
Digital Object Identifier (DOI) 10.1007/s10107-005-0585-4

Math. Program., Ser. B 103, 335–356 (2005)

Arnold Neumaier · Oleg Shcherbina · Waltraud Huyer · Tamás Vinkó

A comparison of complete global optimization solvers

Received: April 21, 2004 / Accepted: November 19, 2004
Published online: May 6, 2005 – © Springer-Verlag 2005

Abstract. Results are reported of testing a number of existing state of the art solvers for global constrained
optimization and constraint satisfaction on a set of over 1000 test problems in up to 1000 variables, collected
from the literature.

The test problems are available online in AMPL and were translated into the input formats of the various
solvers using routines from the COCONUT environment. These translators are available online, too.

1. Overview

This paper presents test results for software performing a complete search to solve global
optimization or constraint satisfaction problems.

In contrast to local or heuristic searches, a complete search checks all points in the
search region for feasibility, and all feasible points for global optimality. A solver that
performs a complete search – apart from rounding error issues – is called a complete
solver. Since the search region for continuous global optimization problems contains
an infinite number of points, analytic techniques are needed to make decisions about
infinitely many points simultaneously. This is usually (but not always) done in a branch-
and-bound framework.

As the recent survey Neumaier [25] of complete solution techniques in global opti-
mization documents, there are now about a dozen solvers for constrained global optimi-
zation that claim to solve global optimization and/or constraint satisfaction problems to
global optimality by performing a complete search.

Within the COCONUT project [30, 31], we evaluated many of the existing soft-
ware packages for global optimization and constraint satisfaction problems. This is
the first time that different constrained global optimization and constraint satisfaction
algorithms are compared on a systematic basis and with a test set that allows to de-
rive statistically significant conclusions. We tested the global solvers BARON, COCOS,
GlobSol, ICOS, LGO, LINGO, OQNLP, Premium Solver, and the local solver MI-
NOS.

The testing process turned out to be extremely time-consuming, due to various rea-
sons not initially anticipated. A lot of effort went into creating appropriate interfaces,

A. Neumaier, O. Shcherbina, W. Huyer: Fakultät für Mathematik, Universität Wien, Nordbergstr. 15, 1090
Wien, Austria. e-mail: Arnold.Neumaier@univie.ac.at

T. Vinkó: Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and University of
Szeged, H-6720 Szeged, Aradi vértanúk tere 1., Hungary

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.2 Optimize For Fast Web View: Yes Embed Thumbnails: Yes Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [600 600] dpi Paper Size: [595 842] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 900 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Warn and ContinueEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Convert All Colors to sRGB Intent: DefaultWorking Spaces: Grayscale ICC Profile: RGB ICC Profile: sRGB IEC61966-2.1 CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: No ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: NoOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [600 600]>> setpagedevice

336 A. Neumaier et al.

making the comparison fair and reliable, and making it possible to process a large number
of test examples in a semiautomatic fashion.

In a recent paper about testing local optimization software, Dolan & Moré [7, 8]
write: We realize that testing optimization software is a notoriously difficult problem
and that there may be objections to the testing presented in this report. For example,
performance of a particular solver may improve significantly if non-default options are
given. Another objection is that we only use one starting point per problem and that
the performance of a solver may be sensitive to the choice of starting point. We also
have used the default stopping criteria of the solvers. This choice may bias results but
should not affect comparisons that rely on large time differences. In spite of these objec-
tions, we feel that it is essential that we provide some indication of the performance of
optimization solvers on interesting problems.

These difficulties are also present with our benchmarking studies. Section 2 describes
our testing methodology. We use a large test set of over 1000 problems from various
collections. Our main performance criterion is currently how often the attainment of the
global optimum, or the infeasibility of a problem, is correctly or incorrectly claimed
(within some time limit). All solvers are tested with the default options suggested by the
providers of the codes, with the request to stop at a time limit or after the solver believed
that first global solution was obtained.

These are very high standards, much more demanding than what had been done
by anyone before. Thorough comparisons are indeed very rare, due to the difficulty of
performing extensive and meaningful testing. Indeed, we know of only two comparative
studies [18, 23] in global optimization ranging over more than perhaps a dozen examples,
and both are limited to bound constrained black box optimization. (See also Huyer [15]
for some further tests.)

Only recently rudimentary beginnings were made elsewhere in testing constrained
global optimization [12]. On the other hand, there are a number of reports about compar-
ing codes in local optimization [1, 4, 7, 8, 14, 17, 28], and there is an extensive web site
[22] with wide-ranging comparative results on local constrained optimization codes.

Section 3 describes the tests done on the most important state of the art global solvers.
Shortly expressed, the result is the following:

Among the currently available global solvers, BARON is the fastest and most
robust one, with OQNLP being close. None of the current global solvers is fully reli-
able, with one exception: For pure constraint satisfaction problems, ICOS, while
slower than BARON, has excellent reliability properties when it is able to finish the
complete search. Models in dimension < 100 are solved with a success rate (global
optimum found) of over 90% by BARON while (within half an hour of CPU time)
less than two thirds of the larger models are solved.

OQNLP, the best of the stochastic solvers, had solved the maximal number of
problems a year ago, but is now in most respects second to the newest version of
BARON; moreover, it is much slower and cannot offer information about when the
search is completed. However, on the models with > 100 variables, OQNLP still
solves (within the imposed time limit) the highest percentage (72%) of problems.

The best solver, BARON, was able to complete the search in over two third of
the models with less than 100 variables (for larger problems only about one third,

A comparison of complete global optimization solvers 337

within the time limit of 30 minutes), but it lost the global minimum in about 4
percent of the cases.

The final Section 4 concludes with various remarks, including guidelines for devel-
opers of global optimization codes derived from our experience with the initial versions
of the packages tested.

Much more detailed results than can be given here are available online at [3].
The results presented are part of work done in the context of the COCONUT project

[30, 31] sponsored by the European Union, with the goal of integrating various exist-
ing complete approaches to global optimization into a uniform whole. Funding by the
European Union under the IST Project Reference Number IST-2000-26063 within the
FET Open Scheme is gratefully acknowledged.

2. Testing

Introduction. We present test results for the global optimization systems BARON,
COCOS, GlobSol, ICOS, LGO/GAMS, LINGO, OQNLP Premium Solver, and for com-
parison the local solver MINOS. All tests were made on the COCONUT benchmarking
suite described in Shcherbina et al. [33].

Our experience with the solvers tested and preliminary test results were commu-
nicated to the developers of the solvers and lead to significant improvements in the
robustness and user-friendliness of several solvers – the present results are based on the
last available version of each solver.

For generalities on benchmarking and the associated difficulties, in particular for
global optimization, see Shcherbina et al. [33]. Here we concentrate on the documen-
tation of the testing conditions used and on the interpretation of the results obtained. For
the interpretation of the main results, see the overview in Section 1.

The test set. A good benchmark must be one that can be interfaced with all exist-
ing solvers, in a way that a sufficient number of comparative results can be obtained.
There are various smaller-scale benchmark projects for partial domains, in particular the
benchmarks for local optimization by Mittelmann [22]. A very recent web site, the
GAMS Global Library [13] started collecting real life global optimization problems with
industrial relevance, but currently most problems on this site are without computational
results. Our benchmark (described in more detail in [33]) includes most of the problems
from these collections.

The test set consists of 1322 models varying in dimension (number of variables)
between 1 and over 1000, coded in the modeling language AMPL [9]. They are sorted
by size and source (library). Size k denotes models whose number of variables (after
creating the corresponding DAG and simplifying it) has k decimal digits. Library 1
(from Global Library [13]) and Library 2 (from CUTE [5], in the version of Vanderbei
[36]) consist of global (and some local) optimization problems with nonempty feasible
domain, while Library 3 (from EPFL [33]) consists of pure constraint satisfaction prob-
lems (constant objective function), almost all being feasible. The resulting 12 model
classes are labeled as lib2s1 (= size 1 models from Library 2), etc..

338 A. Neumaier et al.

Number of test models
Number of variables 1 − 9 10 − 99 100 − 999 ≥ 1000 any

size 1 size 2 size 3 size 4 total
Library 1 84 90 44 48 266
Library 2 347 100 93 187 727
Library 3 225 76 22 6 329

total 656 266 159 241 1322

We restricted testing to models with less than 1000 variables since the models of size 3
already pose so many difficulties that working on the (much more CPU time consuming)
larger models is likely to give no additional insight for the current generation of solvers.

We also excluded a small number of models from these test sets because of difficul-
ties unrelated to the solvers. In particular, the functions if, log10, tan, atan, asin,
acos and acosh are currently not supported by the ampl2dag converter underlying
all our translators into the various solver input formats. Since they are used in the mod-
els ColumnDesign-original, FatigueDesign-original, djtl, hubfit
(if), bearing (log10), yfit, yfitu (tan), artif, helix, s332, TrussDe-
sign-full, TrussDesign01 (atan), dallasl, dallasm, dallass (asin),
chebyqad, cresc4, cresc50, cresc100, cresc132 (acos), coshfun (ac-
osh), these models were excluded. A few of the problems in Library 3 (pure constraint
satisfaction problems) in fact contained objective functions, and hence were excluded,
too. This was the case for the models h78, h80, h81, logcheb, median exp,
median nonconvex, robotarm, steenbre. A few other models, namely
ex8 3 12, ex8 3 14, concon, mconcon, osborneb, showed strange behavior,
making us suspect that it is due to unspotted bugs in our converters.

The models where none of the solvers found a feasible point and some other attempts
to get one failed, are regarded in the following as being infeasible (though some of these
might possess undiscovered feasible points).

The computers. Because of the large number of models to be solved, we performed
our tests on a number of different computers called Lisa, Hektor, Zenon, Theseus and
Bagend. Their brand and their general performance characteristics are displayed below.
The standard unit time STU, redefined in Shcherbina et al. [33], is essentially equiv-
alent to 108 standard unit times according to Dixon & Szegö [6]. For Bogomips and
Linpack, see

http://www.tldp.org/HOWTO/mini/BogoMips-2.html
http://www.netlib.org/benchmark/linpackjava

(The high Linpack entry for Zenon is apparently caused by an inefficient Windows
environment.)

Computer CPU type OS CPU/MHz Bogomips STU/sec Linpack
Lisa AMD Athlon Linux 1678.86 3348.88 50 7.42

XP2000+
Hektor AMD Athlon Linux 1544.51 3080.19 53 6.66

XP1800+
Zenon AMD Family 6 Windows 1001 — 74 46.78

Model 4 NT 4.0
Theseus Pentium III Linux 1000.07 1992.29 130 4.12
Bagend AMD Athlon Linux 1666.72 3329.22 36 5.68

MP2000+

A comparison of complete global optimization solvers 339

To decide on the best way to compare across computers, we ran the models from
lib1s1 with BARON on both Lisa and Theseus, and compared the resulting ratios of
CPU times with the ratios of performance indices, given by the following table.

Lisa Theseus Ratios Inverse ratios
Frequency 1678.86 1000.07 1.68 0.60
Bogomips 3348.88 1992.29 1.68 0.59
STU 50.00 130.00 0.38 2.60
Linpack 7.42 4.12 1.80 0.56

As Figure 1 with the results shows, the appropriate index to use is the frequency. We
therefore measure times in multiples of 1000 Mcycles, obtained by multiplying the CPU
time by the nominal frequency of the CPU in MHz, and dividing the result by 1000.
Figure 1 also shows that small times are not well comparable; we therefore decided to
round the resulting numbers t to 1 digit after the decimal point if t < 10, and to the
nearest integer if t ≥ 10. For tiny times where this would result in a zero time, we use
instead t = 0.05.

0 10 20 30 40 50 60

10
−2

10
−1

10
0

10
1

10
2

10
3

Theseus

Lisa
time in seconds

problem number, sorted by time for Theseus (1000MHz)

0 10 20 30 40 50 60
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

mean for time(Theseus) ≥ 0.15
frequency and Bogomips quotients
Linpack quotient
stu quotient

Fig. 1. Times and timing ratios for lib1s1 with BARON

340 A. Neumaier et al.

The solvers. The following tables summarize some of the main properties of these
solvers, as far as known to us. Missing information is indicated by a question mark,
and partial applicability by a + or − in parentheses; the dominant technique (if any)
exploited by the solver is denoted by ++.

The first two rows give the name of the solvers and the access language used to pass
the problem description. The next three rows indicate whether it is possible to spec-
ify optimization problems integer constraints (although we don’t test this feature), and
whether it is necessary to specify a finite search box within which all functions can be
evaluated without floating point exceptions.

The next three rows indicate whether black box function evaluation is supported,
whether the search is complete (i.e., is claimed to cover the whole search region if the
arithmetic is exact and sufficiently fast) or even rigorous (i.e., the results are claimed to
be valid with mathematical certainty even in the presence of rounding errors).

Solver Minos LGO BARON ICOS GlobSol
access language GAMS GAMS GAMS AMPL Fortran90
optimization? + + + − +
integer constraints − + + − −
search bounds − required recommended − required
black box eval. + + − − −
complete − (−) + + +
rigorous − − − + +
local ++ + + + (+)
CP − − + ++ +
other interval − − − + ++
convex/LP − − ++ + −
dual + − + − −
available + + + + +
free − − − (+) +

Solver Premium LINGO αBB GloptiPoly OQNLP
Solver Global

access language Visual Basic LINGO MINOPT Matlab GAMS
optimization? + + + (+) +
integer constraints + + + − +
search bounds + − ? − +
black box eval. − − − − +
complete + + + + −
rigorous (+) − − − −
local + + + − +
CP + + − − −
other interval ++ + + − −
convex/LP + ++ ++ + −
dual − + − ++ −
available + + − + +
free − − − + −

A comparison of complete global optimization solvers 341

Note that general theorems forbid a complete finite search if black box functions
are part of the problem formulation, and that a rigorous search is necessarily complete.
In view of the goals of the COCONUT project we were mainly interested in complete
solvers. However, we were curious how (some) incomplete solvers perform. Five fur-
ther rows indicate the mathematical techniques used to do the global search. We report
whether local optimization techniques, constraint propagation, other interval techniques,
convex analysis and linear programming (LP), or dual (multiplier) techniques are part
of the toolkit of the solver.

The final two rows indicate whether the code is available (we include in this list of
properties the solver αBB because of its good reported properties, although we failed to
obtain a copy of the code), and whether it is free (in the public domain).

In this paper, we study the behavior of the solvers BARON/GAMS (version 7.2,
released July 7, 2004) [29, 34, 35], COCOS (beta test version 1.0, released September
20, 2004), GlobSol (version released 11 September 2003) [19], ICOS (beta-test version,
released March 29, 2004) [20], LGO/GAMS [27], LINGO (version 9.0, released October
12, 2004) [21], OQNLP/GAMS [11], Premium Solver (Interval Global Solver from the
Premium Solver Platform of Frontline Systems, Version 5) [10]. (GloptiPoly is limited
to polynomial systems of dimension < 20, and was not tested.) Note that our tests apply
to the combination of solver plus interface. For LINGO we used the converter from
GAMS. In a few cases, the failures reported are due to problems in the GAMS interface
rather than the solver.

To enable us to assess how difficult it is (i) to find a global minimum, and (ii) to
verify it as global – in many instances, part (ii) is significantly harder than part (i) –,
results (without timings) from the local solver MINOS [24] are also included in our
comparison.

ICOS only handles pure constraint satisfaction problems, and hence was tested only
on Library 3. Two of the solvers (BARON and ICOS) also allow the generation of
multiple solutions, but due to the lack of a reliable basis for comparison, this feature
has not been tested. Two of the solvers (BARON and LINGO) allow one to pose inte-
ger constraints, and two (LINGO and Premium Solver) allows nonsmooth expressions.
Neither of these features has been tested in this study.

Passing the models. The access to all test models is through an AMPL interface,
which translates the AMPL model definition into the internal form of a directed acy-
clic graph (DAG) which is labelled in such a way as to provide a unique description
of the model to be solved. This internal description could be simplified by a program
dag simplifywhich performs simple presolve and DAG simplification tasks. More-
over, all maximization problems are converted to minimization problems, with objective
multiplied by −1. This preprocessing ensures that all solvers start with a uniform level
of description of the model. The DAG is then translated into the input format required
by each solver. (For the tests, we switched off the model simplification stage, since it is
not yet efficiently implemented.)

A testing environment was created to make as much as possible of the testing work
automatic. We had to rerun many calculations for many models whenever bugs were
fixed, new versions of a solver became available, new solvers were added, improve-
ments in the testing statistics were made, etc.; this would have been impossible without
the support of such a testing environment.

342 A. Neumaier et al.

The simplifier and the translators from AMPL into the input formats for the solvers
tested are available in the COCONUT environment (Schichl [32]). The remainder of
the test environment is not fully automatic and hence not publicly available.

Performance criteria. All solvers are tested with the default options suggested by
the providers of the codes. (Most solvers may be made to work significantly better by
tuning the options to particular model classes; hence the view given by our comparisons
may look more pessimistic than the view users get who spend time and effort on tuning a
solver to their models. However, in a large-scale, automated comparison, it is impossible
to do such tuning.)

The timeout limit used was (scaled to a 1000 MHz machine) around 180 seconds
CPU time for models of size 1, 900 seconds for models of size 2, and 1800 seconds for
models of size 3 (except for GlobSol and Premium Solver which had slightly different
time limits, the results stemming from earlier runs). The precise value changed between
different runs since we experimented with different units for measuring time on different
machines. But changing (not too much) the value for the timeout limit hardly affects the
cumulative results, since the overwhelming majority of the models was either completed
very quickly, or extremely slow.

The solvers LGO and GlobSol required a bounded search region, and we bounded
each variable between −1000 and 1000, except in a few cases where this leads to a loss
of the global optimum.

The reliability of claimed results is the most poorly documented aspect of current
global optimization software. Indeed, as was shown by Neumaier & Shcherbina [26]
as part of the current project, even famous state-of-the-art solvers like CPLEX 8.0 (and
many other commercial MILP codes) may lose an integral global solution of an innocent-
looking mixed integer linear program. We use the following five categories to describe
the quality claimed:

Sign Description

X model not accepted by the solver
I model claimed infeasible by the solver
G result claimed to be a global optimizer
L result claimed to be a local (possibly global) optimizer
U unresolved (no solution found or error message)
T timeout reached (qualifies L and U)

Note that the unresolved case may contain cases where a feasible but nonoptimal
point was found, but the system stopped before claiming a local or global optimum.

Checking for best function value. The program solcheck from the COCONUT
Environment checks the feasibility of putative solutions of solver results. This was nec-
essary since we found lots of inconsistencies where different solvers produced different
results, and we needed a way of checking whether the problem was in the solver or
in our interface to it. A point was considered to be (nearly) feasible if each constraint
c(x) ∈ [c, c] was satisfied within an absolute error of tol for bounds with absolute
value < 1, and a relative error of tol for all other bounds. Equality constraints were
handled by the same recipe with c = c.

A comparison of complete global optimization solvers 343

To evaluate the test results, the best function value is needed for each model. We
checked in all cases the near feasibility of the best points used to verify the claim of
global optimality or feasibility. In a later stage of testing we intend to prove rigorously
the existence of a nearby feasible point. More specifically:

The results of all solvers tested were taken into account, and the best function value
was chosen from the minimum of the (nearly) feasible solutions by any solver. For mod-
els where this did not give a (nearly) feasible point, we tried to find feasible points by ad
hoc means, which were sometimes successful. If there was still no feasible solution for
a given model, the (local) solution with the minimal residual was chosen (but the result
marked as infeasible).

To test which accuracy requirements on the constraint residuals were adequate, we
counted the number of solutions of BARON and LINGO on lib1s1 which were ac-
cepted as feasible with various solcheck tolerances tol. Based on the results given
in the following table, it was decided that a tolerance of tol= 10−5 was adequate. (The
default tolerances used for running BARON and LINGO were 10−6.)

solver tol all accepted +G G! G? I?

BARON 1e-4 91 88 75 36 1 0
1e-5 91 88 75 36 1 0
1e-6 91 88 56 24 13 0
1e-7 91 88 49 19 18 0

LINGO 1e-4 91 91 82 66 3 0
1e-5 91 91 81 65 4 0
1e-6 91 91 77 63 6 0
1e-7 91 91 52 41 28 0

3. Test results

Notation in the tables. In the summary statistic tables the following notation is used:

Column Description

library describes the library
all library/size

accepted the number of models accepted by the solver
+G number of models for which the global solution was found
G! number of models for which the global solution was

correctly claimed to be found
G? number of models for which a global solution was claimed

but the true global solution was in fact significantly better
or the global solution is reported but in fact that is an
infeasible point

I? number of models for which the model was claimed
infeasible although a feasible point exists

For models where a local optimizer finds the global optimum (without knowing it),
the purpose of a global code is to check whether there is indeed no better point; this may

344 A. Neumaier et al.

well be the most time-consuming part of a complete search. For the remaining models
the search for the global optimum is already hard. We therefore split the evaluation into

– ‘easy location models’, where the local optimizer MINOS found a feasible point
with the global objective function value, and

– ‘hard location models’, all others where MINOS failed.

For the easy and hard models (according to this classification), the claimed status is
given in the columns; the rows contain a comparison with the true status:

Column Description

wrong number of wrong claims, i.e. the sum of G? and I? from
the summary statistic table

+G how often the solution found was in fact global
−G how often it was in fact not global
I how many models are in fact infeasible

For the purposes of comparison in view of roundoff, we rounded function values to
3 significant decimal digits, and regarded function values of < 10−4 as zero (but print
them in the tables as nonzeros) when the best known function value was zero. Otherwise,
we regard the global minimum as achieved if the printed (rounded) values agree.

For each library detailed tables for all models and all solvers tested, and many more
figures (of the same type as the few presented here) are also available, for reasons of
space they are presented online on the web [3]. There we give a complete list of results
we currently have on the nine model classes (i.e., excluding the models with 1000 or
more variables, and the few models described before.)

GlobSol and Premium Solver. To test GlobSol, we used an evaluation version of
LAHEY Fortran 95 compiler. Note that we had difficulties with the Intel Fortran com-
piler.

In the first round we tested GlobSol on Library 1 size 1 problems (containing 91
problems) with the same time limit as used for the other solvers. GlobSol failed to solve
most of the problems within the strict time limit. For this reason we decided to use a
very permissive time limit (even then, only half the accepted problems were solved).

The same tests as for GlobSol were performed for Premium Solver, with similar
performance.

Figure 2 compares the global solvers GlobSol, Premium Solver, and BARON on
the size 1 problems from Library 1. The figure contains timing results for the models
described in the figure caption, sorted by the time used by BARON. Conversion times
for putting the models into the format required by the solvers are not included. Times
(given in units of 1000 Mcycles) below 0.05 are places on the bottom border of each
figure, models for which the global minimum was not found by the solver get a dummy
time above the timeout value, and are placed at the top border of each figure, in slightly
different heights for the different solvers. In this way one can assess the successful
completion of the global optimization task.

A comparison of complete global optimization solvers 345

0 10 20 30 40 50 60 70 80 90

10
−1

10
0

10
1

10
2

10
3

10
4

times (unit = 1000 Mcycles)

+=BARON7.2/GAMS x=GlobSol o=Premium

Fig. 2. Times for lib1s1, all models, GlobSol and Premium Solver vs. BARON

In a few cases, GlobSol and Premium Solver found solutions where BARON failed,
which suggests that BARON would benefit from some of the advanced interval tech-
niques implemented in GlobSol and Premium Solver.

However, GlobSol and Premium Solver are much less efficient in both time and
solving capacity than BARON. To a large extent this may be due to the fact that both
GlobSol and Premium Solve strive to achieve mathematical rigor, resulting in significant
slowdown due to the need of rigorously validated techniques. (There may be also sys-
tematic reasons in the comparison, since GlobSol does not output a best approximation
to a global solution but boxes, from which we had to extract a test point.)

Moreover, the theoretically rigorous performance guarantees are not borne out, in
that both solvers make some wrong claims, probably due to lack of care in programming.

In view of these results, we refrained from further testing GlobSol and Premium
Solver.

The summary statistics on lib1s1 can be found in the following tables.

GlobSol summary statistics
library all accepted +G G! G? I?
lib1s1 91 77 39 38 20 0

346 A. Neumaier et al.

Premium summary statistics
library all accepted +G G! G? I?
lib1s1 91 75 45 31 10 1

A more detailed table gives more information. Included is an evaluation of the status
claimed about model feasibility and the global optimum, and the true status (based on
the best point known to us).

GlobSol on lib1s1
status all wrong easy location hard location

+G −G I +G −G I
all 91 20 30 34 0 9 18 0
G 58 20 30 13 0 8 7 0
U 19 0 0 16 0 1 2 0
X 14 0 0 5 0 0 9 0

Premium Solver on lib1s1
status all wrong easy location hard location

+G −G I +G −G I
all 91 11 36 28 0 9 18 0
G 41 10 25 9 0 6 1 0
L 12 0 6 2 0 2 2 0

LT 9 0 4 3 0 1 1 0
U 12 0 1 2 0 0 9 0
X 16 0 0 11 0 0 5 0
I 1 1 0 1 0 0 0 0

COCOS. The COCONUT environment is an open domain global optimization plat-
form. Apart from the translators used for the present comparison, it contains a config-
urable solver COCOS with many modules that can be combined to yield various com-
bination strategies for global optimization. We tested the strategy called by “cocos
-hopt +bs +lp solve <model>.dag”.

COCOS summary statistics
library all accepted +G G! G? I?
lib1s1 91 91 51 36 12 0
lib1s2 80 80 26 11 14 0
lib1s3 41 41 3 0 2 0
lib2s1 324 324 182 98 29 0
lib2s2 99 99 37 10 5 0
lib2s3 95 95 11 2 1 0
lib3s1 217 217 143 48 2 0
lib3s2 69 69 38 19 0 0
lib3s3 22 22 4 3 0 0

A comparison of complete global optimization solvers 347

Reliability analysis for COCOS

global minimum found/accepted
size 1 376/632 ≈ 59%
size 2 101/248 ≈ 41%
size 3 18/158 ≈ 11%

all 495/1038 ≈ 48%

correctly claimed global/accepted
size 1 182/632 ≈ 29%
size 2 40/248 ≈ 16%
size 3 5/158 ≈ 3%

all 227/1038 ≈ 22%

wrongly claimed global/claimed global
size 1 43/225 ≈ 19%
size 2 19/59 ≈ 32%
size 3 3/8 ≈ 38%

all 65/292 ≈ 22%

claimed infeasible/accepted and feasible
size 1 0/626 = 0%
size 2 0/241 = 0%
size 3 0/147 = 0%

all 0/1014 = 0%

ICOS. ICOS is a pure constraint solver, which currently cannot handle models with
an objective function, and hence was tested only on Library 3. (An enhanced version of
ICOS, capable also of rigorously solving global optimization problems is under devel-
opment.)

ICOS also claims to provide mathematically rigorous results, and indeed, it is the
only complete solver tested that did not make any false claims in our tests.

ICOS summary statistics
library all accepted +G G! G? I?
lib3s1 217 207 145 68 0 0
lib3s2 69 63 34 12 0 0
lib3s3 22 20 5 0 0 0

Reliability analysis for ICOS
(on pure CSPs only)

global minimum found/accepted
size 1 145/207 ≈ 70%
size 2 34/63 ≈ 54%
size 3 5/20 ≈ 25%

all 184/290 ≈ 63%

348 A. Neumaier et al.

correctly claimed global/accepted
size 1 68/207 ≈ 33%
size 2 12/63 ≈ 19%
size 3 0/20 = 0%

all 80/290 ≈ 28%

wrongly claimed global/claimed global
size 1 0/68 = 0%
size 2 0/12 = 0%

all 0/80 = 0%

claimed infeasible/accepted and feasible
size 1 0/201 = 0%
size 2 0/59 = 0%
size 3 0/18 = 0%

all 0/278 = 0%

BARON, LINGO, OQNLP, LGO and MINOS. The following tables contain the
summary statistics for the performance of the other solvers tested, apart from COCOS.

BARON7.2/GAMS summary statistics
library all accepted +G G! G? I?
lib1s1 91 88 88 64 0 0
lib1s2 80 77 71 46 3 0
lib1s3 41 33 23 5 1 0
lib2s1 324 296 254 206 11 0
lib2s2 99 89 82 48 2 0
lib2s3 95 87 51 25 6 0
lib3s1 217 195 182 180 3 3
lib3s2 69 63 57 57 2 1
lib3s3 22 20 14 13 1 0

LINGO9 summary statistics
library all accepted +G G! G? I?
lib1s1 91 91 84 70 3 0
lib1s2 80 80 53 42 14 1
lib1s3 41 41 12 1 2 1
lib2s1 324 324 260 232 26 1
lib2s2 99 99 71 45 10 0
lib2s3 95 95 49 26 11 0
lib3s1 217 217 189 189 15 0
lib3s2 69 69 55 55 9 0
lib3s3 22 22 10 9 4 0

A comparison of complete global optimization solvers 349

OQNLP/GAMS summary statistics
library all accepted +G G! G? I?
lib1s1 91 91 83 0 0 1
lib1s2 80 80 70 0 0 1
lib1s3 41 28 12 0 0 5
lib2s1 324 315 272 0 0 1
lib2s2 99 95 90 0 0 0
lib2s3 95 83 68 0 0 1
lib3s1 217 213 196 0 0 3
lib3s2 69 67 47 0 0 2
lib3s3 22 19 11 0 0 3

LGO/GAMS summary statistics
library all accepted +G G! G? I?
lib1s1 91 85 65 0 0 0
lib1s2 80 78 39 0 0 8
lib1s3 41 31 4 0 0 12
lib2s1 324 309 234 0 0 4
lib2s2 99 94 61 0 0 15
lib2s3 95 57 23 0 0 10
lib3s1 217 212 155 0 0 46
lib3s2 69 66 35 0 0 21
lib3s3 22 11 3 0 0 4

MINOS/GAMS summary statistics
library all accepted +G G! G? I?
lib1s1 91 91 64 0 0 0
lib1s2 80 80 47 4 0 4
lib1s3 41 41 19 1 0 4
lib2s1 324 323 245 15 1 12
lib2s2 99 97 80 4 2 3
lib2s3 95 92 42 1 0 8
lib3s1 217 213 155 3 0 27
lib3s2 69 68 35 0 1 12
lib3s3 22 21 11 1 0 4

The corresponding reliability analysis tables are as follows.

350 A. Neumaier et al.

Reliability analysis for BARON 7.2

global minimum found/accepted
size 1 524/579 ≈ 91%
size 2 210/229 ≈ 92%
size 3 88/140 ≈ 63%

all 821/950 ≈ 86%

correctly claimed global/accepted
size 1 450/579 ≈ 78%
size 2 151/229 ≈ 66%
size 3 43/140 ≈ 31%

all 644/950 ≈ 68%

wrongly claimed global/claimed global
size 1 14/464 ≈ 3%
size 2 7/158 ≈ 4%
size 3 8/51 ≈ 16%

all 29/675 ≈ 4%

claimed infeasible/accepted and feasible
size 1 3/571 ≈ 1%
size 2 1/222 ≈ 0%
size 3 0/128 = 0%

all 4/921 ≈ 0.4%

Reliability analysis for LINGO9

global minimum found/accepted
size 1 533/632 ≈ 84%
size 2 179/248 ≈ 72%
size 3 71/158 ≈ 45%

all 783/1038 ≈ 75%

correctly claimed global/accepted
size 1 491/632 ≈ 78%
size 2 142/248 ≈ 57%
size 3 36/158 ≈ 23%

all 669/1038 ≈ 64%

wrongly claimed global/claimed global
size 1 44/535 ≈ 8%
size 2 33/175 ≈ 19%
size 3 17/53 ≈ 32%

all 94/763 ≈ 12%

claimed infeasible/accepted and feasible
size 1 1/624 ≈ 0%
size 2 1/241 ≈ 0%
size 3 1/143 ≈ 0%

all 3/1008 ≈ 0.3%

A comparison of complete global optimization solvers 351

Reliability analysis for OQNLP

global minimum found/accepted
size 1 551/619 ≈ 89%
size 2 207/242 ≈ 86%
size 3 91/130 ≈ 72%

all 847/993 ≈ 86%

claimed infeasible/accepted and feasible
size 1 5/611 ≈ 1%
size 2 3/235 ≈ 1%
size 3 9/124 ≈ 8%

all 17/944 ≈ 2%

Reliability analysis for LGO

global minimum found/accepted
size 1 454/606 ≈ 75%
size 2 135/238 ≈ 57%
size 3 30/99 ≈ 30%

all 619/943 ≈ 66%

claimed infeasible/accepted and feasible
size 1 50/598 ≈ 8%
size 2 44/229 ≈ 18%
size 3 26/91 ≈ 30%

all 120/918 ≈ 13%

Reliability analysis for MINOS

global minimum found/accepted
size 1 464/627 ≈ 74%
size 2 162/245 ≈ 66%
size 3 72/154 ≈ 47%

all 698/1026 ≈ 68%

correctly claimed global/accepted
size 1 18/627 ≈ 3%
size 2 8/245 ≈ 3%
size 3 3/154 ≈ 2%

all 29/1026 ≈ 3%

wrongly claimed global/claimed global
size 1 1/19 ≈ 5%
size 2 3/11 ≈ 27%
size 3 0/3 = 0%

all 4/33 ≈ 12%

claimed infeasible/accepted and feasible
size 1 39/619 ≈ 6%
size 2 19/238 ≈ 8%
size 3 16/151 ≈ 11%

all 74/1008 ≈ 7%

352 A. Neumaier et al.

Finally, we compare all solvers on lib1s1 (problems from GlobalLib with less
than 10 variables).

lib1s1 summary statistics
library all accepted +G G! G? I?
BARON 91 88 88 64 0 0
LINGO 91 91 83 70 6 0
OQNLP 91 91 83 0 0 1
LGO 91 85 65 0 0 0
MINOS 91 91 64 0 0 0
COCOS 91 91 51 36 12 0
Premium 91 75 45 31 10 1
GlobSol 91 77 39 38 20 0

4. Conclusions

The results speak for themselves, and the main conclusions were already given in the
opening section. Here we add a few more observations.

– The most remarkable observation is that the models from Library 1, which were
collected specifically as test problems for global optimization, do not behave much
differently from those of Library 2, which were collected as test problems for local
optimization routines. In particular, many problems that were solved in the past
only as local optimization problems were in fact global problems where the
global minimizer is not easily found.

– The GAMS solvers LGO and OQNLP are very cautious, never claiming a global
minimum. This reflects the observed unreliability of the internal claims (as seen by
studying the logfile) of the LGO version used by GAMS, and the decision of GAMS
rather to err on the conservative side.

– It is on first sight surprising that under GAMS, the local solver MINOS sometimes
claims to have found a global result. This is the case, e.g., because some models are
recognized as linear programs for which every local solution is global. (The cases
with G? are caused by too inaccurate approximate solutions.)

– In a few cases, solvers reported infeasibility, although the point they found was
considered feasible by solcheck.

– Conversely, a number of the wrong claims of globality (especially of LINGO) are
caused by the fact that an approximate minimizer was found but that the constraints
were not satisfied with the accuracy one could have expected from the solver settings
– some residual was larger than 10−5, although the requested tolerance was 10−6.

– In the mean time, BARON/GAMS had some bugs fixed, which eliminates all wrong
claims to infeasibility and reduces the rate of wrong claims of global optimality
to 12/675 = 1.8%. This raises the hope that the next official release has a much
improved reliability.

Performance profiles. Upon request by a reviewer, we also add some performance
profiles (introduced by Dolan & Moré [8]). However, the profiles must be interpreted
with much caution since often a global solver finds the global minimum quite early and

A comparison of complete global optimization solvers 353

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 2log(time overhead factor over fastest solver)

 f
ra

ct
io

n
 o

f
m

o
d

el
s

so
lv

ed

BARON 7.2
LINGO
OPNLP/GAMS
LGO/GAMS
MINOS/GAMS

Fig. 3. Performance profiles for reaching the global optimum

then spends a lot of time checking whether there is another one. Unless a time limit is
reached, BARON and LINGO quit only after they completed the search, while OQNLP
and LGO quit according to some statistical criterion, and MINOS quits directly after fin-
ishing the local optimization. This is reflected in a severe dependence of the performance
profiles on the solvers selected; cf. Figures 3 and 4.

Figure 3 displays the fraction of problems solved to global optimality within a fac-
tor 2τ of the time the best solver (from BARON, LINGO, OQNLP, LGO and MINOS)
needed for the problem, among all problems accepted by all these solvers. Figure 4
displays the same, but with MINOS excluded. (The numbers at τ = 0 add up to more
than 100% because of the way we rounded tiny times – as discussed in Section 2 –,
which resulted in many ties for the best times, which were multiply counted. The steps
in the profiles also come from this rounding procedure.)

Similarly, Figure 5 displays the fraction of problems where BARON or LINGO fin-
ished the global search successfully within a factor 2τ of the time the better of the two
solvers needed for finishing the global search, among all problems accepted by both
solvers.

Guidelines for code developers. Our extensive testing revealed a number of desir-
able properties of solvers, that would have saved much of our time, and that code devel-
opers should consider taking into account:

354 A. Neumaier et al.

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 2log(time overhead factor over fastest solver)

 f
ra

ct
io

n
 o

f
m

o
d

el
s

so
lv

ed

BARON 7.2
LINGO
OPNLP/GAMS
LGO/GAMS

Fig. 4. Performance profiles for reaching the global optimum

– Solvers should never enter infinite loops; there should be an option to stop after
(approx.) a given time limit.

– A constant objective should not cause difficulties.
– Solvers which have access to the computational tree should not fail because of over-

flow, underflow, exceptions, exp(1000), 1/0, 0 ∗ log(0), log(0).
– Avoid confusing messages (e.g., detected infeasibility should not be labelled “suc-

cess”).
– Output messages should be meaningful to the user (e.g., “numerical difficulties

encountered” �⇒ Results still OK??).
– There should be an informative final quality claim (such as the XIGLU classification

used here).
– A large number of problems have not all variables bounded; so solvers should be

able to address this. If a solver needs finite bounds to perform well, these should
be set by default to reasonable values where none are provided by the model, and a
warning should be given to the user.

Acknowledgments. We are happy to acknowledge cooperation with various people. Dan Fylstra (Frontline
Solver), Tony Gau (LINGO), Baker Kearfott (GlobSol), Yahia Lebbah (ICOS), Alex Meeraus (GAMS),
János Pintér (LGO), and Nick Sahinidis (BARON) provided valuable support in obtaining and running their

A comparison of complete global optimization solvers 355

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 2log(time overhead factor over fastest solver)

 f
ra

ct
io

n
 o

f
m

o
d

el
s

so
lv

ed
BARON 7.2
LINGO

Fig. 5. Performance profiles for reaching the global optimum

software. The first round of testing GlobSol was done by Boglárka Tóth (Szeged, Hungary). Mihály Markót
tested and debugged preliminary versions of the COCOS strategy.

References

1. Barr, R.S., Golden, B.L., Kelly, J.P., Resende, M.G.C., Stewart, W.R.: Designing and report-
ing on computational experiments with heuristic methods. J. Heuristics 1, 9–32 (1995)
http://www.research.att.com/∼mgcr/abstracts/guidelines.html

2. Benhamou, F., Goualard, F.: Universally Quantified Interval Constraints. In: Proceedings of the 6th Inter-
national Conference on Principles and Practice of Constraint Programming (CP’2000), 2000, pp. 67–82

3. COCONUT test results, WWW-directory, 2004,
http://www.mat.univie.ac.at/∼neum/glopt/coconut/tests/figures/

4. Crowder, H.P., Dembo, R.S., Mulvey, J.M.: On reporting Computational Experiments with Mathematical
Software. ACM Transactions on Mathematical Software 5, 193–203 (1979)

5. Gould, N.I.M., Orban, D., Toint, Ph.L.: CUTEr, a constrained and unconstrained testing environment,
revisited. WWW-document, 2001. http://cuter.rl.ac.uk/cuter-www/problems.html

6. Dixon, L.C.W., Szegö, G.P.: The Global Optimization Problem: An Introduction. In: Towards Global
Optimization 2, North-Holland, Amsterdam 1978, pp. 1–15

7. Dolan, E.D., Moré, J.J.: Benchmarking Optimization Software with COPS. Tech. Report ANL/MCS-246,
Argonne Nat. Lab., November 2000. http://www-unix.mcs.anl.gov/∼more/cops

8. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program-
ming 91, 201–213 (2002), http://www-unix.mcs.anl.gov/∼more/cops

9. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming.
Duxbury Press, Brooks/Cole Publishing Company, 1993, http://www.ampl.com/cm/cs/what/ampl/

356 A. Neumaier et al.: A comparison of complete global optimization solvers

10. Frontline Systems, Inc., Solver Technology - Global Optimization, WWW-document (2003),
http://www.solver.com/technology5.htm

11. GAMS Solver descriptions, GAMS/OQNLP, WWW-document, 2003, http://www.gams.com/solv-
ers/solvers.htm#OQNLP

12. GAMS World, WWW-document, 2002, http://www.gamsworld.org
13. GLOBAL Library, WWW-document, 2002, http://www.gamsworld.org/global/globallib.htm
14. Greenberg, H.J.: Computational testing: Why, how, and how much. ORSA J. Comput. 2, 94–97 (1990)
15. Huyer, W.: A comparison of some algorithms for bound constrained global optimization. WWW-docu-

ment, 2004, http://www.mat.univie.ac.at/∼neum/glopt/contrib/compbound.pdf
16. ILOG: ILOG Solver. Reference Manual, 2002
17. Jackson, R.H.F., Boggs, P.T., Nash, S.G., Powell, S.: Guidelines for reporting results of computational

experiments. Report of the ad hoc committee. Math. Program. 49, 413–426 (1990/91)
18. Janka, E.: Vergleich stochastischer Verfahren zur globalen Optimierung. Diplomarbeit, Mathematisches

Inst., Universität Wien, 1999 A shorter online version in English language is at
http://www.mat.univie.ac.at/∼neum/glopt/janka/gopt eng.html.

19. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht 1996,
www.mscs.mu.edu/∼globsol

20. Lebbah, Y.: ICOS (Interval COnstraints Solver), WWW-document (2003), http://www-sop.inria.fr/co-
prin/ylebbah/icos/

21. Lindo Systems, Inc., New LINGO 8.0, WWW-document,
2003, http://www.lindo.com/table/lgofeatures8t.html

22. Mittelmann, H.: Benchmarks. WWW-document, 2002, http://plato.la.asu.edu/topics/benchm.html
23. Mongeau, M., Karsenty, H., Rouzé, V., Hiriart-Urruty,J.-B.: Comparison of public-domain software for

black box global optimization. Optimization Methods and Software 13, 203–226 (2000) http://mip.ups-
tlse.fr/publi/rapp99/99.50.html

24. Murtagh, B.A., Saunders, M.A.: MINOS 5.4 User’s Guide, Report SOL 83-20R, Systems Optimiza-
tion Laboratory. Stanford University, December 1983 (revised February 1995), http://www.sbsi-sol-opti-
mize.com/Minos.htm

25. Neumaier, A.: Complete Search in Continuous Global Optimization and Constraint Satisfaction. In: Acta
Numerica 2004, A. Iserles (ed.), Cambridge University Press 2004, pp. 271–369

26. Neumaier,A., Shcherbina, O.: Safe bounds in linear and mixed-integer programming. Math. Programming
A 99, 283–296 (2004), http://www.mat.univie.ac.at/∼neum/papers.html#mip

27. Pinter, J.D.: Global Optimization in Action. Kluwer, Dordrecht 1996,
http://www.dal.ca/∼jdpinter/l s d.html

28. Ratliff, H.D., Pierskalla, W.: Reporting Computational Experience in Operations Research. Operations
Research 29 (2), xi–xiv (1981)

29. Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Global Optim. 8,
107–139 (1996), http://archimedes.scs.uiuc.edu/baron/baron.html

30. Schichl, H.: Global optimization in the COCONUT project. In: Proceedings of the Dagstuhl Semi-
nar “Numerical Software with Result Verification”. Springer Lecture Notes in Computer Science 2991,
Springer, Berlin, 2004

31. Schichl, H.: Mathematical Modeling and Global Optimization, Habilitation Thesis, 2003, Cambridge
Univ. Press, to appear. http://www.mat.univie.ac.at/∼herman/papers/habil.ps

32. Schichl, H.: The COCONUT Environment. Web site, 2004, http://www.mat.univie.ac.at/coconut-
environment/

33. Shcherbina, O., Neumaier, A.: Djamila Sam-Haroud, Xuan-Ha Vu and Tuan-Viet Nguyen, Benchmarking
global optimization and constraint satisfaction codes. In: Ch. Bliek, Ch. Jermann, A. Neumaier (eds.),
Global Optimization and Constraint Satisfaction, Springer, Berlin 2003

34. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-
Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, Dordrecht
2002

35. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs:A theoretical
and computational study, Math. Programming 99, 563–591 (2004)

36. Vanderbei, B.: Nonlinear Optimization Models. WWW-document, http://www.orfe.princeton.edu/∼
rvdb/ampl/nlmodels/

