
Digital Object Identifier (DOI) 10.1007/s10107-005-0595-2

Math. Program., Ser. A 106, 403–421 (2006)

Yu-Hong Dai · Roger Fletcher

New algorithms for singly linearly constrained quadratic
programs subject to lower and upper bounds �

Received: February 2, 2003 / Accepted: March 3, 2005
Published online: October 12, 2005 – © Springer-Verlag 2005

Abstract. There are many applications related to singly linearly constrained quadratic programs subjected
to upper and lower bounds. In this paper, a new algorithm based on secant approximation is provided for the
case in which the Hessian matrix is diagonal and positive definite. To deal with the general case where the
Hessian is not diagonal, a new efficient projected gradient algorithm is proposed. The basic features of the
projected gradient algorithm are: 1) a new formula is used for the stepsize; 2) a recently-established adaptive
non-monotone line search is incorporated; and 3) the optimal stepsize is determined by quadratic interpolation
if the non-monotone line search criterion fails to be satisfied. Numerical experiments on large-scale random
test problems and some medium-scale quadratic programs arising in the training of Support Vector Machines
demonstrate the usefulness of these algorithms.

1. Introduction

In this paper we consider the following quadratic programming problem

minimize f (x) = 1
2 xT Ax − cT x

subject to l ≤ x ≤ u (1.1)

aT x = b,

where A ∈ R
n×n is symmetric but may be indefinite, a, c, l and u (with l < u) are

vectors in R
n, and b is a scalar. Thus there is a single linear equality constraint in the

problem, in addition to simple bounds (box constraints) on the variables. We refer to this
as the general SLBQP problem.

There are many real-world instances of SLBQP problems. For example, some
problems in multicommodity network flow and logistics have the form (1.1) in which the
matrix A is diagonal (see Held et al [13], Meyer [16], Pardalos and Rosen [19]). The gen-
eral SLBQP is also solved in training the learning methodology known as Support Vec-
tor Machine (SVM) (see Vapnik [25]). This SVM learning methodology has empirically
been shown to give good performance on a wide variety of problems such as handwritten

Y.-H. Dai: State Key Laboratory of Scientific and Engineering Computing, Institute of Computational
Mathematics and Scientific/Engineering computing, Academy of Mathematics and System Science, Chinese
Academy of Sciences, PO Box 2719, Beijing 100080, PR China. e-mail: dyh@lsec.cc.ac.cn

R. Fletcher: Department of Mathematics, University of Dundee, Dundee DD1 4HN, Scotland, UK.
e-mail: fletcher@maths.dundee.ac.uk

� This work was supported by the EPRSC in UK (no. GR/R87208/01) and the Chinese NSF grants (no.
10171104 and 40233029).

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL --
File Options:
 Compatibility: PDF 1.2
 Optimize For Fast Web View: Yes
 Embed Thumbnails: Yes
 Auto-Rotate Pages: No
 Distill From Page: 1
 Distill To Page: All Pages
 Binding: Left
 Resolution: [600 600] dpi
 Paper Size: [595 842] Point

COMPRESSION --
Color Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Grayscale Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Monochrome Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 600 dpi
 Downsampling For Images Above: 900 dpi
 Compression: Yes
 Compression Type: CCITT
 CCITT Group: 4
 Anti-Alias To Gray: No

 Compress Text and Line Art: Yes

FONTS --
 Embed All Fonts: Yes
 Subset Embedded Fonts: No
 When Embedding Fails: Warn and Continue
Embedding:
 Always Embed: []
 Never Embed: []

COLOR --
Color Management Policies:
 Color Conversion Strategy: Convert All Colors to sRGB
 Intent: Default
Working Spaces:
 Grayscale ICC Profile:
 RGB ICC Profile: sRGB IEC61966-2.1
 CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
 Preserve Overprint Settings: Yes
 Preserve Under Color Removal and Black Generation: Yes
 Transfer Functions: Apply
 Preserve Halftone Information: Yes

ADVANCED --
Options:
 Use Prologue.ps and Epilogue.ps: No
 Allow PostScript File To Override Job Options: Yes
 Preserve Level 2 copypage Semantics: Yes
 Save Portable Job Ticket Inside PDF File: No
 Illustrator Overprint Mode: Yes
 Convert Gradients To Smooth Shades: No
 ASCII Format: No
Document Structuring Conventions (DSC):
 Process DSC Comments: No

OTHERS --
 Distiller Core Version: 5000
 Use ZIP Compression: Yes
 Deactivate Optimization: No
 Image Memory: 524288 Byte
 Anti-Alias Color Images: No
 Anti-Alias Grayscale Images: No
 Convert Images (< 257 Colors) To Indexed Color Space: Yes
 sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [576.0 792.0]
 /HWResolution [600 600]
>> setpagedevice

404 Y.-H. Dai, R. Fletcher

character recognition, face detection, pedestrian detection, and text categorization (see
Platt [20]).

In this paper, we consider new algorithms for solving SLBQP problems. In the
special case that A is diagonal and positive definite, it is possible to have algorithms that
only require O(n) operations per iteration. Helgason et al [14] propose an O(n log n)

algorithm that is based on appropriate manipulation of the corresponding Kuhn-Tucker
conditions. Several linear time algorithms have been proposed by Brucker [4], Calamai
and Moré [5], and Pardalos and Kovoor [18] that are based on a similar characteriza-
tion of the solution. The algorithms in [4] and [5] are based on binary search. For large
practical problems, [18] proposes a randomized algorithm that runs in expected linear
time and has a very small time constant. A new simple and very efficient algorithm based
on secant approximation is proposed in Section 2 of this paper for this special case.

Next we consider SLBQP problems in which A is non-diagonal. One possibility
is to solve these using a standard solver for the general QP problem. This approach is
adequate for small problems, but may not work well if the dimension n is large. For
example, active set methods may require many iterations if the initial active set and the
optimal active set are significantly different and only one constraint is dropped or added
at each iteration. Also the methods become inefficient if the reduced Hessian matrix
becomes large. A successful way of avoiding these difficulties for box constrained QP
(BQP) problems has been to use gradient projection methods. This idea dates back a
long way, and various references can be found in Dai and Fletcher [7], where we use
this idea in conjunction with the Barzilai-Borwein [1] (BB) stepsize formulae. For BQP
problems, gradient projection methods take advantage of the fact that projection on to
the box is a trivial calculation. However, a line search must be used to ensure global con-
vergence. In fact, gradient projection methods are attractive for any type of optimization
problem in which projection on to a (convex) feasible set can be done efficiently. Birgin,
Martínez, and Raydan [2] propose a general framework based on gradient projection,
the BB formula, and a non-monotonic line search. For the SLBQP problem, projection
on to the feasible set of (1.1) can also be done very efficiently using one of the algo-
rithms described in the previous paragraph. Thus in Section 3 of this paper we explore
the practical implementation of this type of method. A new choice for the stepsize is
proposed. Following our experience in [7], we use a different adaptive non-monotonic
line search. In addition, we take the exact one-dimensional minimizer if the initial trial
stepsize fails to reach the non-monotone line search criterion.

In Section 4 we test our approach on randomly generated test problems of moder-
ately large dimension, both for positive definite and for indefinite Hessian matrices. We
also explore the real-world applications of SVM learning methodology. The problems
arising from these applications have dense Hessian matrices and their dimensions can
be very large (n ≈ 106, say). In this case, standard QP solvers based on explicit storage
of A is impractical due to the difficulty of storing the Hessian. Even in the case that n is
not all that large, which we consider here, standard QP solvers can be inefficient. Sera-
fini, Zanghirati and Zanni [23] have implemented two projection gradient algorithms for
medium-scale SVM problems and have reported numerical results that are much better
than those are obtained with the QP solvers pr−LOQO and MINOS, as suggested in the
SVMlight package by Joachims [15]. Moreover, in combination with a decomposition
technique, it is shown in [23] that projection algorithms are superior to the SVMlight

New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds 405

software (version 3.5) equipped with pr−LOQO for SVM problems of up to 60, 000
variables. In Section 4, we will report numerical results of our gradient projection algo-
rithm for some medium-scale SVM problems. Conclusion and discussion are made in
the last section.

2. An algorithm for the diagonal and strictly convex case

In this section we develop an algorithm for the special case of (1.1) in which A =
diag(d1, d2, . . . , dn) is a positive definite diagonal matrix. The positivity of the di is
important for the development of the algorithm, and we shall show at the end of the
section that there are difficulties to be surmounted if the positive definite condition is to
be relaxed. We shall refer to the resulting algorithm as Algorithm 1. The algorithm has
some features in common with previous work, notably that it runs in expected linear
time, but also includes some new features. The description of the algorithm aims to
provide a more simple exposition of the underlying principles than appears elsewhere.

The algorithm is based on constructing a Lagrangian penalty function

φ(x; λ) = 1
2 xT Ax − cT x − λ(aT x − b), (2.1)

in which λ is a scalar parameter. Because A is positive definite, no augmentation term
is needed. For any fixed value of λ, we may solve the box constrained QP problem

minimize
x∈Rn

φ(x)

subject to l ≤ x ≤ u
(2.2)

giving a minimizer which we denote by x(λ). Then λ is adjusted in an outer secant-like
method to solve the single nonlinear equation

r(λ) := aT x(λ) − b = 0 (2.3)

in one variable λ. The minimizer of φ(x) is readily obtained because (2.2) separates into
n problems, each in one variable xi . The unconstrained minimizer of each problem is
the solution of the equation dixi = ci + λai , so the solution of (2.2) is given by

x(λ) = mid(l, h, u), (2.4)

where h = h(λ) has components hi = (ci + λai)/di , and mid(l, h, u) is the compo-
nentwise operation that supplies the median of its three arguments.

If a value λ∗ is located such that aT x(λ∗) = b, it follows that KT conditions for (1.1)
are satisfied. This is because the KT conditions for (2.2) are also necessary for (1.1),
and together with the feasibility condition aT x = b, they make up the KT conditions
for (1.1). It follows when (2.3) is solved that x(λ∗) is a KT point for (1.1) and hence a
global minimizer by convexity.

We now consider how the equation r(λ) = 0 might be solved. It is possible that the
constraints of (1.1) are inconsistent, in which case r(λ) = 0 has no solution, a possibility
which we ignore at present and return to towards the end of this section. We note that
aixi is a piecewise linear continuous function of λ by virtue of (2.4), which takes either

406 Y.-H. Dai, R. Fletcher

Bracketing Phase of Algorithm 1

calculate x by (2.4); r = aT x − b;
if r < 0

λl = λ; rl = r; λ = λ + �λ;
calculate x by (2.4); r = aT x − b;
while r < 0

λl = λ; rl = r; s = max(rl/r − 1, 0.1);
�λ = �λ + �λ/s; λ = λ + �λ;
calculate x by (2.4); r = aT x − b;

end
λu = λ; ru = r;

else
λu = λ; ru = r; λ = λ − �λ;
calculate x by (2.4); r = aT x − b;
while r > 0

λu = λ; ru = r; s = max(ru/r − 1, 0.1);
�λ = �λ + �λ/s; λ = λ − �λ;
calculate x by (2.4); r = aT x − b;

end
λl = λ; rl = r;

end

the constant values aili or aiui , or the value ai(ci +λai)/di , and hence is either constant
or a monotonically increasing function of λ. It follows that the same is true of r(λ). We
note that r(λ) might be constant over part of its domain. In fact we may interpret r(λ)

as the gradient of a dual function of λ after eliminating the primal variables.
Although it would be a simple matter to evaluate the slope of the function r(λ)

(except at a breakpoint), to be used in an iteration of the Newton-Raphson method,
the piecewise linear nature of r(λ) makes this unappealing. For example the correction
would be infinite on a constant piece of the graph. Yet we would wish to use linear
approximation when the linear piece that crosses the λ axis is located, so as to locate
λ∗ exactly. Thus we have chosen a secant-type approach, with modifications to promote
rapid global convergence. Our algorithm divides into two parts, a Bracketing phase in
which a bracket on a solution is sought, followed by a Secant phase in which the bracket
is uniformly reduced until the piece which crosses the λ axis is located, and the process
terminates.

In the bracketing phase we ask the user to supply an initial value of λ and an initial
estimate �λ > 0 of the likely change to λ. The bracketing phase may be described
by the following segment of pseudo-code in which a, b, c, d, l, u refer to the data that
defines (1.1). If a value of r(λ) is located which is sufficiently close to zero, then the
process terminates. If r(λ) < 0 then the search for a bracket takes place in the positive λ

direction, else if r(λ) > 0 then in the negative λ direction. If the problem (1.1) is feasi-
ble, then the bracketing phase is guaranteed to terminate with a bracket [λl, λu] which
contains a solution of the equation r(λ) = 0. The calculation of s in the code is such that
�λ/s is the correction to λ that gives either a secant step based on the two most recent
iterates, or a step of 10 times the previous step, whichever is the smaller. In practice,
examples were found in which �λ/s could be much smaller than �λ, giving rise to
slow convergence. Hence the updated value �λ = �λ + �λ/s has been used, so as to
ensure that the new value of �λ is greater than the old value. Perhaps a more appealing

New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds 407

Secant phase of Algorithm 1

s = 1 − rl/ru; �λ = �λ/s; λ = λu − �λ;
calculate x by (2.4); r = aT x − b;
while not converged

if r > 0
if s ≤ 2

λu = λ; ru = r; s = 1 − rl/ru;
�λ = (λu − λl)/s; λ = λu − �λ;

else
s = max(ru/r − 1, 0.1); �λ = (λu − λ)/s;
λnew = max(λ − �λ, 0.75 λl + 0.25 λ);
λu = λ; ru = r; λ = λnew ;
s = (λu − λl)/(λu − λ);

end
else

if s ≥ 2
λl = λ; rl = r; s = 1 − rl/ru;
�λ = (λu − λl)/s; λ = λu − �λ;

else
s = max(rl/r − 1, 0.1); �λ = (λ − λl)/s;
λnew = min(λ + �λ, 0.75 λu + 0.25 λ);
λl = λ; rl = r; λ = λnew ;
s = (λu − λl)/(λu − λ);

end
end
calculate x by (2.4); r = aT x − b;

end

way of achieving this would have been to define s = min(1, max(rl/r − 1, 0.1)) and to
use �λ = �λ/s. This would enable the secant step to be accepted in some cases, and
hence give termination if the current piece intersects the λ axis. However, in practice the
difference between these strategies is likely to be small.

Once a bracket is located, the second stage is to find the solution of the equation
r(λ) = 0 by repeated use of the secant method, with certain modifications designed to
speed up convergence remote from the solution. Again the process is defined by some
pseudo-code. Initially values of λl and λu are available with r(λl) < 0 and r(λu) > 0,
and a secant step to a new point λ is taken. If r(λ) > 0 then the iteration proceeds as
follows. If λ lies in the left half of the interval [λl, λu] (that is s ≤ 2), then a secant step
based on λl and λ is taken on the next iteration. If λ lies in the right half of the interval,
then either a secant step based on λ and λu, or a step to the point 3

4λl + 1
4λ is taken,

whichever is the smaller step. This ensures that the interval length is reduced by a factor
of 3

4 or less. In both cases λu is replaced by λ to give a new bracket. Similar decisions
are taken if r(λ) < 0 at the start of the iteration. We terminate the secant phase if preset
tolerances on either r(λ) or �λ are met. Of course the parameters in the above pieces
of code are somewhat arbitrary, but are of an appropriate size. Although it remains to be
examined, we feel that small changes in these values would be unlikely to change the
effectiveness of the method to any great extent.

We now return to the issue of how to decide if the constraints of (1.1) are consistent.
If a bracket is found during the bracketing phase, then it follows that the constraints
are consistent, and no further calculation is required. Alternatively, we may define the
vectors

408 Y.-H. Dai, R. Fletcher

a+ = max(a, 0), a− = min(a, 0) (2.5)

to be the positive and negative parts of a, respectively. Since the linear function has a
maximum value of aT+u + aT−l and a minimum value of aT+l + aT−u on the set {x | l ≤
x ≤ u}, we can conclude inconsistency if either of the conditions

aT
+u + aT

−l < b, aT
+l + aT

−u > b (2.6)

hold, and consistency otherwise. However, this requires a certain amount of calculation,
which might be avoided if the problem is known to be consistent, or if a bracket is found
quickly. In our codes we have resolved this matter in the following way. The user is
asked to supply a parameter ktest. If a bracket is not found in ktest iterations then the
calculation in (2.6) is carried out to decide on consistency. If the user knows that the
problem is consistent, then ktest= ∞ can be set. Otherwise we suggest using the value
ktest=4.

Finally we examine whether it is possible to relax the condition that the A is positive
definite. Consider the case that di = 0 occurs for some value of i. The minimization of
φ(x, λ) still separates into n one-variable problems, and hence is readily solved. In the
case of xi , we simply set

xi =
{

li if ci + λai < 0
ui if ci + λai > 0

.

The difficulty is that xi , and hence x(λ), is no longer continuous at a value of λ at which
the solution xi switches from one bound to the opposite bound. The difficulties that
arise are illustrated by a simple example. Take n = 2, d1 = 1, d2 = 0, c = (1, 1)T ,
a = (2, 1)T , b = 1, l = 0 and u = (2, 2)T . The solution is at x∗ = (0, 1)T with
multiplier λ∗ = −1. The problem is convex and x∗ is the unique global solution, so
the problem is in no sense badly behaved. However, consider the graph of the function
r(λ). For λ < −1 the minimizer of φ(x, λ) is x = (0, 2)T , whereas for −1 < λ ≤ 1

2 it
is x = (0, 0)T . Thus r(λ) is piecewise constant in the neighbourhood of λ < −1, and
jumps from −1 to +1 as λ passes through −1. The solution is determined by choosing
x to solve aT x = b at the point of discontinuity in λ. The discontinuity in r(λ) might
adversely affect the behaviour of the secant algorithm described above. In particular we
cannot expect the algorithm to terminate by locating a linear piece that crosses the λ axis.
In the case that A is diagonal and positive semi-definite, one way to circumvent these
difficulties is to calculate the values of λ such that ci + λai = 0 for i ∈ {i : di = 0}.
The corresponding values of r(λ) can then be used to determine an interval that includes
the optimal multiplier. If di �= 0 for all i but di < 0 for some values of i, then the
problem may have many KT points. In this case, we can still define the one-variable
function r(λ) as before. However, this function is not in general monotonic, but is still
continuous. Methods based on its continuity may be developed to calculate one KT point
of the problem.

3. A projected gradient algorithm for the general case

In this section we consider an algorithm for solving (1.1) when A is not a diagonal
matrix. The algorithm has the same framework as that of the SPG2 algorithm of Birgin,

New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds 409

Martínez and Raydan [2]. However a new choice for the steplength is used here, and
the adaptive non-monotone line search from [7] is incorporated. Our numerical experi-
ments in the next section show that these new techniques are very useful in practice. An
overview of the algorithm, referred to as Algorithm 2, is

Overview of Algorithm 2
Initialization
for k = 1, 2, . . . until converged

Calculate the projection step using Algorithm 1,
Possibly carry out a line search,
Calculate a BB-like step length,
Update the line search control parameters

end

Let us denote the feasible region of (1.1) by �. The projection of any vector z ∈ R
n on

to � is the minimizer of the problem

min{ 1
2‖x − z‖2

2 : x ∈ �}. (3.1)

This is a special case of an SLBQP problem in which A = I is the identity matrix,
and hence it can be solved efficiently by for example Algorithm 1. On average, we find
that only about five iterations are required by Algorithm 1. The first stage in the loop
of Algorithm 2 is to take a steepest descent step from a current iterate xk with fixed
steplength αk , and then project the resulting point on to �. If g = Ax − c denotes the
gradient vector, we may express this as

dk = P�(xk − αkgk) − xk (3.2)

where P�(z) represents the projection of z on to �. We note that the projection opera-
tion has the property that (x − P�(z))T (z − P�(z)) ≤ 0 for all x ∈ �, and it readily
follows if dk �= 0 that dk is a feasible descent direction. The solution of (1.1) is char-
acterised by P�(x∗ − g∗) = x∗, so the algorithm is deemed to have converged when
‖P�(xk − gk) − xk‖ is within a prescribed tolerance. Although this is how convergence
was recognised in our codes, it does require an extra projection calculation, and a less
expensive alternative in the case that αk is suitably sized to test ‖P�(xk −αkgk)−xk‖/αk

(that is ‖dk‖/αk).
The second stage of Algorithm 2 is to decide if a line search is necessary. A feature of

BB type algorithms is that they are inherently non-monotonic, that is to say the objective
function value f (xk) must be allowed to increase on some iterations in order for the
methods to work well (see Fletcher [10]). When minimizing quadratic functions with-
out any constraints, convergence can be established without introducing a line search
(see Raydan [21]). However we show in [7] for box constrained QP that it is possible
(albeit unlikely) for the algorithm to fail, unless some provision for a line search is made.
The same will certainly be true for the SLBQP problem. However it is important that
a non-monotonic line search is used, a fact first recognised by Raydan [22] for general
unconstrained minimization. In [22] and [2], a non-monotonic line search of the type sug-
gested by Grippo, Lampariello and Lucidi [12] is used. In [7] we show that an alternative
adaptive non-monotonic line search is preferable, as it cuts down the number of times

410 Y.-H. Dai, R. Fletcher

the line search is brought into play, and hence enables the non-monotonic aspects of the
BB method to operate more freely. All these non-monotonic algorithms make use of a
control parameter fref ≥ f (xk), and no line search is carried out if f (xk + dk) < fref .
(In some methods a sufficient reduction on fref is required.) However, the way in which
fref is defined is different.

For k ≥ 2 we carry out a line search if f (xk + dk) ≥ fref . We do this simply by a
quadratic interpolation along xk +λdk , using the function values f (xk) and f (xk +dk),
and the slope gT

k dk . An alternative possibility would be to search along the path obtained
by projecting xk −λgk (as in SPG1 of [2]). However this requires extra projection oper-
ations, and in any event the distinction is of little importance because we use very few
line searches. Because f (x) is quadratic, f (xk) ≤ fref and f (xk + dk) ≥ fref , and
dk is a descent direction, it follows that we obtain an exact line search along xk + λdk .
This is different to methods based on [12] which use an Armijo line search. On iteration
k = 1, we carry out a line search whenever f (xk + dk) ≥ f (xk), because the initial
value of α1 might possibly be unreliable.

The third stage of the algorithm is to compute the stepsize αk+1 for the next iteration.
Denote the difference vectors sk = xk+1 − xk and yk = gk+1 − gk . One of the two BB
formulae in [1] is defined by

αk+1 = sT
k sk/sT

k yk. (3.3)

There are many references to the fact that this choice is far more efficient than the classical
steepest descent stepsize, and in Section 4 we give some results for this choice in the con-
text of an SLBQP problem. Recently many other BB-like formulae for the stepsize have
been proposed. We have therefore tried alternating the two BB formulae on successive
iterations, as recommended in [7], but find this to be ineffective for random indefinite
test problems and SVM test problems. Other alternative stepsize choices, such as the
AS and CSDS methods described in [6], did not perform well in the box constrained
QP context [7], and we have not used them here. Here we also present a new choice
for the stepsize. To this end, we recall that the BB formula (3.3) can be obtained by
solving the one-dimensional subproblem: minimize ‖α−1

k+1sk − yk‖2, in which α−1
k+1I

can be regarded as some approximation to the Hessian at xk+1. For each integer i ≥ 0,
we can have a similar formula if we replace the pair (sk, yk) with (sk−i , yk−i), yielding
αk+1 = sT

k−isk−i/sT
k−iyk−i (this formula can be seen in [11]). It might be interesting

to study how to pick the best integer i according to some rule. Here we propose a new
formula based on the idea of taking an average of the most recent m ≥ 1 difference pairs,
where m is a preset integer. Hence we define the vectors S(k) = (sT

k , . . . , sT
k−m+1)

T and

Y (k) = (yT
k , . . . , yT

k−m+1)
T , and determineαk+1 by minimizing min ‖α−1

k+1S
(k)−Y (k)‖2.

Therefore we obtain

αk+1 = S(k)T S(k)

S(k)T Y (k)
=
∑m−1

i=0 sT
k−isk−i∑m−1

i=0 sT
k−iyk−i

. (3.4)

In fact, we let m̄ be the maximal integer such that sT
k−iyk−i > 0 for all 0 ≤ i ≤ m̄, and we

assume conventionally that sT
k yk ≤ 0 if k ≤ 0. Our practical algorithm then calculates

the stepsize by (3.4) with m replaced by min(m, m̄). We also chop any extreme values

New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds 411

of αk by truncating them to lie in preassigned interval [αmin, αmax]. If it happens that
m̄ = 0, that is sT

k yk ≤ 0, we simply set αk+1 = αmax . It is obvious that the formula
(3.4) with m = 1 reduces to the BB formula (3.3). However, our numerical experiments
suggest that m = 2 is a better choice in the BQP or SLBQP context. Results obtained
using this choice of stepsize are described in Section 4.

The fourth stage of Algorithm 2 is to update the line search parameters. The line
search we use is that described in [7], which is related to methods described by Toint
[24] and by Dai and Zhang [8]. The parameters involved are the reference value fref

referred to above, the current best function value fbest , a candidate value fc for possible
reduction of fref , and a preassigned number L denoting the number of iterations with
f (xk) ≥ fbest that are allowed before reducing fref to fc. The updating process may
be described as follows:

if fk < fbest ,
fbest = fk, fc = fk, l = 0,

else
fc = max{fc, fk}, l = l + 1,

if l = L, fref = fc, fc = fk, l = 0, end
end.

A simple argument in [7] proves global convergence in real arithmetic. An important
property of this method is that if a better value of f (xk) is always found in at most
L iterations, then fref remains at its initial value of infinity, and no line searches are
needed after the first iteration.

Algorithm 2 requires parameter settings for L, αmin and αmax , and initial values for
x1, fref = ∞, l = 0 and fbest = fc = f (x1). The major computational expense is that
required to update the gradient vector, which can be done in O(np) operations, where
p is the number of non-zero components of dk . The number of projection calculations
can also be significant, since although each iteration of Algorithm 1 only requires O(n)

operations, quite a large number of projection calculations may be required.

4. Numerical experiments

We tested Algorithm 1 and Algorithm 2 with Matlab 5.0 on Linux SuSE 6.4 (2 x Intel
Pentium III, 750 MHZ), except that the numerical experiments with SVM problems
were made with Matlab 7.0 on a Windows XP professional computer (pentium 4 , 2.60
GHZ).

At first, we compare Algorithm 1 and an algorithm based on binary search, referred
to as BS algorithm, for random diagonal SLBQP test problems. The BS algorithm works
on the multiset S = B ∪ {−∞, +∞}, where B = {(di li − ci)/ai, (diui − ci)/ai : i =
1, 2, . . . , n} are break points of function (2.4). If two breakpoints λl and λu have been
obtained with r(λl) < 0 and r(λu) > 0, the BS algorithm picks up the exact median
λm of the multiset S restricted to [λl, λu] and updates either λl or λu based on the
value r(λm). See [18] for more details. If r(λm) �= 0 for all λm’s, the BS algorithm
requires at least
log(2n + 2)/ log(2)� iterations, where
v� stands for the largest inte-
ger not greater than v. For test problems, we consider the following three cases, where

412 Y.-H. Dai, R. Fletcher

ai ∈ [−500, 500] means that ai is generated in the interval [−500, 500] at a uniform
distribution and ai ∈ {−1, 1} means that ai is randomly chosen to be either −1 or 1,
etc.:

Case I. ai ∈ [−500, 500], li ∈ [−1000, 0], ui ∈ [0, 1000], di ∈ [d1, dn] with d1 = 1
and dn = 104, ci ∈ [−1000, 1000];

Case II. ai ≡ 1, li ≡ 0, ui ∈ [0, 1000], di ∈ [d1, dn] with d1 = 1 and dn = 104,
ci ∈ [−1000, 1000];

Case III. ai ∈ {1, −1}, li ≡ 0, ui ≡ 1000, di ≡ 1, ci ∈ [−1000, 1000];

Specifically, Case I is the general case, Case II has a similar form to practical problems
arising from multicommodity network flow and logistics (for example, see [18]), and
Case III has the same form as the projection subproblems from support vector machine
problems. Denote by bmin and bmax the minimal and maximal value of aT x subject to
l ≤ x ≤ u, respectively. The number b in the linear constraint is chosen by the following
way:

b = bmin + δb [bmax − bmin], (4.1)

where δb ∈ [0, 1] is a parameter. This way of choosing b ensures that each test problem
is feasible. For symmetry, we use three different values of b: 0.1, 0.3, and 0.5. The
dimension n is chosen to be 104, 105 or 106.

We have tested Algorithm 1 and the BS algorithm on the above three types of random
diagonal SLBQP problems with MATLAB. The initial values for λ and �λ in Algorithm
1 are always chosen as 0 and 2, respectively. For each test problem, we terminate the
calculation of Algorithm 1 when |r(λ)| is smaller than the final value of this quantity
as obtained by the BS algorithm. For any fixed n, δb and the problem type, 10 random
problems were generated. Table 4.1 lists the average number of iteration and CPU time
(in second) required by each algorithm.

From Table 4.1, we can see that the CPU times required by both Algorithm 1 and the
BS algorithm grow linearly with the dimension n. Further, for all the cases with different
n and δb, Algorithm 1 is uniformly better than the BS algorithm. The improvement of
Algorithm 1 over the BS algorithm is substantial when δb = 0.5. One explanation is that
in this case the function r(λ) is better approximated by a linear function over the range
of values λ that are sampled.

We have tested Algorithm 2 on three kinds of test problems. The preset parameters
for Algorithm 2 are chosen to be αmin = 10−5, αmax = 105 and L = 10. For Algo-
rithm 1, which is used as the projection subroutine of Algorithm 2, the initial values

Table 4.1. Comparing Algorithm 1 and the BS algorithm

Case I Case II Case III
n δb BS Algorithm 1 BS Algorithm 1 BS Algorithm 1

iter time iter time iter time iter time iter time iter time

104 0.1 14.2 0.156 14.9 0.141 14.4 0.157 10.8 0.122 14.1 0.142 11.6 0.109
0.3 14.2 0.159 9.9 0.108 14.2 0.156 12.3 0.138 14.4 0.138 9.4 0.094
0.5 14.5 0.154 4.7 0.063 14.4 0.164 14.0 0.149 14.3 0.136 4.9 0.056

105 0.1 17.7 1.761 14.2 1.373 17.9 1.765 11.4 1.150 17.5 1.489 11.8 0.960
0.3 17.6 1.691 10.6 0.988 17.6 1.627 12.9 1.196 17.5 1.472 9.9 0.819
0.5 17.6 1.714 4.1 0.468 17.8 1.701 14.3 1.339 17.7 1.497 4.5 0.446

106 0.1 21.0 20.253 14.6 13.679 21.0 21.175 11.5 11.898 21.1 17.523 11.8 9.371
0.3 21.0 21.480 10.6 10.514 20.9 20.883 12.7 12.595 21.0 17.753 10.1 8.386
0.5 21.0 19.965 4.2 4.805 21.0 19.702 14.1 12.873 20.9 17.219 4.8 4.590

New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds 413

for λ and �λ on the first call are chosen as 0 and 2, respectively. They are then set
to λ′ and 1 + |λ′| on the second call and to λ′ and 1 + |λ′ − λ′′| subsequently. Here
λ′ and λ′′ are the values of λ provided by the previous two projections. The accuracy
required in the projection algorithm at the k-th iteration is |r(λ)| ≤ 10−5 for k = 1 and
|r(λ)| ≤ 10−5 min{1, ‖P�(xk−1 − gk−1) − xk−1)‖∞} for k ≥ 2. We also terminate the
projection algorithm if �λ ≤ 10−10. The choice of the initial stepsize α1 is described
below. The parameter m in the formula (3.4) is chosen to be m = 2. A comparison of
different values of m is provided below for random SPD test problems. See Section 5
for further discussion on the choice of m.

In order to test the efficacy of our adaptive line search procedure, we also tested
Algorithm 2 with the non-monotone line search in [12]. This line search determines the
reference function value fref at the k-th iteration by

fref = max{f (xk−i) : i = 0, . . . , max{k − 1, M − 1}}, (4.2)

where M is some preset positive integer. Again, we take the exact one-dimensional min-
imizer if the initial stepsize fails to meet the line search condition. In these tests we have
chosen the commonly accepted value of M = 10. We denote this algorithm by Algo-
rithm 2∗. In addition, if the formula (3.3) is used to calculate the stepsize, we refer to
the corresponding algorithms as BB if the adaptive non-monotone line search is applied,
and as BB∗ if the reference function value is determined by (4.2). We compare all the
four algorithms: Algorithm 2, Algorithm 2∗, BB and BB∗ for all our test problems.

Three kinds of problems are used in our tests: (1) random symmetric positive definite
(SPD) test problems, (2) random indefinite test problems, and (3) medium-scale prob-
lems generated by training Gaussian SVMs on two real-world data sets. The descriptions
of the test problems and the corresponding numerical results are presented as follows.
We let e denote the column vector of ones, and the vectors pi i = 1, 2, . . . , 7 denote
random vectors whose elements are sampled from a uniform distribution in [0, 1]. Also
we denote vi,j to be the j -th component of the vector vi .

Random SPD test problems. The generation of these problems is based on the gener-
ation of random SPD BQP test problems in Moré and Toraldo [17] and Dai and Fletcher
[7]. At first, we generate a BQP problem using the five parameters n, ncond, ndeg,
na(x̄) and na(x̄1) such that x̄ is the solution of the BQP problem and x̄1 is the starting
point. Specifically, we denote A = PDP T , where

P = (I − 2p3pT
3)(I − 2p2pT

2)(I − 2p1pT
1),

where D is a diagonal matrix with whose i-th component is defined by

log di = i − 1

n − 1
ncond, i = 1, . . . , n.

The parameter ncond in the above relation specifies the condition number of A. We set
x̄ = 2p4 − 1, namely, x̄ is chosen randomly in the interval [−1, 1]. The choice of active
set A(x̄) depends on the integer parameter na(x̄). Random numbers µi in [0, 1] are
generated for i = 1, . . . , n and i is selected for A(x̄) if µi ≤ na(x̄)/n. This algorithm is
also used to select the active constraints A(x̄1) at the starting point of the BQP problem

414 Y.-H. Dai, R. Fletcher

on the basis of the parameter na(x̄1). Components of x̄1 that are not in A(x1) are set to
(li + ui)/2.

The values of l, u, and c can now be determined using the parameter ndeg. This
parameter specifies the extent to which the resulting problem will be close to being
dual degenerate. We determine the value of ∇f (x̄) = r by setting |ri | = 10−µindeg

for i ∈ A(x̄), where µi is randomly generated in [0, 1]. The right hand term c is set to
c = Ax̄ − r and we define

li = −1, ui = +1, ri = 0,

for i /∈ A(x̄), and

li = x̄i , ui = +1, ri > 0,

or

li = −1, ui = x̄i , ri < 0,

for i ∈ A(x̄). Then we have constructed an SPD BQP problem whose solution is x̄.
Further, we let xf s be the vector with components li + p5,i (ui − li), a = 2p6 − e
and b = aT xf s . The starting point for the SLBQP problem is set to x1 = P�(x̄1).
Hence we have described how to generate our random SPD SLBQP test problems by
five parameters n, ncond , ndeg, na(x̄) and na(x̄1).

In our random SPD tests, we fix the dimension n = 10000 and choose the other
parameters by permuting all possibilities from the ranges:

ncond ∈ {4, 5, 6, 7}, ndeg ∈ {1, 3, 5, 7, 9}, na(x̄), na(x̄1) ∈ {1000, 5000, 9000}.
For each case, we generate one problem randomly. Hence the total number of random
SPD problems is 180. For these problems, the first stepsize used is α1 = ‖P�(x1 −g1)−
x1‖−1∞ and the stopping condition is

‖P�(xk − gk) − xk‖∞ ≤ 10−5,

as used in [2].
We have tested Algorithm 2 with four different values of m, namely 1, 2, 3 and 4.

If m = 1, Algorithm 2 reduces to the BB method. See Figure 4.1 for the performance
profiles. These suggested that the preferred value of m is 2 and this has therefore been
used in our other experiments with Algorithm 2.

Figure 4.2 shows the performance profiles of Algorithm 2, Algorithm 2∗, BB, BB∗
for the random SPD problems. From Figure 4.2, it is clear that Algorithm 2 has the most
wins (has the highest probability of being the optimal solver) and that the probability
that Algorithm 2 is the winner on a given problem is about 45%. Moreover, Algorithm
2 solves 98% of the problems within a factor of 2 of the best performance.

Taking Algorithm 2 as an example, the average number of iterations required by
Algorithm 1 for each problem lies in the interval [1.72, 7.89]. For all the problems, the
average number of projection iterations is 4.19. The maximal number of iterations taken
byAlgorithm 1 for each problem is between 3 and 13. If the BS algorithm is used for pro-
jection, we know that the required number of iterations is at least
log(2n+2)/ log 2� =

New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds 415

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P

Algorithm (m=2)
Algorithm (m=1)
Algorithm (m=3)
Algorithm (m=4)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P

Algorithm 2
Algorithm 2*
 BB
 BB*

Fig. 4.1. Performance profiles for Algorithm 2
with different m’s

Fig. 4.2. Performance profiles for random SPD
test problems

14 when n = 9000. These data show that both Algorithm 1 and Algorithm 2 work very
well for random SPD test problems.

To analyze the dependence of the results on the parameters ncond, ndeg, na(x̄) and
na(x̄1), we fix one of the parameters and vary the remaining three parameters. Taking
Algorithm 2 as an example, it is found that the parameter ncond plays an important
role in determining performance. As ncond ranges from 4, 5, 6 to 7, the average CPU
time (in second) of the corresponding problems ranges from 9.38, 17.00, 30.58 to 56.66.
When ndeg takes different values in {1, 3, 5, 7, 9}, the average CPU time of the cor-
responding problems is about 22 seconds. This reflects the fact that Algorithm 2 is not
sensitive to the dual degeneracy. The dependency of the method on the parameters na(x̄)

and na(x̄1) is not straightforward and there is no clear pattern.
Random indefinite test problems. The generation of these problems is based on four

parameters n, ncond , na(x̄1) and negeig. The first three parameters are used to gen-
erate the matrix A, the vector c, and the starting point x̄1 as before. The parameter
negeig is used to specify the number of negative eigenvalues of A. Given an integer
negeig ∈ [1, n], we change the sign of the i-th diagonal entry of D if p7,i ≤ negeig/n.
The lower and upper bounds are set to l = −e and u = e. The vector a and the scalar b

are generated as before.
We have generated 48 indefinite SLBQP test problems by fixing n = 104, and

choosing the other parameters by permuting all possibilities from the ranges:

ncond ∈ {4, 5, 6, 7}, negeig ∈ {1000, 2500, 5000, 9000},
na(x̄) ∈ {1000, 5000, 9000}.

The choice of the first stepsize and the stopping condition are the same as before. Fig-
ure 4.2 shows the performance profiles of the four algorithms for the random indefinite
problems. Figure 4.2 shows that BB has the most wins andAlgorithm 2 ranks the second.
However, Algorithm 2 can solve most of the problems within a factor 2 of the best solver.

In the indefinite case, each problem has many different local minimizers. To compare
the best function values obtained by each algorithm, we introduce the following curve
similar to performance profile in [9]. Suppose that P is the set of test problems and S
is the set of solvers. Suppose that fp,s is the best function value found by solver s for

416 Y.-H. Dai, R. Fletcher

problem p. We denote by f
p

and f̄p the minimal and maximal values of {fp,s : s ∈ S},
respectively. For each fp,s , we define the ratio

rp,s =
{

0, if f̄p − f
p

≤ ε;

(fp,s − f
p
)/(f̄p − f

p
), otherwise,

(4.3)

where ε > 0 is some non-negative parameter. By the above definition, we will have
rp,s = 0 if fp,s = f

p
, and rp,s = 1 if fp,s = f̄p and f̄p − f

p
> ε. The other value of

fp,s is corresponding to some value of rp,s in [0, 1]. Given a factor τ ∈ [0, 1], for each
solver s we define

ρs(τ) = 1

np

size {p ∈ P : rp,s ≤ τ }, (4.4)

where np is the total number of test problems. We are specially interested in the curve
τ ∈ [0, 1] → ρs(τ).

Figure 4.4 plots the above curves for Algorithm 2, Algorithm 2∗, BB, BB∗ on the
48 indefinite test problems with ε = 0.01 and τ ∈ [0, 0.9]. From Figure 4.4, we can
see that Algorithm 2 is most effective in being able to find a solution of good quality.
Therefore we still recommend Algorithm 2 for the indefinite SLBQP test problems.

The average performance of Algorithm 1 is still excellent. Taking Algorithm 2 as an
example, the average number of iterations required by Algorithm 1 for each problem
lies in the interval [2.62, 8.44]. For all the problems, the average number of projection
iterations is 4.94. Therefore for indefinite test problems, Algorithm 1 again has the better
average performance than the BS algorithm. Nevertheless, in 3 cases, Algorithm 1 takes
more than 35 iterations. We have observed the worst case to occur when the linear piece
crossing the λ axis is very short, and so is difficult to determine quickly. It might be
interesting to design a hybrid projection algorithm of Algorithm 1 and the BS algorithm
to avoid the worse case of Algorithm 1 and improve the average performance of the BS
algorithm.

An analysis is also made for the dependence of the results on the parameters ncond,
neig and na(x̄1) by fixing one of the parameters and varing the remaining three param-
eters. The parameter ncond still is essential to the performance of the Algorithm 2. As
ncond ranges from 4, 5, 6 to 7, the average CPU time (in seconds) of the corresponding
problems ranges from 19.37, 29.01, 50.05 to 73.40. When neig takes the values 1000,
2500, 5000, 9000, the average CPU times are 35.6825, 36.32, 40.76 and 56.34. This
suggests that for Algorithm 2, the problem becomes more difficult as the number of
negative eigenvalues increases. The analysis with na(x̄1) shows that it is better to start
Algorithm 2 at a point with relatively many active constraints. The average CPU time
for na(x̄1) = 1000 is 52.85, where the CPU times for the other two cases are only 37.69
and 36.09.

SVM test problems [23]. Given a training set of labelled examples

D = {(zi , wi), i = 1, . . . , n, zi ∈ R
m, wi ∈ {−1, 1}},

New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds 417

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P

Algorithm 2
Algorithm 2*
 BB
 BB*

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

τ

ρ

Algorithm 2
Algorithm 2*
 BB
 BB*

Fig. 4.3. Performance profiles for indefinite test
problems

Fig. 4.4. Performance profiles based on the final
function values

the SVM algorithm classifies new examples z ∈ R
m by a decision function F : R

m →
{−1, 1} of the form

F(z) = sign

(
n∑

i=1

x∗
i wiK(z, zi) + b∗

)
,

where K : R
m × R

m → R is some kernel function and x∗ = (x∗
i) solves

minimize 1
2 xT Gx − eT x

subject to 0 ≤ x ≤ Ce (4.5)

wT x = 0,

where G has entries Gij = wiwjK(zi , zj), i, j = 1, 2, . . . , n, and C is a parameter of
the SVM algorithm. The quantity b∗ ∈ R is easily derived after x∗ is computed. Our
problems are generated by training SVMs on two real-world data sets: the MNIST data-
base of handwritten digits and the UCI Adult data set. Test problems of size n = 800,
1600 and 3200 are constructed from MNIST by considering the first n/2 inputs of digit
“8”and the first n/2 inputs of the other digits. From the UCI Adult, the versions with
n = 1605, 2265 and 3185 are considered. The Gaussian kernel

K(zi , zj) = exp
(
−‖zi − zj‖2

2/(2σ 2)
)

(4.6)

is used in our tests, which ensures the semi-positive definiteness of the matrix G. The
parameters C in (4.6) and σ in (4.6) are set to (C, σ) = (10, 2000) for the MNIST
database and (1,

√
10) for the UCI Adult data sets.

For these SVM test problems, a different stopping condition is used, which is based
on the fulfilment of the KKT conditions within 10−3 (see [15]). The initial point is
x1 = 0. The first stepsize is simply set to α1 = ‖g1‖∞ since the projection P�(xk − gk)

is not used by the stopping condition. In addition, we terminate the projection algorithm
if either |r(λ)| ≤ 10−8 or �λ ≤ 10−8. The numerical results are shown in Table 4.2,
where #iter the number of required iterations and #ls is the number of line search. kaver

and kmax denote the average number of iterations and the maximum number of iterations,

418 Y.-H. Dai, R. Fletcher

Table 4.2. Numerical results for SVM test problems

Problem n #iter #ls SV BSV kaver kmax time BB
800 128 8 281 1 4.18 12 0.5469 152 0.6563

MNIST 1600 198 20 457 9 4.87 13 2.7031 273 3.7656
3200 508 82 807 25 5.28 16 27.8281 558 30.8906

1605 106 4 691 584 4.49 7 1.9531 108 1.9844
UCI Adult 2265 141 9 1011 847 4.22 11 4.3594 130 4.0469

3185 186 17 1303 1108 4.43 11 10.4531 167 9.4063

respectively, taken byAlgorithm 1. SV and BSV stand for the number of support vectors
and bound support vectors, respectively (a training example zi is called a support vector
if the corresponding x∗

i is nonzero and a bound support vector if x∗
i = C). The required

CPU time (in seconds) is listed under the column “time". For BB, we list the iteration
numbers and CPU times.

Table 4.3 also lists the numbers of iterations required by Algorithm 2, Algorithm
2∗, BB, BB∗, and the SPGM and GVPM algorithms (here we note that SPGM is first
proposed in [2] and GVPM is proposed in [23]; the iteration numbers for these two algo-
rithms are copied from [23]). For Algorithm 2∗ and BB∗, we also show the required CPU
time for each problem. From Figure 4.5, we see that both Algorithm 2 and Algorithm 2∗

Table 4.3. Numerical comparisons for SVM test problems

Problem n SPGM GVPM Algorithm 2 Algorithm 2∗ BB BB∗
800 163 161 128 141 0.6406 152 161 0.7969

MNIST 1600 303 277 198 218 3.2188 273 287 4.1250
3200 691 513 508 428 24.7969 558 558 31.2969

1605 90 153 106 96 1.8750 108 90 1.9063
UCI Adult 2265 135 196 141 142 4.5625 130 150 4.8438

3185 175 282 186 155 9.1719 167 143 8.2813

1 1.1 1.2 1.3 1.4 1.5 1.6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P

Algorithm 2
Algorithm 2*
 BB
 BB*

Fig. 4.5. Performance profiles for support vector machine problems

New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds 419

perform well on the SVM test problems. Again, from Table 1, we see that the average
performance of the projection algorithm, Algorithm 1, is excellent. To achieve a very
accurate solution, Algorithm 1 only requires around 4 or 5 iterations on average and in
the worst case 16 iterations, although often a lot less.

To sum up, our numerical experiments in this section demonstrate the usefulness of
(3.4) and suggest that Algorithm 2 is a strong contender for solving SLBQP problems.
The average performance of Algorithm 1 is excellent and in most cases the heuristics
for globalizing the secant iteration works well. In addition, to avoid the worse case of
Algorithm 1 and improve the average performance of the BS algorithm, it might be
worthwhile to consider a hybrid projection algorithm based on the two algorithms.

5. Conclusion and discussion

In this paper, we have proposed a new algorithm based on secant approximation, namely,
Algorithm 1, for singly linearly constrained quadratic programs subject to lower and
upper bounds (SLBQP) where the Hessian matrix is diagonal and positive definite. For
general SLBQP problems, we have designed a gradient projection algorithm, namely,
Algorithm 2, which uses Algorithm 1 to do projections, calculates the stepsize by a new
formula (3.4) and incorporates a recently-established adaptive non-monotone line search.
Our numerical experiments on large-scale random test problems and some medium-scale
quadratic programs arising in training support vector machines demonstrate the useful-
ness of these algorithms.

Algorithm 1 allows the projections of the projected-gradient-like algorithm computed
approximately. Nevertheless, the theory introduced in Birgin et al [3] might enable us to
establish the global convergence of Algorithm 2 under suitable assumptions. The effi-
cacy of the new stepsize (3.4) is still to be examined by further numerical experiments.
Recently, Zanni [26] uses Algorithm 2 with m = 2 and L = 2 as the inner solver of the
GPDT algorithm and obtains much better numerical results than the original GPDT algo-
rithm using GVPM. In the unconstrained quadratic case, we have made some numerical
experiments for (3.4) with different values of m, and the suggested value of m is between
3 and 5. We shall report these results elsewhere.

Another feature of Algorithm 2 is that, if the initial stepsize fails to meet the line
search conditions, Algorithm 2 takes the exact one-dimensional minimizer instead of
reducing the stepsize by some Armijo rule. This strategy ensures that at most 2 stepsizes
are calculated at each iteration. To see whether this strategy is useful, we have compared
algorithms SPGM and BB∗. Note that both the algorithms define the reference function
values by (4.2) with M = 10. The difference is in that, if the initial stepsize fails to meet
the line search conditions, the former decides the second initial stepsize by some Armijo
rule (see [2] for details), but the latter takes the exact one-dimensional minimizer. The
numerical results in Table 4.3, suggest that an exact line search performs better in the
context of QP problems.

In our work on the box constrained QP problem [7], we found that the best approach
was to alternate the use of the two BB stepsize formulae given in [1]. We tried a similar
approach for the SLBQP problems used in this paper, but found that the results were
noticeably worse for the SVM problems. For these problems, the alternation method

420 Y.-H. Dai, R. Fletcher

failed to provide a solution in a reasonable number of iterations. At present we have
no explanation for the discrepancy in these results. However, we note that [23] reports
considerable success in using the two stepsize formulae in a more sophisticated way in
the solution of SVM problems (see Table 4.3 for the numerical results of the method,
GVPM). It is worth mentioning that GVPM is a monotone algorithm. We do not yet
know whether there exists some efficient way to combine the alternation technique of
the stepsize and the non-monotone line search.

Acknowledgements. The authors would very much like to thank Professor Gaetano Zanghirati at Università
di Ferrara, and his colleagues, for the invaluable help that they provided during our numerical tests on the
SVM problems. Many thanks are also due to the two anonymous referees, whose suggestions and comments
improve the quality of this paper greatly.

References

1. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer.Anal. 8, 141–148 (1988)
2. Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex

sets. SIAM J. Optim. 10, 1196–1211 (2000)
3. Birgin, E.G., Martínez, J.M., Raydan, M.: Inexact spectral projected gradient methods on convex sets.

IMA J. Numer. Anal. 23, 539–559 (2003)
4. Brucker, P.: An O(n) algorithm for quadratic knapsack problems. Oper. Res. Lett. 3, 163–166 (1984)
5. Calamai, P.H., Moré, J.J.: Quasi-Newton updates with bounds. SIAM J. Numer. Anal. 24, 1434–1441

(1987)
6. Dai, Y.H., Fletcher, R.: On the asymptotic behaviour of some new gradient methods, Research report

NA/212, Department of Mathematics, University of Dundee, 2003, and in Mathematical Programming,
Series A, Vol. 103, No. 3, 541–560 (2005)

7. Dai, Y.H., Fletcher, R.: Projected Barzilai-Borwein methods for large-scale box-constrained quadratic
programming, Research report NA/215, Department of Mathematics, University of Dundee, 2003, and
in Numerische Mathematik A, Vol. 100, No. 1, 21–47 (2005)

8. Dai, Y.H., Zhang, H.C.: An adaptive two-point stepsize gradient algorithm. Numer. Algorithms 27, 377–
385 (2001)

9. Dolan, E.D., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program.
Ser. A 91, 201–203 (2002)

10. Fletcher, R.: On the Barzilai-Borwein method, Research report, Department of Mathematics, University
of Dundee, 2001. and in Optimization and Control with Applications, Eds. L. Qi, K. Teo and X. Yang,
Kluwer Academic Publishers, Series in Applied Optimization, (to appear).

11. Friedlander, A., Martínez, J.M., Molina, B., Raydan, M.: Gradient method with retards and generaliza-
tions. SIAM J. Numer. Anal. 36, 275–289 (1999)

12. Grippo, L., Lampariello, F., Lucidi, S.:A nonmonotone line search technique for Newton’s method. SIAM
J. Numer. Anal. 23, 707–716 (1986)

13. Held, M., Wolfe, P., Crowder, H.: Validation of subgradient algorithms. Math. Prog. 6, 62–88 (1974)
14. Helgason, R., Kennington, J., Lall, H.:A polynomially bound algorithms for a singly constrained quadratic

program. Math. Prog. 18, 338–343 (1980)
15. Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges, C.J.C., Smola, A.

(eds.) Advances in Kernel Methods - Support Vector Learning , MIT Press, Cambridge, Massachussets,
1998

16. Meyer, R.R.: Multipoint methods for separable nonlinear networks. Math. Programming Study 22, 185–
205 (1984)

17. Moré, J., Toraldo, G.: Algorithms for bound constrained quadratic programming problems. Numer. Math.
55, 377–400 (1989)

18. Pardalos, P.M., Kovoor, N.: An algorithm for a singly constrained class of quadratic programs subject to
upper and lower bounds. Math. Prog. 46, 321–328 (1990)

19. Pardalos, P.M., Rosen, J.B.: Constrained global optimization: Algorithms and applications. In: Lecture
Notes in Computer Science, Vol. 268 (Springer, Berlin, 1987)

20. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In: Advances
in Kernel Methods - Support Vector Learning, Schölkopf, B., Burges, C., Smola, A. (eds.) MIT Press,
Cambridge, Massachusets, 1998

New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds 421

21. Raydan, M.: On the Barzilai and Borwein choice of steplength for the gradient method. IMA J. Numer.
Anal. 13, 321–326 (1993)

22. Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization
problem. SIAM J. Optim. 7, 26–33 (1997)

23. Serafini, T., Zanghirati, G., Zanni, L.: Gradient projection methods for quadratic programs and applica-
tions in training support vector machines. Research report, 2003 Optim. Meth. Software, Vol. 20, 347–372
(2005)

24. Toint, Ph.L.: A non-monotone trust region algorithm for nonlinear optimization subject to convex con-
straints. Math. Prog. 77, 69–94 (1997)

25. Vapnik, V.: Estimation of dependences based on empirical data. Springer-Verlag, 1982
26. Zanni, L.: An improved gradient projection-based decomposition technique for support vector machines.

Research report, Dipartimento di Mathematica, Università di Modena e Reggio Emilia, Italy

