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Abstract. For a class of semismooth operator equations a mesh independence result for generalized Newton
methods is established. The main result states that the continuous and the discrete Newton process, when ini-
tialized properly, converge q-linearly with the same rate. The problem class considered in the paper includes
MCP-function based reformulations of first order conditions of a class of control constrained optimal control
problems for partial differential equations for which a numerical validation of the theoretical results is given.

1. Introduction

This paper is devoted to the study of (local) convergence properties of Newton type
methods applied to discretizations of a class of nonsmooth operator equations

G(y) = 0, G : L2(�) → L2(�) , (1)

where the operator G is related to an MCP-function based reformulation of the infinite-
dimensional box-constrained variational inequality problem (BVIP)

y ∈ Yad, (F (y), v − y)L2 ≥ 0 ∀ v ∈ Yad, (2)

where the feasible set is given by Yad = {
y ∈ L2(�) : α ≤ y ≤ β a.e. on �

}
with α, β ∈

R, α < β. Here � ⊂ R
n is measurable with finite Lebesgue measure |�| > 0, L2(�) is

the Hilbert space of square integrable functions, and F : L2(�) → L2(�) is a linear or
nonlinear operator.

It is well known that if G : Y → Z (Y, Z Banach spaces) is Fréchet differentiable,
G′ is locally Lipschitz and G′(ȳ) is invertible at a solution ȳ of (1), then the Newton
method

yk+1 = yk − G′(yk)−1G(yk) (3)

is locally quadratically convergent to ȳ; see, e.g., [17]. Moreover, for appropriate dis-
cretizations Gh(yh) = 0, with Gh : Yh → Zh and Yh, Zh suitable finite dimensional
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spaces, a local solution ȳh exists and, when initialized properly, the discrete Newton
process

yk+1
h = yk

h − G′
h(y

k
h)−1Gh(y

k
h) , (4)

enjoys the property of mesh independence; see [1]. In [9] the Lipschitz uniformity prop-
erty of the discretization required in [1] is weakened resulting in an asymptotic version
of the mesh independence result. In [2] the concepts of [1] are carried over to the case
of generalized equations G(y) ∈ T (y) with T : Y ⇒ Z a multi-valued mapping. Fur-
ther, the abstract results are applied to control constrained optimal control problems for
ordinary differential equations. In [25] the results of [1] are extended to an augmented
Lagrangian-SQP method for solving optimal control problems involving a possibly non-
linear partial differential state equation. In contrast to [2] no constraints are considered.
By utilizing Lipschitzian localizations, recently in [10] the mesh independence property
of Newton’s method, when applied to discretized variational inequalities or generalized
equations, was established under weaker conditions then those in [2]. In [4, 5] asymptotic
mesh independence is proved under reduced requirements on the (Fréchet) derivative
of the operator G. But still, like in all of the aforementioned results, the operator G is
assumed to be Fréchet differentiable with sufficiently smooth derivative.

In many cases the requirement of G being Fréchet differentiable is not adequate. In
fact, returning to the BVIP (2), it is well known [21] that (2) is equivalent to the mixed
complementarity problem (MCP)

α ≤ y ≤ β, (y − α)F (y) ≤ 0, (y − β)F (y) ≤ 0 a.e. in �. (5)

Using the equivalence

α ≤ a ≤ β, (a − α)b ≤ 0, (a − β)b ≤ 0 ⇐⇒ a − P[α,β](a − σb) = 0,

where σ > 0 is arbitrary and

P[α,β] : R → [α, β], P[α,β](t) = max{α, min{t, β}}
denotes the projection onto [α, β], we can rewrite (5) (and thus (2)) in the form

G(y) = y − P[α,β](y − σF(y)) = 0 a.e. in �. (6)

Here, the projection is applied pointwise on �. The operator equation (6) is a special
case of (1) and obviously G is not Fréchet differentiable. By utilizing weaker types of
derivatives and approximations of classes of nondifferentiable operators, in, e.g., [6, 7,
13, 15, 16, 18–21, 23] local convergence properties of the resulting nonsmooth version
of Newton’s method are proved. Under a semismoothness assumption on G, the rate
of convergence is typically q-superlinear. Compared to finite dimensions, in infinite
dimensions the generalization of the derivative is a more delicate issue [7, 13, 21, 23]. In
finite dimensions the generalized differentiability concepts rely on Rademacher’s theo-
rem, which has no analogue in infinite dimensions. While the max- and min-operator,
and thus also the projection P[α,β] are strongly semismooth in finite dimensions [11],
these operators are not semismooth as a mapping Lp(�) → Lp(�), 1 ≤ p ≤ +∞.
In [13, 23] it is shown that a two norm discrepancy, i.e., max : Lp(�) → Lq(�) with
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1 ≤ q < p ≤ +∞, is required for max to be semismooth, and the same holds true for
min and P[α,β]. In general, this fact necessitates a smoothing step in the corresponding
semismooth Newton method [23] in order to achieve locally superlinear convergence. In
[13] it was observed that for particular classes of constrained optimal control problems
smoothing steps can be skipped due to the properties of the resulting operator F in (5).
In this paper we exploit the latter fact in order to avoid the necessity of smoothing steps.
As a consequence we henceforth assume that F has the following particular form:

F(y) = A(y) + λy, (7)

with λ > 0 and a continuously Fréchet differentiable operator A : L2(�) → L2(�).
Furthermore, we assume that A maps L2(�) locally Lipschitz continuously to Lp(�)

for some p ∈ (2, ∞). Thus, (6) becomes

y − P[α,β](y − σ(A(y) + λy)) = 0 a.e. in �. (8)

For the rest of the paper, we choose σ = 1/λ and multiply by λ to obtain the following
equivalent reformulation of (5)

G(y) := λy − P[λα,λβ](−A(y)) = 0 a.e. in �. (9)

Clarke’s generalized differential of φ(t) = P[λα,λβ](t) is given by

∂φ(t) =






0 if t /∈ [λα, λβ],

[0, 1] if t ∈ {λα, λβ},
1 if t ∈ (λα, λβ).

Following [23], we define the generalized differential

∂G : L2(�) ⇒ L2(�), ∂G(y) = {
λI + D(y) · A′(y) : D(y) satisfies (11)

}
, (10)

D : L2(�) → L∞(�), D(y)(x)






= 0 if − A(y)(x) /∈ [λα, λβ],

∈ [0, 1] if − A(y)(x) ∈ {λα, λβ},
= 1 if − A(y)(x) ∈ (λα, λβ).

(11)

Here I denotes the identity operator. It has been shown in [21, 23], see also [13], that
the operator G is semismooth in the following sense:

sup
M∈∂G(y+s)

‖G(y + s) − G(y) − Ms‖L2 = o(‖s‖L2) as ‖s‖L2 → 0. (12)

This result can be used to prove the local q-superlinear convergence of the following
nonsmooth Newton’s method. For its definition we introduce S(y) ⊆ ∂G(y) with S(y)

nonempty.

Algorithm 1.

0. Choose y0 ∈ L2(�).

For k = 0, 1, 2, . . . :

1. If G(yk) = 0, STOP with result yk .
2. Choose Mk ∈ S(yk) ⊆ ∂G(yk).
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3. Compute the Newton step sk ∈ L2(�) by solving

Mks
k = −G(yk)

and set yk+1 = yk + sk .

The local convergence analysis requires a regularity assumption, e.g., the uniformly
bounded invertibility of the operators Mk ∈ L(L2, L2). Moreover, we point out that the
use of possibly strict subsets S(y) rather than ∂G(y) is related to the algorithm in [13];
see also [23]. In section 4 an important case w.r.t. the choice of S(y) ⊂ G(y) is analyzed
in detail.

One way to derive an MCP is related to MCP-function based reformulations of first
order optimality conditions of box constrained optimal control problems as we have
seen above. In [14], however, certain mesh independence results for the gradient projec-
tion method applied to the latter problem class are proved. From the numerical point of
view, the gradient projection method has some drawbacks like rather slow convergence
compared to Newton-type methods and possible chattering of active resp. inactive sets
close to the solution. Also, the results provided in [14] are different from our mesh
independence assertions.

The aim of this paper is to prove a mesh independence result for the discrete ana-
logue of Algorithm 1. Our main result states that for any given q-linear rate of con-
vergence θ there exists a sufficiently small mesh size h′ > 0 of discretization and
a radius δ > 0 such that, for all h ≤ h′, the continuous and the discrete Newton
processes converge at least at the q-linear rate θ when initialized by y0, y0

h satisfying
max{‖y0

h − ȳh‖L2 , ‖y0 − ȳ‖L2} ≤ δ.
Compared to mesh independence results for smooth operator equations, the general

difficulty arising in our nonsmooth framework can be seen from the following consid-
erations. For simplicity, we move away from the function space setting for a moment
and consider the function g : R → R, g(t) = t2 + max{t, at}, a ≥ 2. In parallel, we
also look at the perturbed functions gh(t) = h − h2 + t2 + max{t, at}, h ∈ (0, 1/2],
where the perturbation is chosen in this particular form to keep the calculations simple.
We write g and t instead of G and y to emphasize that we are working in R rather than
in general Banach spaces. Now let the current iterate tc ∈ (0, 1) be given and denote by
t̄ = 0 the solution of g(t) = 0 closest to tc. The semismooth Newton step tc → t+ is
determined by

(2tc + a)(t+ − tc) = −(tc)2 − atc,

i.e.,

|t+ − t̄ | = t+ = tc − tc + a

2tc + a
tc = tc

2tc + a
tc ≤ 1

a
|tc − t̄ |2.

If we start with tc ∈ (−1, 0), we obtain a similar estimate. Hence, we have q-quadratic
convergence to t̄ = 0 for all initial points in (−1, 1).

Next, consider the Newton step tch = tc → t+h for the solution of gh(t) = 0 and
denote by t̄h = −h the root of gh closest to t̄ = 0. We then obtain

(2tc + a)(t+h − tc) = h2 − h − (tc)2 − atc,



A mesh-independence result for semismooth Newton methods 155

and thus

t+h − tc ≥ −h + (tc)2 + atc

2tc + a
≥ −h

a
− tc.

This implies

|t+h − t̄h| ≥ a − 1

a
h.

Therefore, for 0 < tc ≤ bh, 0 < b ≤ 1, we obtain

|t+h − t̄h| ≥ a − 1

(1 + b)a
|tc − t̄h|.

This implies that the radius of the ball about t̄h on which the method achieves in each
step at least a q-linear rate of convergence γ ≤ a−1

a
is less than or equal h. The poor rate

of convergence outside this ball is caused by the fact that tc > 0 is on the wrong side of
the kink at t = 0. For a system with many equations there may be very many kinks and a
large number of iterations can be required to reach the smooth component on which the
solution is located. This simple example shows that for semismooth Newton methods
the ball on which the method achieves a certain certified rate of convergence is not stable
with respect to small perturbations of the data. Therefore, mesh independence results for
nonsmooth equations cannot be expected to hold in the generality known for the smooth
case. The described difficulties typically arise if the solution of the unperturbed problem
is a point at which g is not continuously differentiable. In the context of nonsmooth
equations obtained from reformulations of mixed complementarity problems, the non-
differentiability points are those where strict complementarity is violated. It is therefore
necessary to require some sort of strict complementarity condition to achieve local
convergence behavior that is stable with respect to small perturbations. In the infinite-
dimensional setting the points on the boundary of the active set {x ∈ � : ȳ(x) ∈ {α, β}}
will usually violate strict complementarity (unless ȳ(·) and/or F(ȳ)(·) is discontinuous
through this boundary). We will see, however, that it is sufficient for our analysis to
require that the set where strict complementarity is violated is a zero set. Then we can
exploit the fact that the measure of the set on which complementarity of the discrete
solution is “too small”, i.e., less than some ε  1, tends to zero as h → 0. This allows
us a careful balancing of estimates to prove the mesh independence result.

The rest of the paper is organized as follows. In section 2 we introduce appropri-
ate discretizations of problem (8) and the discrete version of Algorithm 1. The mesh
independence result is presented in section 3. Sufficient conditions ensuring regularity
are in the focus of section 4. These conditions are motivated by a class of control con-
strained optimal control problems for semilinear elliptic differential equations. The latter
problem class is addressed in section 5. It is shown that the assumptions for the mesh
independence result are satisfied. Finally, in section 6 numerical results are presented.

2. Discretization

From now on we assume that � is a bounded and sufficiently regular domain. We approx-
imate functions in L2(�) by a finite element discretization. To this end, let be given a
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(sufficiently regular) subdivision of � (e.g., a regular triangulation) into subdomains
T ∈ Th:

� =
⋃

T ∈Th

T , T1, T2 ∈ Th, T1 �= T2 �⇒ T1 ∩ T2 ⊂ ∂T1 ∩ ∂T2.

Usually, in 2D, Th will consist of triangles in the interior and of deformed, boundary-
fitted triangles on the boundary. The subscript h is a measure for the maximum diameter
of all elements in Th. The latter type of triangles above is obtained in the following way:
First one applies a standard triangulation with the boundary nodes of the triangulation
sitting on the boundary of �. Then one replaces each boundary triangle with its associ-
ated triangle where the edge between two boundary nodes is replaced by the part of the
boundary of � connecting these two nodes. For more details on this construction in 2D
and 3D we refer to [3]. Now, we define

Yh = {yh : � �→ R : yh|int T = constant ∀ T ∈ Th} .

The space Yh is equipped with the L2-norm, i.e., ‖·‖Yh
= ‖·‖L2 . The value of yh on ∂T ,

T ∈ Th is not important. This choice of Yh is motivated by the application considered
in section 5. With respect to our subsequent assumptions a more general choice of Yh is
possible.

Appropriate numerical discretization of (5) now yields the discrete mixed comple-
mentarity problem

α ≤ yh ≤ β, (yh − α)Fh(yh) ≤ 0, (yh − β)Fh(yh) ≤ 0 a.e. in � (13)

with Fh : Yh → Yh, Fh(yh) = Ah(yh) + λyh, and continuously differentiable operator
Ah : Yh → Yh.

We reformulate (13) as in the infinite-dimensional case in the form

Gh(yh) := λyh − P[λα,λβ](−Ah(yh)) = 0 (14)

with an operator Gh : Yh → Yh. Note that Gh is piecewise constant on the elements
T ∈ Th, and thus (14) is a finite-dimensional system of equations. Then we define the
following generalized differential of Gh:

∂Gh : Yh ⇒ Yh, ∂Gh(yh) = {
λI + Dh(yh) · A′

h(yh) : Dh(yh) satisfies (16)
}
,

(15)

Dh(yh) ∈ Yh, Dh(yh)(x)






= 0 if − Ah(yh)(x) /∈ [λα, λβ],

∈ [0, 1] if − Ah(yh)(x) ∈ {λα, λβ},
= 1 if − Ah(yh)(x) ∈ (λα, λβ).

(16)

Again, Dh(yh) ∈ Yh is constant on each T ∈ Th. Furthermore, in analogy to the continu-
ous setting, a nonsmooth Newton’s method for the solution of (14) can be formulated. In
the algorithm below, the nonempty set Sh(yh) ⊆ Gh(yh) denotes the discrete analogue
of S(y).
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Algorithm 2.

0. Choose y0
h ∈ Yh.

For k = 0, 1, 2, . . . :

1. If Gh(y
k
h) = 0, STOP with result yk

h.
2. Choose Mhk ∈ Sh(y

k
h) ⊆ ∂Gh(y

k
h).

3. Compute the Newton step sk
h ∈ Yh by solving

Mhks
k
h = −Gh(y

k
h)

and set yk+1
h = yk

h + sk
h.

3. Mesh-independence

We prove that Algorithm 2 is mesh independent in the sense that, for any linear rate of
convergence θ , there exists a radius ρ > 0 such that, for all h sufficiently small, the
regions on which Algorithm 1 and Algorithm 2 converge with at least linear q-rate θ

contain the ρ-balls about the respective solutions. Below we denote by |�̂| the measure
of the set �̂ ⊆ �.

For the proof we need a preparatory result on the mesh independence of

sup
Mh∈∂Gh(ȳh+sh)

‖Gh(ȳh + sh) − Gh(ȳh) − Mhsh‖Yh
,

which requires several assumptions.
Let ȳ ∈ L2(�) be a solution of (5) and assume that strict complementarity holds:

Assumption 1 (Strict complementarity).

|{min{ȳ − α, β − ȳ} + |F(ȳ)| = 0}| = 0. (17)

Since |�| < ∞ and

{min{ȳ − α, β − ȳ} + |F(ȳ)| < ε} ↓ {min{ȳ − α, β − ȳ} + |F(ȳ)| = 0} as ε → 0+

we conclude that

lim
ε→0+

|{min{ȳ − α, β − ȳ} + |F(ȳ)| < ε}| = 0. (18)

Furthermore, for any h, let be given a solution ȳh ∈ Yh of (13). We work under the
following

Assumption 2.

1.

lim
h→0+

‖ȳh − ȳ‖L2 = 0, (19)

lim
h→0+

‖Ah(ȳh) − A(ȳ)‖Lp = 0. (20)
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2. The discretization family is locally Lipschitz uniform, i.e., there exist h0 > 0, δ0 > 0,
and LA > 0 such that

∥∥∥A(y2) − A(y1)

∥∥∥
Lp

≤ LA

∥∥∥y2 − y1
∥∥∥

L2
, ∀ yi ∈ L2(�),

∥∥∥yi − ȳ

∥∥∥
L2

≤ δ0,
∥∥∥Ah(y

2
h)−Ah(y

1
h)

∥∥∥
Lp

≤ LA

∥∥∥y2
h−y1

h

∥∥∥
L2

∀ yi
h ∈ Yh,

∥∥∥yi
h−ȳh

∥∥∥
Yh

≤δ0, h≤h0.

3. The discretization family has the uniform linear approximation property, i.e., A and
Ah, h ≤ h0, are Fréchet differentiable in a neighborhood of ȳ and ȳh, respectively,
and there exists a function ρ : [0, δ0) → [0, ∞) such that

lim
t→0+

ρ(t)

t
= 0, (21)

∥∥A(y) − A(ȳ) − A′(y)(y − ȳ)
∥∥

L2 ≤ ρ(‖y − ȳ‖L2) (22)

∀y ∈ L2(�), ‖y − ȳ‖L2 ≤ δ0,
∥∥Ah(yh) − Ah(ȳh) − A′

h(yh)(yh − ȳh)
∥∥

Yh
≤ ρ(‖yh − ȳh‖Yh

) (23)

∀yh ∈ Yh, ‖yh − ȳh‖Yh
≤ δ0, h ≤ h0.

Now let γ ∈ (0, 1) be given. Then, due to the semismoothness of G, there exists
δ′ ∈ (0, δ0] such that

sup
M∈∂G(ȳ+s)

‖G(ȳ + s) − G(ȳ) − Ms‖L2 ≤ γ ‖s‖L2 ∀ s ∈ L2(�), ‖s‖L2 ≤ δ′.

Our aim is to prove the following uniform semismoothness result, which will enable us
to show the mesh independence of the semismooth Newton’s method 2.

Theorem 1. Under the Assumptions 1 and 2, for each γ ∈ (0, 1), there exist δ′ ∈ (0, δ0]
and h′ ∈ (0, h0] such that the following holds true:

sup
Mh∈∂Gh(ȳh+sh)

‖Gh(ȳh + sh) − Gh(ȳh) − Mhsh‖Yh
≤ γ ‖sh‖Yh

∀ sh ∈ Yh, ‖sh‖Yh
≤ δ′, h ≤ h′.

(24)

sup
M∈∂G(ȳ+s)

‖G(ȳ + s) − G(ȳ) − Ms‖L2 ≤ γ ‖s‖L2

∀ s ∈ L2(�), ‖s‖L2 ≤ δ′.
(25)

Remark 1. The existence of a radius δ′ > 0 such that (25) holds follows from the semi-
smoothness (12) of G. Nevertheless, we enclose the proof of (25), without any additional
work, by defining Y0 = L2(�), G0 = G, ∂G0 = ∂G, and ȳ0 = ȳ. Then for h = 0 the
Assumption 2 obviously holds. Therefore, we can use these assumptions for all h ≥ 0,
and thus can concentrate on proving (24) for all 0 ≤ h ≤ h′.
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3.1. Proof of Theorem 1

We define

c(ȳ) = min{ȳ − α, β − ȳ} + |F(ȳ)| ≥ 0,

ch(ȳh) = min{ȳh − α, β − ȳh} + |Fh(ȳh)| ≥ 0,

�(ε) = {c(ȳ) < ε}, �h(ε) = {ch(ȳh) < ε}.
The strict complementarity assumption implies (18), and thus, for any µ > 0, there
exists ε = ε(µ) > 0 such that

|�(2ε)| ≤ µ

2
.

We now use that for all s, t ∈ [α, β] the following holds:

| min{t − α, β − t} − min{s − α, β − s}| ≤ |t − s| ∀ s, t ∈ [α, β]. (26)

In other words, the function t �→ min{t −α, β − t} is Lipschitz continuous with constant
1, a fact that is easily verified. Hence, by (26) and Assumption 2.1, we have

‖c(ȳ) − ch(ȳh)‖L2 ≤ ‖min{ȳ − α, β − ȳ} − min{ȳh − α, β − ȳh}‖L2

+ ‖F(ȳ) − Fh(ȳh)‖L2

≤ (1 + λ) ‖ȳ − ȳh‖L2 + ‖A(ȳ) − Ah(ȳh)‖L2 → 0 as h → 0.

Next, observe that

|�h(ε)| ≤ |�(2ε)| + |{c(ȳ) − ch(ȳh) > ε}| . (27)

In fact, let x ∈ �(2ε) ∩ {c(ȳ) − ch(ȳh) > ε}. Then we have

ch(ȳh)(x) = ch(ȳh)(x) + c(ȳ)(x) − c(ȳ)(x) < 2ε + ch(ȳh)(x) − c(ȳ)(x) < ε.

This shows that x ∈ �h(ε). Using

|�(2ε) ∩ {c(ȳ) − ch(ȳh) > ε}| ≤ |�(2ε)| + |{c(ȳ) − ch(ȳh) > ε}|
proves (27).

In the sequel, we will repeatedly use the following estimate: For all η > 0, all
q ∈ [1, ∞) and all v ∈ Lq(�)

|{|v| ≥ η}| = 1

ηq

∫

{|v|≥η}
ηq dx ≤ 1

ηq

∫

{|v|≥η}
|v(x)|q dx ≤ ‖v‖q

Lq

ηq
. (28)

Applying this inequality, we obtain

|{c(ȳ) − ch(ȳh) > ε}| ≤ 1

ε2
‖c(ȳ) − ch(ȳh)‖2

L2 → 0 as h → 0,

and from this we see that we can find h1 = h1(ε) ∈ (0, h0] such that

|�h(ε)| ≤ µ ∀ h ≤ h1. (29)
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Next, we show that for η = η(ε) := min{1, λ}ε and

�1
h(ε) := {|Ah(yh) − Ah(ȳh)| < η} \ �h(ε) (30)

we have the inclusion

�1
h(ε) ⊂ {|Ah(yh) − Ah(ȳh)| < η, |Ah(ȳh) + λα| ≥ η, |Ah(ȳh) + λβ| ≥ η}. (31)

Since ȳh solves (13), for a.e. x /∈ �h(ε) one of the following cases occurs

ȳh(x) = α, Fh(ȳh)(x) = Ah(ȳh)(x) + λα ≥ ε, (32)

ȳh(x) = β, Fh(ȳh)(x) = Ah(ȳh)(x) + λβ ≤ −ε, (33)

ȳh(x) ∈ [α + ε, β − ε], Fh(ȳh)(x) = Ah(ȳh)(x) + λȳh(x) = 0. (34)

We have the implications

(32) �⇒ Ah(ȳh)(x) + λβ ≥ Ah(ȳh)(x) + λα ≥ ε,

(33) �⇒ Ah(ȳh)(x) + λα ≤ Ah(ȳh)(x) + λβ ≤ −ε,

(34) �⇒
{

Ah(ȳh)(x) + λα = λα − λȳh(x) ≤ −λε,

Ah(ȳh)(x) + λβ = λβ − λȳh(x) ≥ λε.

Taking all three cases together, we have shown that

x /∈ �h(ε) �⇒ x ∈ {|Ah(ȳh) + λα| ≥ η, |Ah(ȳh) + λβ| ≥ η}.
This implies (31).

For the estimation of the remainder term

Rh(yh) = Gh(yh) − Gh(ȳh) − Mh(yh − ȳh)

occurring in (24) with Mh ∈ ∂Gh(yh) we use the splitting (see (31)) � = �1
h(ε)∪�2

h(ε)

with �1
h(ε) defined in (30) and

�2
h(ε) = �h(ε) ∪ {|Ah(yh) − Ah(ȳh)| ≥ η}.

1. Estimate on �1
h(ε):

Let x ∈ �1
h(ε) be arbitrary. Then we have |Ah(yh)(x) − Ah(ȳh)(x)| < η.

Case 1: −Ah(ȳh)(x) ≤ λα − η.
We then obtain −Ah(yh)(x) < λα and thus

Rh(yh)(x) = (λyh − λα − λȳh + λα − λ(yh − ȳh))(x) = 0

Case 2: −Ah(ȳh)(x) ≥ λβ + η.
We then obtain −Ah(yh)(x) > λβ and thus

Rh(yh)(x) = (λyh − λβ − λȳh + λβ − λ(yh − ȳh))(x) = 0

Case 3: x ∈ �1
h

′
(ε) := {|Ah(yh) − Ah(ȳh)| < η, − Ah(ȳh) ∈ [λα + η, λβ − η]}.
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Then Ah(yh)(x) ∈ (λα, λβ) and thus

Rh(yh)(x) = (λyh + Ah(yh) − λȳh − Ah(ȳh) − (λI + A′
h(yh))(yh − ȳh))(x)

= (Ah(yh) − Ah(ȳh) − A′
h(yh)(yh − ȳh))(x).

This implies for all h ≤ h0 and all yh ∈ Yh, ‖yh − ȳh‖ ≤ δ0:

‖Rh(yh)‖L2(�1
h

′
(ε))

= ∥∥Ah(yh) − Ah(ȳh) − A′
h(yh)(yh − ȳh)

∥∥
L2(�1

h

′
(ε))

≤ ∥∥Ah(yh) − Ah(ȳh) − A′
h(yh)(yh − ȳh)

∥∥
Yh

≤ ρ(‖yh − ȳh‖Yh
),

where we have used (23). Now let δ2 = δ2(γ ) > 0 be so small that

ρ(t) ≤ γ

2
t

for all t ≤ δ2, which is possible by (21). Then

‖Rh(yh)‖L2(�1
h(ε)) = ‖Rh(yh)‖L2(�1

h

′
(ε))

≤ ρ(‖yh − ȳh‖L2) ≤ γ

2
‖yh − ȳh‖L2

for all yh ∈ Yh, ‖yh − ȳh‖ ≤ δ2.

2. Estimate on �2
h(ε):

We already have shown the estimate (29) for the measure of �h(ε). To estimate the
measure of the second set, we use (28) and obtain that, for all h ≤ h0 and all yh ∈ Yh,
‖yh − ȳh‖L2 ≤ δ0,

|{|Ah(yh) − Ah(ȳh)| ≥ η}| ≤ η−p ‖Ah(yh) − Ah(ȳh)‖p
Lp ≤ η−pL

p
A ‖yh − ȳh‖p

L2 .

Thus, choosing

δ3 = δ3(µ, ε) = min

{
δ0,

η

LA

µ1/p

}
,

we obtain

|{|Ah(yh) − Ah(ȳh)| ≥ η}| ≤ µ

for all yh ∈ Yh, ‖yh − ȳh‖L2 ≤ δ3 and all h ≤ h0. Therefore, we arrive at the estimate
∣∣∣�2

h(ε)

∣∣∣ ≤ 2µ

for all yh ∈ Yh, ‖yh − ȳh‖L2 ≤ δ3 and all h ≤ h1
From

Rh(yh) = −P[λα,λβ](−Ah(yh)) + P[λα,λβ](−Ah(ȳh)) − Dh(yh)A
′
h(yh)(yh − ȳh)

and |P[λα,λβ](t) − P[λα,λβ](s)| ≤ |t − s| it follows that

‖Rh(yh)‖Lp ≤ ‖Ah(yh) − Ah(ȳh)‖Lp + ∥∥A′
h(yh)(yh − ȳh)

∥∥
Lp

≤ 2LA ‖yh − ȳh‖L2 .
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Here, we have used that, for all t > 0,

dh(t) = 1

t
(Ah(yh + t (yh − ȳh)) − Ah(yh))

converges to A′
h(yh)(yh − ȳh) as t → 0 and is uniformly bounded in Lp; in fact,

‖dh(t)‖Lp = 1

t
‖Ah(yh + t (yh − ȳh)) − Ah(yh)‖Lp ≤ LA ‖yh − ȳh‖L2 .

Therefore,

∥∥A′
h(yh)(yh − ȳh)

∥∥
Lp ≤ LA ‖yh − ȳh‖L2 .

We now can estimate (see [24, Lemma 2.1])

‖Rh‖L2(�2
h(ε)) ≤

∣∣∣�2
h(ε)

∣∣∣
1
2 − 1

p ‖Rh‖Lp(�2
h(ε))

≤ (2µ)
p−2
2p 2LA ‖yh − ȳh‖L2 .

Now we can proceed as follows:
Choose (in this order)

µ = 1

2

(
γ

4LA

) 2p
p−2

, ε = ε(µ), h1 = h1(ε), δ2 = δ2(γ ), δ3 = δ3(µ, ε)

and set

δ′ = min{δ2, δ3}, h′ = h1.

Then we obtain for all h ≤ h1 and all yh ∈ Yh, ‖yh − ȳh‖L2 ≤ δ′:

‖Rh‖Yh
≤ ‖Rh‖L2(�1

h(ε)) + ‖Rh‖L2(�2
h(ε))

≤ γ

2
‖yh − ȳh‖L2 + γ

2
‖yh − ȳh‖L2 = γ ‖yh − ȳh‖Yh

.

��
The mesh independence result is established next. For its formulation we use arbi-

trary, nonempty sets S(ȳ + s) ⊂ ∂G(ȳ + s) and Sh(ȳh + sh) ⊂ ∂Gh(ȳh + sh) for s and
sh with ‖s‖L2 ≤ δ2 and ‖sh‖L2 ≤ δ′

2, respectively; compare step 2 in Algorithm 1 and
2. Furthermore, we use the notation

B̄δ(ȳ) =
{
y ∈ L2(�) : ‖y − ȳ‖L2 ≤ δ

}
, δ > 0.

In the proof of Theorem 3 we utilize the following attraction theorem for Newton’s
method.
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Theorem 2. Assume that there exists ȳ ∈ L2(�) with G(ȳ) = 0 and δ2 > 0 such that

sup
{
‖M−1‖L2,L2 : M ∈ S(ȳ + s), ‖s‖L2 ≤ δ2

}
≤ κ

for some constant κ > 0. Let θ ∈ (0, 1) be given, and let γ ∈ (0, 1) satisfy γ κ ≤ θ .
Further let G satisfy

sup
M∈S(ȳ+s)

‖G(ȳ + s) − G(ȳ) − Ms‖L2 ≤ γ ‖s‖L2 ∀ s ∈ L2(�), ‖s‖L2 ≤ δ1

for some 0 < δ1 ≤ δ2. Then, for any y0 ∈ B̄δ1(ȳ), the generalized Newton’s method
converges in B̄δ1(ȳ), and the iterates satisfy

‖yk+1 − ȳ‖L2 ≤ θ‖yk − ȳ‖L2 for k = 0, 1, . . . . (35)

Proof. For y ∈ B̄δ1(ȳ) and N (y) = y − M−1G(y), M ∈ S(y), we obtain

‖N (y) − ȳ‖L2 = ‖M−1(G(y) − G(ȳ) − M(y − ȳ))‖L2

≤ κ‖G(y) − G(ȳ) − M(y − ȳ)‖L2 ≤ θ‖y − ȳ‖L2

Since yk+1 = N (yk) and θ < 1, this proves the q-linear convergence with rate θ toward
ȳ. ��

Note that Theorem 2 has an immediate analogue in the discretized setting of Algo-
rithm 2.

Theorem 3. Let G : L2(�) → L2(�) be semismooth, and assume that there exist
ȳ ∈ L2(�) with G(ȳ) = 0 and ȳh ∈ Yh with Gh(ȳh) = 0 which satisfy Assump-
tions 1–2. Further suppose that there exist δ2, δ

′
2 > 0, κ, κ ′ > 0 and h′

2 ≤ h0 such
that

sup
{
‖M−1‖L2,L2 : M ∈ S(ȳ + s), ‖s‖L2 ≤ δ2

}
≤ κ,

sup
{
‖M−1

h ‖L2,L2 : Mh ∈ Sh(ȳh + sh), ‖sh‖L2 ≤ δ′
2

}
≤ κ ′

for all 0 < h ≤ h′
2. Then, for arbitrarily fixed θ ∈ (0, 1), there exist δ̄ > 0 and h̄ > 0

such that for all 0 < h ≤ h̄

‖yk+1 − ȳ‖L2 ≤ θ‖yk − ȳ‖L2 , (36)

‖yk+1
h − ȳh‖L2 ≤ θ‖yk

h − ȳh‖L2 (37)

whenever max{‖y0 − ȳ‖L2 , ‖y0
h − ȳh‖L2} ≤ δ̄.

Proof. Let θ ∈ (0, 1) be given. For γ ∈ (0, 1) with γ κ ≤ θ < 1 there exists δ1 ∈ (0, δ2]
such that

sup
M∈S(ȳ+s)

‖G(ȳ + s) − G(ȳ) − Ms‖L2 ≤ γ ‖s‖L2 ∀ s ∈ L2(�), ‖s‖L2 ≤ δ1
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by the semismoothness of G. Theorem 2 then yields that {yk}, the sequence of iterates
of Algorithm 1 initialized by y0 ∈ B̄δ1(ȳ), converges to ȳ q-linearly with rate θ . Now,
if necessary, reduce γ (and, thus, δ1) such that

γ max(κ, κ ′) ≤ θ < 1.

From (24) we obtain that there exists δ′
1 ∈ (0, δ′

2] and h′
1 ∈ (0, h′

2] such that

sup
Mh∈Sh(ȳh+sh)

‖Gh(ȳh + sh) − Gh(ȳh) − Mhsh‖L2 ≤ γ ‖sh‖L2

∀ sh ∈ Yh, ‖sh‖L2 ≤ δ′
1, h ≤ h′

1.

Like before, Theorem 2 yields that {yk
h}, the sequence of iterates of Algorithm 2 initial-

ized by y0
h ∈ B̄δ′

1
(ȳh), converges to ȳh q-linearly with rate θ .

Now define δ̄ = min(δ1, δ
′
1) and h̄ = h′

1. Then the assertion follows. ��

4. Sufficient conditions for regularity

An important class of complementarity problems results from reformulations of control
constrained optimal control problems of tracking type for elliptic partial differential
equations; see [13, 21, 22]. This problem class satisfies the structural assumption on
F . Frequently, in practice when computing the generalized derivative of G, a particu-
lar choice of D (see (11)) is used. The following result utilizes these two properties to
establish the regularity requirement for Theorem 3.

Theorem 4. Assume that the Fréchet derivative F ′ of F : L2(�) → L2(�), F =
A + λI , is continuous at ȳ ∈ L2(�) and satisfies

(v, F ′(ȳ)v)L2 ≥ γ ‖v‖2
L2 ∀ v ∈ L2(�).

for some γ > 0. Further, let S(y) ⊂ ∂G(y) satisfy

S(y) = {λI + D(y) · A′(y) : D(y) satisfies (11) with

D(y)(x) ∈ {0, 1} if A(y)(x) ∈ {λα, λβ}}.
Then there exist δ > 0 and κ > 0 such that

M is invertible and
∥∥∥M−1

∥∥∥
L2

≤ κ for all M ∈ S(y), y ∈ L2(�), ‖y − ȳ‖L2 ≤ δ.

Proof. In the sequel, for all measurable sets J ⊂ � let EJ denote the extension-by-zero
operator from J to �. Its adjoint E∗

J is a corresponding restriction operator. By zJ we
denote the restriction of z to J . Now let δ > 0 be so small that

κA′ := sup
{∥∥A′(y)

∥∥
L2,L2 : ‖y − ȳ‖L2 ≤ δ

}
(38)

is finite and, in addition,

(v, F ′(y)v)L2 ≥ γ

2
‖v‖2

L2 ∀ v, y ∈ L2(�), ‖y − ȳ‖L2 ≤ δ.
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For any measurable set J ⊂ �, define F ′(y)J J = E∗
J F ′(y)EJ and observe that

(vJ , F ′(y)J J vJ )L2 = (EJ v, F ′(y)EJ v)L2 ≥ γ

2

∥∥vJ
∥∥2

L2

for all v, y ∈ L2(�), ‖y − ȳ‖L2 ≤ δ. Hence,

∥∥∥F ′(y)−1
J J

∥∥∥
L2

≤ 2

γ
∀ y ∈ L2(�), ‖y − ȳ‖L2 ≤ δ, (39)

holds for all measurable sets J ⊂ � with |J | > 0.
Now let w ∈ L2(�) be arbitrary and consider the linear equation

Mv = w ⇐⇒ λv + D(y)A′(y)v = w. (40)

Introducing the sets A = {x : D(y)(x) = 0} and I = {x : D(y)(x) = 1}, we have

λ(EIvI + EAvA) + D(y)A′(y)(EIvI + EAvA) = EIwI + EAwA. (41)

Note that A∪I is a disjoint partition of �.Applying E∗
A and considering (E∗

AEI)vI = 0
and (E∗

AEA)vA = vA in (41) yields

vA = 1

λ
wA.

Here we also utilized the fact E∗
AD(y)v = 0. Applying E∗

I to (41) gives

λvI + E∗
IA′(y)EIvI + E∗

IA′(y)EAvA = wI . (42)

Define the operators

F ′(y)II := λE∗
IEI + E∗

IA′(y)EI = λI + E∗
IA′(y)EI ,

A′(y)IA := E∗
IA′(y)EA.

Then equation (42) can be rewritten as

F ′(y)IIvI + A′(y)IAvA = wI ,

If |I| = 0, we have

v = vA = 1

λ
wA = 1

λ
w

and thus
∥∥M−1

∥∥
L2 ≤ 1/λ.

Now consider the case |I| > 0. Then,

‖vA‖L2 = 1

λ
‖wA‖L2 ,

‖vI‖L2 ≤
∥∥∥F ′(y)−1

II

∥∥∥
L2

∥∥wI − A′(y)IAvA
∥∥

L2

≤ 2

γ
(‖wI‖L2 + ∥∥A′(y)

∥∥
L2 ‖vA‖L2).
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This shows

‖v‖L2 ≤ ‖vA‖L2 + ‖vI‖L2 ≤ 1

λ
‖wA‖L2 + 2

γ
‖wI‖L2 + 2

γ
· κA′ · 1

λ
‖wA‖L2

≤ max

{
2

γ
,

1

λ
+ 2κA′

γ λ

}
(‖wI‖L2 + ‖wA‖L2)

≤
√

2 max

{
2

γ
,

1

λ
+ 2κA′

γ λ

}
‖w‖L2 =: κ ‖w‖L2 .

��
In the same way, regularity of the discrete generalized differential ∂Gh can be proved.

Furthermore, if we can find γ > 0, h̄ > 0, and δ > 0 such that conditions of the form
(38) and (39) can be ensured for F , A′ and Fh, A′

h, 0 < h ≤ h̄ with constants indepen-
dent of h, then the bound κ for the norm of the inverses can be chosen independently of
h.

Theorem 4 covers a wide range of practically relevant control constrained optimal
control problems for partial differential equations; for more details we refer to section 5.
In this case the semismooth operator equation corresponding to an MCP-function based
reformulation of the first order optimality system involves a nonlinear, Fréchet differ-
entiable operator A. However, in many applications A is a linear operator, which maps
L2(�) to Lp(�) for some p > 2, and which frequently is related to (inverses of) lin-
ear elliptic differential operators. Then the regularity result of Theorem 4 can be made
more concrete. As an example consider the simple control constrained optimal control
problem






minimize
u∈H 1

0 (�),y∈L2(�)

J (u, y) := 1
2‖u − ud‖2

L2 + λ
2 ‖y‖2

L2

subject to − �u = y in �,

α ≤ y ≤ β a.e. in �,

(43)

where ud ∈ L2(�), α, β ∈ R, α < β. This problem admits a unique solution. It is easy
to verify that F(y) for this model problem becomes

F(y) = B−1j∗(jB−1y − ud) + λy,

where B ∈ L(H 1
0 (�), H−1(�)) represents −� with homogeneous Dirichlet bound-

ary conditions and j : H 1
0 (�) → L2(�) is the linear embedding operator. Thus, we

have A(y) = B−1j∗(jB−1y − ud), which, by the Sobolev embedding theorem, for
n = 1, 2, 3 maps L2(�) to Lp(�) for appropriate p ∈ (2, ∞).

More general, we relate B ∈ L(H 1
0 (�), H−1(�)) to a linear elliptic second order

differential operator which is invertible. Moreover we assume that B is selfadjoint. Then
F is continuous at arbitrary y ∈ L2(�). Further, for v ∈ L2(�) we have

(v, F ′(y)v)L2 = (v, B−1j∗jB−1v)L2 + λ‖v‖2
L2

= (B−1v, B−1v)L2 + λ‖v‖2
L2 ≥ γ ‖v‖2

L2

for some γ ≥ λ > 0. As a consequence we obtain the following corollary to Theorem 4.
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Corollary 1. Assume that F : L2(�) → L2(�), F = A + λI , with A = B−1j∗jB−1,
where B ∈ L(H 1

0 (�), H−1(�)) is a linear elliptic second order differential operator.
Further, assume that D(y)(x) ∈ {0, 1} whenever (Ay)(x) ∈ {λα, λβ}. Then there exists
κ > 0 such that

M is invertible and
∥∥∥M−1

∥∥∥
L2

≤ κ for all M ∈ ∂G(y), y ∈ L2(�).

In the discrete setting we obtain for vh ∈ Yh

(vh, F
′
h(yh)vh)L2 ≥ λ‖vh‖2

L2 .

Thus, for γ = λ, which is independent of h, the L2-ellipticity of the bilinear forms
associated with F ′

h and F ′, respectively, follows. As a consequence (39) and its discrete
analogue are satisfied with γ = λ uniformly in h. The boundedness of A′ in (38) follows
from the boundedness of B−1. Note that these results are independent of δ since A does
not depend on y. Depending on the norms of appropriate injection operators (for details
we refer to Remark 4 below) essentially the same bound applies to the discrete operator
A′

h. This proves that (38) and its discrete analogue are satisfied with a common uniform
bound κA′ . Consequently, from the definition of κ in the proof of Theorem 4 we infer
that κ can be chosen independently of h and Corollary 1 also applies when L2(�), F ,
G, and M are replaced by their discrete counterparts Yh, Fh, Gh, and Mh.

In the following Theorem 5 we restate the mesh independence result of Theorem 3
under the requirements of Theorem 4. This is interesting since it covers the semismooth
Newton methods in [13, 23] which utilize the particular choice of D(y). In section 6 the
mesh independent behavior of these algorithms is demonstrated.

Theorem 5. Let G : L2(�) → L2(�) be semismooth, and assume that there exist
ȳ ∈ L2(�) with G(ȳ) = 0 and ȳh ∈ Yh with Gh(ȳh) = 0 which satisfy Assump-
tions 1–2. Further suppose that the assumptions of Theorem 4 are satisfied and there
exist δ′

2 > 0, κ ′ > 0 and h′
2 ≤ h0 such that

sup
{
‖M−1

h ‖L2,L2 : Mh ∈ Sh(ȳh + sh), ‖sh‖L2 ≤ δ′
2

}
≤ κ ′ ∀ h ≤ h′

2.

Then, for arbitrarily fixed θ ∈ (0, 1), there exist δ̄ > 0 and h̄ > 0 such that for all
0 < h ≤ h̄

‖yk+1 − ȳ‖L2 ≤ θ‖yk − ȳ‖L2 , (44)

‖yk+1
h − ȳh‖L2 ≤ θ‖yk

h − ȳh‖L2 (45)

with max{‖y0 − ȳ‖L2 , ‖y0
h − ȳh‖L2} ≤ δ̄.

Proof. The proof essentially follows the lines of the proof of Theorem 3 with possibly
smaller δ1 due to the result of Theorem 4. ��

Note that in the case of the linear-quadratic control problem (43) the boundedness
assumption on {‖M−1

h ‖L2,L2 : Mh ∈ Sh(ȳh + sh), ‖sh‖L2 ≤ δ′
2} follows from Corol-

lary 1 and the discussion thereafter.
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5. Application to constrained optimal control problems

In this section we apply the mesh independence result of Theorem 5 to control con-
strained semilinear elliptic optimal control problems; see, e.g., [3]. We consider the
following problem:

minimize J (u, y) = 1
2‖u − ud‖2

L2 + λ
2 ‖y‖2

L2

subject to (u, y) ∈ H 1(�) × L2(�),

Cu + f (u) = y in �, u = 0 on � = ∂�,

y ∈ Yad = {y ∈ L2(�) | α ≤ y(x) ≤ β for a.a. x in �},

(46)

where ud ∈ L4(�), λ > 0, α, β ∈ R, and C denotes a second-order elliptic operator of
the form

Cu(x) = −
n∑

i,j=1

(aij (x)uxi
(x))xj

.

The coefficients are supposed to be Lipschitz continuous functions in �̄ satisfying the
ellipticity condition

n∑

i,j=2

aij (x)ξiξj ≥ γa‖ξ‖2 for all (ξ, x) ∈ R
n × �̄, γa > 0.

It is assumed throughout that � ⊂ R
n, with n = 2, 3, is convex and bounded with suffi-

ciently smooth boundary �. We point out that with respect to the objective functional
more general cases can be considered; see [3]. However, in order to avoid additional
technicalities we restrict ourselves to the class of tracking-type objective functionals as
stated in problem (46). The function f : R → R is assumed to be of class C3, and f ′
is nonnegative. This implies the assumptions posed in [3]: For all κ > 0 there exists
γκ > 0 such that

|f (u)| + |f ′(u)| + |f ′′(u)| ≤ γκ,

|f ′′(u2) − f ′′(u1)| ≤ γκ |u2 − u1|

for all (u, u1, u2) ∈ [−κ, κ]3. In addition, we require that there exist constants c1, c2
such that

|f ′′′(u)| ≤ c1 + c2|u| p−6
2 ∀ u ∈ R.

Here, we fix p ∈ [6, ∞) for n = 2 and p = 6 for n = 3. Then we have the continuous
embedding

H 1
0 (�) ⊂ Lp(�).

Without loss of generality we also suppose that f (0) = 0.

Remark 2. The function f could also be a Carathéodory function that depends on x

and u.
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Remark 3. Iterated application of Lemma 1 shows that all the growth conditions stated in
Theorem 11 are satisfied forq = 2.Therefore, we have all assertions ofTheorem 11 avail-
able. In particular, the superposition operator u ∈ H 1

0 (�) ⊂ Lp(�) �→ f (u) ∈ L2(�)

is twice continuously Fréchet differentiable.

It is known (see below) that under the above assumptions the semilinear elliptic PDE

Cu + f (u) = y in �, u = 0 on � (47)

admits a unique solution u(y) ∈ H 1
0 (�) for every y ∈ L2(�) and that u(y) enjoys

the additional regularity u(y) ∈ H 2(�); see the appendix in [3]. Further, by classical
arguments, one can show that (46) admits at least one solution.

To obtain a finite-dimensional approximation of (46), the discrete control space
Yh ⊂ L2(�) is chosen as described in section 2. Yh is equipped with the inner product
(·, ·)Yh

= (·, ·)L2 and it is identified with its dual, i.e., Y ∗
h = Yh. The discrete state space

Uh ⊂ H 1
0 (�) consists of piecewise linear finite elements and is equipped with the same

norm as H 1
0 (�), namely ‖·‖H 1 , see [3] for details. Using these spaces and assuming

ud ∈ Uh for convenience, we formulate the discrete control problem

minimize J (uh, yh)

subject to (uh, yh) ∈ Yh × Uh,

〈Cuh + f (uh), φh〉H−1,H 1
0

= (yh, φh)L2 ∀ φh ∈ Uh,

yh ∈ Yad ∩ Yh.

(48)

For any yh ∈ Yh, the discrete state equation possesses a unique solution uh(yh) ∈ Uh.
Furthermore, the problem (48) possesses at least one solution, see [3].

We now analyze the differential operator

E : H 1
0 (�) → H−1(�), E(u) = Cu + f (u) (49)

and its discretization

Eh : Uh → U∗
h , 〈Eh(u

h), φh〉U∗
h ,Uh

= 〈Cuh + f (uh), φh〉H−1,H 1
0

∀ φh ∈ Uh.

(50)

Defining the natural injection jh : uh ∈ Uh �→ uh ∈ H 1
0 (�), which is linear and

continuous with ‖jh‖Uh,H 1
0

= 1, we can write

Eh = j∗
h ◦ E ◦ jh.

Since the injection jh acts like the identity, we will omit it in the sequel. The adjoint
operator j∗

h , which is the projection from the space H−1(�) of bounded linear forms on
H 1

0 (�) onto the space U∗
h of bounded linear forms on Uh, however, is important.

By the Sobolev embedding theorem, there exists a constant kp > 0 such that

‖·‖L2 ≤ ‖·‖H 1 , ‖·‖H−1 ≤ ‖·‖L2 , ‖·‖Lp ≤ kp ‖·‖H 1 .
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We proceed by defining the linear injection operator ih ∈ L(Yh, L
2(�)). The adjoint of

ih is the averaging operator i∗h : L2(�) → Yh given by the explicit formula i∗hv = �hv

with

(�hv)|T = 1

|T |
∫

T

v(x) dx ∀ T ∈ Th. (51)

Furthermore, since ‖ih‖Yh,L2 = 1, we also have
∥∥i∗h

∥∥
L2,Yh

= 1. For the purpose of
abbreviation, let us finally define eh ∈ L(Uh, Yh), eh = i∗hjjh. Then ‖eh‖Uh,Yh

=∥∥e∗
h

∥∥
Yh,U∗

h
≤ 1.

The state equation and the discrete state equation, respectively, can be written in the
form

E(u) = y, (52)

Eh(uh) = e∗
hyh. (53)

Theorem 6. The operators E and Eh, h > 0, defined in (49) and (50), respectively have
the following properties:

a) E and Eh, h > 0, are twice continuously Fréchet differentiable with

E′(u)v = Cv + f ′(u)v, E′′(u)(v1, v2) = f ′′(u)v1v2,

E′
h(uh)vh = j∗

h (Cvh + f ′(uh)vh), E′′
h(uh)(v

1
h, v

2
h) = j∗

h (f ′′(uh)v
1
hv

2
h).

b) E and Eh, h > 0, are strongly monotone. More precisely, there exists ν > 0 such
that

〈E(u2) − E(u1), u2 − u1〉H−1,H 1
0

≥ ν

∥∥∥u2 − u1
∥∥∥

2

H 1
∀ u1, u2 ∈ H 1

0 (�),

〈Eh(u
2
h) − Eh(u

1
h), u

2
h − u1

h〉U∗
h ,Uh

≥ ν

∥∥∥u2
h − u1

h

∥∥∥
2

Uh

∀ u1
h, u

2
h ∈ Uh.

c) E and Eh, h > 0, are invertible and their inverses are Lipschitz continuous, i.e.,
with ν as in b),

∥∥∥E−1(v2) − E−1(v1)

∥∥∥
H 1

≤ ν−1
∥∥∥v2 − v1

∥∥∥
H−1

∀ v1, v2 ∈ H−1(�),
∥∥∥E−1

h (v2
h) − E−1

h (v1
h)

∥∥∥
Uh

≤ ν−1
∥∥∥v2

h − v1
h

∥∥∥
U∗

h

∀ v1
h, v

2
h ∈ U∗

h .

d) For all u ∈ L2(�) and all uh ∈ Uh, h > 0, the linear operators E′(u) ∈
L(H 1

0 (�), H−1(�)) and E′
h(uh) ∈ L(Uh, U

∗
h ) are continuously invertible with

∥∥∥E′(u)−1
∥∥∥

H−1,H 1
0

≤ ν−1,

∥∥∥E′
h(uh)

−1
∥∥∥

U∗
h ,Uh

≤ ν−1.

Proof.
a) By Lemma 1 and Theorem 11, under the stated assumptions on f the superposition
operator

Sf : u ∈ Lp(�) �→ f (u) ∈ L2(�)
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is twice continuously differentiable with derivatives

S′
f (u)v = f ′(u)v, S′′

f (u)(v1, v2) = f ′′(u)v1v2.

Now the assertions on E follow from the continuous embedding H 1
0 (�) ⊂ Lp(�). Fur-

thermore, by the continuity and linearity of jh, Eh is twice continuously differentiable
as well with

E′
h(uh)vh = j∗

h (E′(jhuh)(jhvh)) = j∗
h (E′(uh)vh) = j∗

h (Cvh + f ′(uh)vh),

E′′
h(uh)(v

1
h, v

2
h) = j∗

h (E′′(jhuh)(jhv
1
h, jhv

2
h)) = j∗

h (f ′′(uh)v
1
hv

2
h).

b) For all u1, u2 ∈ L2(�) we obtain with δu = u2 − u1

∫

�

(f (u2(x)) − f (u1(x)))δu(x) dx =
∫

�

∫ 1

0
f ′(u1(x) + tδu(x))δu(x) dt δu(x) dx

=
∫

�

∫ 1

0
f ′(u1(x) + tδu(x)) dt δu(x)2 dx ≥ 0.

Hence, by the ellipticity of C, there exists ν > 0 with

〈E(u2) − E(u1), δu〉H−1,H 1
0

≥ 〈Cδu, δu〉H−1,H 1
0

≥ ν ‖δu‖2
H 1 .

Furthermore, with δuh = u2
h − u1

h,

〈Eh(u
2
h) − Eh(u

1
h), δuh〉U∗

h ,Uh
= 〈E(u2

h) − E(u1
h), δuh〉H−1,H 1

0

≥ ν ‖δuh‖2
H 1 = ν ‖δuh‖2

Uh
.

c) From the Browder-Minty theorem on monotone operators we obtain that E and Eh

are surjective. Now let E(u1) = v1 and E(u2) = v2. Then by b)

ν

∥∥∥u2 − u1
∥∥∥

2

H 1
≤ 〈E(u2) − E(u1), u2 − u1〉H−1,H 1

0
= 〈v2 − v1, u2 − u1〉H−1,H 1

0

≤
∥∥∥v2 − v1

∥∥∥
H−1

∥∥∥u2 − u1
∥∥∥

H 1
.

This proves the injectivity of E, thus its invertibility, and the Lipschitz continuity of
E−1 The assertion on Eh can be proved in exactly the same way.

d) For all v ∈ H 1
0 (�), there holds

〈E′(u)v, v〉H−1,H 1
0

= 〈Cv, v〉H−1,H 1
0

+
∫

�

f ′(u(x))v(x)2 dx

≥ 〈Cv, v〉H−1,H 1
0

≥ ν ‖v‖2
H 1 .

Therefore, the linear operator E′(u) is strongly monotone and thus, as in c), we obtain
the invertibility of E′(u) and the bound on its inverse. In the same way we obtain the
assertion on Eh, since

〈E′
h(uh)vh, vh〉U∗

h ,Uh
= 〈E′(uh)vh, vh〉H−1,H 1

0
≥ ν ‖vh‖2

H 1 = ν ‖vh‖2
Uh

.

��
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In the following we consider the reduced version of problem (46) given by

minimize Ĵ (y) = 1
2‖u(y) − ud‖2

L2 + λ
2 ‖y‖2

L2

subject to y ∈ Yad,
(54)

where u(y) ∈ H 1
0 (�) denotes the unique solution of (47) for given y ∈ L2(�). Doing

the same with the discrete problem (48), we obtain the discrete reduced problem

minimize Ĵh(yh) = 1
2‖uh(yh) − ud‖2

L2 + λ
2 ‖yh‖2

L2

subject to yh ∈ Yad ∩ Yh

(55)

with uh(yh) ∈ Uh denoting the unique solution of the discrete state equation.
To avoid redundant argumentations, we introduce U0 = H 1

0 (�), Y0 = L2(�),
i0 : y ∈ L2(�) �→ y ∈ L2(�), j0 : u ∈ H 1

0 (�) �→ u ∈ H 1
0 (�), and e0 : u ∈

H 1
0 (�) �→ u ∈ L2(�). Then the continuous control problem (46) equals the problem

(48) with h = 0 and the state equation (52) coincides with (53), h = 0. Furthermore,
the reduced control problem (54) is identical to (55) with h = 0.

Theorem 7. The operators

y ∈ L2(�) �→ u(y) ∈ H 1
0 (�) and yh ∈ Yh �→ uh(yh) ∈ Uh

as well as the reduced objective functions Ĵ and Ĵh are twice continuously Fréchet
differentiable.

Proof. Let h ≥ 0 (this includes the continuous case h = 0). Then we have uh(yh) =
E−1

h (ehyh) and, by Theorem 6, the inverse function theorem can be applied to Eh

and yields that E−1
h is twice continuously Fréchet differentiable. Since the quadratic

functional J is smooth, the function Ĵ (y) = J (uh(yh), yh) is twice continuously differ-
entiable, too. ��

The first order optimality conditions for (54) are given by

ȳ ∈ Yad, (∇Ĵ (ȳ), y − ȳ)L2 ≥ 0 for all y ∈ Yad (56)

This is a problem of the form (2). Let us characterize ∇Ĵ (ȳ). In fact, we have

(∇Ĵ (ȳ), v)L2 = (ū(ȳ) − ud, u′(ȳ)v)L2 + λ(ȳ, v)L2 , (57)

where u′ denotes the derivative of u(y) with respect to y. In order to derive a computable
expression for u′(ȳ) we use the adjoint method. For this purpose we define the adjoint
state w = w(y) ∈ H 1

0 (�) as the solution of the adjoint equation

E′(u(y))∗w = ∇uJ (u(y), y),

which in detail reads

C∗w + f ′(u(y))w = u(y) − ud in �, w = 0 on �. (58)
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By Theorem 6, (58) admits a unique solution w(y) ∈ H 1
0 (�) and elliptic regularity

results imply w(y) ∈ H 2(�) ∩ C0,1(�̄). The adjoint gradient representation is then
given by

∇Ĵ (y) = w(y) + λy. (59)

Alternatively, we may write

∇Ĵ (y) = A(y) + λy,

where A : L2(�) �→ w(y) ∈ Lp(�) (note the embedding H 1
0 ⊂ Lp) is realized for

given y by first solving (47) for u and then solving (58) for w. Therefore, F(y) := ∇Ĵ (y)

meets the structural requirement (7).
The same adjoint calculus can be carried out for the discrete problem and results in

the discrete adjoint equation

E′
h(uh(yh))

∗wh = j∗
h∇uJ (uh(yh), yh),

which uniquely specifies the adjoint state wh = wh(uh) ∈ Uh. In detail, the adjoint
equation reads

〈C∗wh + f ′(uh(yh))wh, φh〉H−1,H 1
0

= (uh(yh) − ud, φh)L2 ∀ φh ∈ Uh.

We obtain the discrete adjoint gradient representation

∇Ĵ (yh) = ehwh + λyh = i∗hwh + λyh.

Setting Fh(yh) = ∇Ĵ (yh) = Ah(yh) + λyh with Ah(yh) = ehwh(yh), the discrete
control problem is equivalent to (13) and Fh has the required structure.

In the following, we apply the error estimates developed in the recent paper [3]. Under
our problem assumptions, there exist for sufficiently small h > 0, solutions ȳh ∈ Yh of
(48) such that the sequence (ȳh)h>0 converges strongly in Y to a solution ȳ of (46), see
[3, Thm. 4.3]. In the sequel, we will consider such solutions ȳh and ȳ with ȳh → ȳ.
In particular, assumption (19) then is satisfied. Next, we state error estimates. For the
proofs we refer to [3].

Theorem 8. Denote by (ȳh)h>0 a sequence of solutions to (48) that converges to a
solution ȳ of (46). Then, for sufficiently small h > 0, we have

‖u(ȳ) − uh(ȳh)‖H 1 + ‖w(ȳ) − wh(ȳh)‖H 1 ≤ c(h + ‖ȳ − ȳh‖L2), (60)

‖u(ȳ) − uh(ȳh)‖L2 + ‖w(ȳ) − wh(ȳh)‖L2 ≤ c(h2 + ‖ȳ − ȳh‖L2), (61)

‖u(ȳ) − uh(ȳh)‖L∞ + ‖w(ȳ) − wh(ȳh)‖L∞ ≤ c(h2− n
2 + ‖ȳ − ȳh‖L2), (62)

‖ȳ − ȳh‖L2 ≤ ch. (63)

Now we can verify Assumption 2.1: The first requirement (19) is already verified. For
the second requirement we need the inequality

‖�hv‖Lq ≤ ‖v‖Lq ∀ v ∈ Lq(�), q ∈ [2, ∞], (64)



174 M. Hintermüller, M. Ulbrich

where �h is defined by (51). For q = ∞ this is obvious. To establish (64) for 2 ≤ q < ∞,
let v ∈ Lq(�) be arbitrary. Then

‖�hv‖q
Lq =

∑

T ∈Th

∥∥∥∥
1

|T |
∫

T

v(x) dx

∥∥∥∥

q

Lq(T )

=
∑

T ∈Th

1

|T |q−1

∣∣∣∣

∫

T

v(x) dx

∣∣∣∣

q

.

Now, by Hölder’s inequality,

∣∣∣∣

∫

T

v(x) dx

∣∣∣∣ ≤
∫

T

|v(x)| dx ≤
(∫

T

dx

) q−1
q

(∫

T

|v(x)|q dx

) 1
q

= |T | q−1
q ‖v|T ‖Lq(T ) .

Hence,

‖�hv‖q
Lq =

∑

T ∈Th

1

|T |q−1

∣∣∣∣

∫

T

v(x) dx

∣∣∣∣

q

≤
∑

T ∈Th

1

|T |q−1
|T |q−1 ‖v|T ‖q

Lq(T ) = ‖v‖q
Lq .

Furthermore, for the regular triangulations under consideration, it can be shown that (see
[12])

‖w(ȳ) − �hw(ȳ)‖L2 ≤ ch ‖w(ȳ)‖H 1 . (65)

Now we can prove (20) by invoking (60), (62), (63), (64), and (65):

‖A(ȳ) − Ah(ȳh)‖Lp ≤ ‖w(ȳ) − ehwh(ȳh)‖Lp = ∥∥w(ȳ) − i∗hwh(ȳh)
∥∥

Lp

≤ ‖�h(w(ȳ) − wh(ȳh))‖Lp + ‖w(ȳ) − �hw(ȳ)‖Lp

≤ ‖w(ȳ) − wh(ȳh)‖Lp + ‖w(ȳ) − �hw(ȳ)‖
p−2
p

L∞ ‖w(ȳ) − �hw(ȳ)‖
2
p

L2

≤ kpch + (2 ‖w(ȳ)‖L∞)
p−2
p (ch ‖w(ȳ)‖H 1)

2
p → 0 as h → 0.

It remains to prove the Assumptions 2.2 and 3. The nonlinearity of the state equation
makes this task lengthy. For the reader who wants to see an immediate result, we first con-
sider the linear quadratic case in the next remark, for which the remaining assumptions
can be verified very quickly.

Remark 4. Consider the special case (43), i.e., f ≡ 0 and C = −�. Then with the nota-
tion introduced in the discussion of problem (43), we have E(u) = Bu and Eh(uh) =
Bhuh with Bh = j∗

hBjh. Furthermore,

A(y) = B−1j∗(jB−1y − ud), Ah(yh) = ehB
−1
h j∗

h j∗(jjhB
−1
h e∗

hyh − j∗
hud).

We obtain

‖A(y) − A(ȳ)‖Lp ≤ kp

∥∥∥B−1j∗jB−1(y − ȳ)

∥∥∥
H 1

≤ kpν−1
∥∥∥B−1(y − ȳ)

∥∥∥
H−1

≤ kpν−1
∥∥∥B−1(y − ȳ)

∥∥∥
H 1

≤ kpν−2 ‖y − ȳ‖L2 ,

‖Ah(yh) − Ah(ȳh)‖Lp ≤ kp

∥∥∥ehB
−1
h j∗

h j∗jjhB
−1
h e∗

h(yh − ȳh)

∥∥∥
Uh

≤ kpν−2 ‖yh − ȳh‖Yh
.

This implies Assumption 2.2 with LA = kpν−2.
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The Assumption 2.3 is trivial, since

A(y) − A(ȳ) − A′(y)(y − ȳ) = 0, Ah(yh) − Ah(ȳh) − A′
h(yh)(yh − ȳh) = 0.

We now return to the control problem with semilinear state equation.

Theorem 9. a) The operators u(·) : L2(�) → H 1
0 (�) and uh(·) : Yh → Uh, h > 0,

are Lipschitz continuous with modulus ν−1 and there holds

‖u(y)‖H 1 ≤ ν−1 ‖y‖L2 , ‖uh(yh)‖Uh
≤ ν−1 ‖yh‖Yh

.

b) For any bounded set V ⊂ L2(�), there exists LV > 0 such that the Fréchet deriva-
tives u′(·) and u′

h(·), h > 0, are Lipschitz continuous on V and V ∩Yh, respectively,
with modulus LV . Furthermore, for all y ∈ L2(�) and yh ∈ Yh, we have the bounds

∥∥u′(y)
∥∥

L2,H 1 ≤ ν−1,
∥∥u′

h(yh)
∥∥

Yh,Uh
≤ ν−1.

Proof. Throughout the proof, let h ≥ 0 and yi
h ∈ Yh be arbitrary and set

ui
h = uh(y

i
h), i = 1, 2, δyh = y2

h − y1
h, δuh = u2

h − u1
h.

a)

‖δuh‖Uh
=

∥∥∥E−1
h (e∗

hy
2
h) − E−1

h (e∗
hy

1)

∥∥∥
Uh

≤ ν−1
∥∥e∗

hδyh

∥∥
U∗

h
≤ ν−1

∥∥δyh

∥∥
Yh

.

The growth estimate follows from u(0) = 0 and uh(0) = 0.

b)
Let r > 0 be such that ‖y‖L2 ≤ r for all y ∈ V and consider yi ∈ V , yi

h ∈ V ∩ Yh.
Then, since u(0) = 0 and uh(0) = 0, we have by a) that

∥∥∥ui
∥∥∥

H 1
≤ ν−1r,

∥∥∥ui
h

∥∥∥
Uh

≤ ν−1r.

Since uh(·) is Lipschitz continuous with modulus ν−1, we conclude

∥∥u′
h(yh)vh

∥∥
Uh

= lim
t→0

‖uh(yh + tvh) − uh(yh)‖Uh

t
≤ ν−1 ‖vh‖Yh

∀ yh, vh ∈ Yh.

Differentiation of the (discrete) state equation (53) yields

E′
h(u

i
h)u

′
h(y

i
h)vh = j∗

h (Cu′
h(y

i
h)vh + f ′(ui

h)u
′
h(y

i
h)vh) = e∗

hvh,

Hence,

E′
h(u

2
h)(u

′
h(y

2
h) − u′

h(y
1
h))vh =

= E′
h(u

2
h)u

′
h(y

2
h)vh − E′

h(u
1
h)u

′
h(y

1
h)vh + (E′

h(u
1
h) − E′

h(u
2
h))u

′
h(y

1
h)vh

= j∗
h

(
(f ′(u1

h) − f ′(u2
h))(u

′
h(y

1
h)vh)

)
.
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We use Hölder’s inequality to estimate
∥∥∥j∗

h

(
(f ′(u1

h) − f ′(u2
h))(u

′
h(y

1
h)vh)

)∥∥∥
U∗

h

≤
∥∥∥(f ′(u1

h) − f ′(u2
h))(u

′
h(y

1
h)vh)

∥∥∥
L2

≤
∥∥∥f ′(u1

h) − f ′(u2
h)

∥∥∥
L

2p
p−2

∥∥∥u′
h(y

1
h)vh

∥∥∥
Lp

≤ kpν−1
∥∥∥f ′(u1

h)−f ′(u2
h)

∥∥∥
L

2p
p−2

‖vh‖Uh
≤ kpν−1

∥∥∥f ′(u1
h)−f ′(u2

h)

∥∥∥
L

2p
p−2

‖vh‖Yh
.

According to Theorem 9 a) with f , p and q replaced by f ′, p and 2p
p−2 , respectively,

we have that the operator u ∈ Lp(�) �→ f ′(u) ∈ L
2p

p−2 (�) is Lipschitz continuous on{‖u‖Lp ≤ ν−1r
}

with a constant Lr . Hence,
∥∥∥(u′

h(y
2
h) − u′

h(y
1
h))vh

∥∥∥
Uh

≤
∥∥∥E′

h(u
2
h)

−1
∥∥∥

U∗
h ,Uh

kpν−1Lr ‖δuh‖Lp ‖vh‖Yh

≤ k2
pν−2Lr ‖δuh‖Uh

‖vh‖Yh
=: LV ‖δuh‖Uh

‖vh‖Yh
.

The uniform Lipschitz continuity of u′
h(·), h ≥ 0, on V is proved. ��

Theorem 10. For any bounded set V ⊂ L2(�), the following holds:

a) The operators w(·) : L2(�) → H 1
0 (�) and wh(·) : Yh → Uh, h > 0, are Lipschitz

continuous and bounded on V and V ∩Yh, respectively, with Lipschitz constant and
bound independent of h.

b) The Fréchet derivatives w′(·) and w′
h(·), h > 0, exist, and these operators are Lips-

chitz continuous on V and V ∩Yh, respectively, with a Lipschitz constant independent
of h.

Proof. Let V ⊂ L2(�) be bounded and choose r > 0 such that ‖y‖L2 ≤ r for all y ∈ V .
Now consider any h ≥ 0. As in the proof of Theorem 9 a), there holds

‖uh(yh)‖Uh
≤ ν−1r ∀ yh ∈ V ∩ Yh, h ≥ 0.

a) Let yi
h ∈ V ∩ Yh, i = 1, 2, be arbitrary and set

ui
h =uh(y

i
h), wi

h =wh(y
i
h), δyh =y2

h − y1
h, δuh =u2

h − u1
h, δwh =w2

h − w1
h.

We have

E′
h(u

i
h)

∗wi
h = j∗

h (C∗wi
h + f ′(ui

h)w
i
h) = j∗

h (ui
h − ud).

Furthermore, we obtain the uniform bound
∥∥∥wi

h

∥∥∥
Uh

=
∥∥∥E′

h(u
i
h)

−1j∗
h (ui

h − ud)

∥∥∥
Uh

≤ ν−1
∥∥∥ui

h − ud

∥∥∥
H−1

≤ ν−1(ν−1r + ‖ud‖L2).

Next, we use the adjoint equation to derive

E′
h(u

2
h)

∗δwh = E′
h(u

2
h)

∗w2
h − E′

h(u
1
h)

∗w1
h + (E′

h(u
1
h)

∗ − E′
h(u

2
h)

∗)w1
h

= j∗
h

(
δuh + (f ′(u1

h) − f ′(u2
h))w

1
h

)
.
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Hence,

‖δwh‖Uh
≤

∥∥∥(E′
h(u

2
h)

∗)−1
∥∥∥

U∗
h ,Uh

∥∥∥j∗
h (δuh + (f ′(u1

h) − f ′(u2
h))w

1
h)

∥∥∥
U∗

h

≤ ν−1(‖δuh‖L2 +
∥∥∥f ′(u1

h) − f ′(u2
h)

∥∥∥
L

2p
p−2

∥∥∥w1
h

∥∥∥
Lp

).

Since f ′(·) : Lp(�) → L
2p

p−2 (�) is Lipschitz continuous on the bounded set {‖u‖Lp ≤
ν−1r} with a constant Lr , we obtain

‖δwh‖Uh
≤ ν−1(1 + kpLrν

−1(ν−1r + ‖ud‖L2)) ‖δuh‖L2 =: LV ‖δuh‖L2 .

b) We consider the adjoint equation

E′
h(uh(yh))

∗wh − j∗
h (uh(yh) − ud) = 0.

The operator on the left is continuously Fréchet differentiable and the partial derivative
with respect to wh is E′

h(uh(yh))
∗. This operator is continuously invertible so that the

implicit function theorem can be applied to prove that yh �→ wh(yh) is continuously
Fréchet differentiable.

Now let yh ∈ V ∩ Yh be arbitrary. With uh = uh(yh) and wh = wh(yh) we obtain
by differentiation

E′
h(uh)

∗w′
h(yh) + f ′′(uh)wh · u′

h(yh) − j∗
hu′

h(yh) = 0.

It was shown in Theorem 9 and in a) that the operators

uh(·), wh(·) : Yh �→ Uh and u′
h(·) : Yh �→ L(Yh, Uh)

are Lipschitz continuous and bounded on V ∩Yh with Lipschitz constant and bound inde-

pendent of h. Furthermore, by Theorem 11 a), the operator f ′′(·) : Lp(�) → L
2p

p−4 (�)

is Lipschitz continuous on
{‖u‖Lp ≤ ν−1r

}
. Since, by Hölder’s inequality,

∥∥f ′′(uh)wh(u
′
h(yh)vh)

∥∥
U∗

h
≤ ∥∥f ′′(uh)wh(u

′
h(yh)vh)

∥∥
L2

≤ ∥∥f ′′(uh)
∥∥

L
2p

p−4
‖wh‖Lp

∥∥u′
h(yh)vh

∥∥
Lp

≤ k2
p

∥∥f ′′(uh)
∥∥

L
2p

p−4
‖wh‖Uh

∥∥u′
h(yh)vh

∥∥
Uh

,

we conclude that for h ≥ 0 the operator

f ′′(uh(·))wh(·) · u′
h(·) − j∗

hu′
h(·) : Yh �→ L(Uh, U

∗
h )

is Lipschitz continuous and bounded on V ∩ Yh with Lipschitz constant and bound
independent of h. It remains to show that the operator

yh ∈ Yh × U∗
h �→ (E′

h(uh(yh))
∗)−1 ∈ L(U∗

h , Uh)

is Lipschitz continuous and bounded on V ∩ Yh with Lipschitz constant and bound
independent of h ≥ 0. This, however, can be done exactly as in part a). ��

We are now in a position to verify the remaining Assumptions 2.2 and 3.



178 M. Hintermüller, M. Ulbrich

Since Assumptions 2.1 is already shown, we see that we can choose h0 > 0 and
δ0 > 0 and a bounded set V ⊂ L2(�) such that y ∈ V holds for all y ∈ Y with
‖y − ȳ‖L2 ≤ δ0 and yh ∈ V ∩ Yh holds for all yh ∈ Yh with ‖yh − ȳh‖Yh

≤ δ0,
0 < h < h0. From Theorem 10 we then obtain a constant LV > 0 such that the
following estimates hold: For all yi ∈ L2(�),

∥∥yi − ȳ
∥∥

L2 ≤ δ0,

∥∥∥A(y2) − A(y1)

∥∥∥
Lp

≤ kp

∥∥∥w(y2) − w(y1)

∥∥∥
H 1

≤ kpLV

∥∥∥y2 − y1
∥∥∥

L2
.

Further, for all 0 < h < h0 and all yi
h ∈ Yh,

∥∥yi
h − ȳh

∥∥
Yh

≤ δ0,

∥∥∥Ah(y
2
h) − Ah(y

1
h)

∥∥∥
Lp

=
∥∥∥i∗h(wh(y

2
h) − wh(y

1
h))

∥∥∥
Lp

≤ kp

∥∥∥wh(y
2
h) − wh(y

1
h)

∥∥∥
Uh

≤ kpLV

∥∥∥y2
h − y1

h

∥∥∥
Yh

.

This proves Assumptions 2.2.
We now proceed to Assumptions 2.3. By Theorem 10, the operators w′(·) and w′

h(·),
h > 0, are Lipschitz continuous on V and V ∩Yh, respectively, with a common modulus
L′

V . Hence, for all y ∈ L2(�), ‖y − ȳ‖L2 ≤ δ0, we have with s = y − ȳ

∥∥A(y) − A(ȳ) − A′(y)(y − ȳ)
∥∥

L2 =
∥∥∥∥

∫ 1

0
(w′(ȳ + ts) − w′(y))s dt

∥∥∥∥
L2

≤
∫ 1

0

∥∥(w′(ȳ + ts) − w′(y))s
∥∥

H 1 dt ≤
∫ 1

0
L′

V (1 − t) ‖s‖2
L2 dt = L′

V

2
‖s‖2

L2 .

In the same way, for all 0 < h < h0 and all yh ∈ Yh, ‖yh − ȳh‖Yh
≤ δ0, we obtain with

sh = yh − ȳh

∥∥Ah(yh) − Ah(ȳh) − A′
h(yh)(yh − ȳh)

∥∥
Yh

=
∥∥∥∥

∫ 1

0
i∗h(w′

h(ȳh + tsh) − w′
h(yh))sh dt

∥∥∥∥
Yh

≤
∫ 1

0

∥∥(w′
h(ȳh + tsh) − w′

h(yh))sh
∥∥

Uh
dt

≤
∫ 1

0
L′

V (1 − t) ‖sh‖2
Yh

dt = L′
V

2
‖sh‖2

Yh
.

Hence, (21), (22), and (23) are satisfied with ρ(t) = L′
V t

2 .
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6. Numerical validation

For the numerical validation of our mesh independence result we consider the following
optimal control problem with a semilinear governing equation.

minimize J (u, y) = 1
2‖u − ud‖2

L2 + λ
2 ‖y‖2

L2

subject to (u, y) ∈ H 1(�) × L2(�),

− �u + u3 + u = y in �, u = 0 on � = ∂�,

y ∈ Yad = {y ∈ L2(�) | − 4 ≤ y(x) ≤ 0 for a.a. x in �},

(66)

with � = (0, 1)2, ud = sin(2πx1) sin(2πx2) exp(2x1)/6, and λ = 0.001. For the dis-
cretization of (66) we use the procedure described in section 2. We initialize Algorithm 2
with y0

h = 0, i.e., the initial control is set to the upper bound. The generalized derivatives
are determined according to Corollary 1.

For the results reported on in Tables 1-3 we use the following notation:

resk
h = ‖λyk

h − P[−4λ,0](−Ah(y
k
h))‖L2 ,

lkh = ‖yk
h − y∗

h‖L2 ,

qk
h = ‖yk

h − y∗
h‖L2/‖yk−1

h − y∗
h‖L2 .

Here y∗
h denotes a reference solution computed by a previous run of the algorithm with

the same initialization and a stopping tolerance of 1E-14. In all test runs the algorithm
terminates as soon as resk

h ≤ εM , with εM = 1E-10. We note that typically these stop-
ping tolerances required only one additional iteration for computing the reference value
y∗
h .

Figure 1 shows the optimal control y∗
h and the corresponding optimal state u∗

h for
h = 1/256.

Fig. 1. Optimal control and state for h = 1/256.
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Table 1. Convergence behavior of resk
h = ‖λyk

h − P[−4λ,0](−Ah(yk
h))‖L2 .

h resk
h

1 2 3 4

1/16 3.797E-3 1.108E-3 7.408E-5 5.325E-8

1/32 3.925E-3 1.207E-3 7.591E-5 1.246E-6

1/64 3.957E-3 1.231E-3 7.005E-5 5.283E-7

1/128 3.968E-3 1.239E-3 6.963E-5 4.470E-7

1/256 3.971E-3 1.243E-3 6.958E-5 5.514E-7

Table 2. Convergence behavior of lkh = ‖yk
h − y∗

h‖L2 .

h lkh

1 2 3 4

1/16 3.222 1.195 7.408E-2 5.332E-5

1/32 3.347 1.290 7.678E-2 1.247E-3

1/64 3.378 1.317 7.085E-2 5.285E-4

1/128 3.383 1.325 7.042E-2 4.471E-4

1/256 3.384 1.328 7.037E-2 5.512E-4

Table 3. Convergence behavior of qk
h = ‖yk

h − y∗
h‖L2 /‖yk−1

h − y∗
h‖L2 .

h qk
h

1 2 3 4

1/16 1.619 0.371 6.276E-2 7.111E-4

1/32 1.646 0.385 5.952E-2 1.625E-3

1/64 1.654 0.390 5.380E-2 7.459E-3

1/128 1.654 0.392 5.316E-2 6.349E-3

1/256 1.654 0.393 5.297E-2 7.840E-3

In Table 1 we provide the convergence behavior of the complementarity residual
resk

h. The changes in the residuals are stable with respect to decreasing h (consider the
columns of Table 1). This stabilizing effect clearly indicates an asymptotically mesh
independent behavior.

In the following Table 2 we display the quantities lkh which are involved in the lin-
ear rate of convergence assertions of our mesh independence results Theorem 3 resp.
Theorem 5.

Like in the previous table we can observe a certain stabilizing behavior with respect
to decreasing mesh-size h. This clearly validates the assertion of Theorem 5.

Finally, in Table 3 we provide the quotients qk
h = ‖yk

h −y∗
h‖L2/‖yk−1

h −y∗
h‖L2 . With

respect to decreasing h we observe again the stabilizing behavior as before. Each row
in Table 3 corresponds to the convergence history of Algorithm 2 with fixed h. Obvi-
ously, the algorithm converges superlinearly for fixed h. Combining the observations of
this behavior with the behavior with respect to decreasing h, we infer that the super-
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linear rate of convergence does not deteriorate with respect to decreasing h. Moreover,
independently of the mesh-size h Algorithm 2 requires 5 iterations until its successful
termination. The latter behavior is known as strong mesh independence (see [1]) which
numerically augments our theoretical results.

Acknowledgements. The authors would like to thank the referees for their helpful suggestions.

Appendix

Lemma 1. Let the continuously differentiable function f : R → R satisfy

|f ′(s)| ≤ c1 + c2|s|q ∀ s ∈ R

with constants c1, c2 ≥ 0 and q > 0. Then, for all s ∈ R,

|f (s)| ≤ |f (0)| + c1|s| + c2

q + 1
|s|q+1 ≤ |f (0)| + c1 +

(
c1 + c2

q + 1

)
|s|q+1.

Proof. For all s ∈ R, we have

|f (s)| ≤ |f (0)| +
∫ 1

0
|f ′(ts)s| dt ≤ |f (0)| + |s|

∫ 1

0
(c1 + c2|ts|q) dt

≤ |f (0)| + c1|s| + |s|q+1 c2

q + 1
tq+1|10 = |f (0)| + c1|s| + c2

q + 1
|s|q+1

≤ |f (0)| + c1 +
(

c1 + c2

q + 1

)
|s|q+1.

��
Theorem 11. a) Let f : R → R be continuous and assume that there exist constants

c1, c2 ≥ 0 with

|f (s)| ≤ c1 + c2|s|
p
q ∀ s ∈ R,

where p, q ∈ [1, ∞). Then the superposition operator

Sf : Lp(�) → Lq(�), Sf (u) = f (u),

is continuous with

‖f (u)‖Lq ≤ c1 |�| 1
q + c2 ‖u‖

p
q

Lp .

b) Let f : R → R be continuously differentiable and assume that there exist constants
c1, c2 ≥ 0 with

|f ′(s)| ≤ c1 + c2|s|
p−q

q ∀ s ∈ R,

where p, q ∈ [1, ∞), p > q. Then the superposition operator Sf : Lp(�) →
Lq(�), Sf (u) = f (u) is continuously Fréchet differentiable with derivative

S′
f (u)v = f ′(u)v

Furthermore, on any bounded subset V ⊂ Lp(�), Sf is Lipschitz continuous.
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c) Let f : R → R be twice continuously differentiable and assume that there exist
constants c1, c2 ≥ 0 with

|f ′′(s)| ≤ c1 + c2|s|
p−2q

q ∀ s ∈ R,

where p, q ∈ [1, ∞), p > 2q. Then the superposition operator Sf : Lp(�) →
Lq(�), Sf (u) = f (u) is twice continuously Fréchet differentiable with derivatives

S′
f (u)v = f ′(u)v, S′′

f (u)(v1, v2) = f ′′(u)v1v2.

Proof. a) For the continuity, see [26, Prop. 26.6]. We now prove the bound.

‖f (u)‖Lq ≤
∥∥∥c1 + c2|u| p

q

∥∥∥
Lq

≤ c1 |�| 1
q + c2 ‖u‖

p
q

Lp .

b) The continuous differentiability of Sf is proved in, e.g., [8, Theorem 2.6] or [21,
Appendix].

Now consider V = {u : ‖u‖Lp ≤ r}, r > 0. Then, for u1, u2 ∈ V and d = u2 − u1,
we can use the bound in a) (applied to f ′) to derive

∥∥∥Sf (u2) − Sf (u1)

∥∥∥
Lq

=
∥∥∥∥

∫ 1

0
S′

f (u1 + td)d dt

∥∥∥∥
Lq

≤
∫ 1

0

∥∥∥f ′(u1 + td)d

∥∥∥
Lq

dt

≤
∫ 1

0

∥∥∥f ′(u1 + td)

∥∥∥
L

pq
p−q

‖d‖Lp dt

≤
∫ 1

0

(
c1 |�| p−q

pq + c2

∥∥∥u1 + td

∥∥∥
p−q

q

Lp

)
dt ‖d‖Lp

≤
(
c1 |�| p−q

pq + c2r
p−q

q

)
‖d‖Lp =: LV ‖d‖Lp .

c) By Lemma 1, applied to f ′, we have

|f ′(s)| ≤ |f ′(0)| + c1 +
(

c1 + c2q

p − q

)
|s| p−q

q .

Therefore, by b), Sf : Lp(�) → Lq(�) is continuously Fréchet differentiable with
derivative S′

f as stated in b). Furthermore, again by b), the operator u ∈ Lp(�) �→
f ′(u) ∈ L

pq
p−q (�) is continuously differentiable with derivative v �→ f ′′(u)v. Hence,

for all u, v1, v2 ∈ Lp(�),
∥∥∥S′

f (u + v1)v2 − S′
f (u)v2 − f ′′(u)v1v2

∥∥∥
Lq

=
∥∥∥f ′(u + v1)v2 − f ′(u)v2 − f ′′(u)v1v2

∥∥∥
Lq

≤
∥∥∥f ′(u + v1) − f ′(u) − f ′′(u)v1

∥∥∥
L

pq
p−q

∥∥∥v2
∥∥∥

Lp

=
∥∥∥v2

∥∥∥
Lp

o(

∥∥∥v1
∥∥∥

Lp
) as

∥∥∥v1
∥∥∥

Lp
→ 0.

This shows that Sf is twice differentiable with second derivative as specified.
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By a), the operator u ∈ Lp(�) �→ f ′′(u) ∈ L
pq

p−2q (�) is continuous. Now, for all
u, v1, v2, w ∈ Lp(�),

∥∥∥S′′
f (u + w)(v1, v2) − S′′

f (u)(v1, v2)

∥∥∥
Lq

≤ ∥∥f ′′(u + w) − f ′′(u)
∥∥

L

pq
p−2q

∥∥v1
∥∥

Lp

∥∥v2
∥∥

Lp ,

which proves the continuity of S′′
f (u). ��
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