈ int(Kn).
Since x2 + y2 ∈ int(Kn), Proposition 5.2 of [19] implies that φ is continuously

differentiable at (x, y). Since ψFB is the composition of φ with x �→ 1
2‖x‖2, then

ψFB is continuously differentiable at (x, y). The expressions (21) for ∇xψFB(x, y) and
∇yψFB(x, y) follow from the chain rule for differentiation and the expression for the
Jacobian of φ given in [19, Proposition 5.2] (also see [19, Corollary 5.4]).

Case (3): (x, y) �= (0, 0) and x2 + y2 �∈ int(Kn).
By (18), ‖x‖2 + ‖y‖2 = 2‖x1x2 + y1y2‖. Since (x, y) �= (0, 0), this also implies
x1x2 + y1y2 �= 0, so Lemmas 2 and 3 are applicable. By (20),

(x2 + y2)1/2 =
(√

λ1 + √
λ2

2
,

√
λ2 − √

λ1

2
w2

)
,

where λ1, λ2 are given by (19) and w2 := x1x2 + y1y2

‖x1x2 + y1y2‖ . Thus λ1 = 0 and λ2 > 0.

Since x1x2 +y1y2 �= 0, we have x′
1x

′
2 +y′

1y
′
2 �= 0 for all (x′, y′) ∈ IRn× IRn sufficiently

near to (x, y). Moreover,
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2ψFB(x
′, y′) = ‖(x′2 + y′2)1/2 − x′ − y′‖2

= ‖(x′2 + y′2)1/2‖2 + ‖x′ + y′‖2 − 2〈(x′2 + y′2)1/2, x′ + y′〉
= ‖x′‖2 + ‖y′‖2 + ‖x′ + y′‖2 − 2〈(x′2 + y′2)1/2, x′ + y′〉,

where the third equality uses the observation that ‖z‖2 = 〈z2, e〉 for any z ∈ IRn. Since
‖x′‖2 + ‖y′‖2 + ‖x′ + y′‖2 is clearly differentiable in (x′, y′), it suffices to show that

2〈(x′2 + y′2)1/2, x′ + y′〉

= (
√
µ2 + √

µ1)(x
′
1 + y′

1)+ (
√
µ2 − √

µ1)
(x′

1x
′
2 + y′

1y
′
2)
T (x′

2 + y′
2)

‖x′
1x

′
2 + y′

1y
′
2‖

= √
µ2

(
x′

1 + y′
1 + (x′

1x
′
2 + y′

1y
′
2)
T (x′

2 + y′
2)

‖x′
1x

′
2 + y′

1y
′
2‖

)

+√
µ1

(
x′

1 + y′
1 − (x′

1x
′
2 + y′

1y
′
2)
T (x′

2 + y′
2)

‖x′
1x

′
2 + y′

1y
′
2‖

)
(24)

is differentiable at (x′, y′) = (x, y), where µ1, µ2 are the spectral values of x′2 + y′2,
i.e.,µi = ‖x′‖2 +‖y′‖2 +2(−1)i‖x′

1x
′
2 +y′

1y
′
2‖. Since λ2 > 0, we see that the first term

on the right-hand side of (24) is differentiable at (x′, y′) = (x, y). We claim that the
second term on the right-hand side of (24) is o(‖h‖+‖k‖)with h := x′ −x, k := y′ −y,
i.e., it is differentiable with zero gradient. To see this, notice that x1x2 +y1y2 �= 0, so that
µ1 = ‖x′‖2 +‖y′‖2 −2‖x′

1x
′
2 +y′

1y
′
2‖, viewed as a function of (x′, y′), is differentiable

at (x′, y′) = (x, y). Moreover, µ1 = λ1 = 0 when (x′, y′) = (x, y). Thus, first-order
Taylor’s expansion of µ1 at (x, y) yields

µ1 = O(‖x′ − x‖ + ‖y′ − y‖) = O(‖h‖ + ‖k‖).
Also, since x1x2 + y1y2 �= 0, by the product and quotient rules for differentiation, the
function

x′
1 + y′

1 − (x′
1x

′
2 + y′

1y
′
2)
T (x′

2 + y′
2)

‖x′
1x

′
2 + y′

1y
′
2‖

(25)

is differentiable at (x′, y′) = (x, y). Moreover, the function (25) has value 0 at (x′, y′) =
(x, y). This is because

x1 + y1 − (x1x2 + y1y2)
T (x2 + y2)

‖x1x2 + y1y2‖ = x1 − wT2 x2 + y1 − wT2 y2 = 0 + 0,

where w2 := (x1x2 + y1y2)/‖x1x2 + y1y2‖ and the last equality uses the fact that, by
Lemma 3 and ‖x‖2 + ‖y‖2 = 2‖x1x2 + y1y2‖, we have wT2 x2 = x1, wT2 y2 = y1. (By
symmetry, Lemma 3 still holds when x and y are switched.) Thus, the function (25) is
O(‖h‖ + ‖k‖) in magnitude. This together with µ1 = O(‖h‖ + ‖k‖) shows that the
second term on the right of (24) is O((‖h‖ + ‖k‖)3/2) = o(‖h‖ + ‖k‖).

Thus, we have shown that ψFB is differentiable at (x, y). Moreover, the preceding
argument shows that 2∇ψFB(x, y) is the sum of the gradient of ‖x′‖2+‖y′‖2+‖x′+y′‖2
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and the gradient of the first term on the right of (24), evaluated at (x′, y′) = (x, y). The
gradient of ‖x′‖2 +‖y′‖2 +‖x′ + y′‖2 with respect to x′, evaluated at (x′, y′) = (x, y),
is 4x + 2y. Using the product and quotient rules for differentiation, the gradient of the
first term on the right of (24) with respect to x′

1, evaluated at (x′, y′) = (x, y), works
out to be

x1 + wT2 x2√
λ2

(
x1 + y1 + wT2 (x2 + y2)

)

+
√
λ2

(
1 + xT2 (x2 + y2)

‖x1x2 + y1y2‖ − wT2 (x2 + y2)

‖x1x2 + y1y2‖w
T
2 x2

)

= 2x1(x1 + y1)√
x2

1 + y2
1

+ 2
√
x2

1 + y2
1 ,

where w2 := (x1x2 + y1y2)/‖x1x2 + y1y2‖ and the equality uses Lemma 2 and the fact
that, by Lemma 3 and ‖x‖2 +‖y‖2 = 2‖x1x2 +y1y2‖, we havewT2 x2 = x1,wT2 y2 = y1.
Similarly, the gradient of the first term on the right of (24) with respect to x′

2, evaluated
at (x′, y′) = (x, y), works out to be

x2 + w2x1√
λ2

(
x1 + y1 + wT2 (x2 + y2)

)

+
√
λ2

(
2x1x2 + (x1 + y1)y2

‖x1x2 + y1y2‖ − wT2 (x2 + y2)

‖x1x2 + y1y2‖w2x1

)

= 2
2x1x2 + (x1 + y1)y2√

x2
1 + y2

1

.

In particular, the equality uses the fact that, by Lemma 2, we have x1y2 = y1x2 and
‖x1x2 + y1y2‖ = x2

1 + y2
1 , so that w2x1 = x2 and λ2 = 4(x2

1 + y2
1 ). Thus, combining

the preceding gradient expressions yields

2∇xψFB(x, y) = 4x + 2y −
[

2
√
x2

1 + y2
1

0

]
− 2√

x2
1 + y2

1

[
x1(x1 + y1)

2x1x2 + (x1 + y1)y2

]
.

Using ‖x1x2 + y1y2‖ = x2
1 + y2

1 and λ2 = 4(x2
1 + y2

1 ), we can also write

(x2 + y2)1/2 =



√
x2

1 + y2
1 ,
x1x2 + y1y2√
x2

1 + y2
1



 ,

so that

φ(x, y) =
(√

x2
1 + y2

1 − (x1 + y1),
x1x2 + y1y2√
x2

1 + y2
1

− (x2 + y2)

)
. (26)

Using the fact that x1y2 = y1x2, we can rewrite the above expression for ∇xψFB(x, y)

in the form of (22). By symmetry, (23) also holds.
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Proposition 1 gives a formula for ∇ψFB when ψFB is given by (11), (12). Using
Lemma 3, we have the following lemma on the uniform boundedness of the matrices in
(21). This will be used to prove the smoothness of ψFB at (0, 0).

Lemma 4. There exists a scalar constant C > 0 such that

‖LxL−1
(x2+y2)1/2

‖F ≤ C, ‖LyL−1
(x2+y2)1/2

‖F ≤ C

for all (x, y) �= (0, 0) satisfying x2 + y2 ∈ int(Kn). (‖A‖F denotes the Frobenius norm
of A ∈ IRn×n.)

Proof. Consider any (x, y) �= (0, 0) satisfying x2 + y2 ∈ int(Kn). Let λ1, λ2 be the
spectral values of x2 + y2 and let z := (x2 + y2)1/2. Then, z is given by (20), i.e.,

z1 =
√
λ1 + √

λ2

2
, z2 =

√
λ2 − √

λ1

2
w2,

with λ1, λ2 given by (19), and w2 := x1x2 + y1y2

‖x1x2 + y1y2‖ if x1x2 + y1y2 �= 0; otherwise w2

is any vector satisfying ‖w2‖ = 1. Using Property 1(c), we have that

LxL
−1
z

= 1

det (z)

[
x1z1 − xT2 z2 −x1z

T
2 + det (z)

z1
xT2 + xT2 z2

z1
zT2

x2z1 − x1z2 −x2z
T
2 + x1det (z)

z1
I + x1

z1
z2z

T
2

]

= 1√
λ1

√
λ2





√
λ1+

√
λ2

2 x1 +
√
λ1−

√
λ2

2 xT2 w2

√
λ1−

√
λ2

2 x1w
T
2 + 2

√
λ1

√
λ2√

λ1+
√
λ2
xT2

+ (
√
λ1−

√
λ2)

2

2(
√
λ1+

√
λ2)
xT2 w2w

T
2√

λ1+
√
λ2

2 x2 +
√
λ1−

√
λ2

2 x1w2

√
λ1−

√
λ2

2 x2w
T
2 + 2

√
λ1

√
λ2√

λ1+
√
λ2
x1I

+ (
√
λ1−

√
λ2)

2

2(
√
λ1+

√
λ2)
x1w2w

T
2





=





(x1 + xT2 w2)

2
√
λ2

+ (x1 − xT2 w2)

2
√
λ1

(
x1w

T
2

2
√
λ2

− x1w
T
2

2
√
λ1

)
+ 2xT2√

λ1 + √
λ2

+
√
λ2√
λ1

−2+
√
λ1√
λ2

2(
√
λ1+

√
λ2)
xT2 w2w

T
2

(x2 + x1w2)

2
√
λ2

+ (x2 − x1w2)

2
√
λ1

(
x2w

T
2

2
√
λ2

− x2w
T
2

2
√
λ1

)
+ 2x1I√

λ1 + √
λ2

+
√
λ2√
λ1

−2+
√
λ1√
λ2

2(
√
λ1+

√
λ2)
x1w2w

T
2





. (27)

Since λ2 ≥ ‖x‖2, we see that
√
λ2 ≥ |x1| and

√
λ2 ≥ ‖x2‖. Also, ‖w2‖ = 1. Thus,

terms that involve dividing x1 or x2 or x1w2 or xT2 w2 or x1w2w
T
2 or xT2 w2w

T
2 by

√
λ2

or
√
λ1 + √

λ2 are uniformly bounded. Also,
√
λ1/

√
λ2 ≤ 1. Thus
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LxL
−1
z

=





O(1)+ (x1 − xT2 w2)

2
√
λ1

O(1)− x1w
T
2

2
√
λ1

+
√
λ2√
λ1

2(
√
λ1 + √

λ2)
xT2 w2w

T
2

O(1)+ (x2 − x1w2)

2
√
λ1

O(1)− x2w
T
2

2
√
λ1

+
√
λ2√
λ1

2(
√
λ1 + √

λ2)
x1w2w

T
2





=




O(1)+ (x1 − xT2 w2)

2
√
λ1

O(1)− x1w
T
2

2(
√
λ1 + √

λ2)
−

√
λ2(x1 − xT2 w2)

2(
√
λ1 + √

λ2)
√
λ1
wT2

O(1)+ (x2 − x1w2)

2
√
λ1

O(1)− x2w
T
2

2(
√
λ1 + √

λ2)
−

√
λ2(x2 − x1w2)

2(
√
λ1 + √

λ2)
√
λ1
wT2



 ,

whereO(1) denote terms that are uniformly bounded, with bound independent of (x, y).
By Lemma 3, if x1x2 + y1y2 �= 0, then |x1 − xT2 w2| ≤ ‖x2 − x1w2‖ ≤ √

λ1. If
x1x2 + y1y2 = 0, then λ1 = ‖x‖2 + ‖y‖2 so that, by choosing w2 to further satisfy
xT2 w2 = 0 (in addition to ‖w2‖ = 1), we obtain

|x1 − xT2 w2| ≤ ‖x2 − x1w2‖ = ‖x‖ ≤
√
λ1.

Thus, all terms in LxL−1
z are uniformly bounded.

Using Lemmas 2, 3, 4 and Proposition 1, we now prove the smoothness of ψFB . This
has been proven for the NCP case [10, 25, 26] but not for the SOCCP case. A proof for
the SDP case was only recently reported in [43]. Our proof for the SOCCP case is fairly
involved due to the structure of the SOC and its associated Jordan product.

Proposition 2. Let φ be given by (11). Then ψFB given by (17) is smooth everywhere on
IRn × IRn.

Proof. By Proposition 1, ψFB is differentiable everywhere on IRn × IRn. We will show
that ∇ψFB is continuous at every (a, b) ∈ IRn × IRn. By the symmetry between x and y
in ∇ψFB , it suffices to show that ∇xψFB is continuous at every (a, b) ∈ IRn × IRn.

Case (1): a = b = 0.
By Proposition 1, ∇xψFB(0, 0) = 0. Thus, we need to show that ∇xψFB(x, y) → 0 as
(x, y) → (0, 0).We consider two subcases: (i) (x, y) �= (0, 0) and x2+y2 ∈ int(Kn) and
(ii) (x, y) �= (0, 0) and x2+y2 �∈ int(Kn). In subcase (i), we have from Proposition 1 that
∇xψFB(x, y) is given by the expression (21). By Lemma 4, LxL

−1
(x2+y2)1/2

is uniformly
bounded, with bound independent of (x, y). Also, φ given by (11) is continuous at (0, 0)
so that φ(x, y) → 0 as (x, y) → (a, b). It follows from (21) that ∇xψFB(x, y) → 0
as (x, y) → (a, b) in subcase (i). In subcase (ii), we have from Proposition 1 that

∇xψFB(x, y) is given by the expression (22). Clearlyx1/

√
x2

1 + y2
1 is uniformly bounded,

with bound independent of (x, y). Also, φ(x, y) → 0 as (x, y) → (a, b). It follows
from (22) that ∇xψFB(x, y) → 0 as (x, y) → (a, b) in subcase (ii).

Case (2): (a, b) �= (0, 0) and a2 + b2 ∈ int(Kn).
It was already shown in the proof of Proposition 1 thatψFB is continuously differentiable
at (a, b).
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Case (3): (a, b) �= (0, 0) and a2 + b2 �∈ int(Kn).
By (18), ‖a‖2 + ‖b‖2 = 2‖a1a2 + b1b2‖. By Proposition 1, we have a2

1 + b2
1 > 0 and

∇xψFB(a, b) =


 a1√
a2

1 + b2
1

− 1



φ(a, b).

We need to show that ∇xψFB(x, y) → ∇xψFB(a, b). We consider two cases: (i) (x, y) �=
(0, 0) and x2 + y2 ∈ int(Kn) and (ii) (x, y) �= (0, 0) and x2 + y2 �∈ int(Kn). In subcase
(ii), we have from Proposition 1 that ∇xψFB(x, y) is given by the expression (22). This
expression is continuous at (a, b). Thus ∇xψFB(x, y) → ∇xψFB(a, b) as (x, y) → (a, b)

in subcase (ii). The remainder of our proof treats subcase (i). In subcase (i), we have
from Proposition 1 that ∇xψFB(x, y) is given by the expression (21), i.e.,

∇xψFB(x, y) =
(
LxL

−1
(x2+y2)1/2

− I

)
φ(x, y)

= LxL
−1
(x2+y2)1/2

(x2 + y2)1/2 − LxL
−1
(x2+y2)1/2

(x + y)− φ(x, y)

= x − LxL
−1
(x2+y2)1/2

(x + y)− φ(x, y).

Also, by Lemma 2, we have‖a1a2+b1b2‖ = 1
2‖a‖2+ 1

2‖b‖2 = a2
1+b2

1 anda1b2 = b1a2,
implying that (see (19), (20))

a1√
a2

1 + b2
1

(a2 + b2)1/2 = a1√
a2

1 + b2
1

(√
a2

1 + b2
1,
a1a2 + b1b2√
a2

1 + b2
1

)

=
(
a1,

a2
1a2 + a1b1b2

a2
1 + b2

1

)

=
(
a1,

a2
1a2 + b2

1a2

a2
1 + b2

1

)

= (a1, a2)

= a.

This together with (22) yields

∇xψFB(a, b) =


 a1√
a2

1 + b2
1

− 1



φ(a, b)

= a1√
a2

1 + b2
1

(
(a2 + b2)1/2 − (a + b)

)
− φ(a, b)

= a1√
a2

1 + b2
1

(a2 + b2)1/2 − a1√
a2

1 + b2
1

(a + b)− φ(a, b)

= a − a1√
a2

1 + b2
1

(a + b)− φ(a, b).
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Since φ is continuous, to prove ∇xψFB(x, y) → ∇xψFB(a, b) as (x, y) → (a, b), it
suffices to show that

LxL
−1
(x2+y2)1/2

x → a1√
a2

1 + b2
1

a as (x, y) → (a, b), (28)

LxL
−1
(x2+y2)1/2

y → a1√
a2

1 + b2
1

b as (x, y) → (a, b). (29)

Since ‖a‖2 + ‖b‖2 = 2‖a1a2 + b1b2‖ and (a, b) �= (0, 0), then a1a2 + b1b2 �= 0.
Thus, by taking (x, y) sufficiently near to (a, b), we can assume that x1x2 + y1y2 �= 0.
Let z := (x2 + y2)1/2. Then z is given by (20) with λ1, λ2 given by (19) and w2 :=
x1x2 + y1y2

‖x1x2 + y1y2‖ . In addition, det (z) = z2
1 − ‖z2‖2 = √

λ1λ2. Let (ζ1, ζ2) := LxL
−1
z x.

Then (28) reduces to

ζ1 → a2
1√

a2
1 + b2

1

and ζ2 → a1√
a2

1 + b2
1

a2 as (x, y) → (a, b). (30)

We prove (30) below. By Lemma 2, as (x, y) → (a, b),

λ1 → 0, λ2 → ‖a‖2 + ‖b‖2 + 2‖a1a2 + b1b2‖ = 4(a2
1 + b2

1), z1 →
√
a2

1 + b2
1.

(31)

Using (27), we calculate the first component of LxL−1
z x to be

ζ1 := 1

det (z)

(
x2

1z1 − xT2 z2x1 − x1z
T
2 x2 + det (z)

z1
‖x2‖2 + (xT2 z2)

2

z1

)
,

= ‖x2‖2

z1
+ 1

z1det (z)

(
x2

1z
2
1 − 2xT2 z2x1z1 + (xT2 z2)

2
)

= ‖x2‖2

z1
+ (x1z1 − xT2 z2)

2

z1det (z)
.

Also, using Lemma 2 and (31),

‖x2‖2

z1
→ ‖a2‖2

√
a2

1 + b2
1

= a2
1√

a2
1 + b2

1

.

Thus, to prove the first relation in (30), it suffices to show that

(x1z1 − xT2 z2)
2

z1det (z)
→ 0 as (x, y) → (a, b).
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We have that

(x1z1 − xT2 z2)
2

z1det (z)
= 1

z1
√
λ1λ2

(
x1

√
λ1 + √

λ2

2
+

√
λ1 − √

λ2

2
xT2 w2

)2

= 1

z1
√
λ1λ2

(
x1

√
λ1 +

√
λ2 − √

λ1

2

(
x1 − xT2 w2

))2

= 1

z1
√
λ2

(
x2

1

√
λ1 + x1

(√
λ2 −

√
λ1

) (
x1 − xT2 w2

)

+ (
√
λ2 − √

λ1)
2

4
√
λ1

(
x1 − xT2 w2

)2
)
. (32)

We also have from (31) thatλ1 → 0,
√
λ2 → 2

√
a2

1 + b2
1 > 0, and z1 →

√
a2

1 + b2
1 > 0.

Moreover, by Lemma 3 and w2 = x1x2 + y1y2

‖x1x2 + y1y2‖ ,

(
x1 − xT2 w2

)2

√
λ1

→ 0 as (x, y) → (a, b).

Thus the right-hand side of (32) tends to zero as (x, y) → (a, b). This proves the first
relation in (30).

Using (27), we calculate the last n− 1 components of LxL−1
z x to be

ζ2 := 1

det (z)

(
x1x2z1 − x2

1z2 − xT2 z2x2 + x1det (z)

z1
x2 + x1

z1
z2z

T
2 x2

)

= x1

z1
x2 + 1

det (z)

(
(x1z1 − xT2 z2)x2 + x1

(
xT2 z2

z1
− x1

)
z2

)

= x1

z1
x2 + (x1z1 − xT2 z2)

det (z)

(
x2 − x1

z1
z2

)
.

Also, by (31),

x1

z1
x2 → a1√

a2
1 + b2

1

a2.

Thus, to prove the second relation in (30), it suffices to show that

(x1z1 − xT2 z2)

det (z)

(
x2 − x1

z1
z2

)
→ 0 as (x, y) → (a, b).
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First,
(x1z1 − xT2 z2)

det (z)
is bounded as (x, y) → (a, b) because, by (20),

(x1z1 − xT2 z2)

det (z)
= 1√

λ1λ2

(
x1

√
λ1 + √

λ2

2
−

√
λ2 − √

λ1

2
xT2 w2

)

= 1√
λ1λ2

(
x1

√
λ1 +

√
λ2 − √

λ1

2

(
x1 − xT2 w2

))

= x1√
λ2

+
√
λ2 − √

λ1

2
√
λ1λ2

(
x1 − xT2 w2

)

= x1√
λ2

+ 1 − √
λ1/

√
λ2

2

(
x1 − xT2 w2

)
√
λ1

,

and the first term on the right-hand side converges to a1/

√
4(a2

1 + b2
1) (see (31)) while the

second term is bounded by (19) and Lemma 3. Second,x2−x1

z1
z2 → 0 as (x, y) → (a, b)

because, by (20) and (31),

x2 − x1

z1
z2 → a2 − a1√

a2
1 + b2

1

√
4(a2

1 + b2
1)

2

a1a2 + b1b2

‖a1a2 + b1b2‖

= a2 − a2
1a2 + a1b1b2

‖a1a2 + b1b2‖

= a2 − a2
1a2 + b2

1a2

a2
1 + b2

1
= a2 − a2

= 0,

where the second equality is due to Lemma 2, so that a1b2 = b1a2 and ‖a1a2 +b1b2‖ =
a2

1 + b2
1. This proves the second relation in (30).

Thus, we have proven (28). An analogous argument can be used to prove (29), which
we omit for simplicity. This shows that ∇xψFB(x, y) → ∇xψFB(a, b) as (x, y) → (a, b)

in subcase (i).

It follows from Proposition 2 that the merit function ψYF given by (13), with ψ0 a
smooth function, is also smooth.

4. Stationary points of merit functions for monotone SOCCP

In this section we consider the case where SOCCP has a monotonicity property and
show that every stationary point of (9) is a solution of the SOCCP. As in the previous
section, we focus our analysis on the case of N = 1 for simplicity. We first need the
following technical lemma from [19].
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Lemma 5. ([19, Proposition 3.4]) For any x, y ∈ IRn andw ∈ Kn such thatw2 − x2 −
y2 ∈ Kn, we have L2

w � L2
x + L2

y.

Using Lemmas 1, 2, 5 and Proposition 1, we prove the following key properties of
∇ψFB . Similar properties have been proven for the case of NCP [10, 20, 34] and SDCP
[50, 53]. However, our proof is quite different from these other proofs due to the different
structures of SOC and its associated Jordan product.

Lemma 6. Letφ be given by (11) and letψFB be given by (17). For any (x, y) ∈ IRn×IRn,
we have the following results.

(a)

〈x,∇xψFB(x, y)〉 + 〈y,∇yψFB(x, y)〉 = ‖φ(x, y)‖2 . (33)

(b)

〈∇xψFB(x, y),∇yψFB(x, y)〉 ≥ 0, (34)

with equality holding if and only if φ(x, y) = 0.

Proof. Case (1): x = y = 0.
By Proposition 1, ∇xψFB(x, y) = ∇yψFB(x, y) = 0, so the proposition is true.

Case (2): (x, y) �= (0, 0) and x2 + y2 ∈ int(Kn).
By Proposition 1, we have

∇xψFB(x, y) =
(
LxL

−1
z − I

)
φ(x, y),

∇yψFB(x, y) =
(
LyL

−1
z − I

)
φ(x, y),

where we let z := (x2 + y2)1/2. For simplicity, we will write φ(x, y) as φ. Thus,

〈x,∇xψFB(x, y)〉 + 〈y,∇yψFB(x, y)〉 = 〈x, (LxL−1
z − I )φ〉 + 〈y, (LyL−1

z − I )φ〉
= 〈(L−1

z Lx − I )x, φ〉 + 〈(L−1
z Ly − I )y, φ〉

= 〈L−1
z Lxx + L−1

z Lyy − x − y, φ〉
= 〈L−1

z (x2 + y2)− x − y, φ〉
= 〈L−1

z z2 − x − y, φ〉
= 〈z− x − y, φ〉
= ‖φ‖2,

where the next-to-last equality follows from Lzz = z2, so that L−1
z z2 = z. This proves

(33). Similarly,

〈∇xψFB(x, y), ∇yψFB(x, y)〉 = 〈(LxL−1
z − I )φ, (LyL

−1
z − I )φ〉

= 〈(Lx − Lz)L
−1
z φ, (Ly − Lz)L

−1
z φ〉

= 〈(Ly − Lz)(Lx − Lz)L
−1
z φ, L−1

z φ〉. (35)
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Let S be the symmetric part of (Ly − Lz)(Lx − Lz). Then

S = 1

2

(
(Ly − Lz)(Lx − Lz)+ (Lx − Lz)(Ly − Lz)

)

= 1

2

(
LxLy + LyLx − Lz(Lx + Ly)− (Lx + Ly)Lz + 2L2

z

)

= 1

2
(Lz − Lx − Ly)

2 + 1

2
(L2
z − L2

x − L2
y).

Since z ∈ Kn and z2 = x2 + y2, Lemma 5 yields L2
z −L2

x −L2
y � O. Then (35) yields

〈∇xψFB(x, y), ∇yψFB(x, y)〉
= 〈SL−1

z φ, L−1
z φ〉

= 1

2
〈(Lz − Lx − Ly)

2L−1
z φ, L−1

z φ〉 + 1

2
〈(L2

z − L2
x − L2

y)L
−1
z φ, L−1

z φ〉

≥ 1

2
〈(Lz − Lx − Ly)

2L−1
z φ, L−1

z φ〉

= 1

2
‖LφL−1

z φ‖2,

where the last equality uses Lz − Lx − Ly = Lz−x−y = Lφ . This proves (34).
If the inequality in (34) holds with equality, then the above relation yields

‖LφL−1
z φ‖2 = 0 and, by Property 1(d),

φ · (L−1
z φ) = LφL

−1
z φ = 0.

Then, the definition of Jordan product (10) yields

〈φ, L−1
z φ〉 = 0.

Since z = (x2 + y2)1/2 ∈ int(Kn) so that L−1
z � O (see Property 1(d)), this implies

φ = 0. Conversely, if φ = 0, then it follows from (21) that

〈∇xψFB(x, y),∇yψFB(x, y)〉 = 0.

Case (3): (x, y) �= (0, 0) and x2 + y2 �∈ int(Kn).
By Proposition 1, we have

∇xψFB(x, y) =


 x1√
x2

1 + y2
1

− 1



φ(x, y),

∇yψFB(x, y) =


 y1√
x2

1 + y2
1

− 1



φ(x, y).
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Thus,

〈x,∇xψFB(x, y)〉 + 〈y,∇yψFB(x, y)〉

=


 x1√
x2

1 + y2
1

− 1



 〈x, φ(x, y)〉 +


 y1√
x2

1 + y2
1

− 1



 〈y, φ(x, y)〉

=
〈

 x1√
x2

1 + y2
1

− 1



 x +


 y1√
x2

1 + y2
1

− 1



 y, φ(x, y)
〉

=
〈
x1x + y1y√
x2

1 + y2
1

− x − y, φ(x, y)

〉

= 〈φ(x, y), φ(x, y)〉,
where the last equality uses (26). This proves (33). Similarly,

〈∇xψFB(x, y), ∇yψFB(x, y)〉 =


 x1√
x2

1 + y2
1

− 1







 y1√
x2

1 + y2
1

− 1



 ‖φ(x, y)‖2

≥ 0.

This proves (34). If the inequality in (34) holds with equality, then either φ(x, y) = 0
or x1√

x2
1+y2

1

= 1 or y1√
x2

1+y2
1

= 1. In the second case, we have y1 = 0 and x1 ≥ 0, so

that Lemma 2 yields y2 = 0 and x1 = ‖x2‖. In the third case, we have x1 = 0 and
y1 ≥ 0, so that Lemma 2 yields x2 = 0 and y1 = ‖y2‖. Thus, in these two cases, we
have x · y = 0, x ∈ Kn, y ∈ Kn. Then, by Lemma 1, φ(x, y) = 0 .

Below we assume that

∇F(ζ ),−∇G(ζ) are column monotone ∀ζ ∈ IRn; (36)

see [9, p. 1014], [34, p. 222].2 In the case of (4), corresponding to ∇G(ζ) = I , (36)
is equivalent to F being monotone. More generally, if ∇G(ζ) is invertible, then (36) is
equivalent to ∇G(ζ)−1∇F(ζ ) � O for all ζ ∈ IRn. In the case of (6), (36) is satisfied
always. To see this, note that ∇F(ζ ) = [B 0]T and ∇G(ζ) = [B 0]T∇2g(F (ζ )) −
[0 AT ]T . Hence ∇F(ζ )u− ∇G(ζ)v = 0 is equivalent to

[
BT

0

]
u−

[
BT

0

]
∇2g(F (ζ ))v +

[
0
A

]
v = 0

for any u, v ∈ IRn. This yields BT u = BT∇2g(F (ζ ))v and Av = 0. The second equa-
tion implies v = Bw for some w ∈ IRn−m, so that multiplying the first equation on the
left by wT and using ∇2g(F (ζ )) � 0 (since g is convex) yields

wT BT u = vT u = vT∇2g(F (ζ ))v ≥ 0.

2 M,N ∈ IRn×n are column monotone if, for any u, v ∈ IRn, Mu+Nv = 0 ⇒ uT v ≥ 0.
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In the case of (7), (36) is also satisfied always, as can be argued similarly. Moreover, the
argument extends to the more general problem where ∇g is replaced by any differentiable
monotone mapping from IRn to IRn.

Using Lemma 5(b), we prove below the first main result of this section, based on the
merit function ψFB . Analogous results have been proven for the NCP case [10, 20] and
the SDCP case [50].

Proposition 3. Let φ be given by (11) and let ψFB be given by (17). Let fFB be given by
(15), where F and G are differentiable mappings from IRn to IRn satisfying (36). Then,
for every ζ ∈ IRn, either (i) fFB(ζ ) = 0 or (ii) ∇fFB(ζ ) �= 0. In case (ii), if ∇G(ζ) is
invertible, then 〈dFB(ζ ),∇fFB(ζ )〉 < 0, where

dFB(ζ ) := −(∇G(ζ)−1)T∇xψFB(F (ζ ),G(ζ )).

Proof. Fix any ζ ∈ IRn. By Proposition 2, ψFB is smooth, so the chain rule for differen-
tiation yields

∇fFB(ζ ) = ∇F(ζ )∇xψFB(F (ζ ),G(ζ ))+ ∇G(ζ)∇yψFB(F (ζ ),G(ζ )).

Suppose ∇fFB(ζ ) = 0. The column monotone property of ∇F(ζ ),−∇G(ζ) yields

〈∇xψFB(F (ζ ),G(ζ )),∇yψFB(F (ζ ),G(ζ ))〉 ≤ 0.

By Lemma 6(b), the above inequality must hold with equality and hence φ(F (ζ ),G(ζ ))
= 0. Thus fFB(ζ ) = 1

2‖φ(F (ζ ),G(ζ ))‖2 = 0.
Suppose ∇fFB(ζ ) �= 0 and ∇G(ζ) is invertible. Then (dropping the argument “(ζ )”

for simplicity),

〈dFB ,∇fFB〉 = 〈−(∇G−1)T∇xψFB(F,G), ∇F∇xψFB(F,G)+ ∇G∇yψFB(F,G)〉
= −〈∇xψFB(F,G), (∇G−1∇F)∇xψFB(F,G)+ ∇yψFB(F,G)〉
= −〈∇xψFB(F,G), (∇G−1∇F)∇xψFB(F,G)〉

−〈∇xψFB(F,G), ∇yψFB(F,G)〉
≤ −〈∇xψFB(F,G), ∇yψFB(F,G)〉,

where the inequality follows from ∇G−1∇F � 0. By Lemma 6(b), the right-hand side
is non-positive and equals zero if and only if φ(F,G) = 0, i.e., ζ is a global minimum
of fFB . Since ∇fFB �= 0, the right-hand side cannot equal zero, so it must be negative.

The direction dFB(ζ ) has the advantage that, unlike −∇fFB(ζ ), it does not require
∇F(ζ ) for its evaluation. However, for CSOCP (6) or (7), ∇G(ζ) is not invertible, so
this direction cannot be used. Using Lemma 5, we prove below the second main result
of this section, based on the merit function ψYF given by (13). Similar results have been
proven for the NCP case [34] and the SDCP case [53].

Proposition 4. Let φ be given by (11), let ψFB be given by (17), and let ψYF be given
by (13), with ψ0 : IR → [0,∞) being any smooth function satisfying (14). Let fYF be
given by (16), where F and G are differentiable mappings from IRn to IRn satisfying
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(36). Then, for every ζ ∈ IRn, either (i) fYF (ζ ) = 0 or (ii) ∇fYF (ζ ) �= 0. In case (ii), if
∇G(ζ) is invertible, then 〈dYF (ζ ),∇fYF (ζ )〉 < 0, where

dYF (ζ ) := −(∇G(ζ)−1)T
(
ψ ′

0(〈F(ζ ),G(ζ )〉)G(ζ )+ ∇xψFB(F (ζ ),G(ζ ))

)
.

Proof. Fix any ζ ∈ IRn. By Proposition 2, ψFB is smooth. Since ψ0 is smooth, (13)
shows that ψYF is smooth. Then the chain rule for differentiation yields

∇fYF (ζ ) = α

(
∇F(ζ )G(ζ )+ ∇G(ζ)F (ζ )

)

+∇F(ζ )∇xψFB(F (ζ ),G(ζ ))+ ∇G(ζ)∇yψFB(F (ζ ),G(ζ )),

where we let α := ψ ′
0

(
〈F(ζ ),G(ζ )〉

)
.

Suppose ∇fYF (ζ ) = 0. Then, dropping the argument “(ζ )” for simplicity, we have

α

(
∇FG+ ∇GF

)
+ ∇F∇xψFB(F,G)+ ∇G∇yψFB(F,G) = 0.

The column monotone property of ∇F,−∇G yields

〈αG+ ∇xψFB(F,G), αF + ∇yψFB(F,G)〉 ≤ 0.

Upon collecting terms on the left-hand side, we have

α2〈F,G〉 + α
(〈F,∇xψFB(F,G)〉 + 〈G,∇yψFB(F,G)〉

)

+〈∇xψFB(F,G),∇yψFB(F,G)〉 ≤ 0.

Our assumption (14) onψ0 implies the first term is nonnegative. By Lemma 6, the second
and the third terms are also nonnegative. Thus, the third term must be zero, so Lemma
6(b) implies φ(F,G) = 0. Thus fFB(ζ ) = 1

2‖φ(F (ζ ),G(ζ ))‖2 = 0.
Suppose ∇fYF (ζ ) �= 0 and ∇G(ζ) is invertible. Again, we drop the argument “(ζ )”

for simplicity. Then,

〈dYF ,∇fYF 〉 =
〈
− (∇G−1)T (αG+ ∇xψFB(F,G)), ∇F(αG+ ∇xψFB(F,G))

+∇G(αF + ∇yψFB(F,G))

〉

= −
〈
αG+ ∇xψFB(F,G), ∇G−1∇F(αG+ ∇xψFB(F,G))

〉

−
〈
αG+ ∇xψFB(F,G), αF + ∇yψFB(F,G)

〉

≤ −
〈
αG+ ∇xψFB(F,G), αF + ∇yψFB(F,G)

〉

= −α2〈F,G〉 − α

(
〈F, ∇xψFB(F,G)〉 + 〈G, ∇yψFB(F,G)〉

)

−〈∇xψFB(F,G), ∇yψFB(F,G)〉,
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where the first inequality follows from ∇G−1∇F � 0. We argued earlier that all three
terms on the right-hand side are non-positive. Moreover, by Lemma 6(b), the third term
is zero if and only if φ(F,G) = 0, i.e., ζ is a global minimum of fYF and hence a
stationary point of fYF . Since ∇fYF (ζ ) �= 0, the right-hand side cannot equal zero, so it
must be negative.

5. Bounded level sets and error bounds for fYF

In this section, we consider the merit function fYF given by (16). We show that, analo-
gous to the NCP and SDCP cases [34, 53], ifF andG have a joint monotonicity property
and a strictly feasible solution exists, then fYF has bounded level sets. If F andG have a
joint strong monotonicity property, then fYF has bounded level sets and provides a global
error bound on the distance to a solution of SOCCP. In contrast, the merit function fFB

given by (15) lacks these properties due to the absence of the term ψ0(〈F(ζ ),G(ζ )〉).
As in the previous two sections, we focus our analysis on the case of N = 1 (i.e.,

K = Kn) for simplicity. In what follows, for each x ∈ IRn, x+ denotes the nearest-point
(in the Euclidean norm) projection of x onto Kn. We begin with the following lemma.

Lemma 7. Let K be any closed convex cone in IRn. For each x ∈ IRn, let x+
K and

x−
K denote the nearest-point (in the Euclidean norm) projection of x onto K and −K∗,

respectively. The following results hold.

(a) For any x ∈ IRn, we have x = x+
K + x−

K and ‖x‖2 = ‖x+
K‖2 + ‖x−

K‖2.
(b) For any x ∈ IRn and y ∈ K, we have 〈x, y〉 ≤ 〈x+

K, y〉.
(c) If K is self-dual, then for any x ∈ IRn and y ∈ K, we have

∥∥(x + y)+K
∥∥ ≥ ∥∥x+

K
∥∥.

(d) For any x ∈ Kn, y ∈ IRn with x2 − y2 ∈ Kn, we have x − y ∈ Kn.

Proof. (a). These are well-known results in convex geometry on representing x as the
sum of its projection onto K and its polar −K∗.

(b). Since x−
K ∈ −K∗ and y ∈ K, 〈x−

K, y〉 ≤ 0. By (a), 〈x, y〉 = 〈x+
K, y〉+〈x−

K, y〉 ≤
〈x+

K, y〉.
(c). Since K is self-dual, we have y ∈ K∗. Then (x + y)−K − y ∈ −K∗. Since x−

K is
the nearest-point projection of x onto −K∗, this implies

‖x−
K − x‖ ≤ ‖((x + y)−K − y)− x‖.

By (a), this simplifies to ‖x+
K‖ ≤ ‖(x + y)+K‖.

(d) This is Proposition 3.4 of [19].

Lemma 7(c) generalizes [53, Lemma 2.4]. Using Lemma 7, we obtain the following
two lemmas that are analogs of [53, Lemmas 2.5, 2.6] for SDCP.

Lemma 8. Let ψFB be given by (11) and (17). For any (x, y) ∈ IRn × IRn, we have

4ψFB(x, y) ≥ 2

∥∥∥∥φ(x, y)+
∥∥∥∥

2

≥
∥∥∥∥(−x)+

∥∥∥∥
2

+
∥∥∥∥(−y)+

∥∥∥∥
2

.
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Proof. The first inequality follows from Lemma 7(a). It remains to show the second
inequality. By Lemma 7(d), (x2 + y2)1/2 − x ∈ Kn. Since Kn is self-dual, then Lemma
7(c) yields

∥∥∥∥
(
(x2 + y2)1/2 − x − y

)

+

∥∥∥∥
2

≥
∥∥∥∥(−y)+

∥∥∥∥
2

.

By a symmetric argument,

∥∥∥∥
(
(x2 + y2)1/2 − x − y

)

+

∥∥∥∥
2

≥
∥∥∥∥(−x)+

∥∥∥∥
2

.

Adding the above two inequalities yields the desired second inequality.

Lemma 9. Let ψFB be given by (11) and (17). For any {(xk, yk)}∞k=1 ⊆ IRn × IRn, let
λk1 ≤ λk2 and µk1 ≤ µk2 denote the spectral values of xk and yk , respectively. Then the
following results hold.

(a) If λk1 → −∞ or µk1 → −∞, then ψFB(x
k, yk) → ∞.

(b) Suppose that {λk1} and {µk1} are bounded below. If λk2 → ∞ or µk2 → ∞, then
〈x, xk〉 + 〈y, yk〉 → ∞ for any x, y ∈ int(Kn).

Proof. (a). This follows from Lemma 8 and the fact that

2‖(−xk)+‖2 =
2∑

i=1

(
max{0,−λki }

)2

and similarly for ‖(−yk)+‖2; see [19, Property 2.2 and Proposition 3.3].
(b). Fix any x = (x1, x2), y = (y1, y2) ∈ IR × IRn−1 with ‖x2‖ < x1, ‖y2‖ < y1.

Using the spectral decomposition

xk =
(
λk1 + λk2

2
,
λk2 − λk1

2
wk2

)
with ‖wk2‖ = 1,

we have

〈x, xk〉=
(
λk1 + λk2

2

)
x1 +

(
λk2 − λk1

2

)
xT2 w

k
2 = λk1

2
(x1 − xT2 w

k
2)+ λk2

2
(x1 + xT2 w

k
2).

(37)

Since ‖wk2‖ = 1, we have x1 −xT2 wk2 ≥ x1 −‖x2‖ > 0 and x1 +xT2 wk2 ≥ x1 −‖x2‖ > 0.
Since {λk1} is bounded below, the first term on the right-hand side of (37) is bounded
below. If {λk2} → ∞, then the second term on the right-hand side of (37) tends to infinity.
Hence, 〈x, xk〉 → ∞. A similar argument shows that 〈y, yk〉 is bounded below. Thus,
〈x, xk〉 + 〈y, yk〉 → ∞. If {µk2} → ∞, the argument is symmetric to the one above.
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In what follows, we say that F and G are jointly monotone if

〈F(ζ )− F(ξ),G(ζ )−G(ξ)〉 ≥ 0 ∀ζ, ξ ∈ IRn.

Similarly, F and G are jointly strongly monotone if there exists ρ > 0 such that

〈F(ζ )− F(ξ),G(ζ )−G(ξ)〉 ≥ ρ‖ζ − ξ‖2 ∀ζ, ξ ∈ IRn.

In the case whereG(ζ) = ζ for all ζ ∈ IRn, the above notions are equivalent to the well-
known notion of F being, respectively, monotone and strongly monotone [9, Section
2.3]. Since F is differentiable, F being monotone is equivalent to ∇F(ζ ) � O for all
ζ ∈ IRn; see, e.g., [9, Proposition 2.3.2].3 It can be seen that F,G given by (6) or (7)
are jointly monotone, but not jointly strongly monotone. It is not difficult to see that if
F,G are jointly strongly monotone, then SOCCP has at most one solution. Sufficient
conditions for SOCCP to have a solution are given in, e.g., [9, Sections 2.2, 2.4], [23,
Chapter 6], as well as Proposition 6.

Using Lemmas 7(b) and 8, we obtain the following global error bound results for
SOCCP that is an analog of [53, Theorem 4.2] for SDCP. The proof, based on Lemmas
7(b) and 8, is similar to the proof of [34, Theorem 3.4] and [53, Theorem 4.2] and is
included for completeness.

Proposition 5. Suppose that F andG are jointly strongly monotone mappings from IRn

to IRn. Also, suppose that SOCCP has a solution ζ ∗. Then there exists a scalar τ > 0
such that

τ‖ζ − ζ ∗‖2 ≤ max{0, 〈F(ζ ),G(ζ )〉} + ‖(−F(ζ ))+‖ + ‖(−G(ζ))+‖ ∀ζ ∈ IRn.
(38)

Moreover,

τ‖ζ − ζ ∗‖2 ≤ ψ−1
0

(
fYF (ζ )

) + 2
√

2fYF (ζ )
1/2 ∀ζ ∈ IRn, (39)

where fYF is given by (13), (16), (17), ψ0 : IR → [0,∞) is a smooth function satisfying
(14), and ψ−1

0 denotes the inverse function of ψ0 on [0,∞).4

Proof. Since F and G are jointly strongly monotone, there exists a scalar ρ > 0 such
that, for any ζ ∈ IRn,

ρ‖ζ − ζ ∗‖2 ≤ 〈F(ζ )− F(ζ ∗), G(ζ )−G(ζ ∗)〉
= 〈F(ζ ),G(ζ )〉 + 〈−F(ζ ),G(ζ ∗)〉 + 〈F(ζ ∗),−G(ζ)〉
≤ max{0, 〈F(ζ ),G(ζ )〉} + 〈(−F(ζ ))+,G(ζ ∗)〉 + 〈F(ζ ∗), (−G(ζ))+〉
≤ max{0, 〈F(ζ ),G(ζ )〉} + ‖(−F(ζ ))+‖ ‖G(ζ ∗)‖ + ‖F(ζ ∗)‖ ‖(−G(ζ))+‖
≤ max{1, ‖F(ζ ∗)‖, ‖G(ζ ∗)‖}

×
(

max{0, 〈F(ζ ),G(ζ )〉} + ‖(−F(ζ ))+‖ + ‖(−G(ζ))+‖
)
,

3 However, F and G being jointly monotone seems not equivalent to ∇F(ζ ),−∇G(ζ) being column
monotone for all ζ ∈ IRn.

4 ψ−1
0 is well defined since, by (14), ψ0 is strictly increasing on [0,∞).
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where the second inequality uses Lemma 7(b). Setting τ := ρ

max{1, ‖F(ζ ∗)‖, ‖G(ζ ∗)‖}
yields (38).

Using (13), (14) and (16), we have

max{0, 〈F(ζ ),G(ζ )〉} ≤ ψ−1
0

(
fYF (ζ )

)
and ψFB(F (ζ ),G(ζ )) ≤ fYF (ζ ).

Using Lemma 8 and the second inequality, we have

‖(−F(ζ ))+‖ + ‖(−G(ζ))+‖ ≤
√

2
(
‖(−F(ζ ))+‖2 + ‖(−G(ζ))+‖2

)1/2

≤ 2
√

2 ψFB(F (ζ ),G(ζ ))
1/2

≤ 2
√

2 fYF (ζ )
1/2.

Thus,

max{0, 〈F(ζ ),G(ζ )〉}+‖(−F(ζ ))+‖+‖(−G(ζ))+‖ ≤ ψ−1
0

(
fYF (ζ )

)+2
√

2fYF (ζ )
1/2.

This together with (38) yields (39).

If in addition F is continuous andG(ζ) = ζ for all ζ ∈ IRn, then the assumption that
the SOCCP has a solution can be dropped from Proposition 5; see, e.g., [9, Proposition
2.2.7]. Also, the exponent 2 in the definition of joint strong monotonicity can be replaced
by any q > 1, and Proposition 5 would generalize accordingly.

By using Lemma 9 and Proposition 4, we have the following analog of [53, Theorem
4.1] on solution existence and boundedness of the level sets of fYF .

Proposition 6. Suppose that F and G are differentiable, jointly monotone mappings
from IRn to IRn satisfying

lim
‖ζ‖→∞

‖F(ζ )‖ + ‖G(ζ)‖ = ∞. (40)

Suppose also that SOCCP is strictly feasible, i.e., there exists ζ̄ ∈ IRn such that
F(ζ̄ ),G(ζ̄ ) ∈ int(Kn). Then the level set

L(γ ) := {ζ ∈ IRn | fYF (ζ ) ≤ γ }
is bounded for all γ ≥ 0, where fYF is given by (13), (16), (17), and ψ0 : IR → [0,∞)

is a smooth function satisfying (14). If in addition F,G satisfy (36), then L(γ ) �= ∅ for
all γ ≥ 0.

Proof. For any γ ≥ 0, if {ζ k}∞k=1 ⊆ L(γ ), then {fYF (ζ
k)} is bounded and the joint

monotonicity of F and G yields

〈F(ζ k),G(ζ̄ )〉 + 〈F(ζ̄ ),G(ζ k)〉 ≤ 〈F(ζ k),G(ζ k)〉 + 〈F(ζ̄ ),G(ζ̄ )〉, k = 1, 2, ...

Using this together with Lemma 9 and an argument analogous to the proof of [53,
Theorem 4.1], we obtain that {‖F(ζ k)‖ + ‖G(ζ k)‖} is bounded. Then (40) implies {ζ k}
is bounded. This shows that L(γ ) is bounded.

The proof of L(γ ) �= ∅ uses Proposition 4 and is nearly identical to the proof of [53,
Theorem 4.1].
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It is straighforward to verify that F,G given by (6) or (7) are jointly monotone.
Also, we saw in Section 4 that they satisfy (36). If g is linear or, more generally,
lim‖x‖→∞ ‖∇g(x)‖/‖x‖ = 0, then (40) holds and, by Proposition 6, CSOCP has non-
empty bounded optimal primal and dual solution sets whenever it has strictly feasible
primal and dual solutions. This result in fact extends to the more general problem where
∇g is replaced by any differentiable monotone mapping from IRn to IRn. This result also
holds when F is differentiable monotone and G(ζ) = ζ for all ζ ∈ IRn.

6. Preliminary numerical experience

Propositions 2 and 3 show that SOCP and, more generally, CSOCP (5) may be reformu-
lated as the unconstrained minimization of the smooth merit function fFB (or fYF ), with
F,G given by either (6) or (7). In particular, the merit function has a stationary point if
and only if both primal and dual optimal solutions of the CSOCP exist and there is no
duality gap.And each stationary point yields primal and dual optimal solutions. Thus, we
can solve the CSOCP by applying any unconstrained minimization method to the merit
function. In contrast to primal-dual interior-point methods for SOCP, this approach does
not require the SOCP or its dual to have an interior feasible solution, and it opens SOCP
to solution by unconstrained optimization methods. It also allows non-interior starting
points. In this section, we report our preliminary experience with solving SOCP from
the DIMACS library and randomly generated CSOCP by this approach. In our tests, we
use the merit function fFB . Comparable results are expected with fYF .

We consider F,G given by (7). We evaluate F,G using the Cholesky factorization
of AAT , which is efficient when A is sparse.5 In particular, given such a factorization
LLT = AAT , we can compute x = F(ζ ) and y = G(ζ) for each ζ via two (sparse)
matrix-vector multiplications and two forward/backward solves:

Lu = Aζ, LT v = u, w = AT v, x = d + ζ − w, y = ∇g(x)− w.

In contrast to interior-point methods, the Cholesky factorization needs to be computed
only once, thus allowing fFB and its gradient to be efficiently evaluated. All computer
codes are written in Matlab, except for the evaluation of φ(x, y) and ∇ψFB(x, y), which
are more efficiently written in Fortran and called from Matlab as Mex files (since their
evaluations require loopingN times through each SOC). In fact, coding these evaluations
in Fortran instead of Matlab reduced the overall cpu time by a factor of about 10, despite
some loss in accuracy which results in higher iteration counts. Cholesky factorization is
computed using the Matlab routine chol. For the vector d satisfying Ad = b, which is
effectively the initial x (see below), we compute it as a solution of mind ‖Ad−b‖ using
Matlab’s least square solver. It would be worthwhile to explore other choices.

For the unconstrained optimization method

ζ
new

:= ζ + α�,

5 We also experimented with a version that uses pre-conditioned conjugate gradient method instead of
Cholesky factorization, but it did not seem to improve the cpu time significantly. Precomputing and storing
the n× n matrix AT (AAT )−1A also did not improve the cpu time, even on problems with dense A.
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we compute the direction� by either the conjugate gradient (CG) method (using Polak-
Ribiere or Fletcher-Reeve updates) or the BFGS method or the limited-memory BFGS
(L-BFGS) method, and we compute the stepsize α by the Armijo rule (with 1 as the ini-
tial trial stepsize, which is typically accepted) [5, 18, 38]. We do not enforce the Wolfe
condition [18, Chapter 2] since it is expensive, requiring an extra gradient evaluation per
stepsize. To ensure convergence, we revert to the steepest descent direction −∇fFB(ζ )

whenever the current direction � fails to satisfy the sufficient descent condition

∇fFB(ζ )
T � ≤ −10−5‖∇fFB(ζ )‖‖�‖.

The initial point is chosen to be ζ
init = 0, so that x

init = d and y
init = c. It may be

worthwhile to explore other choices. The method terminates when

max{fFB(ζ ), |xT y|} ≤ accur, (41)

where accur is a user-specified solution accuracy. (The duality gap |xT y| is added to
facilitate comparison with interior-point methods.) The method requires 1 gradient eval-
uation and at least 1 function evaluation per iteration. This is the dominant computation
for CG and L-BFGS.

6.1. Solving SOCP with sparse A

We consider the special case of CSOCP where A is sparse and g(x) = cT x for some
c ∈ IRn. The test problems are drawn from the DIMACS Implementation Challenge
library [39], a collection of nontrivial medium-to-large SOCP arising from applications.
In our tests, L-BFGS is found to be clearly superior to CG and BFGS. Thus we focus
on L-BFGS from here on. The recommended memory length of 5 [38, Section 9.1] is
found to work the best. However, for the scaling matrix H 0 = γ I , the choice

γ = 1

pT q · qT q
is found to work better than the four choices used by Liu and Nocedal [32], including
the recommended choice of γ = pT q/qT q [38, p. 226], where p := ζ − ζ

old
and

q := ∇fFB(ζ )− ∇fFB(ζ
old
). We do not have a good explanation for this. We will refer

to the above method as L-BFGS-Merit. We also tested an alternative implementation
whereby the public-domain Fortran L-BFGS code of Nocedal (1990 version) [32], with
default value ofH 0, is called by Matlab as Mex files. Nocedal’s code uses a stepsize pro-
cedure of Moré and Thuente, which enforces a curvature condition as well as sufficient
descent. However, on the DIMACS problems, this alternative implementation requires
more iterations and cpu time than L-BFGS-Merit to reach the same solution accuracy.

In our tests on the DIMACS problems, we find that L-BFGS-Merit can solve SOCP
to low-medium accuracy (ac\-cur ≤ 1e-5) fairly fast on problems where n is much
bigger thanm (in particular, nb, nb_L2, nb_L2_bessel). This can be seen from the
cpu times reported in Table 1, comparing L-BFGS-Merit with SeDuMi (Version 1.05)
by Jos Sturm [46] with varying termination accuracy. SeDuMi is a primal-dual interior-
point code that, in the benchmarking of Mittelmann [36, p. 424], is within a factor of 2
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Table 1. Performance of SeDuMi and L-BFGS-Merit on three DIMACS problems. (cpu times are in seconds
on a Linux PC cluster, running Matlab 6.1)

Problem SeDuMi L-BFGS-Merit
name m, n iter/cpu (pars.eps) iter/cpu/minxy (accur)

nb 123, 2383 18/12.5 (1e-4) 67/2.0/-4e-4 (1e-4)
19/13.7 (1e-5) 1042/33.5/-2e-4 (1e-5)
20/14.2 (1e-6) > 5000 iters (1e-6)

nb_L2 123, 4195 10/14.7 (1e-4) 279/18.0/-8e-5 (1e-4)
11/16.2 (1e-5) 330/19.7/-9e-6 (1e-5)
12/17.1 (1e-6) 343/21.6/-5e-7 (1e-6)

nb_L2_bessel 123, 2641 9/7.5 (1e-4) 65/2.3/-4e-4 (1e-4)
11/9.0 (1e-5) 108/3.9/-4e-5 (1e-5)

13/11.8 (1e-6) 108/3.9/-4e-5 (1e-6)
15/13.2 (1e-7) 197/6.6/-5e-7 (1e-7)

of being the fastest at solving these problems. pars.eps is the user-specified solution
accuracy for SeDuMi. Since L-BFGS-Merit does not maintain x and y to be in K, we
also report the minimum spectral value of, x and y on termination (minxy). As shown in
Table 1, L-BFGS-Merit requires more iterations than SeDuMi but less cpu time per iter-
ation. For accuracy below 1e-6, L-BFGS-Merit is competitive with SeDuMi, but not at
higher accuracy. The number of L-BFGS iterations is generally reasonable compared to
those reported in [32, 38]. Figure 1 plots the merit function value versus iteration number
on the problem nb. On the remaining DIMACS problems for which n < 4m, L-BFGS-
Merit converges, but very slowly. For example, on nb_L1 (with m = 915, n = 3176),
the left-hand side of (41) is still at 0.8 after 5000 L-BFGS iterations. Improving the
convergence rate of L-BFGS on such problems is a topic for future study.

The above results, though limited, suggests that, for SOCP with n � m and low-
to-medium solution accuracy, a merit function based method like L-BFGS-Merit might
provide a viable alternative to interior-point methods. The merit function can also be
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An unconstrained smooth minimization reformulation of the second-order cone 323

combined with smoothing and nonsmooth Newton methods to improve the efficiency
and robustness of the latter, as was done in the case of NCP [7, 8, 12, 17, 24, 27, 30].

6.2. Solving CSOCP with dense A

We consider the special case of CSOCP whereA is dense. As we know of no benchmark
CSOCP, we generated our own test problems. To make the problems more realistic, we
consider a sum-of-norms problem [33, Section 2.2] with a convex regularization term
added:

min
w≥0

M∑

i=1

‖Aiw − bi‖ + h(w),

where Ai ∈ IRmi×
, bi ∈ IRmi , and h : IR
 → IR is a convex twice continuously
differentiable function. We transform this problem into the following CSOCP:

minimize
∑M
i=1 zi + h(w)

subject to Aiw + si = bi, (zi, si) ∈ Kmi+1, i = 1, ...,M, w ≥ 0.

In our tests, we generate each mi randomly from {2, 3, ..., r} (r ≥ 2), and generate
each entry of Ai and bi randomly according to a uniform distribution from the interval
[−1, 1] and [−5, 5], respectively. Thus, the constraint matrix is dense if, say, 
 ≥ m =
m1 + · · · + mM . We use either linear h(w) = cT w with c = (1, ..., 1)T (an SOCP) or
cubic h(w) = cT w + 1

3‖w‖3
3, where ‖ · ‖3 denotes the 3-norm.

The problem parameters and the performance of L-BFGS-Merit are reported in
Table 2. For comparison, we also report the performances of SeDuMi for linear h and
of the BFGS and CG methods, referred to as CG-Merit and BFGS-Merit, for cubic h.
For termination, pars.eps in SeDuMi and accur in L-BFGS-Merit, BFGS-Merit,
CG-Merit are both set to 1e-3. From Table 2, we see that L-BFGS-Merit is consistently
faster than BFGS-Merit and CG-Merit. We also ran the methods with accur set to
1e-6, and the same trend is observed, with iteration count and cpu time for L-BFGS-
Merit increasing by at most a factor of 2. Although BFGS-Merit has fewer iterations on
some problems, its cpu time is higher due to the expensive BFGS update. Interestingly,

Table 2. Performance of SeDuMi, L-BFGS-Merit, BFGS-Merit, CG-Merit on regularized sum-of-norms prob-
lems. (cpu times are in seconds on an HP DL360 workstation, running Matlab 6.5.1 under Red Hat Linux 3.3).

linear h cubic h

Problem SeDuMi
L-BFGS-
Merit

BFGS-
Merit CG-Merit

L-BFGS-
Merit


,M, r m, n iter/cpu iter/cpu iter/cpu iter/cpu iter/cpu
250,10,10 64,324 11/0.3 789/2.8 256/6.1 1344/4.7 427/1.6
250,50,10 312,612 9/2.1 1005/12.2 1197/108.1 13722/186.3 491/8.2
250,10,50 318,578 10/2.2 2144/27.5 1004/84.4 783/112.2 206/3.5
500,10,10 56,566 11/0.5 2548/11.1 352/24.6 1703/6.6 497/2.4
500,50,10 283,833 11/3.8 636/8.6 546/85.1 3173/69.0 700/12.4
500,10,50 246,756 12/3.3 283/3.2 272/36.3 1290/23.0 371/5.6
1000,10,100 611,1621 14/31.1 332/18.0 343/207.8 7561/550.9 317/24.8
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L-BFGS-Merit has faster convergence for nonlinear h than for linear h. Perhaps the
added cubic term further pushes some components of w towards zero and thus accel-
erates convergence. For linear h, L-BFGS-Merit is slower than SeDuMi except on the
last two problems where 
 and r are largest. We do not have a good explanation for this.
Perhaps this depends on the number of SOC constraints that are active at an optimal
solution. Further studies are needed.

In general, the merit function approach seems to be practical for solving CSOCP,
especially when g is nonlinear (for which few practical methods exist) and low-accuracy
solutions suffice.

7. Conclusions and final remarks

We have shown that, analogous to the NCP case, the SOCCP (1), (2), (3) can be refor-
mulated as an unconstrained smooth minimization problem using the merit function fFB

given by (12), (15) or fYF given by (13), (16). Moreover, analogous to the NCP and
SDCP cases, if ∇F(ζ ) and −∇G(ζ) are column monotone, then either ζ is a global
minimum of fFB and fYF or it is not a stationary point. In the latter case, if ∇G(ζ)
is invertible, then a ∇F -free descent direction at ζ can be found. In addition, we give
conditions under which fYF has bounded level sets or provides a global error bound on
the distance to a solution. Preliminary numerical experience with solving SOCP and
CSOCP is reported. As a direction for future research, it would be interesting to extend
to SOCCP other NCP merit functions and associated solution methods, such as those
surveyed in [47].

For the CSOCP (5), an alternative merit function tofFB , as suggested by one referee, is

f̂ (x, λ) := ψFB(x,∇g(x)− AT λ)+ 1

2
‖Ax − b‖2.

A drawback of this merit function is that the variables have dimension n + m instead
of n. It is also more sensitive to scaling of A and b. Interestingly, this merit function
has a similar property as fFB in that every stationary point is a least-square solution of
CSOCP. In particular, if (x, λ) is a stationary point of f̂ , then

0 = ∇xf̂ (x, λ) = ∇xψFB(x, ŷ)+ ∇2g(x)∇yψFB(x, ŷ)+ AT (Ax − b),

0 = ∇λf̂ (x, λ) = A∇yψFB(x, ŷ),

where ŷ = ∇g(x) − AT λ. Multiplying the first equation on the left by ∇yψFB(x, ŷ)
T

yields

0 = ∇yψFB(x, ŷ)
T∇xψFB(x, ŷ)+ ∇yψFB(x, ŷ)

T∇2g(x)∇yψFB(x, ŷ).

Using ∇2g(x)�0 and Lemma 6(b), this impliesψFB(x, ŷ)=0 and hence ∇xψFB(x, ŷ) =
∇yψFB(x, ŷ) = 0. Then the first equation yields AT (Ax − b) = 0, so ‖Ax − b‖2 is
at minimum value. Thus, if Ax = b is consistent, then every stationary point of f̂ is a
primal-dual optimal solution pair of CSOCP.
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Finally, since x ∈ Kn if and only ifLx � O, we might ask whether (1) with K = Kn

is equivalent to

Lx � O, Ly � O, 〈Lx,Ly〉 = 0, (42)

where 〈A,B〉 = tr[AT B] forA,B ∈ IRn×n. If this were true, then we can construct new
merit functions for SOCCP by composing merit functions for SDCP [50, 53] with the
linear mapping (x, y) �→ (Lx, Ly). However, it can be seen that (42) is equivalent to

x1 ≥ ‖x2‖, y1 ≥ ‖y2‖, nx1y1 + 2xT2 y2 = 0.

The two inequalities imply x1y1 ≥ 0 and x1y1 + xT2 y2 ≥ 0. Then the equality 0 =
(n − 2)x1y1 + 2(x1y1 + xT2 y2) yields, for n > 2, x1y1 = xT2 y2 = 0. Thus, for n > 2,
(42) implies (1) but not conversely. In particular, x = (1, 1, 0)T , y = (1,−1, 0)T satisfy
(1) but not (42).
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comments.
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