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Abstract. The strong conical hull intersection property (CHIP) is a geometric property of a collection of
finitely many closed convex intersecting sets. This basic property, which was introduced by Deutsch et al. in
1997, is one of the central ingredients in the study of constrained interpolation and best approximation. In this
paper we establish that the strong CHIP of intersecting sets of constraints is the key characterizing property for
optimality and strong duality of convex programming problems. We first show that a sharpened strong CHIP
is necessary and sufficient for a complete Lagrange multiplier characterization of optimality for the convex
programming model problem

(Pf ) min{f (x)|x ∈ C, −g(x) ∈ S},
where C is a closed convex subset of a Banach space X, S is a closed convex cone which does not necessarily
have non-empty interior, Y is a Banach space, f : X → IR is a continuous convex function and g : X → Y

is a continuous S-convex function. We also show that the strong CHIP completely characterizes the strong
duality for partially finite convex programs, where Y is finite dimensional and g(x) = −Ax + b and S is a
polyhedral convex cone. Global sufficient conditions which are strictly weaker than the Slater type conditions
are given for the strong CHIP and for the sharpened strong CHIP.

Key words. Strong conical hull intersection property – global constraint qualification – strong duality –
optimality conditions – constrained approximation

1. Introduction

In this paper, we consider the cone-convex programming model problem

(Pf ) min{f (x)|x ∈ C, −g(x) ∈ S},
where C is a closed convex subset of a Banach space X, S is a closed convex cone which
does not necessarily have non-empty interior, Y is a Banach space and g : X → Y is
a continuous S-convex function and f : X → IR is a continuous convex function.
This model covers a much wider spectrum of applications that can not be captured by
the standard inequality constrained convex programming problems. It includes, in par-
ticular, semidefinite programming problems [3, 23] and many classes of constrained
interpolation and approximation problems [6, 9].
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The strong conical hull intersection property (CHIP), which played a central role
in constrained interpolation and approximation [1, 4, 6, 8, 9, 21], turns out to be the
key geometric characterizing property for optimality and strong duality in cone-convex
programming. We show that a sharpened strong conical hull intersection property is
necessary and sufficient for a complete Lagrange multiplier characterization of optimal-
ity for (Pf ) in the sense that the sharpened strong CHIP holds if and only if for each
continuous convex function f : X → IR and for each minimizer of (Pf ), there exists a
Lagrange multiplier satisfying the Kuhn-Tucker type subgradient optimality condition.
Furthermore, we establish that the strong CHIP completely characterizes the strong dual-
ity of partially finite convex programming problems, where Y is finite dimensional and
g(x) = −Ax + b and S is a polyhedral convex cone. As a consequence, we obtain a
complete characterization of the cone-constrained best approximation in Hilbert spaces
in terms of the strong CHIP. We present new global sufficient conditions, which are
strictly weaker than Slater’s condition, for the strong CHIP and for the sharpened strong
CHIP.

The Lagrange multiplier characterizations of optimality and strong duality charac-
terizations are central to most studies of convex programming. Over the years, a great
deal of attention has been focused on finding conditions, known as constraint qualifica-
tions, which ensure the existence of Lagrange multipliers, characterizing a minimizer,
and which gives strong duality. Such studies of constraint qualifications are abundance in
the literature, e.g. see [13, 19] and other references therein. On the other hand, research
on constraint qualifications, which are, in some sense, also necessary for the existence of
Lagrange multipliers for convex programming problems, has so far been limited mainly
to problems with inequality constraints [13, 25]. More recently, the strong CHIP has
been shown to be the characterizing property for a strong duality relationship between
two special pair of optimization problems in [8, 6]. Our results provide the weakest
constraint qualifications for optimality and for strong duality of broad classes of convex
programming problems.

The layout of the paper is as follows. In section 2 we collect definitions, notations
and preliminary results that will be used later in the paper. In section 3, we establish
necessary and sufficient conditions in terms of strong CHIP for the existence of Lag-
range multipliers, characterizing a minimizer of (Pf ). We also give global sufficient
conditions for the strong CHIP and the sharpened strong CHIP. In section 4, we present
a necessary and sufficient condition for the strong duality of partially finite convex pro-
gramming problems, and then obtain a simple characterization of the cone-constrained
best approximation in Hilbert spaces.

2. Preliminaries

We begin this section by fixing the notations, definitions and preliminaries that will be
used later in the paper. Let X and Y be Banach spaces. The continuous dual space of X

will be denoted by X∗. For a set W ⊂ X∗, the weak∗closure of W will be denoted by
cl W . For a subset A of X, we shall denote the interior of A by int A, and the indicator
function δA is defined by δA(x) = 0 if x ∈ A and δA(x) = +∞ if x /∈ A. The support
function σA is defined by



The strong conical hull intersection property for convex programming 83

σA(u) = sup
x∈A

u(x) (u ∈ X∗).

Let f : X → R ∪ {−∞, +∞}. Then, the conjugate function of f, f ∗ : X′ →
R ∪ {−∞, +∞}, is defined by

f ∗(v) = sup{v(x) − f (x) | x ∈ X}.
The function f is said to be proper if it does not take on the value −∞ and dom f �= ∅,
where the domain of f , dom f , is given by dom f = {x ∈ X | f (x) < +∞}. The
epigraph of f, Epif , is defined by

Epif = {(x, r) ∈ X × R | f (x) ≤ r}.
For details see [26]. The function f is lower semicontinuous if and only if Epif is a
closed subset of X × R. The lower semicontinuous regularization, cl f : X → R ∪
{−∞, +∞}, is the function whose epigraph is equal to the closure of the epigraph of f

in X × R:

Epi(cl f ) := cl(Epif ).

For the functions f, g : X → R ∪ {+∞}, the infimal convolution of f with g, denoted
by f ⊕ g : X → R ∪ {−∞, +∞}, is defined by

f ⊕ g(x) := inf
x1+x2=x

{f (x1) + g(x2)}.

The infimal convolution of f with g is said to be exact provided the infimum above is
achieved. Note that if f, g : X → R ∪ {+∞} are proper lower semicontinuous con-
vex functions, and if cl(f ∗ ⊕ g∗) is proper, then (f + g)∗ = cl(f ∗ ⊕ g∗). Moreover,
if f, g : X → R ∪ {+∞} are proper lower semicontinuous convex functions with
dom f ∩ dom g �= ∅ then cl(f ∗ ⊕ g∗) is proper. These facts can be found in, or can
easily be derived from, [24, 26].

For ε > 0, the ε-subdifferential of a proper lower semicontinuous function f : X →
R ∪ {+∞} at a ∈ dom f is defined as the non-empty weak* closed convex set

∂εf (a) = {v ∈ X∗ | f (x) − f (a) ≥ v(x − a) − ε, ∀x ∈ dom f }.
The elements of ∂εf (a) are called ε-subgradients of f at a. For ε = 0, ∂0f (a) is the
usual subdifferential of f at a and is often denoted by ∂f (a). See [13, 14] for a discus-
sion of this set and its properties. Note that

⋂
ε>0 ∂εf (a) = ∂f (a). It follows from the

definitions of Epif ∗and the ε-subdifferential of f that if a ∈ domf , then

Epif ∗ =
⋃

ε≥0

{(v, v(a) + ε − f (a)) | v ∈ ∂εf (a)}.

For details see [16].
It is also worth noting that, for the proper lower semicontinuous convex functions

f, g : X → R∪{+∞} with dom f ∩dom g �= ∅, if (f +g)∗ = f ∗ ⊕g∗ and the infimal
convolution is exact, then ∂(f +g)(x) = ∂f (x)+ ∂g(x), for each x ∈ dom f ∩ dom g.
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For the details, see [12]. If Epif ∗ + Epig∗ is weak∗closed then (f + g)∗ = f ∗ ⊕ g∗
and the infimal convolution is exact. For details see [5].

For convenience, we denote the composite mapping λ ◦ g by λg, where λ ∈ Y ∗ and
g : X −→ Y is a function. For a non-empty subset A of X, define the polar cone of A

by

Ao := {v ∈ X∗ : v(w) ≤ 0 ∀ w ∈ A},

and the dual cone of A by A+ := −Ao. Also, Ao is called the normal cone of A at 0
whenever 0 ∈ A. For the non-empty subset A of X, the conical hull of A is denoted by
cone(A).A function g :X−→Y is called S-convex if, for each x, y ∈ X and 0 ≤ α ≤ 1,

αg(x) + (1 − α)g(y) − g(αx + (1 − α)y) ∈ S,

where S is a closed convex cone in Y. Let C be a non-empty closed convex subset of X

and let

g−1(−S) := {x ∈ X : −g(x) ∈ S}, (2.1)

where g : X −→ Y is a continuous S-convex function. It is easy to check that g−1(−S)

is a closed convex subset of X. Let K := C ∩ g−1(−S). If K is non-empty, then we
easily obtain that

EpiσK = cl(Epiσg−1(−S) + EpiσC). (2.2)

Moreover, if g−1(−S) is non-empty then

Epiσg−1(−S) = cl(∪λ∈S+Epi(λg)∗). (2.3)

A proof of the result is given in [4, 16].

3. Strong CHIP and Lagrange Multipliers

In this section we first establish that the strong CHIP of {C, g−1(−S)} is necessary and
sufficient for an asymptotic Lagrange multiplier conditions, characterizing a minimizer.
We then show that a sharpened strong CHIP is necessary and sufficient for the standa-
rad Lagrange multiplier conditions [13, 26], characterizing a minimizer. We begin by
recalling the notion of strong CHIP (see, e.g. [1, 4, 6, 8, 9]).

Definition 3.1. Let C1, and C2 be two closed convex subsets in X and let x ∈ C1 ∩ C2.

Then {C1, C2} is said to have the strong CHIP at x, if

(C1 ∩ C2 − x)o = (C1 − x)o + (C2 − x)o.

The pair {C1, C2} is said to have the strong CHIP if it has the strong CHIP at each
x ∈ C1 ∩ C2.
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Note that if C1 ∩ C2 �= ∅, then we always have

(C1 − x)o + (C2 − x)o ⊂ (C1 ∩ C2 − x)o. (3.1)

If (δC1 + δC2)
∗ = δ∗

C1
⊕ δ∗

C2
and the infimal convolution is exact then the pair {C1, C2}

has the strong CHIP at each x ∈ C1 ∩ C2. In particular, if EpiσC1+ EpiσC2 is weak∗
-closed then the pair {C1, C2} has the strong CHIP. For details see [4, 5]. Now, for each
x ∈ X,

Ng(x) := {
u ∈ X∗|(u, u(x)) ∈ cl (∪λ∈S+Epi(λg)∗)

}
. (3.2)

Clearly, Ng(x) is a weak∗closed convex cone in X∗ as cl(∪λ∈S+Epi(λg)∗) is a weak∗
closed convex cone. Let us first deduce from the definitions that Ng(x) is, in fact, the
normal cone of g−1(−S) at x. Recall that the dual space X∗ is equipped with its weak∗
topology, and that “lim” means limit in the appropriate topology.

Proposition 3.1. For each x ∈ X, (g−1(−S) − x)o = Ng(x). Moreover, if x ∈
g−1(−S), then u∈Ng(x) if and only if there exist nets {εα} ⊂ IR+, {λα} ⊂ S+ and
{uα} ⊂ X∗ with uα ∈ ∂εα (λαg)(x) such that limα uα = u, limα(λαg)(x) = 0 and
limα εα = 0.

Proof. The point u∈(g−1(−S)− x)o if and only if σg−1(−S)(u) ≤ u(x), which, in turn,
is equivalent to (u, u(x)) ∈ Epiσg−1(−S). Since

Epiσg−1(−S) = cl (∪λ∈S+Epi(λg)∗),

it follows that u∈(g−1(−S)−x)o if and only if (u, u(x))∈cl (∪λ∈S+Epi(λg)∗), which,
by definition, is equivalent to the condition that u ∈ Ng(x).

Let x ∈ g−1(−S). Now, by the definition u ∈ Ng(x) if and only if

(u, u(x)) ∈ cl (∪λ∈S+ ∪ε≥0 {(v, ε + v(x) − (λg)(x)) : v ∈ ∂ε(λg)(x)}),

which means that there exist nets {εα} ⊂ IR+, {λα} ⊂ S+ and {uα} ⊂ X∗ with uα ∈
∂εα (λαg)(x) such that limα uα = u and limα εα + uα(x) − (λαg)(x) = u(x). Thus,
u ∈ Ng(x) if and only if there exist nets {εα} ⊂ IR+, {λα} ⊂ S+ and {uα} ⊂ X∗ with
uα ∈ ∂εα (λαg)(x), such that limα uα = u, limα(λαg)(x) = 0 and limα εα = 0. ��

In the following Theorem we derive an optimality condition using the strong CHIP.

Theorem 3.1. Let x ∈ K be a feasible point of (P ). Assume that {C, g−1(−S)} has the
strong CHIP at x. Then f (x) = min(Pf ) if and only if 0 ∈ ∂f (x)+Ng(x)+ (C − x)o.

Proof. Suppose that x ∈ K is a minimizer of (P ). Then, there exists p ∈ ∂f (x) such
that −p ∈ (K − x)o. Since {C, g−1(−S)} has the strong CHIP at x, (K − x)o =
(C − x)o + (g−1(−S) − x)o, and so, there exist q ∈ (g−1(−S) − x)o and r ∈ (C − x)o

such that −p = q + r. As (g−1(−S) − x)o = Ng(x), we see that

0 = p + q + r ∈ ∂f (x) + Ng(x) + (C − x)o.



86 V. Jeyakumar

Conversely, suppose that 0 ∈ ∂f (x) + Ng(x) + (C − x)o. Then there exist p ∈ ∂f (x),

q ∈ Ng(x) and r ∈ (C − x)o such that p + q + r = 0. So,

q + r ∈ Ng(x) + (C − x)o = (g−1(−S) − x)o + (C − x)o ⊂ (K − x)o.

Hence, −p ∈ (K −x)o; thus, 0 ∈ ∂f (x)+ (K −x)o. This gives us that x is a minimizer
of (P ). ��

We will now see how the optimality condition can be expressed in terms of a limiting
Lagrange multiplier condition.

Theorem 3.2. Let x ∈ K . Assume that {C, g−1(−S)} has the strong CHIP at x. Then
f (x) = min (Pf ) if and only if there exist p ∈ ∂f (x), q ∈ (C − x)o, nets {λα} ⊂ S+
{εα} ⊂ IR+ and {uα} ⊂ X∗with uα ∈ ∂εα (λαg)(x) such that

p + q + lim
α

uα = 0, lim
α

(λαg)(x) = 0 and lim
α

εα = 0.

Proof. Suppose that {C, g−1(−S)} has the strong CHIP at x. If x ∈ K is a mini-
mizer of (Pf ), then by Theorem 3.1 there exist p ∈ ∂f (x), q ∈ (C − x0)

o and
u ∈ Ng(x) such that −p = q + u. Since u ∈ Ng(x), it follows from Proposition 3.1
that there exist nets {εα} ⊂ IR+, {λα} ⊂ S+ and {uα} ⊂ X∗ with uα ∈ ∂εα (λαg)(x),

such that limα uα = u, limα(λαg)(x) = 0 and limα εα = 0. Hence, p + q + lim
α

uα =
0, lim

α
(λαg)(x) = 0, lim

α
εα = 0.

Conversely, suppose that there exist p ∈ ∂f (x), q ∈ (C − x)o, nets {λα} ⊂ S+
{εα} ⊂ IR+ and {uα} ⊂ X∗ with uα ∈ ∂εα (λαg)(x) such that

p + q + lim
α

uα = 0, lim
α

(λαg)(x) = 0 and lim
α

εα = 0.

Then, by Proposition 3.1, −p −q ∈ Ng(x). Thus, 0 ∈ p +q +Ng(x) ⊂ ∂f (x)+ (C −
x)o + Ng(x). Hence by Theorem 3.1, x is a minimizer of (Pf ). ��

For each x ∈ X,

Ng(x)o := {
u ∈ X∗ | (u, u(x)) ∈ ∪λ∈S+Epi(λg)∗

}
.

It is easy to verify that Ng(x)o is a convex cone of X∗ and that Ng(x)o ⊂ (g−1(−S) −
x)o. Moreover, Ng(x)o = ∪λ∈S+{∂(λg)(x) : λg(x) = 0}.
Definition 3.2. The pair {C, g−1(−S)} is said to have the sharpened strong CHIP at x

if

(K − x)o = (C − x)o + Ng(x)o.

The pair {C, g−1(−S)} is said to have the sharpened strong CHIP if it has the sharpened
strong CHIP at each x ∈ C ∩ g−1(−S).

Proposition 3.2. If {C, g−1(−S)} has the sharpened strong CHIP then it has the strong
CHIP.
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Proof. Let x ∈ K. The conclusion will easily follow from the fact that

(C − x)o + Ng(x)o ⊂ (C − x)o + (g−1(−S) − x)o ⊂ (K − x)o.

��
We will now show that a strong CHIP (resp. sharpened strong CHIP) is necessary

and sufficient for a dual optimality condition, characterizing a minimizer.

Theorem 3.3. The following assertions are equivalent:

(1) {C, g−1(−S)} has the sharpened strong CHIP (resp. the strong CHIP).
(2) For each continuous convex function f : X → R, and for each minimizer x

of (Pf ) ,

0 ∈ ∂f (x) + Ng(x)o + (C − x)o (resp. 0 ∈ ∂f (x) + Ng(x) + (C − x)o).

Proof. [(1) �⇒ (2)]. Assume that (1) holds. Let f be a continuous convex function.
Suppose that x ∈ K is a minimizer of (Pf ). Then, there exists p ∈ ∂f (x) such
that −p ∈ (K − x)o. So, (2) holds, since (K − x)o = (C − x)o + Ng(x)o (resp.
(K − x)o = (C − x)o + Ng(x)).

[(2) �⇒ (1)]. Assume that (2) holds. Let x0 ∈ K be arbitrary. If u ∈ (K − x0)
o

then −u(x0) = min (P−u ). Now, by (2), 0 ∈ {−u} + (C − x0)
o + Ng(x0)o (resp.

0 ∈ {−u} + (C − x0)
o + Ng(x0)). So, u ∈ (C − x0)

o + Ng(x0)o (resp. u ∈ (C −
x0)

o + Ng(x0)). Hence,

(K − x0)
o ⊂ (C − x0)

o + Ng(x0)o(resp. ⊂ (C − x0)
o + Ng(x0))

⊂ (C − x0)
o + (g−1(−S) − x0)

o(resp. = (C − x0)
o + (g−1(−S) − x0)

o)

⊂ (K − x0)
o(resp. ⊂ (K − x0)

o).

��
We will show that if ∪λ∈S+Epi(λg)∗ weak∗closed then the sharpened strong CHIP

of {C, g−1(−S)} is equivalent to the strong CHIP of {C, g−1(−S)}.
Proposition 3.3. If (∪λ∈S+Epi(λg)∗) is weak∗ closed, then {C, g−1(−S)} has the
sharpened strong CHIP if and only if {C, g−1(−S)} has the strong CHIP.

Proof. Clearly, if {C, g−1(−S)} has the sharpened strong CHIP then, by Proposition
3.2, {C, g−1(−S)} has the strong CHIP. The converse implication will follow from
the fact that, for each, x ∈ g−1(−S), Ng(x)o = Ng(x) = (g−1(−S) − x)o, since
(∪λ∈S+Epi(λg)∗) is weak∗closed. ��

The following simple example illustrates that without the closure condition the strong
CHIP does not necessarily imply the sharpened strong CHIP.

Example 3.1. Let g : IR2 −→ IR be given by

g(x, y) = (x2 + y2)
1
2 − y.
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Let S = IR+ and

C = {(x, y) ∈ IR2 : x ≥ 0, 0 ≤ y ≤ 1}.
Then C is a closed convex subset of IR2 and

g−1(−S) = {(x, y) ∈ IR2 : −g(x, y) ∈ S} = {(x, y) ∈ IR2 : x = 0, y ≥ 0}.
Let x = (0, 1) ∈ K := C ∩ g−1(−S) = {

(x, y) ∈ IR2 : x = 0, 0 ≤ y ≤ 1
}
. A direct

calculation shows that (C −x)o = −IR+ × IR, (g−1(−S)−x)o = IR×{0}, (K −x)o =
IR × IR+ and Ng(x)o = {0} × {0}. It is now easy to verify that {C, g−1(−S)} has the
strong CHIP at x; however, {C, g−1(−S)} does not have the sharpened strong CHIP
at x as IR × IR+ = (K − x)o �= (C − x)o + Ng(x)o = (−IR+ × IR) + ({0} × {0}).
Note that (−1, 0, 0) ∈ cl(∪λ∈S+Epi(λg)∗), but (−1, 0, 0) /∈ ∪λ∈S+Epi(λg)∗, and so
∪λ∈S+Epi(λg)∗ is not closed.

We will now look at global conditions which ensure the strong CHIP and the sharp-
ened strong CHIP of {C, g−1(−S)}.
Proposition 3.4. If (∪λ∈S+Epi(λg)∗+EpiσC) is weak∗closed, then {C, g−1(−S)} has
the sharpened strong CHIP.

Proof. Let x ∈ K and let u ∈ (K−x)o.Then, (u, u(x)) ∈ EpiσK. Now, by the hypothe-
sis, (u, u(x)) ∈ ∪λ∈S+Epi(λg)∗ +EpiσC. So, by the definition of conjugate functions,
we can find v1, v2 ∈ X∗ such that (v1, v1(x)) ∈ ∪λ∈S+Epi(λg)∗ and (v2, v2(x)) ∈
EpiσC such that u = v1 + v2. Hence, by the definitions of Ng(x)o and (C − x)o, we
get v1 ∈ Ng(x)o and v2 ∈ (C − x)o. Thus, u = v1 + v2 ∈ Ng(x)o + (C − x)o. This
means that (K − x)o ⊂ (C − x)o + Ng(x)o. As the opposite inclusion always holds,
we get (K − x)o = (C − x)o + Ng(x)o. ��
Proposition 3.5. If (cl(∪λ∈S+Epi(λg)∗)+EpiσC) is weak∗closed, then {C, g−1(−S)}
has the strong CHIP.

Proof. Since Epiσg−1(−S) = cl(∪λ∈S+Epi(λg)∗, it follows from the hypothesis that

cl(∪λ∈S+Epi(λg)∗) + EpiσC = Epiσg−1(−S) + EpiσC

is weak∗closed, and so, {C, g−1(−S)} has the strong CHIP. ��
Note that (∪λ∈S+Epi(λg)∗ + EpiσC) is weak∗-closed if, in particular, int (S) is

non-empty and −g(x0) ∈ int (S) for some x0 ∈ C, which is known as the Slater con-
dition. The closure condition is strictly weaker than the Slater condition. To see this, let
X = Y = IR, C = [−1, 1] and S = IR+. Let g(x) = max{0, x}. Then it is easy to check
that (∪λ∈S+Epi(λg)∗ + EpiσC) is closed, whereas the Slater condition does not hold.
For various other generalized interior point or Slater type conditions which ensure that
(∪λ∈S+Epi(λg)∗ + EpiσC) is weak∗-closed, see [17].

Sufficient conditions for the sharpened strong CHIP (resp. strong CHIP) can also
be obtained in terms of metric regularity (resp. calmness) conditions, used in the study
of stability analysis and Lagrange multipliers in optimization. See [10, 11] and other



The strong conical hull intersection property for convex programming 89

reference therein. For instance, in the case where X = Y = IRm, it is shown in [17] that
if there exist neighbourhoods V and U of 0 and some x0 ∈ C ∩ g−1(−S) as well as
some γ > 0 such that

d(x, C ∩ g−1(y − S)) ≤ γ d(y − g(x), S), ∀y ∈ V, ∀x ∈ U,

then (∪λ∈S+Epi(λg)∗ + EpiσC) is closed, and so, {C, g−1(−S)} has the sharpened
strong CHIP. Recall that for a non-empty subset W of X and x ∈ X, we define

d(x, W) := inf
w∈W

‖x − w‖.

In Corollary 4.2 [11], calmness condition is used for the strong CHIP. For other
sufficient conditions involving bounded linear regularity for the strong CHIP, see [1, 4].

4. Necessary and Sufficient Conditions for Strong Duality

Consider the partially finite convex program

(PFf ) min{f (x)| ∈ C, Ax − b ∈ S},

where C ⊂ X is a closed convex subset of X, A : X → IRm is a continuous linear
mapping and S ⊂ IRm is a polyhedral convex cone and b ∈ IRm. The partially finite
convex model program arises in many important constrained approximation problems
and shape preserving interpolation problems (see [2] for details).

We assume that for each continuous convex function f : X → IR, (PFf ) has a
minimizer x.

Let g(x) := −Ax + b and let B : X × R → IRm be the linear map defined by
B(x, β) := −Ax − βb. Then,

Epi(λg)∗ = epi [λ(−A(.) + b)]∗ = {−AT λ} × [−λb, +∞).

So,
⋃

λ∈S+ Epi(λg)∗ = ⋃
λ∈S+{−AT λ} × [−λb, +∞). This can be re-expressed as

⋃

λ∈S+
Epi(λg)∗ = BT (S+) + {0} × IR+,

where BT λ = (−AT λ, −λb). As BT (S+) and {0} × IR+ are finitely generated cones,
BT (S+) + {0} × IR+ is also weak∗closed. Hence, for the partially finite convex pro-
gram (PFf ),

⋃
λ∈S+ Epi(λg)∗ is weak∗closed, and hence, sharpened strong CHIP is

equivalent to strong CHIP. Moreover, in this case, if A−1(b + S) �= ∅ then

(A−1(b + S) − x)o = ∪λ∈S+{−AT λ : λT (−Ax + b) = 0},

for each x ∈ A−1(b+S), where A−1(b+S) := {x ∈ X | Ax −b ∈ S}. In the following
Theorem we will show that the strong CHIP completely characterizes the strong duality
of (PFf ). Let K := C ∩ A−1(b + S).
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Theorem 4.1. The pair {C, A−1(b + S)} has the strong CHIP if and only if, for each
continuous convex function f : X → IR,

min (PFf ) = max
λ∈S+

−(f + δC)∗(AT λ) + bT λ.

Proof. Let f : X → IR be a continuous convex function and let f (x0) = min (PFf ).
Suppose that that {C, A−1(b + S)} has the strong CHIP. Then, it follows from Theorem
3.3 that

∃λ ∈ S+, 0 ∈ ∂f (x0) − AT λ + (C − x0)
o, λT (−Ax0 + b) = 0.

This gives us that

∃λ ∈ S+, bT λ + inf
x∈C

f (x) − AT λx ≥ f (x0);

thus,

max
λ∈S+

−(f + δC)∗(AT λ) + bT λ ≥ f (x0) = min (PFf ) .

By the weak duality, we get that

max
λ∈S+

−(f + δC)∗(AT λ) + bT λ = f (x0) = min (PFf ).

Conversely, assume that, for each continuous convex function f : X → IR,

min (PFf ) = max
λ∈S+

−(f + δC)∗(AT λ) + bT λ.

Let x0 ∈ K be arbitrary. If u ∈ (K − x0)
o then −u(x0) = min (PF−u ). Now, by the

assumption,

−u(x0) = max
λ∈S+

−(−u + δC)∗(AT λ) + bT λ.

So, there exists λ ∈ S+ such that −u(x0) = −(−u + δC)∗(AT λ) + bT λ. This gives us
that

u + AT λ ∈ (C − x0)
o and λT (−Ax0 + b) = 0 .

Since λT (−Ax0 + b) = 0 , −AT λ ∈ Ng(x0) = (A−1(b + S) − x0)
o. Hence,

u = (u + AT λ) − AT λ ∈ (C − x0)
o + (A−1(b + S) − x0)

o.

Thus, {C, A−1(b + S)} has the strong CHIP. ��
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It is worth noting that if ri(AC) ∩ (b + S) �= ∅ then {C, A−1(b + S)} has the strong
CHIP. In particular, if for some x0 ∈ qri(C) such that Ax0 −b ∈ S then {C, A−1(b+S)}
has the strong CHIP, where qri(C) is the quasi relative interior of C and ri(AC) is the
relative interior of AC. For details, see [2, 22].

We shall now look at how a best constrained approximation can be characterized in
terms of strong CHIP. The point w0 ∈ W is called a best approximation for x ∈ X (i.e.
wo ∈ PW(x)), if

d(x, W) = ‖x − w0‖.

If for each x ∈ X there exists a unique best approximation w0 ∈ W, then W is called a
Chebyshev subset of X. Every closed convex set in a Hilbert space is Chebyshev. The
following characterization of best approximation in Hilbert spaces is well known (see
[7]).

Lemma 4.1. Let X be a Hilbert space; and let W be a closed convex subset of X, x ∈ X

and w0 ∈ W. Then w0 = PW(x) if and only if x − w0 ∈ (W − w0)
o.

Theorem 4.2. Let X be a Hilbert space, and let x0 ∈ K. Then, the following assertions
are equivalent:

(1) The pair {C, A−1(b + S)} has the strong CHIP at x0.

(2) For any x ∈ X,

x0 = PK(x) if and only if x0 = PC(x +AT λ) for some λ ∈ S+ and λT (−Ax0 +b) = 0.

Proof. [(1) ⇐⇒ (2)]. This equivalence easily follows from Lemma 4.1 on noting that
the statement (2) is equivalent to the fact that, for each x ∈ X,

x − x0 ∈ (K − x0)
o ⇐⇒ ∃λ ∈ S+, x − x0 + AT λ ∈ (C − x0)

o, λT (−Ax0 + b)=0,

which is, in turn, equivalent to the statement that

x ∈ (K − x0)
o ⇐⇒ ∃λ ∈ S+, x ∈ (C − x0)

o − AT λ, λT (−Ax0 + b) = 0.

This means that

(K − x0)
o = (C − x0)

o + {−AT λ : λ ∈ S+, λT (−Ax0 + b) = 0},

which is equivalent to the statement (1). ��

A particular case of Theorem 4.2 in the case of linear inequality constraints was
recently given in [15].

We conclude by noting that in the case where Y = IRn and S = IRn+, the condition,
(g−1(−S) − x)o = Ng(x)o, is the basic constraint qualification (BCQ), used to study
convex optimization in [13]. So, our condition is an extension of (BCQ) for the general
case.



92 V. Jeyakumar

References

1. Bauschke, H.H., Borwein, J.M., Li, W.: Strong conical hull intersection property, bounded linear reg-
ularity, Jameson’s property (G), and error bounds in convex optimization. Math. Progr. 86, 135–160
(1999)

2. Borwein, J.M., Lewis, A.S.: Partially finite convex programming, part I: quasi–relative interiors and
duality. Math. Progr. 57, 15–48 (1992)

3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge, 2004
4. Burachik, R.S., Jeyakumar, V.: A simple closure condition for the normal cone intersection formula. Proc.

Amer. Math. Soc. 133 (6), 1741–1748 (2004)
5. Burachik, R.S., Jeyakumar, V.: A new geometric condition for Fenchel’s duality in infinite dimensions.

Math. Progr. Series B (to appear)
6. Deutsch, F.: The role of conical hull intersection property in convex optimization and approximation. In:

Approximation Theory IX, Chui C.K., Schumaker L.L. (eds.), Vanderbilt University Press, Nashville, TN
1998

7. Deutsch, F.: Best approximation in inner product spaces. Springer-Verlag, New York, 2001
8. Deutsch, F., Li, W., Swetits, J.: Fenchel duality and the strong conical hull intersection property. J. Optim.

Theory Appl. 102, 681–695 (1999)
9. Deutsch, F., Li, W., Ward, J.D.: Best approximation from the intersection of a closed convex set and a

polyhedron in Hilbert space, weak Slater conditions, and the strong conical hull intersection property.
SIAM J. Optim. 10, 252–268 (1999)

10. Henrion, R., Jourani, A.: Subdifferential conditions for calmness of convex constraints. SIAM J. Optim.
13, 520–534 (2002)

11. Henrion, R., Jourani, A., Outrata, J.: On the calmness of a class of multifunctions. SIAM J. Optim. 13
(2), 603–618 (2002)

12. Hiriart-Urruty, J.B.: ε-subdifferential calculus. In: Convex Analysis and Optimization, Aubin J.P., Vinter
R.B. (eds.), Research Notes in Mathematics 57, Pitman, 1982, pp. 43–92

13. Hiriart-Urruty, J.B., Lemarechal, C.: Convex Analysis and Minimization Algorithms. Springer-Verlag,
Berlin, 1993

14. Hiriart-Urruty, J.B., Phelps, R.R.: Subdifferential calculus using ε-subdifferentials. J. Funct. Anal. 18,
154–166 (1993)

15. Jeyakumar, V., Mohebi, H.: A global approach to nonlinearly constrained best approximation. Numer.
Funct. Anal. and Optim. (to appear)

16. Jeyakumar, V., Lee, G.M., Dinh, N.: New sequential Lagrange multiplier conditions characterizing opti-
mality without constraint qualification for convex programs. SIAM J. Optim. 14 (2), 534–547 (2003)

17. Jeyakumar, V., Song, W., Dinh, N., Lee, G.M.: Stable strong duality in convex optimization. Applied
Mathematics Preprint, University of New South Wales, Sydney, 2005

18. Jeyakumar, V., Rubinov, A.M., Glover, B.M., Ishizuka, Y.: Inequality systems and global optimization. J.
Math. Anal. Appl. 202, 900–919 (1996)

19. Jeyakumar, V., Wolkowicz, H.: Generalizations of Slater’s constraint qualification for infinite convex
programs. Math. Progr. 57 (1), 85–102 (1992)

20. Li, C., Jin, X.: Nonlinearly constrained best approximation in Hilbert spaces: the strong CHIP, and the
basic constraint qualification. SIAM J. Optim. 13 (1), 228–239 (2002)

21. Li, C., Ng, K.F.: Constraint qualification, the strong CHIP and best approximation with convex constraints
in Banach spaces. SIAM J. Optim. 14, 584–607 (2003)

22. Ng, K.F., Song, W.: Fenchel duality in infinite-dimensional setting and its applications. Nonlinear Anal.
25, 845–858 (2003)

23. Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of semidefinite programming. Int Series Oper
Res Management Sci 27, Kluwer Academic Publishers, Dordrecht, 2000
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