Math. Program., Ser. A 103, 181-202 (2005)

Digital Object Identifier (DOI) 10.1007/s10107-004-0562-3

Satoru Iwata! - Satoko Moriguchi? - Kazuo Murota’
A capacity scaling algorithm for M-convex submodular flow *

Received: December 9, 2003 / Accepted: September 15, 2004
Published Online: December 29, 2004 — © Springer-Verlag 2004

Abstract. This paper presents a faster algorithm for the M-convex submodular flow problem, which is a gen-
eralization of the minimum-cost flow problem with an M-convex cost function for the flow-boundary, where
an M-convex function is a nonlinear nonseparable discrete convex function on integer points. The algorithm
extends the capacity scaling approach for the submodular flow problem by Fleischer, Iwata and McCormick
(2002) with the aid of a novel technique of changing the potential by solving maximum submodular flow
problems.

Key words. Discrete optimization — Discrete convex function — Submodular flow — Algorithm

1. Introduction

In recent research towards a unified framework of discrete convex analysis [26], the
concept of M-convex functions was proposed by Murota [23, 24] as an extension of that
of valuations on matroids invented by Dress and Wenzel [3]. The concept of L-convex
functions, which generalize the Lovasz extensions of submodular set functions [19], was
also proposed by Murota [24]. These two concepts of discrete convexity are conjugate
to each other, and a Fenchel-type duality theorem holds for M- and L-convex/concave
functions [23-25]. The Fenchel-type duality theorem, which is a fundamental result in
discrete convex analysis, is equivalent to the optimality characterization of the M-convex
submodular flow problem. In fact, the original proof in [25] of the Fenchel-type duality
theorem is based on a cycle-canceling algorithm that solves the M-convex submodu-
lar flow problem. In other words, an M-convex submodular flow algorithm naturally
provides a method for finding both optima in the min-max relation of the Fenchel-type
duality theorem.

S. Iwata: Graduate School of Information Science and Technology, University of Tokyo, Tokyo 113-8656,
Japan. e-mail: iwata@mist.i.u-tokyo.ac.jp

S. Moriguchi: CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan.

e-mail: Satoko Moriguchi@ipc.i.u-tokyo.ac.jp

K. Murota: Graduate School of Information Science and Technology, University of Tokyo, Tokyo 113-8656,
Japan; also PRESTO JST. e-mail: murota@mist.i.u-tokyo.ac.jp

Mathematics Subject Classification (1991): 90C27
* A preliminary version of this paper has appeared in Proceedings of the Tenth International Conference

on Integer Programming and Combinatorial Optimization (IPCO X), LNCS 3064, Springer-Verlag, 2004,
pp. 352-367.

182 S. Iwata et al.

The M-convex submodular flow problem is a minimum-cost flow problem with an
additional M-convex cost function for the flow-boundary. This is a common generaliza-
tion of the submodular flow problem of Edmonds and Giles [4] and the valuated matroid
intersection problem of Murota [21, 22]. Applications include an economic problem of
finding a competitive equilibrium of an economy with indivisible commodities [27]. In
this economic problem, consumers’ utility functions are assumed to have gross substi-
tutes property, which corresponds to M-concavity. The conjugacy between M-convexity
and L-convexity corresponds to the relationship between commodities and prices. The
dual problem to an M-convex submodular flow problem generalizes the convex cost
integer dual network flow problem [1], which arises in many applications such as the
isotonic regression, the image segmentation [12] and the convex cost closure set [13].

The running time bound of the cycle-canceling algorithm described in [25] is not
polynomial but pseudopolynomial. The first polynomial-time algorithm for the M-con-
vex submodular flow problem is the conjugate scaling algorithm of Iwata and Shigeno
[18]. This algorithm extends the cost-scaling primal-dual algorithm due to Cunning-
ham and Frank [2], which is the first polynomial-time combinatorial algorithm for the
submodular flow problem. The conjugate scaling algorithm, however, calls submodular
function minimization [16, 28] repeatedly, which results in its high cost running time.
In fact, the conjugate scaling algorithm using the current fastest submodular function
minimization algorithm [15] requires O(n8(log L)? log K) evaluations of the M-convex
cost function, where 7 is the number of vertices, L is the maximum absolute value of
the capacity, and K is the maximum absolute value of the cost.

On the other hand, the capacity scaling approach of Edmonds and Karp [5] does not
admit a straightforward generalization to the submodular flow problem. This is because
a naive scaling of a submodular function destroys the submodularity. The first capacity
scaling algorithm for the submodular flow problem was obtained by Iwata [14] with a
subsequent improvement in time complexity by Fleischer, Iwata and McCormick [6]
based on a technique developed in the cut canceling submodular flow algorithm of Iw-
ata, McCormick and Shigeno [17]. These algorithms make use of additional arcs, called
relaxation arcs, to retain submodularity under the scaling.

This paper aims at extending the capacity scaling approach to obtain an efficient
algorithm for the M-convex submodular flow problem. An earlier attempt in this direc-
tion by Moriguchi and Murota [20] led to a capacity-scaling successive-shortest-path
algorithm applicable only to a subclass of M-convex functions that are closed under
scaling. In this paper, we extend the relaxation arc technique by introducing a new pro-
cedure that updates the potential by solving a maximum submodular flow problem. The
resulting algorithm provides an optimal solution under the assumption that an oracle for
computing M-convex function values is available. The number of oracle calls is bounded
by O(n6(log L)? log(n K)). This is not only the fastest known algorithm but also the first
combinatorial polynomial-time algorithm that solves the M-convex submodular flow
problem without relying on submodular function minimization.

A natural further question that may arise is whether there exists a strongly polyno-
mial time algorithm for the M-convex submodular flow problem or not. However, this
is known to be impossible. It is shown in [11] that there exist no strongly polynomial
time algorithms to solve the resource allocation problem with a separable convex cost
function. Since this problem is a special case of the M-convex function minimization,

A capacity scaling algorithm for M-convex submodular flow 183

it follows that there exist no strongly polynomial time algorithms to solve M-convex
function minimization. Furthermore, the M-convex function minimization is a special
case of the M-convex submodular flow problem. Therefore, the M-convex submodular
flow problem does not admit strongly polynomial time algorithms.

The outline of this paper is as follows. Section 2 describes the M-/L-convex functions
and the M-convex submodular flow problem. The successive shortest path algorithm for
the M-convex submodular flow problem is described in Section 3. Section 4 presents
our capacity scaling algorithm and its time complexity analysis.

2. M-convex submodular flow problem
2.1. M-convex functions and base polyhedra

Let V be a finite set, and x, € {0, l}V denote the characteristic vector of v € V. The
characteristic vector of X C V is denoted by yx. For a vector x € 7" and an element
v € V, x(v) means the component of x with index v. For a vector x € ZV and a set
X €V, wewrite x(X) =), .y x(v). We write the positive and negative supports of a
vector x by

suppt(x) ={v e V | x(v) >0}, supp (x)={veV]|x@) <0}
For a function f : ZV — Z U {400}, we use the notation
dom f ={x € Z" | f(x) < 400}

for the effective domain of f.
A function f : ZV — Z U {400} is said to be M-convex if it satisfies

(M-EXC) Vx, y € dom f, Yu € supp’ (x — y), v € supp_ (x — y) such that
J@O+) = f&x = xu+x0) + O+ xu — Xxv)-
It follows from (M-EXC) that B = dom f satisfies the following property:
(B-EXC) Vx, y € B, Vu € suppt(x — y), Jv € supp™ (x — y) such that
X—Xu+txv€B, y+ xu—xv€B.

Note that (B-EXC) implies x(V) = y(V) for any x, y € B. A nonempty set B C yAS
with the property (B-EXC) is called an M-convex set.
A set function p : 2V — Z is said to be submodular if it satisfies

pX)+p¥) = p(XUY)+p(XNY) (X, Y CV).
With a submodular function p, we associate the base polyhedron B(p) defined by
B(p) = {x e RV [x(V) = p(V); ¥X SV : x(X) < p(X)).

An M-convex set is essentially the same as the set of integer points of the base polyhe-
dron. More precisely, a bounded set B € Z" is M-convex if and only if B = B(p) NZ"

184 S. Iwata et al.

for some submodular function p : 2V — Z. Accordingly, a member of an M-convex set
is referred to as a base.
For any base x € B and u, v € V with u # v, the integer defined by

ox,v,u) =max{a € Z | x — a(xy — xv) € B}

is called the exchange capacity. The exchangeability graph for a base x € B is a directed
graph with the vertex set V and the arc set £, = {(u, v) | o (x, v, u) > 0}.

Lemma 1 (no-short cut lemma, cf. [9, Lemma 4.5]). Suppose that B is an M-convex

set,x € Bandthatuy, vy, uz, v, ..., ug, vgaredistinct elements of V. If x — yu, + xv; €
Bfori =1,... kandx—xu,+xv; ¢ Bforanyi < j, theny =x—2f=1(xui—xv,.) €
B. |

The following local characterization of global minimality is fundamental. We denote
by argmin f the set of the global minimizers of f.

Theorem 1 ([23], cf. [26]). Let [: 7V — 7U {400} be an M-convex function and
Xy € dom f. Then x, € argmin f if and only if f(xys) < f(x« — xu + xv) for all
u,vev. a

For a function f and a vector p = (p(v) | v € V), we denote by f[— p] the function
defined by

fl=plx) = f(x) = (p,x) (xeZ"),

where (p, x) =)",y p(v)x(v). This is M-convex for M-convex f. The minimizers
of an M-convex function form an M-convex set. An immediate consequence of this and
the M-convexity of f[—p] is the following lemma, which is used in the design of our
algorithm in Section 4.

Lemma 2. Let f : ZV — Z U {+-00} be an M-convex function. Then arg min f[— p] is
an M-convex set for each p € Z." . |

For a function f : ZV — Z U {400}, the discrete Legendre-Fenchel transform is
defined by

g(p) =sup{(p,x) — f(x) [xeZ"}y (peZ’),

which is also called the conjugate of f. The conjugate function g : ZV — Z U {400} of
an M-convex function f is another kind of discrete convex function, called an L-convex
function, and its conjugate coincides with f.

For vectors p, g € Z", we write p\V g and p A p for their componentwise maximum
and minimum. A function g : Z¥ — Z U {+00} is called L-convex if it satisfies

(SBF) g(p) +8(q) = g(pV @) +g(p Ap) (p.qeZ"),
(TRF) 3r € Zsuchthat g(p+1) = g(p) +r (p e ZV),

wherel=(1,1,...,1) e ZV.
Global optimality for L-convex function minimization is characterized by local opti-
mality.

A capacity scaling algorithm for M-convex submodular flow 185

Theorem 2 ([26]).
For an L-convex function g and p € dom g, we have

gp)=glp+xx) (XCV),

< AL
gp)<glq) (qeZ’) < {g(p):g(p—l—l).

O

Our algorithm presented in Section 4 relies on the following property of an L-convex
function.

Lemma 3 ([26]). An L-convex function g : 7V — Z U {400} satisfies the discrete
midpoint convexity

2(p)+2(@) > g ([%D +g Q%J) (p.qeZ),

where [-] and | -] mean the rounding-up and -down of a vector to the nearest integer
vector. O

2.2. M-convex submodular flow problem

The submodular flow problem is a combinatorial optimization problem that has good
properties such as availability of optimality criteria in terms of potentials (dual variables)
and negative cycles, integrality of primal and dual optimal solutions, and solvability by
efficient algorithms. The submodular flow problem can be generalized to the M-convex
submodular flow problem which also retains the aforementioned good properties. In this
paper we consider integer-flow problems with integer costs.

Let G = (V, A) be adirected graph with vertex set V of cardinality n and arc set A of
cardinality m. Assume that G does not contain parallel arcs, and hence m < n2. Consider
lower and upper capacity bounds b, ¢ : A — Z and the cost function d : A — Z. For
each vertex v € V, let §tv (resp., 8~ v) denote the set of arcs leaving (resp., entering)
v. For each vertex subset X C V, let AT X (resp., A~ X) denote the set of arcs leaving
(resp., entering) X. For each arc a € A, 3%a designates the initial vertex of a, and 3~ a
the terminal vertex of a. The boundary 0& of flow £ : A — Z is defined by

EW) =) (@) |laestv}—) (@]aes v} (veV),

which represents the net flow leaving vertex v.
Suppose that B € Z" is an M-convex set. The submodular flow problem can be
formulated as follows.

Submodular flow problem SFP

Minimize _ d(a)(a) (1)
acA

subject to b(a) < &(a) < c(a) (a € A), 2)
d& € B, 3)

&(a)eZ (aeA). “)

186 S. Iwata et al.

A feasible flow for the submodular flow problem SFP means a function & : A — Z
that satisfies (2) and (3). The problem SFP is said to be feasible if it admits a feasible
flow.

Theorem 3 ([7], cf. [9, Theorem 5.1]). A submodular flow problem SFP for a bounded
M-convex set B is feasible if and only if

b(AYX) —c(ATX) < p(X) (X CV),
where p is the submodular set function that determines B by B = B(p) N ZV. |

The feasibility of an SFP can be checked efficiently [7, 10, 31], provided that an oracle
for exchange capacity is available.

The M-convex submodular flow problem is a generalization of the submodular flow
problem obtained by introducing a cost function for the flow boundary d¢ rather than
merely imposing the feasibility constraint 9§ € B. More precisely, with an M-convex
function f : ZV — Z U {400} we add a new term f(3&) to the objective function.

M-convex submodular flow problem MCSFP

Minimize) " d(a)£(a) + f(9%) (5)
acA

subject to b(a) < £(a) < c(a) (a € A), (6)
d& € dom f, 7
E()eZ (acA). 3

Note that the M-convex submodular flow problem with a {0, +oc}-valued f reduces to
the submodular flow problem SFP.

A feasible flow for the M-convex submodular flow problem MCSFP means a func-
tion £ : A — Z that satisfies (6) and (7). The problem MCSFP is called feasible if it
admits a feasible flow. Since dom f is an M-convex set, the feasibility of an MCSFP
is reduced to the feasibility of the corresponding SFP. The exchange capacity in dom f
can be computed efficiently by repeated applications of the function evaluation oracle.
Thus the feasibility of an MCSFP can be checked efficiently, provided that an initial
base x € dom f is available.

In the rest of this paper, we assume that the given MCSFP is feasible. This assumption
implies that

dom f C{xeZ" | x(V)=0}. 9)

For the sake of simplicity, we further assume that dom f is bounded, which implies the
existence of a submodular function p : 2V — Z such that dom f = B(p) N Z".

The following optimality condition is known for the M-convex submodular flow
problem MCSFP. By a potential we mean a vector p € Z" . The reduced cost d p A—>1Z
is defined by d),(a) = d(a) + p(@ta) — p(d~a) fora € A.

Theorem 4 (potential criterion, [25], cf. [26]). A feasible flow & is optimal if and only
if there exists a potential p € ZV and a base x € dom f such that

A capacity scaling algorithm for M-convex submodular flow 187

(A) dp(a) > 0= §(a) = b(a),
dp(a) < 0= §(a) = c(a),
(B) x € argmin f[—p],
(C) x = 0&. O

An alternative representation of argmin f[—p] in condition (B) above, which is M-
convex by Lemma 2, is obtained as follows. Let g be the conjugate of the M-convex
function f. Since dom f is bounded, g is finite-valued. Furthermore, (9) implies that
g(p+1) =g(p)forany p € Z".

Lemmad. Let g, : 2V — Z be the submodular set function defined by
gp(X) =g(p+xx) —g(p) (XS V).
Then, we have
argmin f[—p] =B(g,) NZ".

Proof. By the definition of the conjugate, we have f(x)+g(p) = (p, x) forany x € ZV
and any p € ZV.
It also implies that

x € argmin f[—-p] <= f(x)+g(p) = (p,x) < p € argming[—x].

On the other hand, it follows from the optimality criterion for L-convex functions (The-
orem 2) that

gp+xx) —g(p) = x(X) (X V),

peaemingl=xl =)1 1) - g =2,

Combining the above shows that arg min f[— p] coincides with the M-convex set
B(g,)NZ". O

3. Successive shortest path algorithm

This section describes the successive shortest path (SSP) algorithm for the M-convex
submodular flow problem MCSFP, presented by Moriguchi-Murota [20]. As with the
successive shortest path algorithm for minimum cost flows, this algorithm is not poly-
nomial, but only pseudopolynomial, since the number of iterations is linear in

L = max{max |b(a)|, max|c(a)], max [|x — Y|}
acA acA x,yedom f

In Section 4, we shall improve upon the SSP algorithm with the use of a capacity-scaling
technique to obtain a polynomial-time algorithm. We shall also use the SSP at the final
stage of our capacity-scaling algorithm.

The SSP algorithm is based on the optimality criterion in Theorem 4 which guaran-
tees the existence of a potential satisfying the three conditions, (A), (B), and (C). The
algorithm maintains a flow & : A — Z, abase x € dom f, and a potential p € Z" and

188 S. Iwata et al.

llx =050 O

(A)

d,(@) > 0= &) = b(a)
dp(@) < 0= £@) = c(a) (B)

x € argmin f[—p]

Fig. 1. Relationship among variables in the successive shortest path algorithm

works with an auxiliary graph G (€, x). For these variables, the algorithm always main-
tains the conditions (A) and (B). In general stages of the algorithm, the flow boundary
o0& differs from the base x, but their discrepancy is decreased so that the condition (C)
holds at the termination of the algorithm. See Figure 1, where the consistency among
the variables is illustrated.

The auxiliary graph G (&, x) is defined as follows. The vertex set is V and the arc set
consists of two disjoint parts, Ag and Ey, i.e., G(§,x) = (V, Ag U E,). The set A¢ is
given by Ag = Fz U Bg with

Fe={alaeA &@a)<ca)l
B: ={alae A, b(a) <&(a)} (a: reorientation of a),

whereas E is the arc set of the exchangeability graph for x € dom f,i.e.,
Ex = {(u,v) | x — Xu + xv € dom f}.

Note that A¢ represents arcs in the residual graph for a flow & employed in the ordinary
minimum cost flow problem. Furthermore, each arc a of the auxiliary graph has a length
[(a) defined by

d(a) (a € Fy),
l(a) = {—d@) (a € Bg,a e A),
Af(x;v,u) (a=(u,v) € Ey),

where
Af(xsv,u) = fx — xu + xo) — f(x).

Given a potential p € Z", we define the reduced length ! p + Ag UEy — Z with
respect to p as

Ip(@) =1(a)+ p(®@Ta) — p(d~a) (a € As UEy).

A capacity scaling algorithm for M-convex submodular flow 189

In terms of this reduced length, our conditions (A) and (B) can be put in a more compact
form:

l,(@)>0 (a€A;UE,). (10)

Indeed, it is easy to see that the condition (A) is equivalent to [, (a) > O forall a € A¢.
The condition (B) is equivalent to /,(a) > O for all a € E, since

x € argmin f[—p] <= Af(x;v,u)+pu)—p) =0 W@,veV)

by Theorem 1. Thus, the algorithm always maintains the nonnegativity of the reduced
length (10) in the auxiliary graph G (&, x).

The optimality of the flow constructed by the algorithm is guaranteed by the follow-
ing lemma, a reformulation of the sufficiency part of the optimality criterion given in
Theorem 4.

Lemma 5. Suppose that (10) is satisfied by a flow &, a base x, and a potential p. If
x = 0§, then § is optimal to MCSFP. |

The algorithm reduces the discrepancy between x and € by augmenting a unit flow
along apath fromavertexin St = {v € V | x(v) > 3&(v)}toavertexinS~ = {v e V |
x(v) < d&(v)}. Let P be a shortest path from ST to S~, with a minimum number of arcs,
with respect to the reduced length /,,. Since /), is nonnegative, such a shortest path can
be found by Dijkstra’s algorithm. If there exists no path from St # @ to S~ # @, then
the problem is infeasible. This is because, for the set X of the vertices unreachable from
ST, we have b(ATX) — c(A™X) = E(ATX) —E(A™X) = IE(X) > x(X) = p(X),
where p is the submodular set function that determines dom f by dom f = B(p)NZ" .
By Theorem 3, this implies that the problem is infeasible. Because of our feasibility
assumption, we may assert that there exists a path from ST to S~ unless they are empty.

The flow augmentation along P means the operation that updates (€, x) as follows.

o Ifa e Fz NP, thené(a) :=§&() + 1.
o Ifae B:NP,thené(a) :=&(@) — 1.
e Ifaec E,NP,thenx(3Ta) :=x(0Ta)—1,x(0"a) :=x(@ a) + 1.

This flow augmentation decreases the discrepancy || x — d&||1. Obviously, & remains to
satisfy (6). Also x remains to be a base, i.e., a member of dom f, because of the no-short
cut lemma (Lemma 1); see [20] for details. Let g(v) denote the shortest path distance
from ST to each v € V. To restore the condition (10), we also modify the potential

p(v) := p(v) + min{g(v), Y "[,(@)} (e V).

acP

Given an initial triple of a base x, aflow £ : A — Z and apotential p € Z" satisfying
the capacity constraint (6) and the nonnegativity (10) of /,(a) for alla € A U Ey, the
algorithm SSP, described in Figure 2, repeats the flow augmentation until ST becomes
empty. Then S is also empty, and the condition (C) holds, which means £ is optimal
to MCSFP by Theorem 4.

‘We now analyze the running time of algorithm SSP assuming that the value of f can
be evaluated within time F. The total number of the flow augmentation is bounded by

190 S. Iwata et al.

Algorithm: SSP(x, &, p)
Input: b, ¢, d, f for MCSFP and x, &, p satisfying (6) and (10).
Output: An optimal flow & for MCSFP.
begin
while St £ ¢ do
begin
compute the shortest path distance ¢ (v) from St toeachv € V \ ST
in G(&, x) with respect to the reduced length /,,;
let P be the one with the minimum number of arcs among the
shortest paths from S* to S~;
for v e V.do p(v) := p(v) + min{g(v), Y_,cp Ip(a)};
fora € Fs NP doé&(a) :=&(a)+ 1;
fora e BN Pdoé&(a):=&@) —1;
fora e E,NPdox(3ta) :=x(0%ta)—1,x(0"a) :=x(0@"a)+1
end;
return &
end

Fig. 2. Successive shortest path algorithm

[|0& —x||1 for the initial £ and x, which, in turn, is bounded by O(n2L). The construction
of G (&, x) takes O(F - n?) time since the length of an arc of E, can be computed with an
evaluation of f. The Dijkstra method takes O(n?) time. Thus the total time complexity
of algorithm SSP is O(F - n*L).

4. A capacity scaling algorithm
4.1. Algorithm outline

In this section, we present a capacity scaling algorithm for the M-convex submodular
flow problem as an improvement of the SSP algorithm. The running time bound of the
new algorithm is polynomial in n, log L, and log K ,where

yedo

K = max{max |d(a)|, max |f(x)— f(I}.
acA X, m f

Note that K and L are used as measures of the problem size. We do not need to evaluate
their values in our algorithm.

The algorithm performs a number of scaling phases for different values of a scaling
parameter « that represents a scale for the arc capacity and dom f. A scaling phase with
a specific value of « is called the a-scaling phase. The scaling parameter « is initially set
to a sufficiently large number and reduced by a factor of two in each scaling phase. At the
end of the «-scaling phase, the algorithm obtains a flow and a potential that satisfy the
optimality criterion in Theorem 4 only approximately, with precision «, so to speak. We
refer to this condition as a-optimality, of which we give the precise definition later. At
the final stage, after the execution of the 1-scaling phase, the algorithm calls algorithm
SSP to end up with an optimal flow.

Just as the SSP algorithm, the capacity scaling algorithm maintainsaflow & : A — Z,
avectorx € Z" and apotential p € Z" and works with an auxiliary graph. The capacity
constraint (6) for the flow £ is always retained. The flow boundary ¢ may differ from the

A capacity scaling algorithm for M-convex submodular flow 191

llx — 0811 < 2an? ’7

y=x+0y

(Ala])
dy(a) >0=&(a) <bla) +ua
dy(a) <0=£&() >cla) —a (B[Ol])

y € argmin f[—p]

Fig. 3. Relationship among variables in a scaling phase

vector x, but their discrepancy is controlled by the scaling parameter « so that || x — 0& ||
becomes sufficiently small, i.e., at most 2an?, at the end of the a-scaling phase.

To incorporate the scaling approach into the SSP framework, our algorithm adds a
complete directed graph on V with arc set D = {(u, v) | u # v € V} to the given graph
(V, A), and considers a flow ¥ : D — Z on it. The added arcs are called the relaxation
arcs and the flow ¢ is called the relaxation flow. The relaxation arcs have capacity o, so
that

0<v¥(@=<a (acD). (11)

Accordingly, the capacity functions b and c are extended to D as b(a) = 0and c(a) = «
for all a € D. The algorithm always retains this capacity constraints for {. We impose
that, for any distinct u, v € V, at least one of ¥ (u, v) and v (v, u) should be zero. Thus
the algorithm maintains a pair of flows £ on A and ¢ on D. In accordance with the
introduction of the relaxation flow v, the algorithm uses another vector y to represent
x + 0, i.e., it always keeps the relationship

y=x+ 0. (12)

In the algorithm, we always keep y as a base in dom f.
We now define a-optimality, which is a relaxation of the optimality criterion in
Theorem 4. A triple (&, x,) is said to be «-optimal if it satisfies

(Ala]) dp(a) > 0 = b(a) < &(a) < b(a) +a,
dy(a) < 0= c(a) = &(a) > c(a) —a,

(Bla]) y =x + 0y € argmin f[—p],

(Cla]) llx — 081 < 2an’.

Each scaling phase of our algorithm aims at finding an «-optimal (€, x,). Once the
algorithm obtains an «-optimal (&, x, ¥), it cuts the value of « in half and goes to the
next phase. The relationship among the variables in each «-scaling phase is summarized
in Figure 3.

192 S. Iwata et al.

The auxiliary graph is defined with reference to a pair of flows, £ and v, and a
base y (not x), as follows. The vertex set is V and the arc set consists of three disjoint
parts, Ag, Ey, and Dy ie., G, y, ¥) = (V, As U Ey U Dy). The set Ag is given by
Ag = F: UB; with

Fr={alacA &) <cla)}
B: ={a|ae€ A, b(a) <&(a)} (a: reorientation of a),

whereas Dy, is given by
Dy ={alacD ¥y <a),

and E is the arc set of the exchangeability graph for y € dom f.
On the arc set Ag U Dy, we define a function r : Ag U Dy — Z, representing
residual capacities, as

c(a) —&(a) (a € Fe),
r(a) =y§(@) —b@) (ac B acA),
o —Y(a) (a € Dy).
The arc sets Fg, Bg, A¢ and Dy that consist of arcs with residual capacities at least o
are denoted by F:(«), B (), Ag (o) and Dy (), Tespectively, i.e.,
Fe(a) ={a|a € Fg,r(a) = o},
Bg(a) ={a|a € Bg,r(a) = a},
Ag(a) ={a|a € Ag,r(a) =z a}f = Fz (o) U Bg (o),
Dy () ={a | a € Dy, y(a) =0}.

Furthermore, on the arc set A¢ U E,, we define a function [: Af U Ey, — Z,
representing arc lengths, as

d(a) (a € Fg),
l(a) = { —d(a) (a € Bg,a € A),
Af(y;v,u) (a=(u,v) € Ey).

Given a potential p € ZV, we define the reduced length [p + Ag UE, — Z with respect
to p as

Ip(a) =1(a) + p(dta) — p(d~a) (a € A¢ UE,).

In terms of this reduced length, our conditions (A[«]) and (B[«]) can be put in a more
compact form:

I,(@) >0 (a€As(a) UE,)). (13)

The algorithm always maintains this nonnegativity of the reduced length for the arcs in
Ag(a) UE,.

A capacity scaling algorithm for M-convex submodular flow 193

We now intend to reduce the discrepancy between x and 90& by augmenting o units
of flow along a path P from

ST@) ={veV|x@ -0 > a
to
S () ={veV|x(v)—09§v) < —a},

while maintaining (A[«]) and (B[«]). Such a path that allows «-units of flow augmen-
tation should consist of arcs in Ag(a) U Dy (). In order to satisfy (A[a]) after the
augmentation, we further impose that /,(a) = 0 on arcs a € Ag(a) N P. That is, the
path P consists of arcs in A* U D*, where A* = F* U B* with

F*={alae Fe(a), l,(a) =0}, B*={a|ace B:(a), [,(a) =0},

and D* = Dy («). We call such a path an «-augmenting path. In Section 4.2, we describe
a path search procedure that finds an «-augmenting path by possibly changing v, y and
p while maintaining (B[«]).

We augment the flow along an «-augmenting path P. The flow augmentation along
P means that we update &£(a) and ¥ (a) for each arc a € P as follows.

o Ifa € F*, then &£(a) := &(a) + a.
o Ifa € B* then&(a) :=&@) — a.
e Ifa € D* then ¥ (a) :=a — ¥ (a), ¥ (a) :=0.

We then compute x = y — 9. This flow augmentation decreases the discrepancy
between y and 0§ + 91 at both endpoints of the path P. The discrepancy is unchanged
at the other vertices. Since x — 0§ = y — (0§ + 9v), the discrepancy ||x — 0&||; is
reduced by 2. The flow augmentation does not violate (B[«]) as y and p are unchanged.
The condition (A[«]) is also preserved since I, (a) = 0 for arcs a € Ag () N P and an
arc with residual capacity newly at least « is the reverse arc of an arca € P.

The algorithm repeats the path search and flow augmentation until we obtain an
«-optimal (£, x,). Then we go to the next scaling phase by cutting the value of « in
half.

At the start of a new «-scaling phase, we modify ¢ as

¥ (a) := min{y(a), @} (a € D)

to satisfy the capacity constraints (11) for the new value of «, and modify x to y — vy to
maintain (12). We also modify & as follows to resolve the possible violation of (A[a]).

o Ifa € Fe(a) and [,(a) < 0, then §(a) :=&(a) +a.
o Ifa € Bs(a) and [, (a) < 0, then £(a) :=&(a) — a.

The algorithm also updates the auxiliary graph G (&, y, ¥) after this adjustment.

As an initial flow, we adopt any & that satisfies (6) and (A) in Theorem 4 for p = 0.
We also adopt any x € arg min f as an initial base. For these & and x, the initial value of
is set to be 211°¢ M1 where M = ||x — 8|00/ n. Since we assume MCSFP is feasible, we
have a feasible flow £°, which satisfies ||x —0£°||coc < L and ||06° —0&||co < 2(n—1)L.
This implies M = ||x — 0&||co/n < 2L. We initialize p = 0,¢¥ = 0and y = x.

The algorithm CAPACITY_SCALING is described in Figure 4.

194 S. Iwata et al.

Algorithm: CAPACITY_SCALING
Input: b, ¢, d, f for MCSFP.
Output: An optimal flow & for MCSFP.

begin
set p :=0;
find & which satisfies (A) and (6);
find x € argmin f;
sety :==0and y := x;
set M := ||x — 8&||oo/n and o := 21108 M],
while « > 1 do
begin
for a € D do ¥ (a) := min{y(a), a};
x =y —0y;
fora € F:(a) doifl,(a) < Othené&(a) :=£(a) +a;
fora € B: (o) doif [, (a) < O then&(a) :=£&(a) — a;
while ||x — 9£||; > 2an® do
begin
P := PATH_SEARCH(, y, ¥, p, @);
[This updates v, y, p.]
[P : path from ST () to S~ () on (V, A* U D*).]
fora e F*FNPdoé&(a) :=&(a) +a;
fora €e BN Pdoé&(@a) :=&(@) —a;
fora e D*NPdoy(a) :=a—y@), @) :=0;
x:=y—0y
end;
o =a/2
end;
& :=SSP(y,§, p);
return &
end

Fig. 4. Capacity scaling algorithm

4.2. Path search

In each phase of CAPACITY_SCALING, we find an o-augmenting path by calling procedure
PATH_SEARCH of Figure 5 repeatedly.

At the start of procedure PATH_SEARCH, we call procedure POTENTIAL_UPDATE to
find a potential p which satisfies

lp(u) —p)| = -DK (u,veV) (14)

in addition to (A[«]) and (B[«]) for the current £ and y. Let G (€, ¥) be a graph with the
vertex set V and the arc set A¢ (@) U Ey,i.e., Go(§,y) = (V, Ag(a) U Ey). At the start
of procedure POTENTIAL_UPDATE, we identify the strongly connected components of
G (&, y) and its source components, i.e., components without entering arcs. We choose
a vertex vc from each source component C. Let S be the collection of v¢ for all source
components. We compute the shortest path distance g(v) from S to each v € V in
Gy (&, y) with respect to the arc length /. We adopt this g as the new potential p. We
summarize the procedure POTENTIAL_UPDATE in Figure 6.

Procedure PATH_SEARCH is a variant of the ordinary graph search on the graph
(V, A* U D*). Let R denote the set of the vertices reached from S («) at a certain point

A capacity scaling algorithm for M-convex submodular flow 195

Procedure: PATH_SEARCH(E, y, ¥, p, o)
Output: An a-augmenting path P from S*(a) to S™(a).
begin
p := POTENTIAL_UPDATE(&, y,);
0:=S5"(a),R:=5"(), T :=0;
while RN S™ (o) =V do
begin
if O # ¢ then
begin
choose u € Q;
if there exists v € V \ R with a = (u, v) € A* U D* then
R:=RU{},Q:=QU{v}, T :=TU{a}
else QO := 0\ {u}
end
else
begin
(, ¢) := CUT_CANCEL(¢, y, ¥, p, a);
forve V\RdopQ):=p)+m;
forv e Vdoy®w):=yw) —dp);
fora € D do ¥ (a) := ¥ (a) — ¢(a);
Q:=R
end
end;
return a path P from S™ () to S~ () using vertices in R and arcs in T
end

Fig. 5. Procedure PATH_SEARCH

Procedure: POTENTIAL_UPDATE(E, y, o)
Output: A potential p which satisfies (A[«]), (B[«]), and (14).

begin
perform the strongly connected component decomposition of G4 (&, y);
identify the source components;
choose a vertex vc from each source component C;
let S be the collection of v¢ for all source components;
compute the shortest path distance ¢ (v) from S to each v € V in G, (§, y)
with respect to the arc length /;
return g
end

Fig. 6. Procedure POTENTIAL_UPDATE

in the search, and put W = V \ R. If there exists an arc in A* U D* from R to W, pro-
cedure PATH_SEARCH extends the search tree in the usual manner. Otherwise, in order
to create a new arc that can be used to extend the search tree while maintaining both
conditions (A[a]) and (B[«]), it modifies p, yand ¥ to p’ = p + 7w xw, Y =y — d¢,
and ' = ¢ — ¢ with a nonnegative integer 7 and an integer-flow ¢ on

D={wu.v)| w,v)eD,ucRk veW)

determined by procedure CUT_CANCEL. During an execution of CUT_CANCEL and after
the above modifications of p, y and ¥, we keep y — 91 unchanged.

We now discuss how to determine such an appropriate pair of 7 and ¢ that yields a
new arc in A* U D*. We impose the condition 0 < ¢(a) < ¥ (a) fora € D to maintain

196 S. Iwata et al.

(11) for v’. We also impose y — d¢ € argmin f[—p — 7 xw] to maintain (B[«]) for
(', p'). For the remaining condition (A[«]), we impose a further condition 7 < I, (a)
for each arc a in

As(@) =1{a|a e As(a), 3 a € R,3"a € W},

To sum up, procedure CUT_CANCEL aims at finding (7, ¢) such that

0<m<lya) (a€As(a)), (15)
0<g¢@<¥@ (aeD), (16)
y — d¢ € argmin f[—p — 7w xw], (17)

and that Dy (o) U{a | a € Ag(a), 1, (a) = 0} contains an arc from R to W.
It turns out that such (77, ¢) exists and can be determined with th_@ aid of the following
maximum submodular flow problem on a bipartite graph (R, W; D).

Maximum submodular flow problem MaxSFP(rr)

Maximize Z p(a) (18)
aeh

subject to 0 < ¢(a) < ¥(a) (a € D), (19)
y — d¢ € argmin f[—p — 7 xwl, (20)
¢(@) €Z (a € D). 1)

It should be clear that ¢ : D — Z is the variable to be optimized and 7 is a parameter

that specifies the problem. Recall that f[—p — 7 xw] is an M-convex function for the

given p € ZV and w € Z. Since argmin f[—p — 7 xw] is an M-convex set by Lemma

2, this problem is a maximum integral submodular flow problem. For the maximum

submogiular flow problem, a number of efficient algorithms are available [7, 8, 10, 31].
If Ag(r) is nonempty, procedure CUT_CANCEL computes

7 =min{l,(a) | a € A¢(@)}. (22)

If MaxSFP(77) is feasible, then it returns 7 and an optimal flow ¢ of MaxSFP(rr). Con-
sequently, /,(a) = 0 holds for the arc a € Ag(«) that attains the minimum on the
right-hand side of (22). _

If MaxSFP(7) is infeasible or Ag () is empty, procedure CUT_CANCEL looks for
* such that MaxSFP(x*) is feasible and MaxSFP(sr* + 1) is infeasible. If Ag () is
nonempty and MaxSFP(77) is infeasible, such 7 * exists between 0 and 7 because Max-
SFP(0) is feasible. We adopt 7° = 0 and 7® = 7 as lower and upper bounds on 7 *.
If Ag () is empty, then we check the feasibility of MaxSFP(rr) form =1,2,4,8, ...,
until we reach infeasible MaxSFP(rr). The last = serves as an upper bound 7°® and the
previous 7 as a lower bound 7° on 7 *. It will be shown later in Lemma 8 that 7z ® is at
most 2nK.

We then find * by the following ordinary bisection procedure starting with lower
and upper bounds 7° and 7 ®. At every iteration, check the feasibility of MaxSFP(rr)

A capacity scaling algorithm for M-convex submodular flow 197

Procedure: CUT_-CANCEL(E, y, ¥, p, @)
Output: A pair of 7 and ¢ that satisfy (15)—(17).

begin _
if Az (o) # ¥ then
begin .
7 :=min{l,(a) | a € Ag(@)};
if MaxSFP(77) is feasible then
begin
¢ := optimal flow for MaxSFP(7);
return (7, ¢)
end

else 7° :=0,7°

=7
end
else
begin
° =0
T=1;
while MaxSFP(r) is feasible do
begin
n° =,
T =21
end;
=7
end;
repeat
7= (7" +7°%)/21;
if MaxSFP(7r) is infeasible then 7°® := 7
else 7° ==
until 7°* = 7° + 1;
T = 7°
@* := optimal flow for MaxSFP(rr*);
return (7%, ¢*)

end

Fig. 7. Procedure CUT_CANCEL

form = [(7° 4+ w*)/2]. If it is infeasible, then reset 7°® to [(7° 4+ 7*)/2]. Otherwise,
reset w° to [(w° 4+ m®)/2]. Repeat this process until 7®* = 7° + 1. Then 7 ° gives the
desired value of *. We return 7* and an optimal flow ¢* of MaxSFP(r*). It will be
shown later in Lemma 7 that we have D N Dy () # ¥ for ' = ¢ — ¢*.

We summarize the procedure CUT_CANCEL in Figure 7.

As aresult of CUT_CANCEL, an arc is added to the search tree and the set R becomes
larger. This implies the following lemma.

Lemma 6. In one execution of PATH_SEARCH, procedure CUT_CANCEL is called at most
n — 1 times. O

For the justification of PATH_SEARCH, it now remains to show that DN Dy (o) # 0
for ' = ¢ — ¢* and that 7® < 2nK.

Lemma 7. Suppose that ¢* is optimal to M_gleFP(n*) and that MaxSFP(z* + 1)
is infeasible. Then there exists an arc a € D such that ¢*(a) = ¥ (a), and hence

DN Dyi() # B for ' = — ¢*.

198 S. Iwata et al.

Proof. It suffices to show that, if ¢ is an optimal flow of MaxSFP(r) and ¢ (a) < ¥ (a)
for every arc a € D, then ¢ is also feasible for MaxSFP(x + 1). Define

o (X)=g(p+mxw+ xx)—8(p+mxw),

which is the submodular function associated with the M-convex set argmin f[—p —
7 xw]; see Lemma 4. For z = y — d¢p € argmin f[—p — 7 xw], we have

2(X) = y(X) — 9¢(X) = pz(X) (X S V). (23)
Moreover, this inequality is tight for X = W, i.e,,
z(W) = pr (W), (24)

which is shown as follows. Let ¥ be the maximal tight subset of W, where a tight set
means a subset X for which the inequality (23) holds with equality. Suppose that there
exists v € W\ Y, and let U be the minimal tight subset of V containing v. Since Y UU
is also tight, the maximality of Y implies that there exists u € U \ W. For a = (u, v)
we can increase the value of ¢(a) without violating the constraint ¢(a) < ¥ (a). This
does not violate (23) either, since there exists no tight X with u ¢ X and v € X. This
contradicts the optimality of ¢.
Forany X C V,

2(X) =z(XUW)+z(XNW)—z(W)
< P (X UW) + pr (XN W) — pr (W)
=g(p+mxw + xxuw) +&(p + 7 xw + xxnw)
—8(p+mxw) —g(p+ (@ + Dxw)
=glp+ @+ Dxw+ xx) — &+ (@ + Dxw)
= pr+1(X),
where the first inequality is by (23) and (24) and the second is by the discrete midpoint

convexity in Lemma 3. This means y —d¢ € argmin f[—p — (;r + 1) xw], which shows
that ¢ is a feasible flow of MaxSFP(wr + 1). O

We now show an explicit upper bound on 7°.
Lemma 8. The upper bound m*® used in CUT_CANCEL satisfies m® < 2nK.
Proof. This is immediate from Lemmas 9 and 10 below. O

Lemma 9. At the beginning of procedure CUT_CANCEL, p(u) — p(v) < (n— 1)K holds
foranyu € R and v € W, and hence we have m < nK.

Proof. At the beginning of procedure PATH_SEARCH, p is modified by procedure
POTENTIAL_UPDATE to satisfy (14). We prove that p(u) — p(v) does notexceed (n — 1)K
for any u € R and any v € W during an execution of procedure PATH_SEARCH. Let
Di, Wi, yr,.*, R; and W; denote p, 7, 7*, R and W at the beginning of the i-th call of
CUT_CANCEL in one execution of PATH_SEARCH. For any # € R; and v € W;, we check
how much p(u) — p(v) has changed by the (i — 1)-th call of CUT_CANCEL.

A capacity scaling algorithm for M-convex submodular flow 199

Incaseof u € R;_1,sincev e W; € W;_; and 77,'*—1 > 0, we have

pi(u) — pi(v) = pi—1(w) — (pi—1(v) + ;) < pi—1(w) — pi—1(v).

In the other case, we must have u € W;_;. Since the (i — 1)-th call of CUT_CANCEL
increases both p(u#) and p(v) by nl.*fl , we have

pi(u) — pi(v) = pi—1(u) — pi—1(v).

Thus, in either case, p(u) — p(v) does not increase. Therefore, we have p(u) — p(v) <
(n — 1)K. This implies 7; < K + (n — 1)K = nK for any i. O

Lemma 10. In procedure CUT_CANCEL, if gg () is empty, then MaxSFP(m) is infeasi-
ble form > nkK.

Proof. Suppose to the contrary that MaxSFP(sr) has a feasible flow ¢.

We first claim that there exists no arc from R to W in E, for z = y — d¢. For any
pairof u € Rand v € W, define 7/ = z — x, + xv. Since z € argmin f[—p — 7 xw]
and p(u) — p(v) < (n — 1)K, we have

f@) = f@ = fl-p —mxwl@) — fl—=p —nxwlz) + 7 + p(v) — p(u)
>nK—-mn-1)K =K,

which implies z’ ¢ dom f by the definition of K, and hence (u, v) ¢ E;.
Let p : 2 — Z be the submodular function associated with the M-convex set
dom f. Since there exists no arc in E, from R to W, we have

2Z(W) = p(W) = b(ATW) — c(A™W), (25)

where the inequality follows from Theorem 3. Since there exists no arc in A¢ («) from
R to W, we also have

cla)— &) <a (ae A™W), (26)
£(a) —bla) <a (a € ATW). 27

Combining (25), (26), and (27), we obtain
0E(W) —z(W) < a(IATW|+[ATW]) < an(n —1). (28)
Since p(a) < ¥ (a) fora € D and Y(a) = 0fora € D from W to R, we have
Iy (W) < dp(W). (29)
Furthermore, it follows from R N S~ («) = ¥ and W N ST () = & that

x(v) — &) > —a (v € R), 30)
x(v) — (W) <a(veW). a3

200 S. Iwata et al.

For S ={v e V | x(v) < 0&(v)}, we have

e — &l = =2 " (x(v) — 9&(v))

ves
= —2(Z (x(v) — 35 (v)) + Z (x(v) — Bé(v))>
veERNS veWns

< 2(x|R| + a|W|+ d&5(W) — x(W))
=2(x|R| + a|W| 4+ 3E(W) — z(W) — dp(W) + 0y (W))
<2(an+an(n — 1))

= 2om2,

where the first inequality is due to (30) and (31) and the second is to (28) and (29). This
contradicts the fact that PATH_SEARCH is called only when [x — 3&|; > 2an?. O

4.3. Time complexity

We now discuss the running time of our capacity scaling algorithm. The following lemma
gives a bound on the number of augmentations in any «-scaling phase.

Lemma 11. The number of augmentations in any a-scaling phase is O(n?).

Proof. When an a-scaling phase ends, we have ||x — 3&||; < 2an’. Then we reduce «
by a factor of two and start a new «-scaling phase. At the start of a new «-scaling phase,
we modify ¢ to satisfy the capacity constraints (11) for the new value of «, and modify
X to maintain (12). We also modify & to resolve the possible violation of (A[«]) for arcs
a with residual capacity « < r(a) < 2«. After these modifications, we have

lx — 0|1 < 4an® + 2an® 4+ 2am < 8an>.

Since each augmentation reduces the discrepancy by 2, the total number of augmenta-
tions in any a-scaling phase is at most 4n*> = O(n?). O

Since the algorithm calls PATH_SEARCH before each augmentation, Lemma 11
implies the same O(n?) bound on the number of calls of PATH_SEARCH in each scaling
phase. We now provide the running time bound of PATH_SEARCH. Recall that F' denotes
the time for evaluating f.

Lemma 12. Procedure PATH_SEARCH runs in O(F - n* log Llog(nK)) time.

Proof. At the start of procedure PATH_SEARCH, shortest path distances can be computed
in O(n?) time by the Ford-Bellman algorithm.

By Lemma 6, procedure PATH_SEARCH calls CUT_-CANCEL at most n — 1 times. In
each execution of CUT_CANCEL, we need O(log(n K)) iterations for the bisection proce-
dure since 7* < 2nK by Lemma 8. Each feasibility check in procedure CUT_CANCEL
requires to solve MaxSFP(rr), which takes O(n3h) time by the algorithm of Fujishige
and Zhang [10], where & denotes the time to compute an exchange capacity. In our

A capacity scaling algorithm for M-convex submodular flow 201

framework of using a function evaluation oracle for the M-convex function, we have h =
O(F -log L) by the binary search method. After the execution of procedure CUT_CANCEL,
the exchange capacity oracle is also called O(n?) time. Thus, procedure CUT_CANCEL
runs in O(F - n? log L log(nK)) time. O

At the start of algorithm CAPACITY_SCALING we can find a minimizer of an
M-convex function in O(F - n3 log L) time [29, 30]. Since we initially set o = 2L10¢M]
with M < 2L, after O(log L) scaling phases, we have « = 1. By Lemmas 11 and 12,
each scaling phase runs in O(F - n®log L log(nK)) time. Thus, the algorithm performs
O(log L) scaling phases in O(F - n6(log L)? log(nK)) time.

At the end of the 1-scaling phase, we have ||y — 9|1 < |lx — 3&|l1 + [|[9¢ |1 <
2n2—|—n(n —1) < 3n2. We then call SSP(&, y, p), which performs at most 3n2/2 augmen-
tations to obtain an optimal flow & of MCSFP. Since each construction of the auxiliary
graph can be done by O(n?) evaluations of f, the running time of this postprocess is
O(F -n*), which is dominated by the above O(F - nﬁ(log L)? log(nK)) bound. Thus we
obtain the following theorem.

Theorem 5. Algorithm CAPACITY_SCALING solves the M-convex submodular flow prob-
lem MCSFP in O(F - n6(log L)? log(nK)) time. O

Acknowledgements. The authors are grateful to Akihisa Tamura for helpful comments on the manuscript.
This work is supported by the 21st Century COE Program on Information Science and Technology Strategic
Core, a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and
Technology of Japan, and the Kayamori Foundation of Informational Science Advancement.

References

1. Ahuja, R.K., Hochbaum, D.S., Orlin, J.B.: Solving the convex cost integer dual network flow problem.
Manage. Sci. 49, 950-964 (2003)
2. Cunningham, W.H., Frank, A.: A primal-dual algorithm for submodular flows. Math. Oper. Res. 10,
251-262 (1985)
3. Dress, A.W.M., Wenzel, W.: Valuated matroids. Adv. Math. 93, 214-250 (1992)
4. Edmonds, J., Giles, R.: A min-max relation for submodular functions on graphs. Ann. Discrete Math. 1,
185-204 (1977)
5. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems.
J.ACM 19, 248-264 (1972)
6. Fleischer, L., Iwata, S., McCormick, S.T.: A faster capacity scaling algorithm for minimum cost submod-
ular flow. Math. Program. Ser. A 92, 119-139 (2002)
7. Frank, A.: Finding feasible vectors of Edmonds-Giles polyhedra. J. Comb. Theory, Ser. B 36, 221-239
(1984)
8. Fujishige, S.: Algorithms for solving the independent flow-problems. J. Oper. Res. Soc. Japan 21, 189-204
(1978)
9. Fujishige, S.: Submodular Functions and Optimization. North-Holland, Amsterdam 1991
10. Fujishige, S., Zhang, X.: New algorithms for the intersection problem of submodular systems. Japan
J. Indust. Appl. Math. 9, 369-382 (1992)
11. Hochbaum, D.S.: Lower and upper bounds for the allocation problem and other nonlinear optimization
problems. Math. Oper. Res. 19, 390-409 (1994)
12. Hochbaum, D.S.: An efficient algorithm for image segmentation, Markov random fields and related prob-
lems. J. ACM 48, 686-701 (2001)
13. Hochbaum, D.S., Queyranne, M.: Minimizing a convex cost closure set. SIAM J. Discrete Math. 16,
192-207 (2003)
14. Iwata, S.: A capacity scaling algorithm for convex cost submodular flows. Math. Program. 76, 299-308
(1997)

202 S. Iwata et al.: A capacity scaling algorithm for M-convex submodular flow

15. Iwata, S.: A faster scaling algorithm for minimizing submodular functions. SIAM J. Comput. 32, 833-840
(2003)

16. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for minimizing
submodular functions. J. ACM 48, 761-777 (2001)

17. Iwata, S., McCormick, S.T., Shigeno, M.: A strongly polynomial cut canceling algorithm for the submod-
ular flow problem. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds), Integer Programming and
Combinatorial Optimization. Lecture Notes in Computer Science, 1610, pp. 259-272 Springer-Verlag
1999

18. Iwata, S., Shigeno, M.: Conjugate scaling algorithm for Fenchel-type duality in discrete convex optimi-
zation. STAM J. Optim. 13, 204-211 (2003)

19. Lovasz, L.: Submodular functions and convexity. In: Bachem, A., Grotschel, M., Korte, B. (eds), Math-
ematical Programming — The State of the Art, pp. 235-257 Springer-Verlag 1983

20. Moriguchi, S., Murota, K.: Capacity scaling algorithm for scalable M-convex submodular flow problems.
Optim. Methods Softw. 18, 207-218 (2003)

21. Murota, K.: Valuated matroid intersection, I: optimality criteria. SIAM J. Discrete Math. 9, 545-561
(1996)

22. Murota, K.: Valuated matroid intersection, II: algorithms. SIAM J. Discrete Math. 9, 562-576 (1996)

23. Murota, K.: Convexity and Steinitz’s exchange property. Adv. Math. 124, 272-311 (1996)

24. Murota, K.: Discrete convex analysis. Math. Program. 83, 313-371 (1998)

25. Murota, K.: Submodular flow problem with a nonseparable cost function. Combinatorica 19, 87-109
(1999)

26. Murota, K.: Discrete Convex Analysis. SIAM, Philadelphia 2003

27. Murota, K., Tamura, A.: Application of M-convex submodular flow problem to mathematical economics.
Japan J. Indust. Appl. Math. 20, 257-277 (2003)

28. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time.
J. Comb. Theory, Ser. B 80, 346-355 (2000)

29. Shioura, A.: Fast scaling algorithms for M-convex function minimization with application to resource
allocation problem. Discrete Appl. Math. 134, 303-316 (2003)

30. Tamura, A.: Coordinatewise domain scaling algorithm for M-convex function minimization. Math. Pro-
gram., to appear

31. Tardos, E., Tovey, C.A., Trick, M.A.: Layered augmenting path algorithms. Math. Oper. Res. 11, 362-370
(1986)

