
Digital Object Identifier (DOI) 10.1007/s10107-004-0551-6

Math. Program., Ser. A 103, 515–539 (2005)

Tamás Kis

A branch-and-cut algorithm for scheduling of projects
with variable-intensity activities

Received: October 17, 2002 / Accepted: July 15, 2004
Published online: February 9, 2005 – © Springer-Verlag 2005

Abstract. In this paper we study a resource constrained project scheduling problem in which the resource
usage of each activity may vary over time proportionally to its varying intensity. We formalize the problem
by means of a mixed integer-linear program, prove that feasible solution existence is NP-complete in the
strong sense and propose a branch-and-cut algorithm for finding optimal solutions. To this end, we provide
a complete description of the polytope of feasible intensity assignments to two variable-intensity activities
connected by a precedence constraint along with a fast separation algorithm. A computational evaluation
confirms the effectiveness of our method on various benchmark instances.

Keywords: Project scheduling – Network flows, Polyhedral combinatorics – Branch-and-cut

1. Introduction

Most results on the resource-constrained project scheduling problem (RCPSP) assume
fixed activity durations and a constant rate of resource usage while performing every
activity. Extensions to RCPSP relaxing at least one of these assumptions comprise pre-
emption of activity execution, the discrete time/resource trade-off, the time/cost trade-off
and the multi-mode resource-constrained project scheduling problems (see e.g Herroelen
et al. [13], Brucker et al. [3] and Demeulemeester and Herroelen [6]). We will study a
further extension, called RCPSVP, in which the intensity of each activity may vary over
time and the resource-usage is proportional to the intensity.

An instance of the problem is given by a finite set N of activities, a finite set R of
continuously divisible renewable resources and a directed acyclic graph D = (N, A)

representing precedence constraints among the activities. The time horizon is divided
into T periods, which will be indexed as t = 1, . . . , T . For each activity i ∈ N a release
time ri and a deadline di specify an interval of time periods {ri, . . . , di} in which
the activity must entirely be executed, where 1 ≤ ri ≤ di ≤ T . In each time period
t ∈ {ri, . . . , di} at most an ai ≤ 1 fraction of activity i may be completed. Activity i

requires a total of qi
k units of resource k, for each k ∈ R. If the (chosen) intensity of

activity i is xi
t in time period t , where 0 ≤ xi

t ≤ ai and
∑

t xi
t = 1 hold, then it requires

qi
k · xi

t units of resource k in that period. Each resource k ∈ R has an internal capacity
of bk

t units that is available free of charge and it has an additional external capacity of

b
k

t units at the expense of ck
t for each external unit used.

T. Kis: Computer and Automation Research Institute, Hungarian Academy of Sciences, 1111 Budapest, Kende
utca 13-17, Hungary. e-mail: tamas.kis@sztaki.hu

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.2 Optimize For Fast Web View: Yes Embed Thumbnails: Yes Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [600 600] dpi Paper Size: [595 842] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 900 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Warn and ContinueEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Convert All Colors to sRGB Intent: DefaultWorking Spaces: Grayscale ICC Profile: RGB ICC Profile: sRGB IEC61966-2.1 CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: No ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: NoOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [600 600]>> setpagedevice

516 Tamás Kis

The scheduling problem consists of determining for each activity i an intensity xi
t in

each time period t ∈ {ri, . . . , di} such that 0 ≤ xi
t ≤ ai ,

∑di

t=ri xi
t = 1, the precedence

constraints among the activities are fulfilled, the resource demand does not exceed the
resource availability (internal + external) in any time period, and the total cost of using
external capacity is minimized.

Example 1. To illustrate the above concepts consider a problem instance with 2 renew-
able resources and 3 activities.All activities have the same time window ri = 1, . . . , di =
3, while the maximum intensities are a1 = a2 = 1/2, and a3 = 1. Activities 1 and 2
require q1

1 = 1 and q2
1 = 2 units of resource 1, respectively, and activity 3 requires

q3
2 = 1 units of resource 2. The internal capacity of both resources is 1, and there is no

external capacity available. As for precedences, activity 1 must precede activity 3.
The unique solution to this instance is given by the intensity assignments x1 =

(1/2, 1/2, 0), x2 = (1/4, 1/4, 1/2) and x3 = (0, 0, 1), respectively, where the t-th
component of xi represents the intensity of activity i in time period t . Fig. 1 depicts the
resource usage of the activities with respect to x. ��
Project scheduling with variable intensity activities has been studied by several authors.
Weglarz [26] proposes a continuous time model for allocating a single, doubly con-
strained resource to a set of activities over time, the objective being to minimize project
duration. The single resource may be allocated to activities in arbitrary amounts within
given intervals. The performance-speed or intensity of each activity is determined by
a continuous, non-decreasing function of the amount of resource allocated to it at any
moment.Weglarz provides several analytical results and discusses a few numerical exam-
ples. Leachman et al. [19] study a discrete time version of the model of Weglarz in which
all the different types of resources required by an activity are applied proportionally to
the (varying) intensity of the activity. The authors propose a heuristic algorithm for mini-
mizing the makespan. For modeling and solving the special case where all lower bounds
on activity intensities are 0, Tavares [24], [25] suggests a non-linear program, containing
products of decision variables, which is solved by a standard non-linear optimization
software. Finally, Hans [11] discusses in Chapter 6 of his Ph.D. thesis exactly the same
model which is the topic of this paper. His approach is branch-and-price, which is dual to
our branch-and-cut approach. Hans obtains an initial upper bound by various construc-
tive heuristics based on LP rounding techniques and by iterative improvement. In the
column generation phase he uses a fast pricing algorithm and also rounding heuristics
to obtain feasible solutions.

In this paper we propose a new mixed integer-linear program formulation of RCPSVP,
where the novelty lies in the modeling of the precedence constraints (Section 2). It is also

time

Res 1

Res 2

1

2

3

0 1 32

Fig. 1. Resource usage of activities.

Branch-and-cut for RCPSVP 517

shown how other objective functions fit in our framework. The pro’s and con’s of the alter-
native formulations are discussed in Section 3. In Section 4 we prove that RCPSVP is NP-
hard in the strong sense. In Section 5, we analyze the polytope Kij of all feasible intensity
assignments to a pair of variable-intensity activities i and j with (i, j) ∈ A. This poly-
tope is decomposed into two smaller dimensional polytopes which, in fact, are instances
of the same polytope K . Valid inequalities for K along with a separation algorithm is
provided next. In Section 6 we show that the inequalities found previously completely
describe the convex hull of K and also that of Kij and establish conditions under which
the inequalities represent facets of these polytopes. In Section 7 we describe a branch-
and-cut algorithm based on our polyhedral results and summarize various computational
experiments with it. In particular, we compare our method to that of Hans for RCPSVP
and also a variant of our method to the approach of Tavares for minimizing the makespan.

2. New formulations

Since resources must be allocated to activities over discrete time periods, it is natural to
use a time-indexed formulation with the following variables:

xi
t = intensity of activity i in time period t ,

zi
t = mask of activity i in time period t . zi

t = 1 if activity i may be
executed in time period t and 0 otherwise,

yk
t = external capacity of resource k used in time period t .

Let pi = �1/ai� denote the minimum time to complete activity i. Now suppose
(i, j) ∈ A, i.e., activity i must complete before activity j may start. Since activity i

cannot complete before ri + pi , w.l.o.g. we may assume that ri + pi ≤ rj . Similarly,
activity i must complete not later than dj −pj , that is, we may assume that di ≤ dj −pj .
After these preliminaries, the weak formulation for RCPSVP is as follows:

Minimize
∑

k∈R

∑

t∈{1,... ,T }
ck
t · yk

t

subject to

di
∑

t=ri

xi
t = 1, i ∈ N, (1a)

xi
t ≤ ai · zi

t , i ∈ N, t ∈ {ri + pi, . . . , di} (1b)

x
j
t ≤ aj · (1 − zi

t), (i, j) ∈ A, t ∈ {rj , . . . , di} (1c)

zi
t ≥ zi

t+1, i ∈ N, t ∈ {ri + pi, . . . , di − 1}, (1d)
∑

i:qi
k>0, {ri ,... ,di }�t

qi
k · xi

t ≤ bk
t + yk

t , k ∈ R, t ∈ {1, . . . , T }, (1e)

0 ≤ yk
t ≤ b

k

t , k ∈ R, t ∈ {1, . . . , T } (1f)

0 ≤ xi
t ≤ ai, i ∈ N, t ∈ {ri, . . . , di} (1g)

zi
t ∈ {0, 1}, i ∈ N, t ∈ {ri + pi, . . . , di} (1h)

518 Tamás Kis

The objective is to minimize the weighted sum of external capacity used. By (1a),
every activity must entirely be executed between its release time and deadline. The
precedences between the activities are forced by (1b)–(1d). Namely, activity i can be
executed at time t only if zi

t is 1 (cf. (1b)). However, when zi
t = 1, no activity j with

(i, j) ∈ A may be executed, due to (1c). Finally, (1d) ensures that there is a time
point t0 ∈ {ri + pi, . . . , di + 1} such that zi

t = 1 for all t ∈ {ri + pi, . . . , t0 − 1}
and zi

t = 0 for all t ∈ {t0, . . . , di}, hence, activity i must complete before activity j

may start. Since activity i cannot complete before ri + pi , we have no zi
t variables for

t ∈ {ri, . . . , ri + pi − 1}. The external capacity yk
t of resource k used in time period t

is determined by (1e) and it cannot be more than b
k

t , due to (1f). Finally, the domains of
the variables xi

t and zi
t are given by (1g) and (1h), respectively.

If activity i has no successors in D then zi
t can be set to 1 for all t ∈ {ri +pi, . . . , di},

and similarly yk
t can be set to 0 if no activity may require resource k at time t , i.e.,

t /∈ {ri, . . . , di} for all i ∈ N with qi
k > 0. A further reduction is possible for (i, j) ∈ A.

Since i precedes j , the difference z
j
t − zi

t must be 0 or 1 in any feasible solution. Hence,

the inequalities x
j
t ≤ aj · (z

j
t − zi

t), t ∈ {rj + pj , . . . , di}, are satisfied by all feasible
solutions and are stronger than (1b) for activity j and (1c) for (i, j) together. Therefore,
we may replace (1b) and (1c) by the following set of inequalities:

x
j
t ≤

aj · (1 − zi
t), t ∈ {rj , . . . , min{rj + pj − 1, di}},

aj · (z
j
t − zi

t), t ∈ {rj + pj , . . . , di},
aj · z

j
t , t ∈ {max{di + 1, rj + pj }, . . . , dj }.

(i, j) ∈ A (1bc)

Notice that some of the intervals may be empty depending on the particular di and
rj values. We call the resulting program the strong formulation.

Besides minimizing the cost of using external resources, our model is suitable for
other criteria as well. In the following three problems the external resource capacities are
neglected. The project duration or makespan can be minimized by finding the smallest T
(using dichotomic search between some lower and upper bounds), such that when setting
all activity deadlines to T , the linear program (1) has a feasible solution. When a due-date
d̃ i is specified for each activity i, we may minimize the maximum tardiness by finding
the smallest Tmax such that system (1) admits a feasible solution with activity deadlines
di = d̃ i + Tmax. Again, the minimum value of Tmax can be found by dichotomic search.
In addition, when weights wi are also given, we can minimize the weighted tardiness∑

i wi(max{0, Ci − d̃ i}), where Ci is the completion time of activity i. Namely, define
new weights wi

t as follows: wi
t = 0 if t ≤ d̃ i and wi

t = wi for all t ∈ {d̃ i + 1, . . . , T }.
Then, the minimum value of

∑
wi

t · zi
t is the minimum weighted tardiness with respect

to time horizon T .
The polyhedral results and the branch-and-cut approach presented in this paper can

be used to solve the RCPSVP with respect to any of the above optimization criteria.

3. Comparison of alternative formulations

In this section we discuss the advantages and disadvantages of the alternative formula-
tions for RCPSVP, the emphasis being on integer-linear programming approaches. As

Branch-and-cut for RCPSVP 519

all approaches model the resource constraints in essentially the same way, we focus on
the modeling of precedence constraints.

Suppose activity i must precede activity j , i.e., (i, j) ∈ A. Tavares [25] models this
situation by a set of constraints equivalent to the following:

di
∑

t=t0

xi
t

 x
j
t0

= 0, ∀ t0 ∈ {rj , . . . , dj }.

Tavares shows that the project duration can be minimized by defining new auxiliary
variables zt with 0 ≤ zt ≤ 1, t ∈ {1, . . . , T }, and adding the constraints

(
∑

i∈N

T∑

t=t0

xi
t

)

zt0 = 0, ∀ t0 ∈ {1, . . . , T }.

to the model. Notice that if zt0 > 0, then no activity can be performed after t0. Therefore,
the above constraints along with the objective min(T − ∑

t zt) express the makespan
minimization problem. Since the constraints are clearly non-linear in the variables x

and z, Tavares used a non-linear optimization software for solving the problem w.r.t. the
makespan objective.

In contrast, Hans [11] models the precedence constraints using a set of binary vec-
tors {βh ∈ {0, 1}|N |×T | h ∈ �} consisting of the supports of all feasible intensity
assignments to the activities. Although Hans considered distinct projects among which
there were no precedence constraints, to simplify notation we assume that all activities
belong to the same project. Notice that a binary vector β ∈ {0, 1}|N |×T is the support
of a feasible intensity assignment if and only if

∑T
t=1 βi,t ≥ pi , min{t | βi,t = 1} ≥ ri ,

max{t | βi,t = 1} ≤ di , and if (i, j) ∈ A, then max{t | βi,t = 1} < min{t | βj,t = 1}.
Clearly, precisely one vector βh must be chosen. To this end, Hans has introduced new
binary variables zh, h ∈ �, together with the following constraints:

∑

h∈�

zh = 1,

zh ∈ {0, 1}, h ∈ �,

0 ≤ xi
t ≤ ai

(
∑

h∈�

βh
i,t zh

)

, i ∈ N, t ∈ {ri, . . . , T }

The first two constraints ensure that exactly one vector βh is chosen. The third one
specifies that xi

t is either 0, or is between 0 and ai , depending on whether βh
i,t is 0 or

1. In addition, Hans’ formulation also contains constraints equivalent to (1a) and (1e),

and instead of (1f) it has yk
t ≥ 0, and

∑
k yk

t ≤ b
k
, for all t . As the size of � can be

enormous, column generation is the only viable approach to handle this formulation.
The primary advantage is that any objective function which depends linearly on the

cost associated with the vector βh, whatever this cost be, can be optimized by the same
solver, provided that the pricing problem can be solved efficiently. The main drawback
is that a huge number of columns must be handled, and enlarging all activity deadlines
by only one time period may multiply the size of � which may increase considerably
the running time of the pricing algorithm.

520 Tamás Kis

In contrast, if all activity deadlines are increased by one time period in our formula-
tion, the number of variables grows only by O(|N |+|R|) and the increase in the number
of constraints is in O(|N | + |R| + |A|). The drawback is that good cutting planes must
be supplied to the solver. Nevertheless, for the objective function studied in this paper
our method is competitive with that of Hans, see Section 7.1.

4. Computational complexity

In this section we will prove that RCPSVP is NP-complete in the strong sense. To this
end, we will show that RCPSVP contains the preemptive flowshop scheduling problem
(PFSP) as a special case. As the latter problem has been shown NP-complete in the
strong sense by Gonzalez and Sahni [9], our claim follows. For fundamental definitions
and results of scheduling theory see e.g. Graham et al. [10] and Blazewicz et al. [2].

Recall that in a preemptive flowshop a finite set of jobs must be processed by a finite
set of processors. A processor can process at most one job at a time. The processing
time of job j on processor k is given by a positive integer number πj,k specifying that
job j must be processed for exactly πj,k time units on processor k. If πj,k = 0 then job
j is not processed by processor k. The processing of a job may be interrupted at any
(integral) time point and resumed later. Each job j must visit the processors in the same
order, that is, if πj,k > 0, πj,� > 0 and k precedes � in the order of processors, then job
j must be processed for a total of πj,k time units on processor k before its processing
may be started on processor �. All jobs can be started at time 1 and the question is wether
all jobs can be completed by a given time point C.

A solution σ to the PFSP specifies the time points in which a job is being processed
by a processor. That is, σ(j, k, t) = 1 if job j is processed by processor k at time point t

and 0 otherwise. A solution is feasible if and only if it satisfies the following conditions:

(i)
∑

t σ (j, k, t) = πj,k for all jobs j and processors k,
(ii)

∑
j σ (j, k, t) ∈ {0, 1} for all processors k and time points t ,

(iii) max{t | σ(j, k, t) = 1} < min{t ′ | σ(j, �, t ′) = 1} for all jobs j and pairs of
processors k, � such that k precedes � in the order of processors, and πj,k > 0 and
πj,� > 0 hold.

Below we describe a transformation f from PFSP to RCPSVP. Let I be an instance
of PFSP, in the corresponding instance f (I) of RCPSVP the set of resources R coincides
with the set of processors. Each activity represents the processing of a job by a processor.
The directed graph D specifies the order in which activities representing the processing
of the same job by different processors must visit these processors (resources). If activ-
ity i represents the processing of job j on processor k, then the maximum intensity of
activity i is ai = 1/πj,k , and it requires qi

k = πj,k units of resource (processor) k and
no other resources. All activities can be started in time period 1 and they must all be
completed at latest in time period C. The internal capacity of each resource is 1 in each
time period and its external capacity is always 0. We have the following:

Lemma 1. An instance I of PFSP admits a feasible solution if and only if the corre-
sponding instance f (I) of RCPSVP admits a feasible solution.

Branch-and-cut for RCPSVP 521

For a proof see Appendix I. Before proving strong NP-completeness of RCPSVP
notice that the maximum numbers Max[I] and Max′[f (I)] in an instance I of PFSP
and in the corresponding instance f (I) of RCPSVP, respectively, are the same, i.e., both
have the value max{max πj,k, C}.
Corollary 1. RCPSVP is NP-complete in the strong sense.

Proof. Membership in NP is straightforward. To show strong NP-completeness it suf-
fices to verify that f is a pseudo-polynomial transformation (Garey and Johnson [8],
p. 101) from PFSP to RCPSVP. Namely, an instance I of PFSP admits a feasible solu-
tion if and only if the corresponding instance f (I) of RCPSVP has a feasible solution,
by Lemma 1. Moreover, f can be computed in time polynomial in the length of I and
Max[I]. The length of f (I) is not smaller than the length of I and Max′[f (I)] is bounded
by a two-variable polynomial in the length of I and Max[I], since they are the same. ��

As a consequence, RCPSVP cannot be solved in pseudo-polynomial time, unless
P = NP. Hence, we will propose a branch-and-cut algorithm using strong valid inequal-
ities which is the topic of the next section.

5. Polyhedral results for RCPSVP

If we omit the resource capacity constraints (1e) from the weak (or from the strong) for-
mulation of RCPSVP, then the feasible solutions of the remaining system are all intensity
assignments to activities respecting the release times, deadlines, maximum intensities
and precedence constraints. We may consider this system as a collection of subsystems
each describing the feasible intensity assignments to a pair of activities connected by a
precedence constraint. In this and the next section we will obtain a complete description
of the polytope associated with such a subsystem.

5.1. Feasible intensity assignments to a pair of activities

Let i, j be a pair of activities with (i, j) ∈ A. If di < rj , then this precedence constraint
is meaningless, so we may assume that rj ≤ di . Recall also that ri + pi ≤ rj and
di ≤ dj − pj . We define the polytope Kij as the convex hull of all feasible intensity
assignments to i and j such that i completes before j starts. That is, Kij is the convex
hull of all points (xi, xj , zi) ∈ R

si × R
sj × {0, 1}si−pi

, where si = di − ri + 1 and
sj = dj − rj + 1, satisfying the following constraints:

di
∑

t=ri

xi
t = 1, (2a)

0 ≤ xi
t ≤ ai, t ∈ {ri, . . . , ri + pi − 1} (2b)

0 ≤ xi
t ≤ ai · zi

t , t ∈ {ri + pi, . . . , di} (2c)

zi
t ≥ zi

t+1, t ∈ {ri + pi, . . . , rj − 1} (2d)

zi
t ≥ zi

t+1, t ∈ {rj , . . . , di − 1} (2e)

522 Tamás Kis

dj
∑

t=rj

x
j
t = 1, (2f)

0 ≤ x
j
t ≤ aj · (1 − zi

t), t ∈ {rj , . . . , di} (2g)

0 ≤ x
j
t ≤ aj , t ∈ {di + 1, . . . , dj } (2h)

In order to find a linear representation of Kij consider the polytopes Ki∗ and K∗j

derived from Kij as follows:

Ki∗ = conv
{
(xi, zi) ∈ R

si × {0, 1}si−pi | (xi, zi) satisfies (2a) − (2e)
}

,

K∗j = conv
{
(xj , z̃i) ∈ R

sj × {0, 1}di−rj +1 | (xj , z̃i) satisfies (2e) − (2h)
}

.

The main result of this section is the following:

Lemma 2. Let (xi, xj , zi) be any point in R
si × R

sj × R
si−pi

. Then (xi, xj , zi) ∈ Kij

if and only if (xi, zi) ∈ Ki∗ and (xj , z̃i) ∈ K∗j , where z̃i
t = zi

t for all t ∈ {rj , . . . , di}.
Before the proof we derive some common properties of Ki∗ and K∗j . In fact, Ki∗

and K∗j are instances of the polytope K defined next. Let 1 ≤ m < n be integer num-
bers, and 0 < a ≤ 1 a real number such that (n − m)a ≥ 1. Then K is the convex hull
of all points (x, z) ∈ R

n × {0, 1}m satisfying the following linear constraints1:

n∑

t=1

xt = 1 (3a)

xt ≤ a · (1 − zt), t ∈ {1, . . . , m} (3b)

xt ≤ a, t ∈ {m + 1, . . . , n} (3c)

zt ≥ zt+1, t ∈ {1, . . . , m − 1} (3d)

xt ≥ 0, t ∈ {1 . . . , n}. (3e)

We obtain a polytope equivalent to Ki∗ by the substitutions m = si − pi , n = si ,
a = ai , zt = 1−zi

di−t+1
, t ∈ {1, . . . , m}, and xt = 1−xi

di−t+1
, t ∈ {1, . . . , n}. We get

a polytope equivalent to K∗j by setting m = di − rj +1, n = sj , a = aj , zt = z̃i
t+rj −1

,

t ∈ {1, . . . , m}, and xt = x
j

t+rj −1
, t ∈ {1, . . . , n}.

A necessary and sufficient condition for a vector (x, z) ∈ R
n × R

m to be in K is
provided next. First of all, if (x̂, ẑ) is a vertex of K , then ẑ is one of the following vectors
z� ∈ {0, 1}m:

z�
t =

{
1 if t ∈ {1, . . . , � − 1},
0 if t ∈ {�, . . . , m}, � ∈ {1, . . . , m + 1}.

Moreover, if ẑ = z� for some vertex (x̂, ẑ) and some �, then x̂t = 0 for all t ∈
{1, . . . , � − 1}, 0 ≤ x̂t ≤ a for all t ∈ {�, . . . , n} and

∑n
t=1 x̂t = 1. After these

preparations, we can prove the following:

1 We might have chosen another definition, e.g. have a · zt on the r.h.s. of (3b) and ≤ instead of ≥ in (3d),
but then all subsequent formulas would be more complicated.

Branch-and-cut for RCPSVP 523

Lemma 3. Let (x, z) be any point in R
n × R

m. Then (x, z) ∈ K if and only if the num-
bers λ1 = 1−z1, λ� = z�−1 −z� (� ∈ {2, . . . , m}) and λm+1 = zm are all non-negative
and there exist vectors x� ∈ R

n, � ∈ {1, . . . , m + 1}, such that
∑m+1

�=1 λ�x
� = x and

every (x�, z�) belongs to K .

Proof. (Necessity) If (x, z) is a point in K and the points (x̂h, ẑh), h ∈ �, constitute
the set of vertices of K , then there exist reals ωh ≥ 0 such that (x, z) = ∑

h ωh(x̂
h, ẑh),∑

h ωh = 1.
Let λ� = ∑

h:ẑh=z� ωh, � ∈ {1, . . . , m+ 1}. Then λ� ≥ 0 and
∑

� λ� = 1. If λ� > 0,
let x� = ∑

h:ẑh=z�(ωh/λ�)x̂
h. Otherwise, if λ� = 0, choose an arbitrary x� such that

(x�, z�) ∈ K . Then every (x�, z�) belongs to K and
∑

� λ�(x
�, z�) = (x, z). Using this

and the fact that z�
m = 1 if and only if � = m + 1, λm+1 = zm follows. An inductive

argument proves that the rest of the λ� must also equal the specified values.
(Sufficiency) Observe that

∑m+1
�=1 λ� = 1 and also

∑m+1
�=1 λ�z

� = z. Consequently,
if there exist vectors x� satisfying the conditions of the lemma, then (x, z) is a convex
combination of the points (x�, z�). Since the vectors (x�, z�) all belong to K , (x, z) ∈ K .
��
Proof of Lemma 2. By the definitions, if (xi, xj , zi) ∈ Kij , then (xi, zi) ∈ Ki∗ and
(xj , z̃i) ∈ K∗j , where z̃i

t = zi
t for all t ∈ {rj , . . . , di}.

Conversely, suppose (xi, zi) ∈ Ki∗ and (xj , z̃i) ∈ K∗j , where z̃i
t = zi

t for all
t ∈ {rj , . . . , di}. In order to apply the previous lemma to Ki∗ and K∗j , define the
vectors zi,� ∈ {0, 1}si−pi

and zj,� ∈ {0, 1}di−rj +1 as follows.

z
i,�
t =

{
1 if t ∈ {ri + pi, . . . , � − 1},
0 if t ∈ {�, . . . , di} � ∈ {ri + pi, . . . , di + 1}.

For each � ∈ {rj , . . . , di + 1}, let z
j,�
t = z

i,�
t for all t ∈ {rj , . . . , di}.

Applying Lemma 3 to Ki∗ yields vectors xi,� and coefficients λ�, � ∈ {ri +
pi, . . . , di + 1} such that

∑di+1
�=ri+pi λ�(x

i,�, zi,�) = (xi, zi), (xi,�, zi,�) ∈ Ki∗ for each

�, λri+pi = 1 − zri+pi , λ� = zi
�−1 − zi

�, � ∈ {ri + pi + 1, . . . , di}, and λdi+1 = zi
di .

For K∗j we get vectors xj,� and coefficients α�, � ∈ {rj , . . . , di + 1} such that
∑di+1

�=rj α�(x
j,�, zj,�) = (xj , z̃i), (xj,�, zj,�) ∈ K∗j for each �, αrj = 1 − z̃i

rj , α� =
z̃i
�−1 − z̃i

�, � ∈ {rj + 1, . . . , di}, and αdi+1 = z̃i
di .

Since zi
t = z̃i

t , t ∈ {rj , . . . , di} by assumption, it follows that α� = λ�, � ∈
{rj + 1, . . . , di + 1}, and αrj = 1 −∑di+1

�=rj +1 λ� = ∑rj

�=ri+pi λ�.

Letting xj,� = xj,rj
for each � ∈ {ri + pi, . . . , rj − 1}, we have (xi, xj , zi) =

∑di+1
�=ri+pi λ�(x

i,�, xj,�, zi,�). Since each (xi,�, xj,�, zi,�) belongs to Kij by the definition

of the polytopes Ki∗ and K∗j , (xi, xj , zi) ∈ Kij as well. ��
Corollary 2. If Ki∗ = {(xi, zi) | Ai∗xi +Bi∗zi ≤ bi∗} and K∗j = {(xj , z̃i) | A∗j xj +
B∗j z̃i ≤ b∗j }, then Kij = {(xi, xj , zi) | Ai∗xi + Bi∗zi ≤ bi∗, A∗j xj + [0, B∗j]zi ≤
b∗j }, where 0 is a null matrix with rj − ri − pi columns and appropriate number of
rows.

524 Tamás Kis

We will provide a minimal linear representation of K in Section 6, which can trivi-
ally be transformed to one for Ki∗ and for K∗j , respectively. We will prove that putting
together these two representations yields a minimal linear representation of Kij .

We finish this section by relating K to the polytope P= defined in [21] to model fixed
charge network or variable upper-bound flow problems. Namely, P= = conv{(x, z) ∈
R

n × {0, 1}n | ∑n
t=1 xt = g, 0 ≤ xt ≤ atzt , t = 1, . . . , n}, where g and the at s are

constants. The system defining the polytope models a fragment of a network consisting
of a node u and arcs entering u. The total flow through the arcs has to meet a specified
demand g. The upper bounds on the arcs are variable as they are determined by the binary
variables zt . Now, in the network modeled by K there are variable upper bounds on some
but not on all of the arcs. Namely, the upper bound on arc flow xt is constant a for all
t ∈ {m + 1, . . . , n}, while it is variable on all arc flows xt with t ∈ {1, . . . , m}. Despite
of the apparent similarities to the variable upper bound flow model, our model is very
special for the upper bounds on arcs are not independent, due to constraints zt ≥ zt+1.
Namely, if zt0 is set to 1, then for all t ∈ {1, . . . , t0} the upper bound on xt is fixed at
a and if zt0 = 0 then the upper bound is 0 on all arc flows xt with t ∈ {t0, . . . , m}. We
will exploit this property when deriving facets of K .

5.2. Valid inequalities and a separation algorithm for K

Clearly, the equation (3a) and the inequalities (3b)–(3e) are all valid for K . Moreover,
the inequality

zm ≥ 0 (3f)

is also valid for K . We derive a new class of valid inequalities below.
Denote p = �1/a� and arem = 1 − (p − 1)a. Since (n − m)a ≥ 1 by definition,

m + p ≤ n. The short proof of the following statement has been kindly suggested by a
referee.

Lemma 4. Let ∅ = S1 ⊆ {1, . . . , m} and S2 ⊆ {m+1, . . . , n} be such that |S1|+|S2| =
p and let t1 be the smallest element of S1. The (S1, S2) inequality

aremzt1 + a
∑

t∈S1−{t1}
zt ≤

∑

t∈{t1,... ,n}−(S1∪S2)

xt (3g)

is valid for K .

Proof. As K is a convex polytope, it suffices to show that any vertex of K satisfies
(3g). Since the inequalities are valid for any vertex (x̂, ẑ) with ẑt1 = 0, assume ẑt1 = 1.
Therefore, x̂t1 = 0 by (3b), and the total processing in {t1, . . . , n} − (S1 ∪ S2), that is,
the right hand side of (3g), is at least 1 minus the maximum processing in S1 ∪S2 −{t1}.
The latter is a|S2| + a

∑
t∈S1−{t1}(1 − ẑt). Plugging all this together, the statement

follows. ��

Branch-and-cut for RCPSVP 525

The usefulness of the (S1, S2) inequalities is illustrated by the following:

Example 2. Suppose m = 4, n = 7 and a = 2/5. Then p = 3 and arem = 1/5. The vec-
tor (x, z), where x = (1/10, 0, 0, 3/10, 2/5, 1/5, 0) ∈ R

7 and z = (3/4, 1/2, 1/2, 1/4)

∈ R
4, satisfies (3a)–(3f), but violates (3g) for S1 = {1, 4} and S2 = {5}. Namely, we

have

aremz1 + az4 = 1

5
· 3

4
+ 2

5
· 1

4
= 1

4
>

1

5
= 0 + 0 + 1

5
+ 0

= x2 + x3 + x6 + x7 =
∑

t∈{1,... ,7}−(S1∪S2)

xt .

��
We close this section by a separation algorithm for the (S1, S2) inequalities. For each

t1 ∈ {1, . . . , m}, the procedure tries to find a violated (S1, S2) inequality with t1 being
the smallest element of S1. Namely, rewrite (3g) as follows:

∑

t∈S1−{t1}
(a · zt + xt) +

∑

t∈S2

xt ≤

∑

t∈{t1+1,... ,n}
xt

− aremzt1 .

Now consider the following optimization problem:

max
∑

t∈S1−{t1}
(a · zt + xt) +

∑

t∈S2

xt , (4)

where the max is over all set pairs (S1, S2) such that t1 ∈ S1 ⊆ {t1, . . . , m}, S2 ⊂
{m + 1, . . . , n} and |S1| + |S2| = p. The maximum is greater than the constant∑

t∈{t1+1,... ,n} xt − aremzt1 if and only if at least one (S1, S2) inequality with t1 being
the smallest element of S1 is violated by (x, z).

In order to solve problem (4), define a set of items I (t1) = {t1 + 1, . . . , n} with
item weights w(t) = a · zt + xt if t1 + 1 ≤ t ≤ m, and xt if m + 1 ≤ t ≤ n. Then the
p−1 largest-weight items constitute an optimal solution to (4). In fact, this problem can
be seen as finding a maximum weight basis in the uniform matroid over I (t1) in which
every p − 1 items is a basis. Repeating this procedure for each t1 ∈ {1, . . . , m} we can
find a violated (S1, S2) inequality or conclude that none exists.

For efficient implementation notice that the item weights do not depend on t1 and
thus it is enough to sort the elements of the set I (1) in decreasing order of their weights.
Then, after increasing t1 by 1, eliminate from the ordered list those t for which t ≤ t1
holds. The time complexity of the entire separation procedure is O(n log n).

6. Minimal linear representations for K and Kij

In this section we will prove that the inequalities (3a)–(3g) constitute a linear repre-
sentation of K . Moreover, we will establish conditions under which these inequalities
represent facets of K . Finally, we will extend these results to Kij .

526 Tamás Kis

6.1. A linear representation of K

Let P be the polytope consisting of all points (x, z) ∈ R
n × R

m satisfying the system
(3a)–(3g). Since the equation (3a) and the inequalities (3b)–(3g) are all valid for K ,
K ⊆ P . Our main goal is to prove the following:

Theorem 1. P ⊆ K .

Proof. Assuming the contrary, fix some (x, z) ∈ P \ K . Since (x, z) /∈ K , it is not a
convex combination of points in K . We will show that then (3g) is violated for a pair of
sets (S1, S2) which contradicts the assumption (x, z) ∈ P .

To this end, define the capacitated network G(x, z) = (V , E) with node set V con-
sisting of a source s, a sink q, a node v� for each � ∈ {1, . . . , m + 1} and a node wt for
each t ∈ {1, . . . , n}. The source s is connected to every v� by one arc (s, v�) with capac-
ity c(s, v�) = λ�, where the λ� are defined in Lemma 3. Moreover, there is one arc from
each wt to sink q with capacity c(wt , q) = xt . Finally, for each � ∈ {1, . . . , m + 1} and
t ∈ {�, . . . , n} there is an arc (v�, wt) with capacity c(v�, wt) = a ·λ�. This construction
is illustrated in Fig. 2. Since (x, z) ∈ P , all arc capacities in G(x, z) are non-negative.

Let c(δ(S)) = ∑
(u,v)∈δ(S) c(u, v) denote the capacity of an s − q cut δ(S) =

{(u, v) ∈ E | u ∈ S, v ∈ S}, where s ∈ S ⊆ V \ {q} and S = V \ S. The minimum
capacity of an s − q cut in G(x, z) is at most 1, as c(δ({s})) = ∑

� λ� = 1.

Claim 1. The minimum capacity of an s − q cut in G(x, z) is strictly smaller than 1.

Proof. Assuming the contrary, it follows that there exists a compatible flow f in G(x, z)

of value 1, due to the MAX-FLOW MIN-CUT Theorem of Ford and Fulkerson [7]. For
each � ∈ {1, . . . , m + 1} define a vector x� ∈ R

n as follows. If λ� > 0, then let
x�
t = f (v�, wt)/λ� for t ∈ {�, . . . , n}, and x�

t = 0 for t ∈ {1, . . . , � − 1}. On the
other hand, when λ� = 0, choose any x� such that (x�, z�) ∈ K . Hence, every (x�, z�)

belongs to K and
∑

� λ�x
�
t ≤ xt for each t . But

∑
t

∑
� λ�x

�
t = 1, since f is feasible,

and
∑

t xt = 1 as (x, z) ∈ P , whence,
∑

� λ�x
� = x. Then Lemma 3 ensures that

(x, z) ∈ K , a contradiction. ��
Let N(v�) = {wt ∈ V | (v�, wt) ∈ E} denote the set of nodes reachable from v� by

one arc. If S is a subset of nodes, then let NS(v�) = N(v�) ∩ S.

Property 1. Let S be an s − q cut of G(x, z). If � < κ then NS(vκ) ⊆ NS(v�).

Claim 2. There exists a minimum capacity s − q cut δ(S) in G(x, z) with the following
structure:

λl tav
l

w

xtλ l

s q

Fig. 2. The construction of G(x, z).

Branch-and-cut for RCPSVP 527

(i) there exists t1 ∈ {1, . . . , m} such that v� ∈ S for all � ∈ {1, . . . , t1} and v� ∈ S

for all � ∈ {t1 + 1, . . . , m + 1},
(ii) wt ∈ S for all t ∈ {1, . . . , t1},

(iii) for every v� ∈ S, |NS(v�)| ≤ p − 1,
(iv) |NS(vt1+1)| = p − 1.

Proof. Let δ(S) be a minimum capacity s −q cut of G(x, z). Clearly, c(δ(S)) < 1 holds
by assumption. First we claim that there exists � ∈ {1, . . . , m + 1} such that v� ∈ S.
Indeed, otherwise the arcs (s, v�) all leave S, whence c(δ(S)) ≥ ∑m+1

�=1 c(s, v�) =
∑m+1

�=1 λ� = 1, contradicting c(δ(S)) < 1.

Proof of part (iii). Suppose there exists v� ∈ S with |NS(v�)| ≥ p. If λ� = 0, we can
replace S by S − {v�} without changing the capacity of the cut. So assume λ� > 0.
From flow theory (see e.g., Ahuja et al. [1]) we know that any maximum value s − q

flow f saturates all arcs leaving S, since δ(S) is of minimum capacity. In particular,
f (v�, wt) = c(v�, wt) = a ·λ� holds for all arcs (v�, wt) ∈ E with wt ∈ NS(v�). Using
conservation of flow we can derive that

λ� ≥ f (s, v�) =
∑

(v�,wt)∈E

f (v�, wt) ≥ |NS(v�)| · a · λ�.

Since p · a ≥ 1 by the definition of p and |NS(v�)| ≥ p by assumption, it must be
the case that |NS(v�)| = p and p · a = 1, otherwise there is a contradiction. Hence, we
may replace S by S − {v�} without changing the capacity of the cut.

Proof of part (i). Since S contains at least one of the nodes v�, there exists a unique
t1 ∈ {0, . . . , m} such that v� /∈ S for all � ∈ {1, . . . , t1} and vt1+1 ∈ S. Suppose there
exists κ > t1 + 1 such that vκ /∈ S. If λκ = 0, we can add vκ to S yielding a cut
with the same capacity. Assume λκ > 0. Since NS(vκ) ⊆ NS(vt1+1) by Property 1 and
|NS(vt1+1)| ≤ p − 1 by part (iii), we also have |NS(vκ)| ≤ p − 1. Since the capacity of
the cut determined by S ∪ {vκ} is

c(δ(S ∪ {vκ})) = c(δ(S)) − c(s, vκ) +
∑

wt∈NS(vκ)

c(vκ , wt)

≤ c(δ(S)) − λκ + (p − 1) · a · λκ < c(δ(S)), (5)

δ(S) is not of minimum capacity, which is a contradiction. It remains to show that t1 ≥ 1.
Suppose t1 = 0. To simplify notation, we introduce dummy zt symbols with value 0,
for t ∈ {m+ 1, . . . , n}. Then S contains the source node s, all nodes v� and some of the
nodes wt . Denoting by U the indices t such that wt /∈ S, we determine the capacity of
δ(S) below:

c(δ(S)) =
∑

t∈U

min(m+1,t)∑

�=1

a · λ� +
∑

t∈{1,... ,n}−U

xt

=
∑

t∈U

(1 − zt)a +
∑

t∈{1,... ,n}−U

xt ≥
∑

t∈{1,... ,n}
xt ,

528 Tamás Kis

where we exploited that
∑min(m+1,t)

�=1 λ� = 1 − zt and that (1 − zt)a ≥ xt , for (x, z)

satisfies (3b) by assumption. But
∑n

t=1 xt = 1, hence c(δ(S)) ≥ 1, a contradiction.

Proof of part (ii). Suppose there exists wt ∈ S with t ∈ {1, . . . , t1}. Then (wt , q) ∈ E

is an arc leaving S. Since wt is not connected to any other node in S, the capacity of δ(S)

can be decreased by xt unless xt = 0. Since δ(S) is of minimum capacity by assumption,
it must be the case that xt = 0. However, in this case wt can be removed from S yielding
a cut with the same capacity.

Proof of part (iv). Consider the node vt1 . Since wt1 /∈ S by part (ii), it follows that
NS(vt1) = NS(vt1+1)∪{wt1}. Consequently, if |NS(vt1+1)| < p−1, then |NS(vt1)| < p.
If λt1 = 0, then c(δ(S ∪ {vt1})) = c(δ(S)), whence we can replace S by S ∪ {vt1} and
repeat the whole analysis. Assume λt1 > 0. Then adding vt1 to S would decrease the
capacity of the cut, a contradiction. ��

To finish the proof of the theorem, define the sets S1 = {t1}∪{t ∈ {t1+1, . . . , m} |wt

∈ S} and S2 = {t ∈ {m+ 1, . . . , n} | wt ∈ S}, where S is the node set found in Claim 2.
Notice that ∅ = S1 ⊆ {1, . . . , m}, S2 ⊆ {m + 1, . . . , n} and |S1 ∪ S2| = p, by part (iv)
of Claim 2. To simplify the following presentation, define new symbols zt with value 0
for all t ∈ {m + 1, . . . , n}. Since the capacity of δ(S) is strictly smaller than 1, we have

1 >

t1∑

t=1

c(s, vt) +
m∑

�=t1+1

∑

t∈{�,... ,n}∩(S1∪S2)

c(v�, wt) +
∑

t∈{t1,... ,n}\(S1∪S2)

c(wt , q).

Using the definition of arc capacities and that of the λ�, this can be rewritten as

= 1 − zt1 + a
∑

t∈(S1∪S2)\{t1}

t∑

�=t1+1

(z�−1 − z�) +
∑

t∈{t1,... ,n}\(S1∪S2)

xt

= 1 − zt1 + a
∑

t∈(S1∪S2)\{t1}
(zt1 − zt) +

∑

t∈{t1,... ,n}\(S1∪S2)

xt .

Since zt = 0 for all t ∈ {m + 1, . . . , n} and |S1 ∪ S2| = p, this is equivalent to

= 1 − zt1 + a(p − 1)zt1 − a
∑

t∈S1\{t1}
zt +

∑

t∈{t1,... ,n}\(S1∪S2)

xt .

Now, as −zt1 + a(p − 1)zt1 = −aremzt1 , it follows that (3g) is violated for the sets
(S1, S2), that is, (x, z) /∈ P , a contradiction. ��

6.2. Facets of K

In order to find a minimal linear representation of polytope K , it suffices to consider only
the system (3a)–(3g), by Theorem 1. To show that a valid inequality αx + βz ≤ γ from
(3b)–(3g) represents a facet of K we will use the standard proof technique consisting
in exhibiting a point (x, z) in K such that αx + βz = γ and (x, z) satisfies all other
inequalities with strict inequality, see e.g., Schrijver [23].

Branch-and-cut for RCPSVP 529

Lemma 5. The inequalities (3b), (3d), (3f) always represent facets of K . The inequali-
ties (3c) represent facets iff a < 1. For 1 ≤ t ≤ n inequality (3e)t represents a facet iff
a > 1/(n − 1) and if t ≥ m + 1, p < n − m. Finally, for each ∅ = S1 ⊆ {1, . . . , m},
S2 ⊂ {m+1, . . . , n} with |S1|+|S2| = p the corresponding inequality in (3g) represents
a facet unless t1 = 1 and a = 1/p.

Proof. Firstly, we show that there exists a point in K satisfying all inequalities (3b)–(3g)
with strict inequality. One may verify that if ε > 0 is a sufficiently small positive number,
the vector (x, z) given by

xt = 1/n, t ∈ {1, . . . , n} and zt = εt , t ∈ {1, . . . , m} (6)

is in K satisfying every inequality in (3b)–(3g) with strict inequality.
The construction of an appropriate point in K for (3b), (3d) and (3f) being straight-

forward, we turn directly to the inequalities (3c). If a = 1 then xt = 1 implies xt ′ = 0
for all t ′ ∈ {1, . . . , n}−{t}, proving the necessity of the condition. Conversely, if a < 1,
the vector (x, z) with xt = a, xt ′ = (1 − a)/(n − 1), t ′ ∈ {1, . . . , n} − {t}, and z as in
(6) satisfies xt = a with equality, while all other inequalities are strict if ε is sufficiently
small.

Concerning (3e), if a = 1/(n − 1) then xt = 0 implies xt ′ = a for all t ′ ∈
{1, . . . , n} − {t}, proving the necessity of the condition. Moreover, if t ≥ m + 1 and
m + p = n, then xt ≥ 0 is implied by the (S1, S2) inequality with t1 = m, S1 = {m},
S2 = {m+ 1, . . . , n}− {t}. Now suppose a > 1/(n− 1). The vector (x, z) with xt = 0,
xt ′ = 1/(n−1), t ′ ∈ {1, . . . , n}−{t}, and z as in (6) satisfies xt = 0 with equality while
all other inequalities are strict if ε is sufficiently small and when t ≥ m+ 1, m+p < n.

Finally, consider an inequality in (3g). If t1 = 1 ∈ S1 and a = 1/p, then this
inequality is implied by the inequalities xt ≤ a(1 − zt), t ∈ S1, and xt ≤ a, t ∈ S2.
Namely, since a = 1/p, arem = a follows. Therefore, we have

∑

t∈S1

azt ≤
∑

t∈S1

azt +
∑

t∈S2

(a − xt) ≤
∑

t∈S1

(a − xt) +
∑

t∈S2

(a − xt)

= ap −
∑

t∈S1∪S2

xt = 1 −
∑

t∈S1∪S2

xt =
∑

{1,... ,n}−(S1∪S2)

xt .

On the other hand, when t1 ≥ 2 or ap > 1, we will define a point (x, z) in K such that

aremzt1 + a
∑

t∈S1−{t1}
zt =

∑

t∈{t1,... ,n}−(S1∪S2)

xt (7)

while all other inequalities will be strict. Let ε and φ be small positive numbers to be
chosen later. Denote U = {t1, . . . , n} − (S1 ∪ S2) and k = |U | = n − t1 + 1 − p.
Notice that 1 /∈ U even if t1 = 1. Therefore, k ≤ n − 1. Finally, k ≥ 1, since t1 ≤ m,
|S1 ∪ S2| = p and m+p ≤ n. Observe that a(n− k) = a(t1 − 1 +p) > 1, since t1 ≥ 2
or ap > 1 by assumption.

Define z as in (6), while let x be given by

xt =
{

φ, t ∈ U

(1 − kφ)/(n − k), t ∈ {1, . . . , n} − U.

530 Tamás Kis

Now, by substituting the definitions for x and z in (7) we obtain the following relation
between ε and φ:

aremεt1 + a
∑

t∈S1−{t1}
εt = kφ. (8)

Observe that the left hand side is polynomial in terms of ε and that all coefficients
are positive. Consequently, the left hand side is a monotone increasing and continuous
function of ε. Hence, for any φ > 0 there exists a unique ε > 0 satisfying eq. (8) and
vice versa.

Clearly, (x, z) satisfies equation (3a) and the inequalities (3d)–(3f) with strict inequal-
ity. Concerning (3c), for each t ∈ U , xt < a if φ is small. If t ∈ {1, . . . , n} − U , then
xt = (1 − kφ)/(n − k) < 1/(n − k) = 1/(t1 − 1 + p) ≤ 1/p ≤ a. Checking (3b) is
a bit tricky. For each t ∈ U strict inequality holds if ε and φ are sufficiently small. It
remains to show that for each t /∈ U , xt = (1 − kφ)/(n − k) < a(1 − εt) = a(1 − zt).
This can be rewritten as a(n − k)εt < a(n − k) − 1 + kφ. Since a(n − k) > 1, any
ε < 1 − 1/(a(n − k)) will do for arbitrary φ.

Now consider (3g) for any (S′
1, S

′
2) = (S1, S2). Let U ′ = {t ′1, . . . , n} − (S′

1 ∪ S′
2).

Since |S′
1| + |S′

2| = p = |S1| + |S2|, at least one of the sets U − U ′ and U ′ − U is not
empty. First suppose U ′ − U is not empty. The left hand side of (3g) on (S′

1, S
′
2) is at

most

aremε + a

min(p,m)∑

t=2

εt . (9)

We claim that the right hand side is greater than (9) if ε is sufficiently small. Namely,
choose t ′ ∈ U ′−U arbitrarily.As t ′ /∈ U ,xt ′ = (1−kφ)/(n−k). Since (1−kφ)/(n−k) ≥
1/n when 0 ≤ φ ≤ 1/n, it follows that xt ′ ≥ 1/n for φ sufficiently small. Hence, the
right hand side of (3g) on (S′

1, S
′
2) is at least 1/n. So, choose ε > 0 independently from

the particular (S′
1, S

′
2) so that the quantity (9) is strictly smaller than 1/n. The chosen ε

determines φ by (8). If φ > 1/n, decrease φ and proportionally also ε.
If U ′ − U is empty, then U − U ′ cannot be empty. These conditions along with

|S1| + |S2| = p = |S′
1| + |S′

2| imply that t1 < t ′1. Since εt ′1/εt1 can be made arbitrarily
close to 0 by decreasing ε, the left hand side of (3g) on (S′

1, S
′
2) can be made smaller

than φ while maintaining eq. (8). Since the right hand side of (3g) is at least φ, we have
shown that the inequality is strict.

Finally, our demonstration also shows that every facet inducing inequality in (3b)–
(3g) represents a distinct facet of K . ��

6.3. A minimal linear representation of Kij

To obtain a minimal linear representation of Kij we first determine one for Ki∗ and K∗j ,
respectively, as follows. That is, define the polytope K with respect to Ki∗ as in Sec-
tion 5.1. Take the minimal linear representation of K and convert it back to one for Ki∗,
let Ai∗xi + Bi∗zi ≤ bi∗ denote this system. We can get a minimal linear representation
A∗j xj + B∗j z̃i ≤ b∗j for K∗j by a similar procedure. We will show that almost every

Branch-and-cut for RCPSVP 531

inequality in the combined system Ai∗xi + Bi∗zi ≤ bi∗, A∗j xj + [0, B∗j]zi ≤ b∗j

represents a facet of Kij .
First observe that (3f) becomes 1−zi

ri+pi ≥ 0 in polytope Ki∗ and it gets zi
di ≥ 0 in

polytope K∗j . Clearly zi
di ≥ 0 is implied by the facet-representing inequalities xi

di ≥ 0

and xi
di ≤ aizi

di for Ki∗. Therefore, zi
di ≥ 0 is superfluous in the linear representation

of Kij . Now consider zi
ri+pi ≤ 1. If ri + pi = rj , then this inequality is implied by the

facet-representing inequalities x
j

dj ≥ 0 and x
j

rj ≤ aj (1− zi
rj) for K∗j . As a by-product,

zi
rj ≤ 1 never represents a facet of Kij . We have the following:

Theorem 2. The system Ai∗xi+Bi∗zi ≤ bi∗, A∗j xj +[0, B∗j]zi ≤ b∗j without zi
di ≥ 0

and without zi
ri+pi ≤ 1 if ri + pi = rj is a minimal linear representation of Kij .

Proof. By Corollary 2, the linear system in the statement represents Kij . Now consider
e.g., a facet representing inequality αxi+βzi ≤ β0 for Ki∗. First suppose αxi+βzi ≤ β0
is not one among (2e). There exists a point (xi, zi) ∈ Ki∗ satisfying this inequality with
equality while all other inequalities in the minimal linear representation of Ki∗ are strict.
In particular, zi

t > zi
t+1 for t ∈ {rj , . . . , di − 1} by assumption and w.l.o.g. zi

di > 0,

since this inequality does not represent a facet of Ki∗. By the same token, we may
also assume that zi

rj < 1. We have to show that there exists a point (xj , z̃i) ∈ K∗j ,

where z̃i
t = zi

t for each t ∈ {rj , . . . , di}, such that all inequalities in the minimal linear
representation of K∗j are strict. To this end, we construct a point in the polytope K

which can be transformed to a point in K∗j with the desired properties. Namely, let
m = di − rj + 1, n = sj , λ1 = 1 − zi

rj , λ� = zi
�+rj −2

− zi
�+rj −1

, � ∈ {2, . . . , m}, and

λm+1 = zi
di . We clearly have

∑m+1
�=1 λ� = 1, and λ� > 0 for each �. Define the vectors

x� ∈ R
n as follows:

x�
t =

{
0 if 1 ≤ t ≤ � − 1
1/(n − � + 1) if � ≤ t ≤ n

� ∈ {1, . . . , m + 1}.

Hence, (x�, z�) ∈ K for each �, where the z� are defined in Section 5.1. Moreover, for
each inequality in the system (3b)–(3g) there exists at least one vector (x�, z�) on which
that inequality is strict, as one may verify. Therefore, (x, z) = ∑

� λ�(x
�, z�) is a point

in K such that all inequalities on it are strict, since each λ� > 0.
The cases when αxi + βzi ≤ β0 is one among (2e) (in which case it represents a

facet of both Ki∗ and K∗j) or αxj +βz̃i ≤ β0 represents a facet of K∗j can be handled
similarly. ��

7. Implementation and computational evaluation

We implemented two branch-and-cut algorithms, B+ and B−, for solving the mixed inte-
ger-linear program (1). We assume familiarity with this technique, for an introduction
see e.g. Padberg and Rinaldi [22] and Jünger et al. [16]. The LP relaxation of RCPSVP
is obtained from the strong formulation by relaxing the constraint (1h) to 0 ≤ zi

t ≤ 1,
∀ i, t . The algorithm B+ uses the following classes of valid inequalities to cut off a
solution (x, y, z) of the LP relaxation with fractional z:

532 Tamás Kis

(i) To each pair of activities (i, j) ∈ A corresponds a polytope Kij . The algorithm
checks whether (xi, xj , zi) ∈ Kij by finding the most violated (S1, S2) inequalities
for Ki∗ and also for K∗j .

(ii) Flow cover inequalities. These inequalities are defined in [21]. Although they are
not needed to describe the polytopes Ki∗ and K∗j , the constraints (1e) along with
(1bc), (1g) and (1h) give rise to variable upper bound flow problems.

(iii) Gomory fractional cuts, see e.g., Nemhauser and Wolsey [20].

Algorithm B− is identical to B+ except it does not separate class (i) inequalities.
Both algorithms start from scratch, i.e., without setting any initial upper bound.

We coded algorithms B+ and B− in C++ using the ILOG CPLEX 7.5 branch-and-
cut solver [15]. Besides modeling the problem and calling the solver, we coded only
the separation algorithm described in Section 5.2 for class (i) and we let the solver find
violated inequalities in classes (ii) and (iii). The LPs were solved by the built-in dual-
simplex method and we also used the built-in heuristic to find feasible solutions. In B+
the separation algorithm for class (i) inequalities was called in the root and then in every
fifth node during the search.

7.1. Comparison to Branch-and-Price

In this section we compare and evaluate three algorithms: the branch-and-price algo-
rithm of Hans [11], denoted by H , and the algorithms B+ and B−. Hans evaluated his
method on the benchmark instances of De Boer [5]. Each instance consists of one project
only whose precedence graph was generated by the randomized procedure of Kolisch
et al. [17]. The maximal intensity ai of each activity i is given by 1/pi , where pi was
chosen randomly between 1 and 5. Moreover, every activity may require up to 5 distinct
resources. In each time period the internal capacity of each resource is finite, and its exter-
nal capacity is infinite with cost uniformly 1. The instances are subdivided into classes
characterized by common parameter values such as the number of activities in the project
n, the number of resources r and the average slack s = ∑n

i=1(s
i −pi)/n. For each com-

bination of the parameter values n = 10, 20, 50, r = 3, 10, 20 and s = 2, 5, 10, 15, 20,
ten random instances were generated yielding a total of 450 instances.

The computing environment of Hans was a PC with a 600 MHz Pentium 3 processor,
Windows 2000 operating system, Borland Delphi 5 programming language and CPLEX
7.0. Hans stopped the algorithm after 1800 seconds. We performed the tests on a PC
with a 1.6 GHz Pentium 4 processor under Windows 2000, and terminated the search
after 675 seconds. The computational results of algorithm H reported here are slightly
better than those in [11], since we used the latest data (fall of 2003) from E. Hans [12].
In the following ub(A) and lb(A) denote the best upper and lower bound, respectively,
obtained by algorithm A, where A is one of H , B+ and B−.

Table 1 shows how often the three algorithms found provably optimal solutions. For
each class of instances the upper number indicates the number of times algorithm H

proved optimality, while the other two numbers show the performance of B+ and B−,
respectively. Notice that either variant of our branch-and-cut algorithm proved optimality
in considerably more cases than algorithm H and we got better results with B+.

Branch-and-cut for RCPSVP 533

Table 1. Number of times algorithms H , B+ and B− proved optimality in each class.

n = 10 n = 20 n = 50
s r = 3 10 20 3 10 20 3 10 20
2 10 10 10 10 10 10 7 5 0

10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
5 10 10 10 7 1 0 0 0 0

10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/8
10 10 4 5 0 0 0 0 0 0

10/10 10/10 10/10 10/10 10/10 10/10 10/8 2/1 0/0
15 1 0 2 0 0 0 0 0 0

10/10 10/10 10/10 10/10 7/7 10/5 2/0 0/0 0/0
20 1 1 1 0 0 0 0 0 0

10/10 10/10 10/10 9/8 4/2 3/2 0/0 0/0 0/0

Table 2. The average of ub(B+)/ub(H) and, when different, the average of ub(B−)/ub(H).

n = 10 n = 20 n = 50
s r = 3 10 20 3 10 20 3 10 20
2 1 1 1 1 1 1 1 1 1
5 1 1 1 0.99 0.99 0.99 0.95 0.96 0.99
10 1 1 0.99 0.86 0.97 0.98 0.73 0.94/0.96 0.97/0.99
15 0.88 0.98 0.98 0.63 0.94 0.97 0.63/0.74 0.92/1.08 1.03/1.11
20 0.89 0.98 0.98 0.71 0.91 0.97 0.56/0.69 0.92/1.1 0.96/1.21

Table 2 summarizes the average ub(B+)/ub(H) ratio over the ten instances in each
class, and also, when different, the average ub(B−)/ub(H) ratio. In almost all classes
B+ gives at least as good results as algorithm H on average, the only exception being
when n = 50, r = 20 and s = 15, but B− is inferior to H in four classes consisting of
hard instances. Moreover, both B+ and B− improved on the best upper bounds in several
cases. Comparing this table to Table 1 reveals that algorithm H found the optimum in
more cases than it was able to prove optimality.

The performance of our branch-and-cut algorithms can also be measured by the ratio
of the lower bound to the upper bound on every instance. Table 3 depicts for each class
the average lb(B+)/ub(B+) ratio and also, when different, the average lb(B−)/ub(B−)

ratio. In either case the ratio decreases when both the number of activities and the aver-
age slack tend to be high. However, the gap between the lower and upper bounds is
significantly bigger when the (S1, S2) inequalities are not used.

Finally, some details of the computations are provided in Table 4. For technical rea-
sons we give this data for algorithm B+ only. There are three groups corresponding to
the three problem sizes in terms of the number of activities. Averages are taken over the
150 instances constituting a group.

Table 3. The average of lb(B+)/ub(B+) and, when different, the average of lb(B−)/ub(B−).

n = 10 n = 20 n = 50
s r = 3 10 20 3 10 20 3 10 20
2 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1/0.99 0.96/0.90 0.93/0.88
15 1 1 1 1 0.99 1 0.86/0.68 0.85/0.70 0.80/0.70
20 1 1 1 0.99 0.97/0.95 0.98/0.96 0.77/0.51 0.66/0.49 0.72/0.53

534 Tamás Kis

Table 4. Some details of the computations of algorithm B+.

n = 10 n = 20 n = 50
Avg. time horizon T 28 36 45.08
Avg. CPU time in seconds 4.3 125 372
Avg. no. of search tree nodes 176 1697 1096
Avg. no. of flow cover cuts added 111 189 239
Avg. no. of fractional cuts added 9 12 13
Avg. no. of (S1, S2) cuts added 21 76 193

In summary, our algorithms proved optimality in considerably more cases than
branch-and-price and we also improved on the previously known upper bounds. Finally,
it is advantageous to use (S1, S2) inequalities especially when solving hard instances
with a large number of activities and large slack.

7.2. Results on Tavares’ instances

Tavares [24] proposed a non-linear program for the makespan minimization problem
(cf. Section 3). In his book, computational results are reported for two test cases (Case
A and Case B) with the following main characteristics. There is only one resource with
finite constant internal capacity and with no external capacity. For each activity i, ri = 0,
ai = 1/pi , where pi is the given integer minimum duration of activity i, and qi

1 = 10pi .
The precedences between the activities are given by an acyclic directed graph.

In Case A there is a project network with 75 activities. However, the same network
gives rise to a series of problem instances by varying the capacity of the single resource.
The tested values are 120, 100, 80, 75, 70, 65 giving rise to six distinct problem instances.
In Case B the project network consists of 150 activities and there is a problem instance
for each of the resource capacity limits 240, 200, 180, 120. For more details of the
instance generation we refer to [25].

A lower bound on the minimum makespan is the length of the longest path in the
project network, denoted by lbp, which is computed after fixing the activity durations to
the given minimum values. Clearly, this bound does not depend on the resource capacity
limit. For all Case A instances lbp = 27, whereas for all Case B instances lbp = 21.
A resource based lower bound, lbr , can be computed by dividing the total resource
requirement of the activities by the capacity of the resource, which was communicated
to us by J. Coelho [4]. Clearly, lbmax = max{lbp, lbr} is a valid lower bound on the
makespan.

We solved the makespan minimization problem by a dichotomic search procedure
described in Appendix II with run-time limits τ1 = 3600 and τ2 = 600 seconds. Table 5
summarizes our computational results on Case A and Case B, respectively, and also
compare them to those of Tavares. Column rcap indicates the resource capacity, ub(Tav)

is the upper bound obtained by Tavares [24] (the starred values are optimal) and Opt is
our upper bound which was always optimal. Some details of computations are given in
terms of the CPU time (in seconds), the total number of Gomory fractional cuts added
(#frac cut), and the total number of (S1, S2) cuts added, #(S1, S2). Since CPLEX never
generated any flow cover cuts, we do not indicate their number. In every case algorithm
B+ found a feasible solution for T = lbmax which, therefore, was always optimal. In

Branch-and-cut for RCPSVP 535

Table 5. Results on Case A and Case B instances.

rcap ub(Tav) Opt CPU time #frac cut #(S1, S2)

Case A 120 27∗ 27 0.04 0 0
100 27∗ 27 0.06 0 0
80 27∗ 27 0.23 1 7
75 29 27 0.25 27 11
70 29 27 0.29 19 17
65 30 28 0.57 8 15

Case B 240 21∗ 21 0.09 4 1
200 21∗ 21 0.11 0 0
180 24 21 0.06 0 0
120 27 25 14.46 0 93

addition, the optimal solution was always found already in the root node of the branch-
and-bound tree. For all but the last instance in Case A, J. Coelho obtained the same
bounds as ours by using metaheuristics [4]. However, we improved on the upper bounds
of Tavares in five out of ten cases in a short computation time.

7.3. Evaluation on PSPLIB

We also evaluated our makespan minimization procedure on the well-known PSPLIB
instances that were originally designed for the non-preemptive resource constrained
project scheduling problem [18]. In each PSPLIB instance there are 4 resources each
having a finite constant internal capacity and no external capacity. Each activity i has a
deterministic duration pi , which we interpret as the inverse of the maximum intensity
of activity i, that is, let ai = 1/pi . In each time period of execution, activity i requires
ρi,k units of resource k. Therefore, we set qi

k = ρi,kpi , for each resource k.
We tested our algorithm on 30-activity (j30) and 60-activity (j60) instances, respec-

tively. On the j30 instances the run-time limit of the two phases were set as τ1 = τ2 =
300 seconds, whereas on j60 instances we set τ1 = 1800, τ2 = 600 seconds. We divide
the j30 as well as j60 instances into two subclasses: those on which the total CPU time
(through all invocations of B+) of the algorithm was less than 60 seconds and the rest.
Thus we have four classes: j30−, j60− (less than 60 seconds total CPU time), j30+,
j60+ (more than 60 seconds total CPU time). Every j30 instace has been solved, i.e., a
feasible solution has been found, but fourteen j60+ instances have remained unsolved.
Table 6 has four rows corresponding to these subclasses. The second column indicates
the number of instances in the class, and, when different, the number of instances solved.
Moreover, the third and fourth columns indicate the average as well as minimum ratio of
the strongest lower bound to the best upper bound over all solved instances in the class.

Table 6. Results on PSPLIB instances

#inst. avg. min nodes CPU #flow #frac #(S1, S2)

lb/ub lb/ub time cut cut cut
j30− 413 1.00 1.00 60.95 1.46 6.60 3.36 15.84
j30+ 67 0.95 0.72 2613 442 72 11 554
j60− 380 1.00 1.00 2.7 2.07 2.00 1.35 12.92
j60+ 100/86 0.93 0.67 591 2118 30 43 903

536 Tamás Kis

We measured the total CPU time and gathered the total search tree nodes, and the total
number of flow, fractional and (S1, S2) cuts added through all invocations of B+ while
solving each instance. The averages of these data over all solved instances in a class are
given in the next five columns of the table. Notice that the majority of instances were
solved to optimality in less than 3 seconds. On hard instances the computation time can
be 1 hour or more, but was never more than 1.5 hours.

8. Conclusions and future work

In this paper we have proposed an efficient branch-and-cut algorithm for solving the
strongly NP-hard RCPSVP problem. The success of the algorithm is due partly to the
new LP-formulation of the precedence constraints, and partly to the investigation of
the polyhedra of scheduling two variable-intensity activities connected by a precedence
constraint. In order to solve harder problem instances than those on which the algorithm
performs quite well, new polyhedral results are necessary which can be the topic of
future research.

Acknowledgements. The author is grateful to the two anonymous referees whose comments helped to signifi-
cantly improve the presentation and to eliminate some errors. We are thankful to Willy Herroelen for providing
us with an extract from [6]. We are indebted to Erwin Hans and José Coelho who provided us with bench-
mark instances and shared with us their experience in solving the RCPSVP and the makespan minimization
problem, respectively. The supports of the Hungarian NRDP grant “Digital Factories, Production Networks”
No. 2/040/2001, and OTKA T046509 are gratefully acknowledged.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice Hall, Englewood Cliffs, New Jersey,
1993

2. Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J.: Scheduling Computer and Manufacturing
Processes. 2nd edition, Springer-Verlag, Berlin, Heidelberg, New-York, 2001

3. Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained project scheduling:
Notation, classification, models and methods. Eur. Jour. Ops. Res. 112, 3–41 (1999)

4. Coelho, J.: Personal communication. 2003
5. De Boer, R.: Resource-Constrained Multi-Project Management - A Hierarchical Decision Support Sys-

tem. Ph.D. thesis, Twente University Press, The Netherlands, 1998
6. Demeulemeester, E.L., Herroelen, W.S.: Project Scheduling: A Research Handbook. Kluwer Academic

Publ., International series in operations research and management science 49, 2002
7. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian J. Math. 8 399–404 (1956)
8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the Theory of NP-Completeness.

W. H. Freeman and Co., San Francisco, 1979
9. Gonzalez, T., Sahni, S.: Flowshop and jobshop schedules: Complexity and approximation. Oper. Res.

26/1, 36–52 (1978)
10. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in

deterministic sequencing and scheduling theory: a survey. Ann. Discrete Math. 5, 287–326 (1979)
11. Hans, E.W.: Resource loading by branch-and-price techniques. Ph.D. thesis, Twente University Press,

The Netherlands, 2001
12. Hans, E.W.: personal communication. 2003
13. Herroelen, W.S., De Reyck, B., Demeulemeester, E.L.: Resource-constrained project scheduling: a survey

of recent developments. Comput. Ops. Res. 25/4, 279–302 (1998)
14. Hoffman, A.J., Kruskal, J.B.: Integral boundary points of convex polyhedra. In: H.W. Kuhn, A.W. Tucker

(eds.), Linear Inequalities and Related Systems, Princeton University Press, Princeton, 1956, pp. 233–246
15. ILOG: ILOG CPLEX 7.5, User’s manual. ILOG S.A, Gentilly, France, 2001

Branch-and-cut for RCPSVP 537

16. Jünger, M., Reinelt, G., Thienel, S.: Practical problem solving with cutting plane algorithms in combina-
torial optimization. DIMACS Ser. in Discr. Math. and Theor. Comput. Sci. 20, 111–152 (1995)

17. Kolisch, R., Sprecher, A., Drexl, A.: Characterization and generation of a general class of resource-con-
strained project scheduling problems. Technical Report, 301, University of Kiel, Germany, 1992

18. Kolisch, R., Sprecher, A.: PSPLIB – a project scheduling library. Eur. Jour. Ops. Res. 96, 205–216 (1997)
19. Leachman, R.C., Dincerler, A., Kim, S.: Resource constrained scheduling of projects with variable-inten-

sity activities. IIE Trans. 22/1, 31–40 (1990)
20. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. John Wiley & Sons, NewYork,

1988
21. Padberg, M.W., Van Roy, T.J., Wolsey, L.A.: Valid linear inequalities for fixed charge problems. Oper.

Res. 33/4, 842–861 (1985)
22. Padberg, M.W., Rinaldi, G.: Optimization of a 532 city symmetric traveling salesman problem by branch

and cut. Oper. Res. Lett. 6, 1–7 (1987)
23. Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons, Chicester, 1986
24. Tavares, L.V.: Advanced models for project management. Kluwer Academic Publishers, 1998, pp. 177–

216
25. Tavares, L.V.: A review of the contribution of operational research to project management. Eur. Jour. Ops.

Res. 136, 1–18 (2002)
26. Weglarz, J.: Project scheduling with continuously-divisible doubly constrained resources. Management

Science 27/9, 1040–1053 (1981)

Appendix I

Proof of Lemma 1. Suppose first that the instance of PFSP has a solution σ . If activity
i represents the processing of job j on processor k then set xi

t = σ(j, k, t)/πj,k . More-
over, set zi

t = 1 if and only if there exists t ′ ≥ t with xi
t ′ > 0, and 0 otherwise. Finally,

set yk
t = 0 for all resources (processors) k and time periods t . One can verify that the

above (x, y, z) satisfies system (1).
Conversely, suppose system (1) admits a feasible solution (x′, y′, z′). We will prove

that in this case there exists a possibly different feasible solution (x, y, z) of the system
such that xi

t = ai or 0, y = y′ and z = z′. From this claim it follows that the schedule
σ , defined by σ(j, k, t) = xi

t /a
i for each j , k, t and i such that activity i represents

the processing of job j by processor k, is a feasible solution for the PFSP instance. It
is enough to verify property (ii), as the other two requirements against feasible sched-
ules easily follow from the properties of feasible solutions of system (1). We have the
following estimation on the number of jobs requiring a processor k in time period t :

∑

j

σ (j, k, t) =
∑

i

xi
t /a

i =
∑

i:qi
k>0,t∈{ri ,... ,di }

qi
k · xi

t ≤ 1.

Here, the second summation is over all activities i representing the processing of a job
j by processor (resource) k. The second equality follows from the definition of ai and
qi
k and the inequality is due to the fact that (x, y, z) satisfies (1e) and y must be all 0

since all external resource capacities are 0.
To prove our claim, observe that in any feasible solution of (1), z is a 0/1 vector.

Let Uj be the subset of time points where activity j may be executed, i.e., z
j
t = 1 and

zi
t = 0 for all i such that (i, j) ∈ A (cf. constraints (1b) and (1c)). Since all components

538 Tamás Kis

of z are fixed to 0 or 1, we may rewrite the system (1) as follows:

di
∑

t=ri

xi
t = 1, i ∈ N, (10a)

∑

i:qi
k>0

(1/ai) · xi
t ≤ 1, t ∈ {1, . . . , T } (10b)

0 ≤ xi
t ≤ ai, i ∈ N, t ∈ Ui (10c)

xi
t = 0, i ∈ N, t /∈ Ui. (10d)

Multiply the constraints (10a),(10c) and (10d) by 1/ai and replace (1/ai) · xi
t by a

new variable x̃i
t . The resulting system, depicted below, is a transportation problem.

di
∑

t=ri

x̃i
t = 1/ai, i ∈ N (11a)

∑

i:qi
k>0

x̃i
t ≤ 1, t ∈ {1, . . . , T } (11b)

0 ≤ x̃i
t ≤ 1, i ∈ N, t ∈ Ui (11c)

x̃i
t = 0, i ∈ N, t /∈ Ui. (11d)

Since the constraint matrix of (11) is totally unimodular and the right hand side is
integral (since every ai is the inverse of some πj,k ∈ Z

+), the Hoffman-Kruskal theorem
on unimodular matrices [14] implies that there exists an integral solution x. Since xi

t is
between 0 and 1, x is a 0-1 vector. Then, xi

t = ai · xi
t is a solution of (10) such that

xi
t = 0 or ai , as claimed. ��

Appendix II

To compute the minimum project duration we can embed algorithm B+ into a dicho-
tomic search procedure. By setting all activity deadlines to a given value T , algorithm
B+ can decide whether a feasible schedule of makespan at most T exists. As we will call
B+ several times, a run-time limit is set for each invocation. Therefore, branch-and-cut
can terminate with either a feasible solution, or it may prove that no feasible solution
exits, or it stops by reaching the time limit without finding a feasible solution or proving
infeasibility.

The procedure first computes the lower bound lbmax = max{lbp, lbr}, noting that if
there are two or more resources, then lbr is the maximum of the resource based lower
bound over all resources. Then it tries to determine an upper bound on the minimum
project duration by calling algorithm B+ with activity deadlines T = lbmax, (3/2)lbmax,

2lbmax, respectively, in this order, and with a run-time limit τ1 for each call. If it fails in

Branch-and-cut for RCPSVP 539

all three cases, then the algorithm terminates with no solution found. On the other hand,
if already for T = lbmax a feasible solution is found, it stops, that solution is optimal,
since lbmax is a lower bound on the minimum makespan. Otherwise, a dichotomic search
is performed between T − lbmax/2 and T and a run-time limit τ2 is set for each call of
B+. The output of the algorithm are the least bound ub for which a feasible solution has
been found, and the largest lb such that infeasibility of lb − 1 has been proven.

