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Abstract. In the strip packing problem (a standard version of the two-dimensional cutting stock problem),
the goal is to pack a given set of rectangles into a vertical strip of unit width so as to minimize the total height
of the strip needed. The k-stage Guillotine packings form a particularly simple and attractive family of feasible
solutions for strip packing.

We present a complete analysis of the quality of k-stage Guillotine strip packings versus globally optimal
packings: k = 2 stages cannot guarantee any bounded asymptotic performance ratio. k = 3 stages lead to
asymptotic performance ratios arbitrarily close to 1.69103; this bound is tight. Finally, k = 4 stages yield
asymptotic performance ratios arbitrarily close to 1.

Key words. Cutting stock – Strip packing – Guillotine cuts – Packing problem – Approximation scheme –
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1. Introduction

We consider a version of the two-dimensional cutting stock problem that is called the
strip packing problem: We are given a supply of raw-material in the form of a rectan-
gular strip of width 1 and unlimited height, and a demand of n rectangular items with
widths and heights from the unit interval [0, 1]. The goal is to find a packing of all items
into the strip such that the total height used is minimized. It is not allowed to rotate
the items, and all items have to be packed with their sides parallel to the sides of the
strip. This is a natural and fundamental optimization problem that has many applications
in manufacturing systems (where not allowing rotations is motivated by the structure
of the raw-material, such as the grain of wood or the pattern of cloth), and in parallel
scheduling systems (where the width of the strip represents the machines, and the height
represents time), and in VLSI design. We refer the reader to Gilmore & Gomory [9] and
to Baker, Coffman & Rivest [2] for more information on this problem.

In certain manufacturing environments machines can only perform edge-to-edge
cuts that are parallel to the strip’s width or height; such cuts are called Guillotine cuts.
A Guillotine cut splits the raw material into two pieces that can be processed in parallel
and that can be further subdivided by other Guillotine cuts. A strip packing that can
be implemented by a sequence of Guillotine cuts is called a Guillotine strip packing.
The strip packings in Figure 1(b), 1(c), 1(d) are Guillotine strip packings, whereas the
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Fig. 1. (a) not a Guillotine strip packing; (b) a 3-stage Guillotine strip packing; (c) a 2-stage Guillotine strip
packing; (d) a 4-stage Guillotine strip packing.

packing in Figure 1(a) is not. Sometimes it is convenient to perform several Guillotine
cuts in parallel; this is then called a cutting stage. For instance the packing in Figure 1(c)
can be produced by a first stage with three horizontal Guillotine cuts, followed by a sec-
ond stage of vertical Guillotine cuts through the resulting pieces. A k-stage Guillotine
strip packing is a strip packing that can be implemented by a sequence of k stages of
parallel Guillotine cuts. The cuts in the odd-numbered stages are always done horizon-
tally, and the cuts in the even-numbered stages are always done vertically. Guillotine
strip packings with a small number of stages (say, with k = 4 or k = 5 stages) are
particularly simple to process and to implement, and hence they are very attractive for
industrial applications.

1.1. Known results

Strip packing is an NP-hard problem: Its special case where all items are of height 1
boils down to the classical one-dimensional bin packing problem. Hence, research has
turned to the design of good and efficient approximation algorithms for strip packing.

For a strip packing instance I , we denote by Opt(I ) the height of its optimal packing,
and by A(I) the height of a packing produced by an approximation algorithm A. Then
the asymptotic performance ratio (a.p.r.) of algorithm A (cf. Garey and Johnson [8]) is
defined as the smallest real r ≥ 1 for which there exists some positive constant const(r)
such that for all instances I ,

A(I) ≤ r · Opt(I )+ const(r). (1)

Because of the additive constant in (1), small instances are irrelevant for the asymptotic
performance ratio. Hence, the a.p.r. mainly measures the quality of strip packings with a
huge number of items, and it is robust against anomalies resulting from a small number
of rectangles in the optimal packing.

Baker, Coffman & Rivest [2] designed a polynomial time approximation algorithm
with asymptotic performance ratio equal to 3. Coffman, Garey, Johnson & Tarjan [4]
improved the a.p.r. down to 2.7, Sleator [15] improved it to 2.5, Golan [10] to 1.33, and
Baker, Brown & Katseff [1] to 1.25. Finally, Kenyon & Remila [12, 13] constructed an
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asymptotic fully polynomial time approximation scheme (AFPTAS) for strip packing:
For every ε > 0 there is a polynomial time approximation algorithm with asymptotic
performance ratio 1 + ε; the running time is polynomial in the number n of items and
in 1/ε. Remarkably, this AFPTAS produces 5-stage Guillotine packings.

In the on-line version of strip packing, the items arrive one by one, and have to
be packed immediately, without knowledge of future items. Baker & Schwarz [3] gave
an on-line algorithm with a.p.r. ≈ 1.7, and Csirik & Woeginger [5] improved this to
a.p.r. ≈ 1.69103. The on-line algorithms in [3] and [5] produce 3-stage Guillotine
packings.

1.2. Our results

We perform an analysis of the quality of k-stage Guillotine strip packings for strip pack-
ing. Theorems 1.1, 1.2, and 1.3 present the complete picture how well k-stage Guillotine
strip packings can approximate the optimal packing:

• k = 2 stages are far too weak, and cannot guarantee any bounded performance ratio.
• k = 3 stages are reasonable, and lead to an asymptotic performance ratio of 1.69103.
• k = 4 or more stages are excellent, and yield asymptotic performance ratios arbi-

trarily close to 1.

The result for k = 2 is straightforward, and half of the result for k = 3 has been proved
in the literature. The main contribution of this paper is the other half of the result for
k = 3, and the new result for k = 4. For k ≥ 2, we denote by Gk(I) the height of the
best k-stage Guillotine packing for instance I .

Theorem 1.1 (Result for k = 2 stages). For any r ≥ 1 and for any positive constant
c, there exists an instance I such that the best 2-stage Guillotine packing for I satisfies
G2(I ) > r · Opt(I )+ c.

The proof of Theorem 1.1 can be found in the first paragraph of Section 2.

Theorem 1.2 (Result for k = 3 stages). For any ε > 0, there exists a constant const(ε),
such that any strip packing instance I satisfies

G3(I ) ≤ (h∞ + ε) · Opt(I )+ const(ε)

where h∞ ≈ 1.69103 is defined as in equation (2). A 3-stage Guillotine packing of
this quality can be computed in polynomial time. Moreover, the value h∞ in the above
inequality is best possible.

The positive result in Theorem 1.2 has been proved implicitly by Csirik & Woeginger
[5], since the on-line strip packing algorithm in [5] produces a 3-stage Guillotine pack-
ing of the stated quality, and since it has a polynomial running time. The proof that the
constant h∞ ≈ 1.69103 can not be improved is given in Section 2.

Theorem 1.3 (Result for k ≥ 4 stages). For any ε > 0, there exists a constant const(ε),
such that any strip packing instance I satisfies

G4(I ) ≤ (1 + ε) · Opt(I )+ const(ε)
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A 4-stage Guillotine packing of this quality can be computed with a time complexity that
is polynomial in the number n of items and in 1/ε.

In other words, there is an AFPTAS for computing the best 4-stage Guillotine strip pack-
ing that simultaneously is an AFPTAS for computing the globally best strip packing.
Theorem 1.3 is proved in Section 3.

Our proof draws many ideas from Fernandez de la Vega & Lueker [6], Karmarkar
& Karp [11], Fernandez de la Vega & Zissimopoulos [7], and especially from Kenyon
& Remila [12, 13]. Our result also reproves the existence of an AFPTAS for strip pack-
ing, the main result of [12, 13]. However, whereas the paper [12, 13] introduced quite
a number of new ideas and new tricks, our arguments are fairly simple; the complete
proof takes less than five pages. Our arguments also demonstrate that the combinator-
ics of strip packing is very close to the combinatorics of classical one-dimensional bin
packing: If the reader is familiar with the results of Fernandez de la Vega & Lueker [6],
he/she will notice that the arguments in Sections 3.1–3.3 are just simple two-dimensional
generalizations of the arguments in [6] for the one-dimensional problem.

2. Two and three stages: Proofs of the negative results

In this section, we prove the negative statements in Theorems 1.1 and 1.2. The proof
of Theorem 1.1 is straightforward: Let � be an integer, and consider an instance I with
�2 items of width 1/� and height from the interval [1 − 1/�, 1] such that distinct items
have distinct heights. Then the optimal packing has height Opt(I ) ≤ �, whereas the best
2-stage Guillotine packing has heightG2(I ) ≥ �2−�.This yieldsG2(I )/Opt(I ) ≥ �−1.
Letting � tend to infinity completes the proof.

The rest of this section is devoted to the proof of the negative statement in Theo-
rem 1.2. We define a sequence ti of integers that is well-known in the on-line bin packing
community. In the literature this sequence is sometimes called the Salzer sequence, since
it was introduced in 1947 by Salzer [14].

t1 = 2

ti+1 = ti (ti − 1)+ 1 for i ≥ 1

The Salzer sequence starts with the numbers 〈2, 3, 7, 43, 1807, 3263443, . . . 〉, and its
growth is doubly exponential. Now the number h∞ (that was already used in the state-
ment of Theorem 1.2) can be defined precisely.

h∞ =
∞∑

i=1

1

ti − 1
= 1 + 1

2
+ 1

6
+ 1

42
+ 1

1806
+ · · · · · · ≈ 1.69103. (2)

We will now define an instance I for which the height of the best 3-stage Guillotine
packing is far away from the height of the globally optimal packing. A crucial property
of instance I will be that no two of its items have the same width.

Let ε with 0 < ε < 1 be a (small) real number, and let α be a (huge) integer that
satisfies α > 100/ε. We determine the smallest index d that fulfills the inequality

h∞ − ε

2
≤

d∑

i=1

1

ti − 1
, (3)
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and we define a real number δ by

δ = 1

d

(
1 −

d∑

i=1

1

ti

)
= 1

td (td − 1)d
> 0. (4)

The instance I consists of d item lists I1, . . . , Id where list Ii consists of ni items that
all have the same height Hi , and that all have width between 1/ti and 1/ti + δ. Hence,
these lists Ii are ‘almost’ homogeneous.

• The first list I1 consists of n1 = α items of height H1 = 1. The width of every item
in I1 is taken from the open interval (1/2, 1/2 + δ) in such a way that no two items
in I have the same width.

• Now assume that the item lists I1, . . . , Ii−1 have already been defined. Let Ni−1 =
n1 + n2 + · · · + ni−1 denote the overall number of items in I1, . . . , Ii−1. Then list
Ii consists of ni = α · (ti − 1) · Ni−1 items of height Hi = 1/((ti − 1)Ni−1). The
width of every item in Ii is taken from the open interval (1/ti , 1/ti + δ) in such a
way that no two items in I have the same width.

This completes the description of instance I .

Lemma 2.1. There exists a strip packing of instance I of height α.

Proof. In every list Ii , we pack the ni = α · (ti − 1) · Ni−1 items into α so-called
crates, that is, rectangular objects of height 1 and width 1/ti + δ. Every crate receives
(ti − 1)Ni−1 items with total height (ti − 1)Ni−1 ·Hi = 1, and there indeed is sufficient
space to accomodate all items from Ii by stacking them on top of each other. In the strip
packing, we create α so-called shelves of height 1 and width 1. Into every shelf we put
exactly one crate from every list Ii . These crates fit together into one shelf, since their
total width is at most

d∑

i=1

(
1

ti
+ δ

)
= d · δ +

d∑

i=1

1

ti
= 1.

Here we used the definition of δ in (4). ��
Lemma 2.2. Any 3-stage Guillotine strip packing for I has height at least (α−1)

∑d
i=1

1
ti−1 .

Proof. Consider an arbitrary 3-stage Guillotine strip packing for I : Recall from the
definition of a k-stage Guillotine strip packing that the cuts in the first stage are done
horizontally. The cuts in the first stage subdivide the strip into so-called shelves, and the
cuts in the second stage then subdivide the shelves into so-called crates. If some crate
contained two or more items, then the cuts in the third stage are not sufficient to cut out
these items, since no two items in I have the same width. Hence, every crate contains
at most one item, and the structure of any 3-stage Guillotine strip packing for I must be
fairly primitive.

A shelf that contains at least one item from list Ii , but that does not contain any item
from the lists I1, . . . , Ii−1 is said to be a shelf of type i. We denote by xi the number of
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shelves of type i, and by Xi−1 the number of shelves of type 1, 2, . . . , i − 1. Clearly,
xi ≤ ni andXi−1 ≤ Ni−1. Altogether, there are ni items in the list Ii , and all these items
are in shelves of types 1, . . . , i. Since every shelf can accomodate at most ti − 1 items
from list Ii , we get that

ni ≤ (xi +Xi−1) · (ti − 1) ≤ (xi +Ni−1) · (ti − 1).

Together with ni = α · (ti − 1) ·Ni−1 this yields

xi ≥ (α − 1) ·Ni−1. (5)

Since the height of a shelf of type i is at leastHi = 1/((ti − 1)Ni−1), (5) yields that the
height of the 3-stage Guillotine strip packing is at least

d∑

i=1

xi ·Hi ≥
d∑

i=1

(α − 1) ·Ni−1 · 1

(ti − 1)Ni−1
= (α − 1)

d∑

i=1

1

ti − 1
.

This completes the proof of the lemma. ��

The statements in Lemma 2.1 and 2.2, the inequality (3), and the inequality α >
100/ε together imply that the ratio between the height of the best 3-stage Guillotine
strip packing and the height of the globally best strip packing is at least

α − 1

α + 1

d∑

i=1

1

ti − 1
≥ α − 1

α + 1
(h∞ − ε

2
) > h∞ − ε.

Since in our construction the value ε can be made arbitrarily close to 0, this completes
the proof of Theorem 1.2.

3. Four stages: The approximation scheme

In this section, we will prove Theorem 1.3. Hence, consider an arbitrary strip packing
instance I with n items. Let ε be some small real number with 0 < ε < 1. We define
two integers s = 	6/ε
 + 1 and t = s2, and the real number δ = 1/s. Note that these
choices imply (1 + 1/s)2 ≤ 1 + ε, and s(s + 1)/(s − 1)2 ≤ 1 + ε, and that δ t = s.

3.1. The two rounded instances

We classify the items into big items with widths greater than δ and into small items with
widths less than or equal to δ; this classification is taken from Kenyon & Remila [12,
13]. By H we denote the total height of all big items. Throughout, we will assume that

H ≥ 2t. (6)
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In the complementary case whereH < 2t , the additive constant in the asymptotic worst
case ratio in (1) can be used to swallow all the big items. Furthermore, we observe that
the total area Aitems of all items in instance I satifies

Aitems ≥ δ ·H, (7)

since every big item has width at least δ.
We subdivide the set of big items into t subsets B1, . . . , Bt with the following

properties: The items in Bi have width greater or equal to the width of items in
Bi+1(i = 1, . . . , t − 1). The total height Hi of the items in Bi is between H/t − 1
and H/t + 1 (i = 1, . . . , t). Such a partition indeed exists, since the height of every
single item is bounded by 1. By Wi (i = 1, . . . , t) we denote the maximum width over
all items in the subset Bi . Furthermore, we define Wt+1 to be the minimum width over
all items in the subset Bt . Note that W1 ≥ W2 ≥ · · · ≥ Wt+1 > δ holds.

Next, we define two rounded instances I− and I+ from the original instance I . Both
rounded instances have the same set of small items as I . Both rounded instances have
one corresponding big item for every big item in I : In the plus instance I+, the width of
every big item in set Bi (i = 1, . . . , t) is rounded up to Wi ; this yields a corresponding
set B+

i of big items. In the minus instance I−, the width of every big item in set Bi
(i = 1, . . . , t) is rounded down to Wi+1; this yields a corresponding set B−

i of big
items. Clearly,

Opt(I−) ≤ Opt(I ) ≤ Opt(I+). (8)

3.2. The two linear programming relaxations

A pattern is a non-negative integer vector q = 〈q1, . . . , qt 〉 such that
∑t
i=1 qiWi ≤ 1.

Note that Wi > δ implies qi < 1/δ, and that consequently there exist at most (1/δ)t

distinct patterns. Let Q denote the set of all patterns. The motivation for considering
these patterns is the following: Consider an arbitrary strip packing for instance I− or I+,
and make a horizontal cut at an arbitrary place through this packing. For i = 1, . . . , t
count the number qi of items along this cut that are of width Wi ; then these numbers qi
exactly form a pattern.

We introduce a linear programming relaxation (LP+) for instance I+, in which the
variable φ(q) measures the total height of all horizontal cuts that yield the pattern q.
(LP+) completely ignores all the small items.

(LP+) : minimize
∑
q∈Q φ(q)

subject to
∑
q∈Q qiφ(q) ≥ Hi for all 1 ≤ i ≤ t

φ(q) ≥ 0 for all q ∈ Q
By the above discussion, the optimal objective value Val(LP+) of this linear program
(LP+) is a lower bound on Opt(I+).

In a very similar manner, we introduce a linear programming relaxation (LP−) for
instance I−, in which the variable ψ(q) measures the total height of all horizontal cuts
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that yield the pattern q. (LP−) ignores all the small items as well as all the big items in
the set B−

t .

(LP−) : minimize
∑
q∈Q ψ(q)

subject to
∑
q∈Q qiψ(q) ≥ Hi−1 for all 2 ≤ i ≤ t

ψ(q) ≥ 0 for all q ∈ Q
Then the optimal objective value Val(LP−) is a lower bound on Opt(I−). Note that
(LP+) and (LP−) are actually one and the same formulation, but for two different
instances. Our next goal is to prove the following inequality.

Val(LP+) ≤ Opt(I )+ 2t + Aitems/s (9)

To this end, consider an optimal basic feasible solution ψ∗ of the linear program (LP−).
Since ψ∗ is a vertex of the underlying polytope, at most t of the values ψ∗(q) are non-
zero. Moreover, for p = 〈1, 0, 0, . . . , 0〉 the optimality ofψ∗ impliesψ∗(p) = 0. From
ψ∗, we define a solution φ′ for (LP+):

• For p = 〈1, 0, 0, . . . , 0〉, we let φ′(p) = H/t + 1.
• For all q �= p with ψ∗(q) = 0, we let φ′(q) = 0.
• For all q with ψ∗(q) > 0, we let φ′(q) = ψ∗(q)+ 2.

Claim 3.1. The defined φ′ constitutes a feasible solution for (LP+).

Proof. Indeed, by the definition of φ′(p) we have
∑

q∈Q
q1φ

′(q) ≥ H/t + 1 ≥ H1.

Here the final inequality follows since H1 lies between H/t − 1 and H/t + 1. Next,
consider some fixed index i with 2 ≤ i ≤ t . Since Hi−1 is non-zero and since ψ∗ is
feasible for (LP−), there exists some q ∈ Q such that qi and ψ∗(q) both are non-zero.
For this particular q, we have qi ≥ 1 and φ′(q) ≥ ψ∗(q)+2. We conclude that for i ≥ 2

∑

q∈Q
qiφ

′(q) ≥ (
∑

q∈Q
qiψ

∗(q))+ 2qi ≥ Hi−1 + 2 ≥ Hi.

Here the second inequality follows sinceψ∗ is feasible for (LP−), and the final inequal-
ity follows since Hi and Hi−1 both lie between H/t − 1 and H/t + 1. The displayed
inequalities now yield the feasibility of φ′ for (LP+). ��

Hence, φ′ is feasible for (LP+) and its objective value is
∑

q∈Q
φ′(q) ≤

∑

q∈Q
ψ∗(q)+ 2t +H/t ≤ Val(LP−)+ 2t + Aitems/(t · δ)

Here we used the inequality in (7). Since Val(LP−) ≤ Opt(I−) ≤ Opt(I ) and since
t · δ = s, the above inequality implies the correctness of (9).
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3.3. How to approximate the plus instance

In this subsection, we will construct a near-optimal packing for instance I+ in two con-
struction steps. We start from an optimal basic feasible solution φ∗ of (LP+), and we
note that in any basic feasible solution at most t of the values φ∗(q) can be non-zero.

In the first construction step, for every pattern q ∈ Q we introduce 	φ∗(q)/s
 shelves
of height s+1. These shelves are packed on top of each other in the strip. In every shelf,
we put qi crates of widthWi and of height s+1 (i = 1, . . . , t). Then we fill these crates
of widthWi one by one greedily with the big items inB+

i , until we run out of such items.
If some crate has remained empty in the end, it is deleted. As the item heights are less
than or equal to 1, all these crates of width Wi (with the possible exception of the final
crate), are filled up to a level strictly greater than s.

Claim 3.2. There is sufficient space for packing all items from B+
i into these crates.

Proof. Suppose not. Note that the total number of crates is

∑

q∈Q
qi 	φ∗(q)/s
 ≥

∑

q∈Q
qi φ

∗(q)/s ≥ Hi/s.

Here the first inequality follows from the definition of the ceiling function, and the sec-
ond inequality follows from the first restriction in the linear program (LP+). Further we
know that every crate is filled to a level strictly greater than s. This implies that the total
height of all items in B+

i is strictly greater than Hi , a contradiction. ��

In the second construction step, we add the small items of instance I+ to the packing
of the big items. We say that a small item has type k (k ≥ 0), if its width w satisfies
δ(1 − δ)k+1 < w ≤ δ(1 − δ)k . Small items of type k are packed greedily into crates of
type k, that is, crates of height s + 1 and width δ(1 − δ)k . The small items are simply
stacked on top of each other. Finally, the crates of type k ≥ 0 are packed greedily into
the shelves that were created during the first construction step as long as there is space.
Everytime some crate does not fit into any shelf, we start a new empty shelf of height
s + 1 on top of the current packing.

Now let us analyze the height App(I+) of the constructed packing. Let us first assume
that the second construction step does not open any new shelf. Then

App(I+) = (s + 1) ·
∑

q∈Q
	φ∗(q)/s


≤ (s + 1) · (t +
∑

q∈Q
φ∗(q)/s)

= (s + 1) · t + s + 1

s
Val(LP+)

≤ (s + 1) · t + s + 1

s

(
Opt(I )+ 2t + 1

s
Aitems

)

≤ (1 + ε)Opt(I )+ const(ε).
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Here the first inequality follows since in a basic feasible solution at most t of the values
φ∗(q) are non-zero. The second inequality follows from (9). The final inequality follows
from the definitions of s and t , and from the fact that Opt(I ) is at least the total area
Aitems .

Next, let us assume that the second construction step opens at least one new shelf.
Let us analyze the total area of the items in this packing: With at most one exception,
every crate of width Wi and height s + 1 (i = 1, . . . , t) is filled up to a level more
than s, and to their full width; this yields a filling factor of s/(s + 1). With at most one
exception, the crates of type k with width δ(1 − δ)k and height s + 1 is filled up to a
level more than s, and to a width of at least δ(1 − δ)k+1; this yields a filling factor of
(1 − δ)s/(s + 1). Let Acrates denote the total area of all crates in the packing. Then

Acrates ≤ s + 1

s(1 − δ)
Aitems +

t∑

i=1

Wi · (s + 1)+
∞∑

k=0

δ(1 − δ)k · (s + 1)

≤ s + 1

s(1 − δ)
Aitems + (t + 1)(s + 1). (10)

Here the first (finite) sum accounts for the exceptional crates from the first construction
phase, and the second (infinite) sum accounts for the exceptional crates from the second
phase. Moreover, we used Wi ≤ 1 to bound the terms in the first sum.

Every shelf (except possibly the top shelf) is filled by crates to a width of at least
1 − δ. Therefore, the total area App(I+) of the constructed packing satisfies

App(I+) ≤ 1

1 − δ
Acrates + (s + 1)

≤ s + 1

s(1 − δ)2
Aitems + (t + 1)(s + 1)

1 − δ
+ (s + 1).

≤ (1 + ε)Opt(I )+ const(ε).

Here we first used the inequality in (10) to bound Acrates , and then we used the fact that
Opt(I ) is at least the total area Aitems .

To summarize, in either case the height App(I+) of the just constructed approximate
packing for instance I+ satisfies

App(I+) ≤ (1 + ε)Opt(I )+ const(ε). (11)

The constructed packing is a 4-stage Guillotine strip packing: The shelves can be sepa-
rated from each other by the first stage of Guillotine cuts. In the second stage, we can
split every shelf into crates. A third and fourth stage are sufficient to cut every crate into
pieces.

3.4. The approximation scheme

We just have to put the above things together: For a given strip packing instance I with
n items, we first compute the corresponding plus instance I+. This can be done in time
polynomial in n.
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Then we determine an optimal basic feasible solution φ∗ for the linear program
(LP+). Since |Q| ≤ (1/δ)t and since Hi ≤ n for all i = 1, . . . , t , this solution can be
found by standard linear programming algorithms in time polynomial in log n and expo-
nential in 1/ε. Such a time complexity would be sufficient for an APTAS, an asymptotic
polynomial time approximation scheme. By envoking the result of Karmarkar & Karp
[11] on fractional one-dimensional bin packing, one can even reach a time complexity
that is polynomial in 1/ε and log n; this time complexity leads to the desired AFPTAS.

Then we compute a packing for I+ of height App(I+) ≤ (1 + ε)Opt(I )+ const(ε)
as described in Section 3.3 and in (11). This computation consists of simple grouping
and classification steps, and clearly can be done within time polynomial in n. Finally, we
replace every big item (h,w) in B+

i by the corresponding big item of the same height
h and width ≤ w in Bi . This yields a packing for the original instance I of height at
most (1 + ε)Opt(I ) + const(ε), and this packing is a 4-stage Guillotine packing. This
completes the proof of Theorem 1.3.

4. Discussion

In this paper, we gave a complete analysis of the quality of k-stage Guillotine strip
packings versus globally optimal packings: Whereas k = 2 stages cannot guarantee
any bounded asymptotic performance ratio, k = 3 stages already lead to an asymptotic
performance ratio of 1.69103, and k = 4 stages yield asymptotic performance ratios
arbitrarily close to 1. Hence, with respect to the asymptotic performance ratio there is
no need to use k = 5 or more stages, since they can not improve on k = 4 stages.

The situation changes drastically when we consider the absolute performance ratio
of k-stage Guillotine strip packings: For k ≥ 2, let ρ(k) denote the supremum of
Gk(I)/Opt(I ) over all instances I (we recall that Gk(I) denotes the height of the
best k-stage Guillotine packing for instance I ). Note that this time we do not allow any
additive constant in the definition of the performance ratio. It is easy to conclude from
the results in this paper that ρ(2) = ∞, and that for k ≥ 3 the values ρ(k) are finite.
The instance depicted in Figure 1(a) illustrates that ρ(k) ≥ 4/3 holds for all k. We have
no idea about the exact values of ρ(k) for k ≥ 3. We expect that in order to determine
the exact values ρ(k), one will have to analyze many small instances and many special
cases.

Acknowledgement. We thank the referee for a careful reading of the manuscript, and for pointing out a number
improvements.

References

1. Baker, B.S., Brown, D.J., Katseff, H.P.: A 5/4 algorithm for two-dimensional bin packing. J. Alg. 2,
348–368 (1981)

2. Baker, B.S., Coffman, E.G., Rivest, R.L.: Orthogonal packings in two dimensions. SIAM J. Comput. 9,
846–855 (1980)

3. Baker, B.S., Schwarz, J.S.: Shelf algorithms for two-dimensional packing problems. SIAM J. Comput.
12, 508–525 (1983)

4. Coffman, E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for level-oriented two-
dimensional packing algorithms. SIAM J. Comput. 9, 808–826 (1980)



530 S.S. Seiden, G.J. Woeginger: The two-dimensional cutting stock problem revisited

5. Csirik, J., Woeginger, G.J.: Shelf algorithms for online strip packing. Inf. Proc. Lett. 63, 171–175 (1997)
6. Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1 + ε in linear time. Combi-

natorica 1, 349–355 (1981)
7. Fernandez de la Vega, W., Zissimopoulos, V.: An approximation scheme for strip packing of rectangles

with bounded dimensions. Discrete Appl. Math. 82, 93–101 (1998)
8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness.

Freeman, San Francisco, 1979
9. Gilmore, P.C., Gomory, R.E.: Multistage cutting stock problems of two and more dimensions. Oper. Res.

13, 94–120 (1965)
10. Golan, I.: Performance bounds for orthogonal, oriented two-dimensional packing algorithms. SIAM

J. Comput. 10, 571–582 (1981)
11. Karmarkar, N., Karp, R.M.:An efficient approximation scheme for the one-dimensional bin packing prob-

lem. In: Proceedings of the 23rd IEEE Symposium on Foundations of Computer Science (FOCS’1982),
1982, pp. 312–320

12. Kenyon, C., Remila, E.: Approximate strip packing. In: Proceedings of the 37th IEEE Symposium on
Foundations of Computer Science (FOCS’1996), 1996, pp. 31–36

13. Kenyon, C., Remila, E.: A near-optimal solution to a two-dimensional cutting stock problem. Math. Oper.
Res. 25, 645–656 (2000)

14. Salzer, H.E.: The approximation of numbers as sums of reciprocals. Am. Math. Monthly 54, 135–142
(1947)

15. Sleator, D.D.K.D.B.: A 2.5 times optimal algorithm for packing in two dimensions. Inf. Proc. Lett. 10,
37–40 (1980)


