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Abstract. Deterministic global optimization algorithms frequently rely on the convex underestimation of
nonconvex functions. In this paper we describe the structure of the polyhedral convex envelopes of edge-con-
cave functions over polyhedral domains using geometric arguments. An algorithm for computing the facets of
the convex envelope over hyperrectangles in R

3 is described. Sufficient conditions are described under which
the convex envelope of a sum of edge-concave functions may be shown to be equivalent to the sum of the
convex envelopes of these functions.

1. Introduction

Convex relaxation based, branch and bound algorithms are powerful approaches for the
deterministic global optimization of nonconvex nonlinear and mixed integer nonlinear
programming problems. A key factor influencing the convergence rate of these algo-
rithms is the quality of the convex relaxations. The tightest underestimator of a noncon-
vex function over its domain is the convex envelope. An understanding of the structure
of convex envelopes over hyperrectangles is therefore important for the development of
branch and bound algorithms using hyperrectangular partitioning schemes.

In this paper we consider properties and representations of vertex polyhedral convex
envelopes. A function f : R

n ⊃ X → (−∞,∞] is said to be polyhedral if its epigraph
is a polyhedral set in R

n+1 (Bertsekas et al., 2003) and vertex polyhedral if, furthermore,
the vertices of the epigraph coincide with the vertices of the polyhedral domainX. Sev-
eral classes of functions have been shown to have vertex polyhedral convex envelopes
on certain domains, including concave functions over polytopes, and multilinear func-
tions over hypercubes (Rikun, 1997). The multilinear functions are of particular interest
in global optimization as many nonconvex NLPs may be reformulated as NLPs with
univariate and multilinear constraint functions. Rikun (1997) observed that the convex
envelope of a smooth function over a polytope is polyhedral if and only if the preimage
of the vertices of the convex envelope coincides with a subset of the vertices of the
domain. In the same paper a sufficient condition for the polyhedrality of the convex
envelope, based on a form of local concavity, was introduced. Recently, Tardella (2003)
showed that functions with vertex polyhedral convex envelopes may be recognized as
having a property of edge-concavity. Further discussion of convex envelopes for lower
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semi-continous functions appears in Tawarmalani and Sahinidis (2002). In the sequel we
will refer to functions which have vertex polyhedral convex envelopes as edge-concave.

The following is a constructive characterisation of the convex envelope of an edge-
concave function f : R

n → R over a polytope X := conv{x1, . . . , xm} ⊂ R
n (Horst

and Tuy, 1993; Floudas, 2000),

convenv(f,X)
∣
∣
∣
x

=







min
λ∈Rm

∑m
i=1 λif (x

i)

subject to
m∑

i=1
λix

i = x

m∑

i=1
λi = 1

λi ≥ 0 for all i = 1, . . . , m.

(1)

Here we use conv(·) to denote the convex hull of a set, convenv(f,X) for the convex

envelope of f overX and convenv(f,X)
∣
∣
∣
x

to denote the function convenv(f,X) evalu-

ated at a point x ∈ X. Note that whenX is a full dimensional hyperrectanglem equals 2n,
therefore this characterization of the convex envelope requires an exponential number
of λ variables. In some cases there is a more efficient way of characterizing the convex
envelope than representation (1).

A separable function f : R
n1 × . . . × R

nt → R is a sum f := ∑t
i=1 fi where

the domains of the respective fi’s are orthogonal subspaces, fi : R
ni → R. The con-

vex envelope of a separable function f over the domain X := X1 × . . . × Xt may be
decomposed into a sum of convex envelopes (Horst and Tuy, 1993; Floudas, 2000),

convenv(f,X) =
t
∑

i=1

convenv(fi, Xi).

A more general case applies to summations in which f := ∑t
i=1 fi where the domain

of each fi is itself a Cartesian product, fi : X0 ×Xi → R, and X0 is a simplex (Rikun,
1997),

convenv(f,X0 × . . . Xt ) =
t
∑

i=1

convenv(fi, X0 ×Xi).

This result has found application when X0 is a line segment, X0 ⊂ R, (Tawarmalani
et al., 2002).

An alternative means of characterizing a polyhedral convex envelope is through a
system of facet defining hyperplanes. Such formulae have been developed for bilinear
functions over hyperrectangles (McCormick, 1976; Al-Khayyal and Falk, 1983); bilin-
ear functions over certain quadrilaterals (Sherali and Alameddine, 1992); special forms
of multilinear functions over unit hypercubes and special discrete sets (Sherali, 1997);
and for trilinear monomials over hyperrectangles (Meyer and Floudas, 2003, 2004).
Although one may derive these facets by projecting the representation (1) onto X this
computation is in general highly complex.
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Hyperrectangles are used extensively in the domain partitioning schemes of branch
and bound algorithms for global optimization. The number of simplices contained in the
triangulations of hyperrectangles in R

n gives us an indication of the number of facets
defining the convex envelopes of edge-concave functions in R

n. As the volume of a
simplex in the unit hypercube [0, 1]n is an integral multiple of 1

n! the maximal num-
ber of simplices in a triangulation of [0, 1]n is less than n!, and indeed triangulations
of this size may easily be determined (Haiman, 1991). Several papers have addressed
issues related to the determination of minimal triangulations of a hypercube in R

n for
small n (Mara, 1976; Cottle, 1982; Sallee, 1982; Lee, 1985; Hughs, 1994; Hughes and
Anderson, 1999; Smith, 2000). For n in the range 1 to 7 the exact sizes of the minimal
triangulations of [0, 1]n are 1, 2, 5, 16, 67, 308, and 1493. The minimal triangula-
tion of [0, 1]7 was determined computationally by Hughes and Anderson (1999) using
CPLEX to solve a large scale linear programming problem with 1, 456, 218 variables. It
follows that, in general, the number of facets required to represent the convex envelope of
an edge-concave function grows super-exponentially. Nevertheless, in certain instances
(see Example 5 ) , due to redundancy, onlyO(n) facets may be required to represent the
convex envelope.

The remainder of this paper is structured as follows. In Section 2, a characterization
of the facets of polyhedral convex envelopes is presented using concepts from combi-
natorial geometry. An efficient way of generating the facets of the convex envelope of
an edge-concave function over a box in R

3 is described in Section 3. In Section 4, these
insights lead us to an understanding of the properties that allow a convex envelope to be
represented as a sum of convex envelopes. The paper is concluded in Section 5.

2. Geometry of facet defining hyperplanes

In this section, the geometry of facet defining hyperplanes is interpreted using concepts
from combinatorial geometry. In particular, the notion of a minimal affine dependency is
used to interpret the combinatorial structure of the graph of a function on the vertices of
a polyhedron. A good introduction to these topics can be found in Ziegler (1994), Chap-
ter 6. See the book by Björner et al. (1993) for more information on the combinatorial
interpretation of polyhedra.

Let X = {x1, . . . , xn} ⊆ R
d be a set of n points in R

d which affinely span R
d .

To simplify notation, X may be interpreted as a matrix composed of the columns
{x1, . . . , xn}. The affine dependencies of X are the vectors λ ∈ R

n with
∑n
i=1 λi = 0

such that
∑n
i=1 λix

i = 0. There is a clear geometric interpretation of affine depen-
dencies. Let λ �= 0 be an affine dependency and consider the positive and negative
components of λ, which are denoted P(λ) = {i : λi > 0} and N(λ) = {i : λi < 0}.
Note that

∑

i∈P(λ) λi = −∑i∈N(λ) λi = �. From this we get

x∗ :=
∑

i∈P(λ)

λi

�
xi = −

∑

i∈N(λ)

λi

�
xi. (2)
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Observe that x∗ is a point that lies within the convex hull defined by the positive coeffi-
cients as well as that defined by the negative coefficients,

x∗ ∈ conv{xi : i ∈ P(λ)} ∩ conv{xi : i ∈ N(λ)}. (3)

Minimal affine dependencies are affine dependencies of nonempty point sets where
every proper subset is affinely independent. The support of a vector is defined as the set
of nonzero components. Minimal affine dependencies are therefore affine dependencies
with inclusion-minimal supports. Geometrically the sets defined by positive and negative
components of the minimal dependencies, conv{xi : i ∈ P(λ)} and conv{xi : i ∈ N(λ)},
are simplices with relative interiors intersecting at a unique point x∗. These point con-
figurations are known as minimal Radon partitions from Radon’s Theorem (see Ziegler
(1994)) or circuits borrowing terminology from oriented matroid theory (Björner et al.,
1993). We shall refer to points which lie in the intersection of the two simplices of a
circuit as circuit intersection points. The set of circuit intersection points ofX is denoted
by S(X).

Example 1. In Figure 1 the vertices of the regular pentagon are labelled {x1, . . . , x5},
where

xi :=
(

cos(
(0.5 − 2i)π

5
, sin(

(0.5 − 2i)π

5
)

)

.

In this figure the set of circuit intersection points S(X) is {y1, . . . , y5} where

yi := λx1+imod5 + (1 − λ)x1+(i+2)mod5,

and λ := (2cos(π5 ))
−2. The expression a mod b where a and b are integers refers to the

remainder upon dividing a by b. The circuits ofX := {x1, . . . , x5} are {x1, x3, x2, x4},
{x2, x4, x3, x5}, {x3, x5, x4, x1}, {x4, x1, x5, x2}, and {x5, x2, x1, x3}.

The following result (Ziegler, 1994, Lemma 6.7.), follows from Carathéodory’s The-
orem.

Lemma 1. Let U ⊆ R
n be a vector subspace of dimension r . Any vector u ∈ U can be

written as a finite sum u = u′ + u′′ + . . .+ uk of k ≤ r vectors ui ∈ U , where each ui

has a minimal nonempty support in U , and the j th component uij is either zero or has
the same sign as uj .

x

y

y

y

y

y

2

5

1

2

3 4

5

x 4 x 1

x 3 x
Fig. 1. Circuit intersection points of the regular pentagon
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As a consequence of this lemma any affine dependency may be written as a sum of sign
consistent minimal affine dependencies.

A d-simplex is the convex hull of any d + 1 affinely independent points in some
R
n (n ≥ d). A 1-simplex is therefore a line, a 2-simplex is a triangle and so on. The

following lemma asserts that a vertex of the intersection of two simplices with verti-
ces in convex position is either a circuit intersection point or a vertex common to both
simplices.

Lemma 2. Let �k := {vk1, . . . , vkd+1} ⊂ R
d be a set of points spanning R

d so that the
convex hull conv(�k) is a d-simplex. The intersection of two simplices is equivalent to
the convex hull of the circuit intersection points:

conv(�1) ∩ conv(�2) = conv(S(�1 ∪�2)),

where S(�1 ∪�2) is the set of circuit intersection points of �1 ∪�2.

Proof. There is a one-to-one mapping between the points in conv(�1) ∩ conv(�2) and
the affine dependencies of�1∪�2. These affine dependencies may, in turn, be expressed
as sums of minimal affine dependencies. See Meyer (2004) for further details.

A triangulation of the point configuration X is a set of d-simplices {�1, . . . , �m}
with the following properties:

1. the vertices of conv(�i) are vertices of X,
2. two simplices conv(�i) and conv(�j ), i �= j , have no interior point in common,
3. the union of simplices, conv(�1)∪ . . .∪conv(�m), equals the convex hull conv(X),
4. the intersection conv(�i)∩ conv(�j ), i �= j , is a face of both conv�i and conv�j .

The next proposition tells us how the minimal affine dependencies of a convex polytope
conv(X) can be used to determine the convex envelope of an edge-concave function f
over conv(X) by means of a triangulation of X.

Proposition 1. LetX := {x1, . . . , xn} be the set of vertices of a convex polytope in R
d ,

and let f : R
d → R be an edge-concave function on conv(X). Let T be a triangulation

of X and let LT : conv(X) → R be the following piecewise affine function defined by
T :

LT (x) :=
d+1
∑

i=1

λif (x
(i))

where λ ∈ R
d+1

0 ≤ λi ≤ 1 for all i = 1, . . . , d + 1,
d+1
∑

i=1

λi = 1

and x = ∑d+1
i=1 λix

(i), for some {x(1), . . . , x(d+1)} ∈ T . LT is the convex envelope
convenv(f,X) if and only if

∑

i∈P(λ)
λif (x

i) ≤ −
∑

i∈N(λ)
λif (x

i) (4)
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for all minimal affine dependencies λ where

{xi : i ∈ P(λ)} ⊆ �′ ∈ T (5)

and

{xi : i ∈ N(λ)} ⊆ �′′ /∈ T . (6)

Proof. Assume T is such that condition (4) holds for all minimal affine dependencies
for which the inclusions (5) and (6) apply. Suppose that LT (x) is not a convex function.
Then from Carathéodory’s theorem and the definition of convexity there is a ρ ∈ R

d+1,
where ρ ≥ 0,

∑d+1
i=1 ρi = 1, and a � := {x(1), . . . , x(d+1)} ⊆ X such that

LT

(
d+1
∑

i=1

ρix
(i)

)

>

d+1
∑

i=1

ρiLT (x
(i))

Now x∗ := ∑d+1
i=1 ρix

(i) lies in some simplex conv(�′), �′ ∈ T therefore LT (x∗) is a
convex combination of f evaluated at the vertices of the simplex conv(�′),

LT (x
∗) :=

d+1
∑

i=1

λ′
if (x

′(i)).

The sets �′ := {x′(1), . . . , x′(d+1)} and � := {x(1), . . . , x(d+1)} are the vertices of
two simplices conv(�′) and conv(�) and x∗ lies in the intersection of these simplices,
x∗ ∈ conv(�) ∩ conv(�′). Therefore x∗ can be written as a convex combination of the
vertices of conv(�)∩conv(�′)which from Lemma 2 are also circuit intersection points.
A contradiction then arises as we have assumed that condition (4) holds.
Assume LT is the convex envelope but

∑

i∈P(λ)
λif (x

i) > −
∑

i∈N(λ)
λif (x

i)

for some minimal affine dependency λ associated with a circuit (�′ ∪�′′) where �′ =
{xi : i ∈ P(λ)} ∈ T and �′′ = {xi : i ∈ N(λ)} /∈ T . From convexity we get

LT




∑

i∈P(λ)
λif (x

i)



 ≤ −
∑

i∈N(λ)
λif (x

i)

But LT

(

∑

i∈P(λ)
λif (x

i)

)

= ∑

i∈P(λ)
λif (x

i) which leads to a contradiction and com-

pletes the proof.

Let X be a finite set of points in R
d , and f : conv(X) → R an edge-concave func-

tion. A set of affinely independent points X′ ⊂ X is said to be dominated if there exists
a minimal affine dependency λ such that

∑

i∈P(λ)
λif (x

i) > −
∑

i∈N(λ)
λif (x

i)
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and {xi : i ∈ P(λ)} ⊆ X′. If no such λ exists, X′ is said to be nondominated. If every
minimal affine dependency λ for which {xi : i ∈ P(λ)} ⊆ X′ is such that

∑

i∈P(λ)
λif (x

i) < −
∑

i∈N(λ)
λif (x

i) (7)

then X′ is a dominant subset of X. We will use the notation D0(f,X) and D+(f,X) to
denote, respectively, the sets of all nondominated and dominant subsets ofX. To denote
the related sets of minimal affine dependencies we use the notation,

D̂0(f,X) := {λ ∈ A(X) : P(λ) ⊆ D0(f,X)}
D̂+(f,X) := {λ ∈ A(X) : P(λ) ⊆ D+(f,X)}.

where A(X) is the set of all minimal affine dependencies of X. Proposition 1 describes
the polyhedral convex envelope of a function in terms of a piecewise affine function with
domains of linearity corresponding to simplices with maximal nondominated vertex sets.
It is understood that these terms define properties of X relative to f not properties of X
itself.

A dominance relation between signed subsets of a circuit is said to be strict if either
∑

i∈P(λ)
λif (x

i) > − ∑

i∈N(λ)
λif (x

i) or
∑

i∈P(λ)
λif (x

i) < − ∑

i∈N(λ)
λif (x

i), where λ is the

minimal affine dependency associated with that circuit. When all nondominated subsets
are also dominant, the triangulation defining the convex envelope of f is unique. When
this is not the case the convex envelope defining triangulation may not be unique. Note
that small perturbations εi may be added to f (xi) to ensure that all dominance relations
are strict and that all nondominated subsets ofX are dominant. If each εi is so small that
the directions of the strict dominance relations of the original function f are unaltered
then the unique triangulation T defining the convex envelope of the perturbed function
also defines the convex envelope of f .

Example 2. Consider X, the vertex set of the regular pentagon in Figure 2, and let f :
conv(X) → f i be an edge-concave function such thatf (xi) := i. Proposition 1 provides
the necessary and sufficient conditions to define the convex envelope, convenv(f,X).
The following inequality describes the dominance relationships in Proposition 1:

λf (x1)+ (1 − λ)f (x3) < λf (x2)+ (1 − λ)f (x5)

λf (x3)+ (1 − λ)f (x1) < λf (x2)+ (1 − λ)f (x4)

λf (x1)+ (1 − λ)f (x4) < λf (x5)+ (1 − λ)f (x2)

λf (x4)+ (1 − λ)f (x1) < λf (x5)+ (1 − λ)f (x3)

The maximal nondominated subsets ofX = {x1, . . . , x5} are {x1, x2, x3}, {x1, x3, x4},
and {x1, x4, x5}. D0(f,X) contains these sets and all subsets thereof.

The triangulation T shown in Figure 2 satisfies the conditions in Proposition 1 and
the associated piecewise affine function LT (x) is the convex envelope of the point set.
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x

2

5

x 4 x 1

x 3 x
Fig. 2. A triangulation of the regular pentagon

3. Algorithm for facet determination

This section describes a procedure to determine the complete set of facets defining the
convex envelope of a function f : conv(V ) �→ R where f has a polyhedral convex
envelope and V is the set of vertices of a hyperrectangle in R

3. In Section 2 it was shown
that there is a relationship between the nondominated signed subsets of the circuits and
a triangulation of the hyperrectangle. The cells of the triangulation in turn define the
facets of the convex envelope of f . The procedure for determining the facets is based
on these ideas and involves the following steps.

Step 1: Calculate the function values at vertices of the hyperrectangle and determine
the nondominated subsets of V .

Step 2: Determine the triangulation type.
Step 3: Determine the transformation from the representative triangulation to the current

triangulation.
Step 4: Calculate the facet defining hyperplanes from the cells of the current triangula-

tion.

Each of these steps is discussed below.

3.1. Step 1: dominance relations

The function f is evaluated at each of the vertex points vi and the dominant subsets are
determined. In cases where neither signed subset of a circuit strictly dominates the other,
the tie is broken in a way that is consistent with previous tie breaks. In other words the
sets D0(f, V ) and D+(f, V ) are determined and if D0(f, V ) �= D+(f, V ) a small εi

(εi < min{∑ λjf (v
j ) �= 0}) is added to each f (vi) to produce a perturbed function f ′

in such a way that D0(f ′, V ) = D+(f ′, V ) and D+(f, V ) ⊆ D+(f ′, V ).

3.2. Step 2: triangulation class

Up to reorientation the 3-cube can be triangulated in six different ways, which we will
refer to as triangulation types. Standard representatives of these six types are depicted
in Figure 3.
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Fig. 3. Triangulation types of the 3-cube

Figure 3 identifies the vertices of the triangulation cells in the figures. For example,
the first row of Figure 3 describes cell 1 of the standard representative of triangulation
type A as having the vertices 1, 2, 3 and 5. Notice that each of the triangulations has six
cells, except Type E, which has five.

One way of classifying the triangulations is by counting the number dominant diag-
onals incident with each vertex. In Figure 3 the dominant diagonals are the edges of
the cells which are not edges of the hyperrectangle. In triangulation A, for example, no
dominant diagonals are incident with vertex 1, three dominant diagonals are incident
with vertex 2, two dominant diagonals are incident with vertex 3, and so on. The num-
ber of dominant diagonals incident with each vertex is summarized in Table 1 for all
triangulations. If we then count the number of occurrences of 0,1,2,3, and 4 in each of
the rows we see that each of the triangulations can be uniquely identified in this way.
For example type A is the only type with four 2’s and type B is the only type with six
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Type Vertices
1 2 3 4 5 6 7 8

A 0 3 2 2 2 2 3 0
B 4 1 1 1 1 1 1 4
C 0 2 2 3 4 1 1 1
D 0 4 3 0 2 1 2 2
E 0 3 3 0 3 0 0 3
F 1 3 3 0 3 0 0 4

Table 1. Number of dominant diagonals incident with vertices

1’s. Step 2, therefore, involves counting the number of dominant diagonals incident with
each vertex and comparing the pattern with those in Table 1.

3.3. Step 3: reorientation

Having found the triangulation type, we need to know how the standard triangulation
of type s, T s , is related to the triangulation T ∗ defining the convex envelope of f over
V . That is, we wish to find a linear transformation mapping T s onto T ∗. To do this,
a 3-tuple of linearly independent points in the standard representative T s is identified
with a 3-tuple of points in the current instance T ∗.

Notice, in Figure 3 (a), for example, there are only two vertices, 2 and 7, with three
incident diagonals. Adjacent to vertex 2 there are exactly two vertices, 4 and 6, with
two incident dominant diagonals. Due to symmetry, (2, 4, 6) is equivalent to (7, 5, 3),
moreover, points 2, 4, and 6 are linearly independent. For type A triangulations we can
reorient the standard representative by matching vertices v2, v4, and v6 with ṽ1, ṽ2 and
ṽ3 where ṽ1 is a vertex with three incident diagonals and ṽ2 and ṽ3 are adjacent to
ṽ1 and each have two incident diagonals. The vertices used to reorient the standard
triangulations are summarized in Table 2.

Columns 2 to 4 of this table identify the vertices of the standard triangulation as
depicted in Figure 3. Columns 5 to 7 indicate the number of dominant diagonals inci-
dent with the matching vertices. If the vertices in columns 6 and 7 are, in addition,
required to be adjacent to the vertex in column 5 this is indicated by a star. Consider Fig-
ures 4 (a) and (b) for example. The triangulation depicted in Figure 4 (a) is the standard
type A triangulation. In Figure 4 (b) the same triangulation is represented in a different
orientation. In both Figures 4 (a) and (b) the white dots are vertices with three incident
diagonals and the black dots are the only vertices adjacent to the white dots with exactly
two incident diagonals. Identifying vertices v2, v4 and v6 in Figure 4 (a) with vertices
v5′
, v7′

and v1′
in Figure 4 (b) we see that T A may be rotated to coincide with T ∗.

To determine the reorientation it is convenient to consider the mapping of the cube
C := [−1, 1]3 onto itself. Let the linearly independent identifying vertices of T s be the
columns of the matrix Xs ∈ R

3×3. In a similar way, let the columns of X∗ ∈ R
3×3 be

associated with the three identifying vertices of T ∗. Let a matrix L ∈ R
3×3 relate Xs

and X∗:

X∗ = L(Xs).
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Type standard identity
A 2 4 6 3 2∗ 2∗
B 1 2 3 4 1∗ 1∗
C 1 2 3 0 2 2
D 6 2 5 1 4 2∗
E 1 4 6 0 0 0
F 1 4 6 1 0 0

Table 2. Identifying vertices
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Fig. 4. Illustration of reorientation

Using L any vertex v′ of C in triangulation T s can be matched with the corresponding
vertex v′′ of C in triangulation T ∗:

v′′ = Lv′.

3.4. Step 4: compute facets

Using the transformation in step 3 each vertex in T s is identified with a vertex in T ∗. As
a result, each cell of the triangulation T s can be associated with a cell in T ∗. In other
words there is a one to one map,

T s � �si �→ �∗
i ∈ T ∗.

The facet defining hyperplane, w = 〈π�∗
i , x〉 + π

�∗
i

0 , associated with a cell of the cur-
rent triangulation,�∗

i ∈ T ∗, can now be determined through the solution of a system of
linear equations,
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,

in which {vi1 , vi2 , vi3 , vi4} := �∗
i .
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Example 3. To illustrate this process, consider the optimization problem from Sherali
and Adams (1999), Chapter 7,

min f1 + f2 + f3 + f4
subject to

−4x1 − 3x2 − x3 ≥ −20
x1 + 2x2 + x3 ≥ 1

(8)

2 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 10, 4 ≤ x3 ≤ 8

where

f1 = x1x2x3 − 2x1x2 − 3x1x3 + 5x2x3

f2 = −x2
3

f3 = x2
1

f4 = 5x2 + x3

In this problem f1 is multilinear, f2 is univariate concave, f3 is convex and f4 is linear.
Here we focus on the construction of the convex envelope of f1.
Step 1
The function is evaluated at all vertices of the hyperrectangle [2.0, 5.0] × [0.0, 10.0] ×
[4.0, 8.0]:

f 1 = f1(x1, x2, x3) = −24
f 2 = f1(x1, x2, x3) = −60
f 3 = f1(x1, x2, x3) = 216
f 4 = f1(x1, x2, x3) = 240

f 5 = f1(x1, x2, x3) = −48
f 6 = f1(x1, x2, x3) = −120
f 7 = f1(x1, x2, x3) = 472
f 8 = f1(x1, x2, x3) = 580.

The dominance relations between the complementary sets of the circuits ofX are deter-
mined. Using an overline to indicate the dominant signed subsets, the relationships
between diagonals on the facets of the hyperrectangle are,

{1, 6, 2, 5}, {1, 4, 2, 3}, {1, 7, 3, 5}, {2, 8, 4, 6}, {3, 8, 4, 7}, {5, 8, 6, 7}.

For example, λ = (1,−1, 0, 0,−1, 1, 0, 0) is a minimal affine dependency between
two pairs of vertices on a facet of the hyperrectangle. f 1 + f 6 = −144 is less than
f 2 + f 5 = −108, therefore, the signed subset {1, 6} dominates the subset {2, 5}. We
write {1, 6, 2, 5} to show this relationship.

A single long diagonal dominates the others,

{3, 6, 1, 8}, {3, 6, 2, 7}, {3, 6, 4, 5}.

The dominant long diagonal, {3, 6}, is not dominated by either of the corner slicing
simplices,

(2f 3 + f 6) = 312 < (f 1 + f 4 + f 7) = 688 �⇒ 3, 6, 1, 4, 7

(f 3 + 2f 6) = −24 < (f 2 + f 5 + f 8) = 472 �⇒ 3, 6, 2, 5, 8.
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Note that in this case the nondominated and dominant sets coincide and

D+(f,X) = {{1, 6}, {2, 3}, {3, 5}, {4, 6}, {4, 7}, {6, 7}, {3, 6}} .

Step 2
The number of dominant diagonals incident with each vertex can be summarized as
follows:

vertex 1 2 3 4 5 6 7 8
number 1 1 3 2 1 4 2 0

One vertex has no incident diagonals, three vertices have one, two vertices have two,
one vertex has three, and one vertex has four incident diagonals. Comparing this pattern
to those in Table 1 we find that the current triangulation is of type C.
Step 3
Vertex 1 of the standard type C triangulation T C matches the vertex of T ∗ with no inci-
dent diagonals, vertex 8. T C vertex 2 matches a T ∗ vertex with two incident diagonals,
vertex 4, and symmetrically T C vertex 3 matches the other T ∗ vertex with two incident
diagonals, vertex 7.

L = X∗(XC)−1 =




1 1 −1
1 1 1
1 −1 1









−1 1 −1
−1 −1 1
−1 −1 −1





−1

=




0 −1 0
0 0 −1

−1 0 0





Using L we find that the vertices {1, 2, . . . , 8} of triangulation T C map onto the
vertices {8, 4, 7, 3, 6, 2, 5, 1} of triangulation T ∗.
Step 4
Now each cell �∗

i of triangulation T ∗ is the image under L of some cell �Ci of the
triangulation T C . The cells of T C may be looked up in Figure 3 and mapped onto the
cells of T ∗ as follows,

�C1 := {x1, x2, x3, x5} L�→ {x8, x4, x7, x6} := �∗
1

�C2 := {x2, x3, x5, x7} L�→ {x4, x7, x6, x3} := �∗
2

�C3 := {x2, x4, x5, x6} L�→ {x4, x3, x6, x2} := �∗
3

�C4 := {x4, x5, x6, x8} L�→ {x3, x6, x2, x1} := �∗
4

�C5 := {x4, x5, x7, x8} L�→ {x3, x6, x5, x1} := �∗
5

�C6 := {x3, x4, x5, x7} L�→ {x7, x3, x6, x5} := �∗
6.

Equations defining the facets of the convex envelope of f over X are then computed by
solving a system of linear equations for each cell.
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The facets associated with the cells �∗
k , k = {1, 2, . . . , 6}, are defined by systems

of linear equations. Solving these equations we get,

π�
∗
1 = [−980.0, 36.0, 70.0, 85.0]

π�
∗
2 = [−672.0, 8.0, 61.6, 64.0]

π�
∗
3 = [−40.0, 8.0, 30.0,−15.0]

π�
∗
4 = [−60.0,−12.0, 24.0,−15.0]

π�
∗
5 = [48.0,−24.0, 24.0,−6.0]

π�
∗
6 = [−512.0,−24.0, 52.0, 64.0].

The following is a convex relaxation of Problem 8:

minw1 + w2 + f3 + f4
subject to

w1 ≥ π�
∗
k (1, x1, x2, x3)

� for all k = 1, . . . , 6
w2 ≥ −x3

2 + (−x2
3 + x2

3)
x3−x3
x3−x3−4x1 − 3x2 − x3 ≥ −20

x1 + 2x2 + x3 ≥ 1
2 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 10, 4 ≤ x3 ≤ 8.

This problem has an optimal solution of −119 which is identical to the global solution to
(8). Sherali and Adams (1999) report a solution of −120 for a linear convex relaxation
of the problem derived by the Reformulation Linearization Technique.

4. Decompositions of convex envelopes of sums

This section describes conditions under which the convex envelope of a sum of edge-con-
cave functions can be decomposed into the sum of convex envelopes of the summands.
Consider three polytopes X ⊂ R

m, Y ⊂ R
n and Z ⊂ R

p. Let g : X × Y → R and
h : X × Z → R be edge-concave functions and let f : X × Y × Z → R be the sum of
g and h. Here we investigate conditions under which

convenv(f,X × Y × Z) = convenv(g,X × Y )+ convenv(h,X × Z).

These conditions are based on relationships between the projections of triangulations of
X×Y andX×Z ontoX. It is shown that if the convex envelope defining triangulations
of a pair of functions g and h project onto a common triangulation of the x-space, the
convex envelope of the sum g+h can be decomposed into the sum of convex envelopes
of g and h.

It is well known that the convex envelope of f is equivalent to the sum of the convex
envelopes of g and h when g and h are separable, that is when X is empty. This is also
true when X is a simplex in R

m (Rikun, 1997).

Lemma 3. Let X ⊂ R
m, Y ⊂ R

n, and Z ⊂ R
p be vertex sets of three convex poly-

topes. Define the edge-concave functions g : X × Y → R, h : X × Z → R and
f := g + h : X × Y × Z → R. If X is a simplex the convex envelope of f can be
decomposed into the sum of the convex envelopes of g and h,

convenv(f,X × Y × Z) = convenv(g,X × Y )+ convenv(h,X × Z).
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In many applications in global optimization relaxations of convex envelopes are con-
structed over hyperrectangles. In Proposition 2, we address cases whereX is a polytope
of dimension greater than one.

Proposition 2. Let X ⊂ R
m, Y ⊂ R

n and Z ⊂ R
p be the vertex sets of three convex

polytopes. Consider the edge-concave functions f : X × Y → R and g : X × Z → R

with convex envelopes defined, respectively by LfR and LgS as in Proposition 1. R and S
are triangulations of conv(X×Y ) and conv(X×Z), respectively. Define the projection
of a simplex � ∈ R

m+n′
onto the x-space as

Px(�) := {

x ∈ R
m : ∃(x,w) ∈ �} .

If there exist convex envelopes LfR and LgS and a triangulation T ofX such that for each
� ∈ R there is a�′′ ∈ T such that Px(�) = �′′, and for each�′ ∈ S there is a�′′ ∈ T
such that Px(�′) = �′′ then the convex envelope of f + g : X × Y × Z → R is the
sum of the convex envelopes of f and g,

convenv(f,X × Y × Z) = convenv(g,X × Y )+ convenv(h,X × Z).

Proof. We start with the following general observation: for any f : X → R, X and
X′ ⊆ X the convex envelope of f over the subdomain X′ is at least as tight as the con-

vex envelope of f over X itself, convenv(f,X)
∣
∣
∣
x

≤ convenv(f,X′)
∣
∣
∣
x
∀x ∈ X′ ⊆ X.

We see from this observation that, for any� ∈ T , convenv(f +g,�×Y ×Z)
∣
∣
∣
(x,y,z)

≥
convenv(f + g,X×Y ×Z)

∣
∣
∣
(x,y,z)

∀(x, y, z) ∈ �×Y ×Z. By assumption, the convex

envelope defining triangulations R and S project onto the x-space as T , a triangulation
of conv(X). Therefore, for any � ∈ T ,

convenv(f,�× Y )

∣
∣
∣
(x,y)

= convenv(f,X × Y )

∣
∣
∣
(x,y)

∀(x, y) ∈ �× Y

and

convenv(g,�× Z)

∣
∣
∣
(x,z)

= convenv(g,X × Z)

∣
∣
∣
(x,z)

∀(x, z) ∈ �× Z.

It follows from Lemma 3 that convenv(f + g,� × Y × Z)

∣
∣
∣
(x,y,z)

= convenv(f,� ×
Y )

∣
∣
∣
(x,y)

+ convenv(g,� × Z)

∣
∣
∣
(x,z)

for all (x, y, z) ∈ � × Y × Z. The required result

follows immediately.

Proposition 2 extends the earlier result of Rikun (1997) and reduces to this result
when conv(X) is a simplex and the triangulation of the x-space is unique.

Example 4. As an illustration consider the multilinear function

f (x1, x2, y, z) = g(x1, x2, y)+ h(x1, x2, z)

where

g(x1, x2, y) = x1x2y + 3x1x2 + 2x1y + 1x2y
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and

h(x1, x2, z) = x1x2z+ 3x1x2 + 1x1z+ 2x2z

over the domain (x1, x2, y, z) ∈ [0, 1]4. Using the method described in Section 3 the
convex envelopes ofg andh can be determined. Figures 5 (a) and (b) illustrate the triangu-
lations T and T ′ producing the respective convex envelopes. In Figure 5 (a) the vertices
are labelled in such a way that v1 = (x1, x2, y), v2 = (x1, x2, y), v3 = (x1, x2, y),

v4 = (x1, x2, y), v5 = (x1, x2, y), v6 = (x1, x2, y), v7 = (x1, x2, y), v8 = (x1, x2, y).

Similarly, in Figure 5 (b) the vertices are labelled v1′ = (x1, x2, z), v2′ = (x1, x2, z),

v3′ = (x1, x2, z), v4′ = (x1, x2, z), v5′ = (x1, x2, z), v6′ = (x1, x2, z), v7′ = (x1, x2, z),

v8′ = (x1, x2, z). The cells of T and T ′ project onto the x-space in such a way as to form
triangulations of the x-space as illustrated in Figures 5 (a) and (b). As these projected
triangulations are the same, the conditions of Proposition 2 apply, hence the convex
envelope of f is the sum of the convex envelopes of g and h,

convenv(f,X × Y × Z) = convenv(g,X × Y )+ convenv(h,X × Z).

Again applying the algorithm of Section 3, the convex envelopes

convenv(x1x2y,X × Y ) and convenv(3x1x2 + 2x1y + 1x2y,X × Y )

can be determined. Triangulations defining both of these convex envelopes can be rep-
resented as the triangulation in Figure 5 (a). Using Proposition 2 we see that

convenv(g,X × Y ) = convenv(x1x2y,X × Y )

+convenv(3x1x2 + 2x1y + 1x2y,X × Y ).

Another application of the method in Section 3 shows that the triangulations defin-
ing both, convenv(x1x2z,X × Z) and convenv(3x1x2 + 1x1z + 2x2z,X × Z) may be
represented as the triangulation in Figure 5 (b), therefore,

convenv(h,X × Z) = convenv(x1x2z,X × Z)

+convenv(3x1x2 + 1x1z+ 2x2z,X × Z).

����
����

����
����

����
����
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

��

�
�

�
�

�
�

�
����

����

����
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

��
����

����
�

�
�

�
�

�
�

��

�
�

�
�

��

�
�

�
�

�
�

�
����

�
�

�
�

�
�

�

�
�

�
�

�
�

�
������

����

����
����

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�

����
����

����
����

����
����

����

y

x1

x2

1 2

3 4

5 6

7 8

(a) Triangulation T

����
����

����
����

����
����
�

�
�

�
�

�
�

�
�

�
�

��

����
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��
����

����

����
����

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

�
�

�
����

�
�

�
�

��

�
�

�
�

�
�

�
����

����

����
����

����
����

����
����

����

z

x1

x2

1′ 2′
3′ 4′

5′ 6′

7′ 8′

(b) Triangulation T ′
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Example 5. The convex envelope of the multilinear functionψ(x) = −α
ni=1xi , α > 0
over the unit hypercube can be shown to be (Crama, 1993)

convenv(ψ, [0, 1]n) = max
i

{−αxi}.

Observe that this convex envelope has n domains of linearity, each of which may be
described as the convex hull of a the union of a facet and a vertex of the unit hypercube,
conv({x : xi = 0} ∪ (1, 1, . . . , 1)). Now consider the multilinear function f (x) =
−∑m

i=1 αi
j∈Qixj where αi > 0 for all i ∈ {1, . . . , m}, and Qi ⊆ {1, . . . , n} is the
set of indices defining the monomial in the ith term of the function. The domains of
linearity of each of the terms are such that the terms in f may be partitioned arbitrarily
into functions g and h that satisfy the conditions of Proposition 2. By recursively repar-
titioning terms and applying Proposition 2, we may write the convex envelope of f as
the sum of the convex envelopes of the individual terms

convenv(f, [0, 1]n) =
m
∑

i=1

convenv(−αi
j∈Qixj ).

5. Conclusions

The facial structure of the convex envelopes of edge-concave functions was elucidated
through a connection between the minimal affine dependencies of the polytopal domain
vertices, triangulations of this domain and the facets of the convex envelope. An algo-
rithm for computing the facets of the convex envelope over hyperrectangles in R

3 was
described. Using these analysis techniques, we derived sufficient conditions under which
the convex envelope of a sum of edge-concave functions may be shown to be equiva-
lent to the sum of the convex envelopes of these functions. We suggest two promising
avenues for the extension of this work: applications to more general functional forms,
and the derivation of tight yet efficient convex underestimators over domains of larger
dimensionality.
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