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Abstract. It is well known that a vector is in a second order cone if and only if its “arrow” matrix is positive
semidefinite. But much less well-known is about the relation between a second order cone program (SOCP)
and its corresponding semidefinite program (SDP). The correspondence between the dual problem of SOCP
and SDP is quite direct and the correspondence between the primal problems is much more complicated.
Given a SDP primal optimal solution which is not necessarily “arrow-shaped”, we can construct a SOCP
primal optimal solution. The mapping from the primal optimal solution of SDP to the primal optimal solution
of SOCP can be shown to be unique. Conversely, given a SOCP primal optimal solution, we can construct a
SDP primal optimal solution which is not an “arrow” matrix. Indeed, in general no primal optimal solutions
of the SOCP-related SDP can be an “arrow” matrix.

1. Introduction

In the literature, [1, 4, 5, 7, 8]1, when one refers to second order cone program (SOCP)
as a special case of semidefinite program (SDP), one always use equivalence (1) below,
which states that a vector is in a second order cone if and only if its “arrow” matrix is
positive semidefinite. This can directly be applied on the dual problem of SOCP to obtain
the dual problem of the corresponding SDP, as will be shown below. The relationship
between the two dual problems is clear. However, when we consider the primal SOCP
and try to relate it to its corresponding primal SDP, the situation is not as simple. In fact,
we will show later that in general, no “arrow” matrix can be an optimal solution to the
primal SDP.

Consider the primal second order cone problem (P) given as follows:

min
∑n

i=1 cT
i xi

(P) subject to
∑n

i=1 Aixi = b

‖xi‖ ≤ (xi)0 i = 1, . . . , n

Here xi = ((xi)0, x
T
i )T ∈ �ki+1 and Ai ∈ �m×(ki+1).
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1 Note that [2, 3, 6, 9, 10] are related to second order cone programming, hence they are also included as
references.
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We can treat the second order cone program as a special case of semidefinite program
using the following equivalence:

‖x‖ ≤ (x)0 ⇐⇒ Arw(x) :=
(

x0 xT

x x0I

)

� 0 (1)

where A � 0 means that A is symmetric, positive semidefinite.
In order to write a SOCP as a SDP, it is more convenient to look at the dual problem

(D) of (P),

max bT y

(D) subject to AT
i y + si = ci i = 1, . . . , n

‖si‖ ≤ (si)0 i = 1, . . . , n

where y ∈ �m and si = ((si)0, s
T
i )T ∈ �ki+1. Now let AT

i =
(

aT
i

Ãi

)

where ai ∈ �m

and Ãi ∈ �ki×m. By writing Ãi as (ã1
i , . . . , ãm

i ) ∈ �ki×m, ai as (a1
i , . . . , am

i )T ∈ �m

and using equivalence (1), we can easily obtain (D′), the dual SDP problem,

max bT y

(D′) subject to
∑m

j=1 yjArw((a
j
i ã

jT
i )T ) + Si = Arw(ci) i = 1, . . . , n

Si � 0 i = 1, . . . , n

This is precisely the dual of the primal SDP (P ′) given below:

min
∑n

i=1 Arw(ci) • Xi

(P ′) subject to
∑n

i=1 Arw((a
j
i ã

jT
i )T ) • Xi = bj j = 1, . . . , m

Xi � 0 i = 1, . . . , n

Here Xi ∈ �(ki+1)×(ki+1) and symmetric.
Note that we have obtained (D′), starting from (D), by merely using equivalence

(1). One can see that there is a natural correspondence between the feasible sets of (D)

and (D′), and the objective functions of both problems are exactly identical. Hence, it
is clear that given an optimal solution (s∗

1 , . . . , s∗
n, y∗) for (D), one can easily obtain an

optimal solution (S∗
1 , . . . , S∗

n, y∗) for (D′) and vice versa, because of equivalence (1).
Does the relation x ↔ Arw(x), given by relation (1), also build the equivalence

between (P) and (P ′)? The answer is “no”. One can easily verify that x and X = Arw(x)

may not simultaneously satisfy both constraints aT
i x = bi and Arw(ai) • X = bi .

2. Equivalence between (P) and (P′)

Having observed the above, we may ask, given an optimal solution (x∗
1 , . . . , x∗

n) of (P),
what is an optimal solution for (P ′)? Also, given an optimal solution (X∗

1, . . . , X∗
n) of

(P ′), which is not necessarily of “arrow-shaped”, what is an optimal solution of (P)?
In this section, we will answer these questions.

Wlog, we consider (P) and (P ′) for n = 1; our results are easily extended to n ≥ 2.
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We denote by Sk+1 the space of all symmetric (k + 1) × (k + 1) matrices, Sk+1
+ :=

{X ∈ Sk+1 : X � 0}, and Ck+1 := {x = (x0, x
T )T ∈ �k+1 : ‖x‖ ≤ x0}.

In order to build the equivalence between (P) and (P ′), we should find a correspon-
dence between x and X such that aT

i x = bi ⇐⇒ Arw(ai) • X = bi for any pair of
corresponding constraints in (P) and (P ′) respectively. Thus the following lemma is
crucial:

Lemma 1. X = (Xij )0≤i≤k,0≤j≤k ∈ Sk+1 and x = (x0, . . . , xk)
T ∈ �k+1.

Arw(u) • X = uT x holds for all u ∈ �k+1 (�)

if and only if

k∑

i=0

Xii = x0 and 2Xi0 = xi, i = 1, . . . , k (2)

The above lemma leads to the following two maps.

Definition 1. Define a point-to-set map M̃ which maps a point x = (x0, x1, . . . , xk)
T ∈

Ck+1 to a subset of Sk+1

M̃(x) :=
{
X = (Xij )0≤i≤k,0≤j≤k ∈ Sk+1 | ∑k

i=0 Xii = x0 and

Xi0 = 1
2xi, i = 1, . . . , k

}
,

and a map M ′ : Sk+1 �−→ Rk+1 by M ′(X) = (
∑k

i=0 Xii, 2X10, . . . , 2Xk0)
T for

X = (Xij )0≤i≤k,0≤j≤k ∈ Sk+1.

Theorem 1. (a) For every x ∈ Ck+1, there exists an X ∈ M̃(x) which is positive
semidefinite. Indeed, 0 ∈ M̃(0), and for x �= 0

M(x) :=
(

1
4θ 1

2xT

1
2x

x0−‖x̄‖
2k

I + xxT

θ

)

∈ M̃(x) ∩ Sk+1
+ , (3)

where θ = x0 +‖x̄‖+
√

(x0 + ‖x̄‖)2 − 4‖x̄‖2. Moreover, x ∈ intCk+1 ⇒ M(x) ∈
intSk+1

+ .
(b) For any X ∈ Sk+1

+ , M ′(X) ∈ Ck+1. Moreover, X ∈ intSk+1
+ ⇒ M ′(X) ∈ intCk+1.

(c) Let x �= 0. Then x ∈ ∂Ck+1, i.e., x0 = ‖x̄‖, if and only if M̃(x)∩Sk+1
+ is a singleton

whose unique element is

(
1
2x0

1
2xT

1
2x xxT

2x0

)

.

Proof. (a) For any 0 �= x ∈ Ck+1, an element X in M̃(x)∩Sk+1
+ must satisfy condition

(2) as well as positive semidefiniteness, thus it must have the form

(
X00

1
2xT

1
2x B

)

(4)
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satisfying

B � xxT

4X00
, T r(B) + X00 = x0. (5)

A simple form of matrix B that satisfy the first condition in (5) is B = βI + xxT

4X00
.

With this B, the second condition in (5) becomes kβ + ‖x̄‖2

4X00
+ X00 = x0. A neces-

sary condition for the last equation to have real solution X00 is β ≤ x0−‖x̄‖
k

. Choose

β = x0−‖x̄‖
2k

. One can easily verify that X00 = 1
4θ (θ is given in the theorem)

satisfies the equation. Moreover, if x ∈ intCk+1, β > 0 and θ > 0 implies that
M(x) ∈ intSk+1

+ .
(b) To show that indeed given X ∈ Sk+1

+ , M ′(X) ∈ Ck+1, we need only show that
(
∑k

i=0 Xii)
2 ≥ 4

∑k
i=1 X2

i0. Assume X00 > 0. Denote x = 2(X10, . . . , Xk0)
T .

NowX (in the form of (4)) is positive semidefinite implies that the submatrixB− xxT

4X00
is also positive semidefinite. Hence the trace of the submatrix

tr(B − xxT

4X00
) =

k∑

i=1

Xii − ‖x̄‖2

4X00
≥ 0. (6)

This implies that
∑k

i=1 X2
i0 ≤ X00

∑k
i=1 Xii . Using the basic result, ab ≤ (a +

b)2/4, we show that 4
∑k

i=1 X2
i0 ≤ (

∑k
i=0 Xii)

2, hence M ′(X) ∈ Ck+1. By chang-
ing inequalities to strict inequalities, this argument can be used to show that X ∈
intSk+1

+ ⇒ M ′(X) ∈ intCk+1.
(c) “⇒” Suppose 0 �= x ∈ ∂Ck+1. Let X be any element in M̃(x) ∩ Sk+1

+ . Similar to
the proof of (b), we have inequality (6). Because

∑k
i=0 Xii = x0 and x0 = ‖x̄‖, (6)

is equivalent to

tr(B − xxT

4X00
) = − (X00 − x0/2)2

X00
≥ 0

This only holds if X00 = x0/2. Thus, the trace of the submatrix B− xxT

4X00
is zero. This

implies that the submatrix itself is zero since the submatrix is positive semidefinite.

Therefore, B = xxT

4X00
and X00 = x0/2. This shows that X =

(
1
2x0

1
2 x̄T

1
2 x̄ x̄x̄T

2x0

)

.

“⇐” Follows from the definition of M̃(x) and x0 ≥ 0. ��
Now, the equivalence between (P) and (P ′) follows immediately from the above

theorem, noticing that Condition (�) also implies that the objective values for (P) and
(P ′) are equal.

Corollary 1. Given the data set (A, c, b) of a SOCP from which we obtained (P) and
(P ′). (P) and (P ′) are equivalent in the sense that the point-to-set map M̃ has the
property that any element of M̃(x∗) ∩ Sk+1

+ is an optimal solution of (P ′) if x∗ is an
optimal solution of (P) and the map M ′ is such that M ′(X∗) is an optimal solution of
(P) whenever X∗ is an optimal solution of (P ′).
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We state below some properties of the maps M̃ and M ′.

(i) M̃(x) = (M ′)−1({x}) for every x ∈ Ck+1,
(ii) M̃(x) ∩ M̃(x′) = ∅ for x �= x′ ∈ Ck+1,

⋃
x∈Ck+1 M̃(x) ∩ Sk+1

+ = Sk+1
+ .

(iii) M ′ is the unique map such that X ∈ Sk+1
+ and M ′(X) satisfy Condition (�).

Our final remark is that most instances of primal SDP (P ′) have no “arrow-shaped” opti-
mal solution because for most instances, all its optimal solutions are on the boundary
of the cone. In this case, we must have that, by Theorem 1(c), every nonzero primal

optimal solution is of the form 1
2

(
x∗

0 (x̄∗)T

x̄∗ x̄∗(x̄∗)T
x∗

0

)

, for some x∗ ∈ ∂Ck+1, which is not

arrow-shaped. An example of when the above occurs is if the strong duality holds for
the SDP pair (P ′) − (D′) and there exists a (dual) optimal solution (S∗, y∗) such that
S∗ �= 0.

References

1. Aldler, I., Alizadeh, F.: Primal-Dual Interior Point Algorithms for Convex Quadratically Constrained and
Semidefinite Optimization Problems. RUTCOR Res. Report RRR, 46–95 (1995)

2. Chen, X.D., Sun, D., Sun, J.: Complementarity Functions and Numerical Experiments on some Smoothing
Newton Methods for Second-Order-Cone Complementarity Problems. Comput. Optim. Appl. 25 (1–3),
39–56 (2003)
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